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A bstract

This paper describes an efficient algorithm for the parallel solution of systems of 
linear equations with a block tridiagonal coefficient matrix. The algorithm comprises 
a multilevel LU-factorization based on block cyclic reduction and a corresponding 
solution algorithm.

The paper includes a general presentation of the parallel multilevel LU-factoriza
tion and solution algorithms, but the main emphasis is on implementation principles 
for a message passing computer with hypercube topology. Problem partitioning, 
processor allocation and communication requirements are discussed for the general 
block tridiagonal algorithm.

Band matrices can be cast into block tridiagonal form, and this special but 
important problem is dealt with in detail. It is demonstrated how the efficiency of 
the general block tridiagonal multilevel algorithm can be improved by introducing 
the equivalent of two-way Gaussian elimination for the first and the last partitioning 
and by carefully balancing the load of the processors. The presentation of the 
multilevel band solver is accompanied by detailed complexity analyses.

The properties of the parallel band solver were evaluated by implementing the 
algorithm on an Intel iPSC hypercube parallel computer and solving a larger number 
of banded linear equations using 2 to 32 processors. The results of the evaluation 
include speed-up over a sequential processor, and the measured values are in good 
agreement with the theoretical values resulting from complexity analysis. It is found 
that the maximum asymptotic speed-up of the multilevel LU—factorization using p 
processors and load balancing is approximated well by the expression (p+6)/4.

Finally, the multilevel parallel solver is compared with solvers based on row 
interleaved organization and with other block solvers.
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1 Introduction
Many technical and scientific problems involve the solution of linear systems of equations

A x  =  b (1.1)

where A can be structured as a block tridiagonal matrix. The discretization of 
boundary value problems for both ordinary and partial differential equations may lead 
to band matrices which can be structured into block tridiagonal matrices. Likewise, 
the analysis of linearly connected substructures (mechanical, electrical,...) often leads to 
block tridiagonal matrices. These matrices may be numerically symmetric, symmetric in 
structure only, or nonsymmetric but still block tridiagonal in structure.

This paper presents an algorithm for the efficient solution of (1.1) on a parallel com
puter with medium to large number of processors. A version of the algorithm for solving 
structurally symmetric band systems has been implemented for the Intel iPSC hypercube, 
and the performance of the implementation of the algorithm is evaluated in great detail.

The multilevel parallel solver is based on block cyclic reduction [1] which permits sep
arate LU-factorization and solution stages. The formulation of the block cyclic reduction 
which we have used is related to nested dissection [2,3], and it is an LU-factorization and 
solution of a block reordered system. The communication required by the band matrix 
implementation of the parallel solver is shown to be negligible.

Our implementation of the parallel solver introduces some enhancements to standard 
block cyclic reduction which may also be used for a general block tridiagonal matrix. The 
first enhancement is two-way Gaussian elimination for the first and the last block. This 
eliminates fill-ins in the two blocks and permits the second enhancement, an efficient load 
balancing which improves the efficiency with the equivalent of 6 extra processors. The 
third enhancement is a block parallel organization which improves processor utilization at 
the lower levels of the algorithm, with a modest communication penalty.

The performance of the implementation of the multilevel parallel band solver on the 
Intel iPSC with 32 processors is evaluated carefully, and the measured execution times 
are compared with predictions derived from complexity analysis.

Direct parallel solvers can be classified into two different groups: block methods (as the 
one described here and [4, 5, 6, 7] ) and row interleaved methods [8]. The block methods 
pay a heavy penalty in terms of fill-ins while communication cost is negligible. The block 
methods can exploit many processors, limited only by the dimension/bandwidth ratio.

The row interleaved algorithm is computationally identical to a sequential Gaussian 
elimination. The pivot row is broadcasted and the processors perform the elimination 
in parallel. Ideal speed-up is prevented by communication which is fairly expensive on 
medium grain parallel processors such as the Intel iPSC [9]. The row interleaved algorithm 
can only exploit a number of processors corresponding to the half bandwidth.

The block methods are therefore advantageous for narrow band problems and medium 
to large number of processing elements. For wide band problems and few processors, the 
row interleaved algorithm is the better. It is also worth mentioning at this point that 
almost all reported implementations of parallel solvers of banded systems are done on
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shared-memory vector machines, such as the Alliant and the Cray computers, while 
our implementation is done on a distributed-memory system with a limited number of 
processors and no vectorization, namely, the Intel iPSC.

This paper is organized as follows. In section 2 block tridiagonal matrices are briefly 
described. Sections 3 and 4 explain the multilevel LU-factorization and solution steps. 
Section 5 describes the general principles for implementing the multilevel algorithm on 
a hypercube, including the communication scheme among the processors. The details of 
the implementation on the hypercube are given in section 6. Section 6.1 describes the 
partitioning and allocation of tasks to different processors and the ordering of the first 
and the last partitions to reduce fill-ins by using 2-way Gaussian elimination. The per
formance of the multilevel algorithm is estimated in section 6.2 using complexity analysis. 
The important problem of load balancing is addressed in section 6.3- As a result of the 
complexity analysis it becomes clear that uniform partitioning of the band matrix will 
lead to poor load balance for the LU-factorization. Balance equations for selecting the 
sizes of the partitions axe then derived. The performance of the parallel band matrix 
solver is presented in section 7. This includes the executing time graph model and actual 
numerical results. A comparison between the multilevel approach and the row interleaved 
factorization and solution approach is given in section 7.3.

2 Block tridiagonal matrices
Consider the system of linear equations ( 1.1) where A, x and b are partitioned as follows:

A i  B \ ' X\ * '  61 '

C 2 A 2 B 2 x 2 62

C z  A z  B z , x  = Xz , i  = ¿3

C n  A n  m . X N  .

------1
: 

£
 

. 
»0

____
1

N is odd by assumption and

AreR nrXTlr and xr,b reRnr for r  =  1 ,2 , ..,iV.

B reR nrXnr+1 for r  =  1 ,2 ,..,  N  — 1 and

(2.1)

C , £ j r - ‘ “ ’ for r  =  2 ,3 , ..,1V.

The entries of A are zero outside the tridiagonal band of matrices.
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Figure 2.1.: Examples of typical block tridiagonal matrices.

Figure 2.1 shows three different examples of typical block tridiagonal matrices. The 
first matrix occurs in the lower levels of the multilevel algorithm applied to a structurally 
symmetric band matrix. The second matrix is a nonsymmetric band matrix with a block 
tridiagonal structure superimposed on it. The third example illustrates two connected 
arbitrary nonsymmetric sub-structures grouped into a block tridiagonal form.

The first level of the multilevel algorithm (block cyclic reduction) is based on the 
reordering of A given in (2.2).

---
1

B i

CO c3 b 3

^5 Cs B s

An Cn
c2 b 2 a 2

c4 b 4 a 4

Ce . . . Aq

. . .  B n- i 1 h-* 1 
, —

The sets {C r , Ar,i?r , J9r_i, CV+i} for r=2, 4, .., N-l are called separators since they 
separate the matrix A into independent blocks Ar, r =  1 ,3 ,. . ,  N. The reordering of A into 
A therefore involves a symmetric row column reordering where the separators are moved 
to the last rows and columns. If A is diagonally dominant, so is A since the symmetric
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reordering preserves diagonal dominance. Obviously, any symmetry of A will also be 
preserved.

N is assumed to be odd, and this is merely a convenient assumption. If N is originally 
even, either two block rows and columns can be merged to reduce N by one or the 
reordering of (2.2) can be modified slightly to account for an even value of N.

In practical applications, the dimensions of separators, nr for r=2,4 ,..,N -l, are usually 
small compared with the dimensions of the remaining blocks, nr for r= l,3 ,...,N , but this 
is not a necessary condition for the application of the multilevel algorithm although it 
may be a necessary condition for obtaining high efficiency.

3 Multilevel LU—factorization
The first level of the multilevel LU-factorization is a standard LU-factorization of A 
defined in (2.2) stopping after n 4 +  n3 . . .  +  pivot rows. This leaves the lower right- 
hand block of dimension n2 +  n4 . . .  +  tin- i unfactored. The partially factored matrix is 
called A and is defined in (3.1)

B i 1
l 3 u3 c 3 b 3

L,U $ c s B $

L jstUn Cn
c 2 b 2 A2 D2

c< b 4 E 4 A4 D4

C6 . . . E q Aq

. . .  B n - i . . .  An - i

The submatrices in (3.1) are related to the ones in (2.2) as follows

L rUr =  Ar, r  =  l , 3,..,iV  (3.2a)

where L r and Ur are lower and upper triangular matrices, respectively.

B r =  L ; l B r, r =  1,3 , . . ,  N -  2. (3.2b)

Cr =  L ; 1 Cr, r =  3 ,5 ,. . ,  N. (3.2c)

c r+1 =  Cr+lUr-\  r =  1 ,3 ,..,  AT -  2 . (3.2d)

B r-  1 =  B r ^ U -1, r =  3 ,5 , . . ,AT. (3.2e)

A, =  A,-  C ,B ,-i -  B ,C , =  2 ,4 , 1. (3.2f)
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(3.2g)Da =  Da -  B aB a+1, s =  2 ,4 ,..,iV  - 3 .

È a =  E a -  CaCa. u  s =  4 ,6, N  -  1. (3.2h)

The tableau in (3.1) and the relations (3.2) reveal the block parallelism in computing 
Â. The factorization of a diagonal block Ar (r is odd) and the associated row operations 
leading to Cr, B r, B r- i ,  Cr+1, A --i  and E r+i can be performed independenly of the cor
responding computations for different r-values. The only overlap is in the computation 
of Âa as specified in (3.2f). At the end of this section, a convenient organization for the 
parallel computation of A is presented.

Notice that Da =  0 (s =  2 ,4 , . .;N  — 3) and E a =  0 (s =  4 ,6 , ..,N  — 1) for the block 
tridiagonal matrix A defined in (2.1). However, the multilevel algorithm handles at no 
extra cost the case where the separators are extended with Da ^  0 and E a 0. In this 
case the even numbered rows and columns of A (the separators) will contain five matrix 
blocks: E a,C a, Aa, B a, Dsa.ndDa- 2, B a- i ,  Aa,C a+ i,E a+ 2 , respectively for s =  4, 6, .., N-3. 
For s =  2, Do and E<i will be absent while .Djv-i and E n+i will be absent for s =  N-l.

The Da and E a matrices have the following dimensions:

DaeRn' Xn4+2 for s =  2 ,4 , N  — 3

E aeRn ’ X n- 2 for s =  4 ,6, N - l .

In the tridiagonal case (2.1), the matrices Da and E a are fill-ins. The LU-factorization 
will in general also create fill-ins in the original blocks of A unless they are full from the 
outset.

The four blocks of A seperated by the dashed lines can be expressed in a compact 
form as:

where

J LU V 
A =  W  A, (3.3a)

’ L  O' ' U V '
W  / °  At (3.3b)

At is the Schur complement and L and U are lower and upper block triangular matrices, 
respectively, composed of L r and Ur , r = l ,  3, .., N.

The multilevel algorithm (block cyclic reduction) is now based on the fact that At is a 
block tridiagonal matrix which can be reordered into a form similar to A in (2.2), partially 
LU-factored like A leaving a block tridiagonal partially factored lower right-hand block 
etc.

If N  =  2 d+1 — 1, the process will terminate after d levels with a Schur complement 
consisting of just one block which is then factored. If N is composed differently, some
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of the intermediate block tridiagonal matrices will have an even block dimension, but as 
mentioned in the previous section, this is only a minor complication.

The partial factorization of A leading to A can be performed conveniently in parallel 
by partitioning the original block tridiagonal matrix A as follows:

Qi =
Ax B 1 

C2 A2
and Qn = An Cn

Bn - i 0
(3.4a, b)

‘ A r B r C r'

C r+ 1

. B r - l

■ ^r+ l

D r - l

E r + 1 

0

f o r  r  =  3 , 5 , . . ,  N  — 2 ( 3 .4c )

Z)r_x =  0 and E r+i =  0 when A is block tridiagonal, and Dr_i ^  0 and E r+1 ^  0 
only when A has extended separators as discussed priviously. The Q-matrices can be 
considered slightly reordered samples of A which are straightforward to establish.

The Q-matrices can be partially factored in parallel leading to the Q-matrices defined 
in (3.5).

Qi =
' LiU i

C2

S i  ■
M

and Qn — L n Un Cn 
B n-  i An - i

Qr =
LrUr
C>+i

B r
Âr+1

Cr '
Br+1 for r  =  3 ,5 ,. . ,  N  — 2

Br - 1 Dr- 1 Ar—i .

(3.5a, b)

(3.5c)

The Q-matrices can be computed conveniently by applying standard LU-factorization 
to the Q-matrices and stopping when Ar, for r being odd, is completely factored.

The entries of the Q-matrices are as defined in (3.2) except for Aa and Aa:

Âa =  Aa -  Ca B a-1 and 

Aa =  —B a C3+1 leading to 

Âa =  Âa +  Àa for s =  2 ,4 ,. . ,  N — 1

Pivoting has not been considered so far since the possibilities are limited in the multi
level algorithm. From the partial LU-factorizations leading to the Q-matrices, however,it 
is obvious that pivoting can be done as usual during the factorization of Ar for r being odd 
as long as the search for a pivot element is limited to Ar. If Ar is singular, the algorithm 
requires fundamental modifications to work properly.

The next level of the multilevel algorithm involves the partial LU-factorization of At 
defined in (3.3). The block representation of At as given in (3.1) is
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a 2 d 2 ■

e 4 At d 4
Ee As . . .

. . .  An- i .

The At-matrix is sampled similarly to A to create Q2, Q e,.., Qn -  1 defined in (3.6). 
From (3.5) it is seen that Q2 , $6» Qn - i can also be obtained by sampling Qr for r being 
odd. The relationships are fisted in (3.7) where Oi+iiOa+3) ~  ̂ Qs specifies that
Qa is composed of samples from Qa-\ ,Q a+i and Q3+3 etc.

Q2 =
A2 D2 

E 4 a 4
and Qn- i = An-  1 E n - i 

Dn - 3 0

_A3 Da E a '
Q ,= E a+2 A3+ 2 0 

E a- 2 0 0
for s =  6,10 , ..,7V — 5

(Q s-i, Qs+1, Qs+3) Qs for s =  2 ,6 ,1 0 ,.. ,N  - 5 .

(3.6a, b)

(3.6c)

(3.7a)

(Qn - 2 , Qn ) —► Qjv- i (3.7b)

The partial LU-factorization of At can now be performed in parallel by partially 
factoring Q2, $ 6 ,-?  Qn-  1 which are resampled to create Q4, Qs,--, Qn - 3 etc. until the 
LU-factorization is completed by factoring just one block.

Each partial LU-factorization of a Q-matrix completes the factorization of the first 
block row and column leaving the lower right-hand 2 x 2  block unfactored and the subject 
of the next level of factorization.

So far it has been implied that only one processor is to be used for the partial factor
ization of a Q-matrix. Since each level of the multilevel algorithm deals with only half 
the number of Q-matrices as the previous level, one might consider using more than one 
processor for each Q-matrix to try to keep all processors busy.

In the block parallel organization described in [10], one processor is assigned to each 
Q-matrix in the top level, two processors in the next level etc. up to 4 processors for the 
2 x 2  Q-matrices and 8 processors for the 3 x 3  Q-matrices. The natural partitioning of the 
Q-matrices into blocks is used to allocate one or several blocks to each processor. Since 
the LU-factorization is partial, this approach results in good load balance and moderate 
communication overhead.

4 Multilevel solution
The purpose of the solution step is to compute x of (1.1). The solution is expressed 
symbolically as
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x =  A 1 b (4.1)

The reordering of A into A is expressed by the permutation matrix Hi such that 
Hi A Hi =  A. This leads to the equation

A x  =  b (4.2)

where x — Hi x (and x =  H J  x) and b =  Hi b. Equation (4.2) can now be expressed by 
the partial factorization in (3.3b),

' L  0
W  I

where (xu,x t) and (bu,b t) are partitionings of x and 6, respectively, corresponding to the 
block factorization of A.

Equation (4.3) is solved by the standard approach,

yu =  L~l bu , bt =  bt -  Wyu (4.4a, b)

' u V ' xu bu
0 At xt b‘ .

(4.3)

xt =  A^ 1 bt (4.4c)

xu =  U 1 (yu -  V xt) (4.4d)

The computation of xt in (4.4c) expresses symbolically the solution of a block tridi
agonal system of equations similar to (1.1), and (4.4c) is therefore analogous to (4.1). 
The algorithm outlined by the equations (4.1), (4.2), (4.3) and (4.4) is therefore applied 
recursively until all components of the solution are eventually computed.

When the complete multilevel LU-factorization is available, the multilevel solution is 
obtained by a recursive application of the relations (4.4a,b,d) until (4.4c) involves just 
one LU-factored block. In order to describe the multilevel solution algorithm the vectors 
xu,x t , bu and bt are defined from the partitioning in (2.1) and the permutation H\.

r X i x2 b2

xu = X3 , Xt =
x4

, bu — ¿3 , b, 64

. XN . . x N - l  . 4jv- 1
Furthermore partitioned vectors yu and bt similar to xu and 6t, respectively, are defined. 

The detailed block relations corresponding to (4.4 a,b,d) are:

yr =  L~l br for r =  1 ,3 ,..,  N. (4.5a)

br+i =  br+1 -  Cr+1 yr ~  B r+1 yr+2 for r =  1 , 3 , N -  2. (4.5b)
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(4.5d)xi =  £/i 1 (yi — B ix 2̂ j » xn  =  UNX (jjn  — C n x n -  1) 1 
xr =  U~x (yr -  Cr Xr-1 -  A-Zr+i) for r =  3 ,5 ,. . ,  N -  2

Each of the three sets of relations (4.5a), (4.5b) and (4.5d) can be computed in parallel 
using (N + l)/2  processors. The computation of yr and xr requires factorized matrix blocks 
from Qr defined in (3.5) while b9 requires blocks from both Qa-\ and Qa+1.

5 Hypercube implementation
This section describes the general principles for the implementation of the multilevel 
algorithm on a hypercube parallel computer of dimension d. The number of processors 
is p =  2 d , and it will be assumed that all processors are used for the top level of the 
multilevel algorithm which means that p is related to the block dimension N through the 
following relation,

p =  2d =  (TV +  1) /2  (5.1)

If N is determined by the problem (which is not the case for a band matrix) and violates 
relation (5.1), the multilevel algorithm may require minor modifications. If N > 2p — 1, 
more processors may be simulated by running several processes on each processor. If 
N  <  2p — 1, some processors may be left idle or more than one processor may be used for 
some or all Q-matrices (3.4).

It will be assumed in the rest of this section that (5.1) is satisfied. The Q-matrices of 
the top level, level 1, are allocated to the processors as follows. Matrix Q2i+i is allocated 
to processors Pi for i= 0 ,l,..,p -L  This is expressed formally as

Q2H-1 — ♦ Pi for i =  0 ,1 ,. . ,  p -  1 (5.2a)

The allocation relation for level 2 is

Q4*2 — ► P2i for i =  0 ,1 ,. . ,  (p /2) -  1 (5.2b)

The general allocation relation for level i  is

Q2‘i+2*-» — * for i =  (p /2 (/_1)) -  i (5.3)

The allocation principle is illustrated in Fig. 5.1 for p=8 and consequently N=15. The 
processors are labeled 0,1,..,7 expressed as binary numbers. Processors in a hypercube 
can be labeled such that processors whose labels differ in only one bit position are

11



Processor 000 001 010 Oil 100 101 n o i n
Level
1 Qi Qs Qs Q7 Q9 Q11 Ql3 Ql5

y y y y
2 Q2 Qs Q10 Ql4

y

3 Q4 Ql2

y

4 Qs

Figure 5.1: Processor allocation and communication structure for a hypercube implementation
of the multilevel algorithm.

neighbors. The allocation relation in (5.3) is constructed to permit multilevel factorization 
and solution using only neighbor to neighbor communication.

The multilevel LU-factorization proceeds as follows. At level 1, Qi, Q3, .., Qn are 
partially LU-factored in parallel. Then the unfactored parts of Q3, Q7 , . . ,  Qn are passed 
on to the processors storing Qi, Q s,.., Qn- 2 (see Fig. 5.1). This involves only neigh
bor to neighbor communication, and it can be done completely in parallel. However, 
according to (3.7a) the construction of Q2> - ,  Qn s  requires contributions from three
Q-matrices from the previous level, and thus more communication and a more elaborate 
communication scheme to limit communication distance are required.

In order to circumvent this problem and use the simple allocation and communication 
scheme examplified in Fig. 5.1, the Q-matrices of levels other than the first one are 
redefined slightly.

a 2 d 2 

Â4 . . Q'n
An - i E n-  1 
Dn - 3 An - 3

(5.4a, b)

■ Â , D, Ë . ■
Ê a+2 Â.+2 0 , for s =  6 ,1 0 ,. .,N  — 5 (5.4c)

. D3. 2 0 Âa- 2  .

The definition in (5.4) will supersede (3.6) in the following, and the prime symbol will 
be left out from the Q-matrices defined by (5.4). Likewise, the construction rule (3.7) is 
superseded by

(O a-i, Qs+i) -+ Qs for s =  2 ,6 ,. .,  N -  1 (5.5)

The construction of the general matrix Qa in (5.4c) is easily verified by writing Qa- i  
and Qa+i in detail, based on (3.5c):
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H1
fc?rH1•>
1__ B , - 1 0 ..i ■ Ls+iUa+i B a+1 C*a+1

Qa—1 — c . Â , Ë . i Qa+1 — Ca+2 ^a+2 B s+2

B a- 2 Da-  2 ^1 0» 1 to 1 __ . B a Da Âa .

Qa is composed from the lower right-hand 2 x 2  blocks and Aa is computed as Aa =
Â3 + Âa.

The observation leading to the redefinition of the Q-matrices for levels greater than 
one is that the partial factorization of a Q-matrix leaves the first block row and column 
completely factored and the rest unfactored. This means that the first block row and 
column (and especially s=2,6,..,N -l) must hold the final values before the factorization 
while intermediate values (like Aa and Aa, s=4,8,..,N -3) suffice for the remaining entries 
of the Q-matrix.

After the partial LU-factorization, the Q-matrices of level 2 will have the same struc
ture as the Q-matrices of level 1 defined in (3.5). The allocation algorithm ensures that 
the Q-matrices on each level are allocated to processors that are pairwize neighbors. 
This means that the partial LU-factorization of the Q-matrices of level i  and neighbor to 
neighbor communication to compose the Q-matrices of level ¿+1 can be continued until 
the last level, d+1. At the last level Q(n+i )/2 , which is only one block, is computed by 
adding the lower right-hand blocks of Q(jv+i)/4 and Q3(at+i)/4 , and finally Q(;v+i)/2 is 
fully LU-factored.

The blocks of the b-vector defined in (2.1) are allocated with the corresponding A - 
blocks (diagonal blocks) which means that

(&2H-1, b2i+2) — * Pi for i =  0 ,1 ,. . ,  p -  2 (5.6a)

&jv — * Pp-i (5.6b)

With this allocation, the first level of the solution algorithm defined in (4.5a,b) is per
formed as follows

: Vi =  L l 1bi , b2 — b2 ■-  C2yi (5.7a, b)

Pi : yr =  L~l br t ^r+l =  r̂+1 Dr+l yr (5.7c, d)

br- l fH1
icq1II (5.7e)

for r =  2i +  1 and i =  1 ,2 ,. .,p  - 2

pP- i : yu =  L n]Lfyv , ¿iv-1 = —B n - i yN (5.7f,g)
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The partial 6-vectors 6, and 6, are associated with the unfactored diagonal blocks 
Aa and Aa. This implies that they are communicated along the same routes and the 
calculation ba =  ba +  ba takes place in the same processor and at the same level as the 
calculation Aa =  Aa +  Aa.

The first communication step then involves

Send (b4i+2 , 641+4) to P 2i for i =  0 ,1, ( p/ 2) -  2.

Send t>N -i to Pp_2

At level 2 the computation of 62, ¿6, 1>n -\ are completed according to (4.5b),

¿4i+2 =  ¿4t+2 +  ¿4i+2 for i =  0 , 1 , (p/2) — 1 (5*8)

The remaining ¿-vectors, ¿4, ¿8, Ï>n - z are not computed at level 2 since they are 
not needed at this level. Besides, their computation would require communication among 
non-neighbors.

The computation algorithm and communication scheme as outlined can be continued 
down to the bottom level and up again according to (4.5d). Instead of giving a formal al
gorithm which will come out rather complicated, the informal description of the multilevel 
solution algorithm will be supplemented with an example for N =7 and p=4 processors. 
The example shown in Fig. 5.2 also includes the Q-matrices and a specification of the 
level where they were computed.

The communication pattern of the solution phase can be deduced from the data de
pendencies among the different levels of computations shown in Fig. 5.2.
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Figure 5.2: Parallel solution algorithm for N =7 based on multilevel LU-factorization.

6 Parallel band matrix solver for hypercube
6.1  Partitioning and allocation

The principles of a multilevel parallel solver described in the previous sections were used 
for an implementation on the Intel iPSC hypercube. The implementation is restricted to 
linear systems with structurally symmetric band matrices. This restriction is exploited 
in the implementation to improve the basic implementation principles described in the 
previous section. The improvement involves the equivalent of 2-way Gaussian elimina
tion for the partial factorization of Q\ and Qx  to permit an efficient load distribution. 
Programs and documentation are presented in [11].
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The band matrix is charaterized by dimension n and by bandwidth w = l+ 2m  where 
m is the number of upper or lower off-diagonal elements.

The block tridiagonal structure of (2.1) is imposed on the band matrix by choosing N 
and 7ii,ri2..,njv properly. There exist the following constraints:

N
T n r =  n and nr >  m for r = l , 2 , .., N
r= l

N is chosen to match the actual hypercube (or sub-cube) of dimension d which means 
that relation (5.1) is fulfilled.

The dimension of the separators is chosen to the minimum dimension,

ns =  m  , s =  2 ,4 ,. . ,  N  — 1

in order to minimize the amount of work involved in the lower levels of the algorithm.
The dimensions of the odd numbered blocks are in general determined by the load 

distribution algorithm which will be described later. However, a special case should be 
mentioned here, namely the minimum dimension problem where nr =  m , r  =  1, 2, .. ,  N. 
This is the case where the blocks of the block tridiagonal matrix in (2.1) are chosen as 
small as possible. This could be the case if the algorithm is excuted by a fine grain parallel 
computer where the maximum number of blocks for a particular band matrix are required 
in order to exploit as many processors as possible.

Besides, the lower right-hand block tridiagonal matrix of (3.1) (called At in (3.3)) is a 
minimum dimension matrix with all blocks of dimension m when A originates from a block 
tridiagonal matrix with seperators of dimension m. The minimum dimension property 
also applies to the lower levels.

The structure of Qr for r= 3 , 5, .., N-2 is given in Fig. 6.1. The densely dotted areas 
correspond to the non-zero entries of Qr with Dr_i =  0 ,E r+i =  0 and the lightly dotted 
areas correspond to fill-ins created by the partial factorization. Qi and Qn are depicted 
similarly in Fig. 6.2 and 6.3.

The partial factorization of Qr leading to Qr for r=3,5,..,N  results in rather severe 
amounts of fill-ins, not just in terms of zero blocks being filled, like Ar_i , Dr-\ and E r+1 
but also fill-ins inside B r-\ and Cr . Qi is partially factored completely without fill-ins 
while Qn is similar to the general <3 r-m atrix in this respect.

However, it is possible to make the partial LU-factorization of level 1 symmetric by 
modifying the factorization of Qn - The ordering of the band matrix An of Qn is reversed 
by a symmetric row column reordering. The column reordering also includes B n-  i and 
the row reordering includes Cn • After this reordering, the partial factorization of Qn 
leads to a matrix Qn with a structure identical to Qi shown in Fig. 6.2.

The reordering of Qn results in a considerable saving in the operations count of the 
partial LU-factorization. The large differences in operations count in partially factoring 
Qi and Qn on one side and (J3, Q5, Qn- 2  on the other side are exploited in the load 
distribution algorithm.
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Figure 6.1. The structure of for r=3,5,...,N-2

The Q-matrices of the lower levels are all block matrices with full m xm  blocks. The 
extreme matrices, corresponding to Q\ and Qn , are 2 x 2  block matrices while the interior 
matrices have block dimension 3. The matrix at the lowest level Q(n+i)/2 is just one block 
of dimension m.

6 .2  Complexity analysis

The performance of the multilevel algorithm can be estimated on the basis of complexity 
analysis. Let Fr denote the number of floating point operations required for the partial 
factorization of Qr. We then have the following operations counts.

Level 1

Fr (nr) =  nrm  (2m +  1) , r  =  l,iV. (6.1a)
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(6.1b)F r (nr) =  2nrm  (4m +  1) , r =  3 , 5 , N  — 2. 

Level i  (2 <  i  <  d)

F^t-i) =  Fn +i —2<—1 =  y  m3 -  |m2 -  —m (6.1c)

F 38 3 5 2 1 (6.1d)

for ¿ =  1 ,2 ,..,  (p /2/_1) — 2

Level d+1

F2d =  ^m3 — i r a 2 —
2 3 2 6

The operations count of a standard band LU-factorization, called Fblu is

(6-le)

4 3 1
Fblu =  nm  (2m +  1) -  -m 3 -  - m 2 -  -m  (6.2)

o 2 o
A rough estimate of the total complexity of the multilevel algorithm is Fmlu ~  

2  n m  (4m +  1) /o r  n m and N  ^  1. This implies that Fmlu I Fblu ~  4 which is 
the penalty for being able to do the LU-factorization in parallel. According to this, the 
maximum speed-up from the multilevel algorithm using p processors is expected to be 
p/4. A more accurate speed-up calculation including the effect of the load balancing will 
be given in the next section.

The parallel complexity of the multilevel LU-factorization called F plu can be com
puted as the sum of the dominating complexities at each level,

F plu =  F 2d_i (n2d_i) +  (d  — 2) F 2d_2 +  F 2(d-i) +  F 2d

=  2n2d_1m (4m +  1) +  (d — 2) (-^ ru 3 — ^m2 — im^) +  ^ m 3 — 2m2 — -m  (6.3)
\ 3 2 6 /  3 3

F 2a_j and F2d_2 represent complexities at top and intermediate levels, respectively. The 
expression in (6.3) is correct under certain assumptions about the partitioning, e.g. ni =  
n3 =  ..njv or the partitioning defined by the load balance relations (6.10). F plu is valid for 
d >  2, and using p =  2 d processors, F plu gives the execution time for an LU-factorization 
when multiplied by the average floating point excution time called Tp.

The communication time model is based on the model [9]

t =  To +  M  /  B  (6.4)

where the latency T0 =  1.2msec and bandwidth B =1 MByte/sec are measured values for 
neighbor to neighbor communication on the Intel iPSC. The model in (6.4) is valid for 
messages of length M bytes fulfilling 0 <  M <  1024 bytes.

The multilevel LU-factorization algorithm involves the communication of 2m x2m  
matrices from one level to a lower, except to the last level where only an m xm  matrix is
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transferred. The 2m x2m  matrices of double precision numbers fit into 1KByte for m<5. 
Under this assumption, the communication model corresponding to (6.3) is

Tolu =  (<f -  1) (r0 + 32mJ/B ) + T0 + 8m2/ B  (6.5)

Table 6.1 shows TcluI {Tp Fplu) for the minimum dimension problem (F p iu  is com
puted from (6.3) with n2d_j =  m). Tp =  50/zsec is an approximate value of the gross 
floating point execution time measured for the multilevel algorithm. Communication is 
0 (m 2) while computation is 0 (m 3).

d\m 1 2 3 4 5 6
2 3.75 0.48 0.153 0.070 0.041 0.034
3 3.68 0.39 0.125 0.058 0.033 0.030
4 3.63 0.36 0.115 0.054 0.031 0.029
5 3.61 0.34 0.109 0.051 0.030 0.028

Table 6.1 Communication to computation ratio, Tc lu / {Tf Fplu) , 
for the multilevel LU-factorization algorithm applied to 

the minimum dimension problem.

This is clearly reflected by Table 6.1 which shows that communication dominates for m = l 
but loses significance very quickly for increasing values of m. The model (6.4) and therefore 
also (6.5) is only valid for m <5. The model was extended also to include m =6 which is 
shown in Table 6.1. This demonstrates that it is sufficient to take the communication 
cost into account for m <5.

The communication to computation ratios of Table 6.1 can be considered worst-case 
values for the multilevel algorithm. The operations count Fplu in (6.3) is 0 (n 2d_ 1 m2) 
while Tclu in (6.5) is 0 (m 2). This means that communication becomes negligible for 
nr m, r = l ,  3,.., N, even for m = l.

The speed-up of the parallel multilevel LU-factorization algorithm is defined as the 
execution time of a standard band LU-factorization on a single processor divided by the 
execution time of the parallel algorithm executed on p processors.

The speed-up is computed as Slu =  Tf Fblu/  (Tf Fplu +  Tclu) where the complex
ities are given in (6.2), (6.3) and (6.5). Table 7.1 shows speed-up values computed for 
the minimum dimension problem (n2d_i =  m) for selected values of m and d. Theoretical 
values of Slu are given in parantheses for comparison with experimentally determined 
values.

The multilevel solution algorithm consists of a forward sweep (levels 1 to d-f-1) and 
a backward sweep (levels d-f-1 to 1), cf. Fig. 5.2. Analogously to the LU-factorization, 
only the computations of level 1 depend on the total dimension n of the problem while 
the lower levels only depend on m.

The complexity of the solution algorithm is stated separately for the forward and the 
backward sweep. Let Fr denote the complexity of the computational step during the 
forward sweep involving the partially factored matrix Qr, e.g. the complexity of
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SIr — L r br , 6r+1 — & r+ l C r +1 Vr » ^r—1 B r —1 2/r

Similarly Fr denotes the complexity of a computational step involving Qr during the
backward sweep. We then have the following complexities:

Level 1
Fi (na) =  2 n im  , F/v (tin) =  2n^m  — m (6.6a, b)

Fr (nr) =  4nrm — m  , r =  3 ,5 ,. .,  N  — 2. (6.6c)

F\ (r^) =  ri\ (2m +  1) , Ffj (ri#) =  n ĵ (2m +  1) (6.6d,e)

Fr (nr) =  nr (4m +  1) , r  =  3 ,5 , N  — 2. (6.6f)

Level £ (2 < £ <  d)

F 2(/-i) =  Fn+1_ 2(*-i) =  F 2(t-i) =  F/V+1-2Ì'-1) == 3m2 (6-6g)

= 5m2 -  m, F 2/t+2(/-i) =  5m2 /o r  i =  1 ,2 ,. .. ,  (p /2(*-1)) -  2 (6.6h,i)

Level d + l
F(^+i)/2 =  F(ìv+i )/2 =  m2 (6.6j)

The parallel complexity of the solution algorithm Fps  can now be computed as the 
sum of the dominating complexities at each level. The expression (6.7) is valid under the 
same assumptions as (6.3).

Fps  =  (d — 2) (lOm2 — rnj +  n2<*_i (8m +  1) +  8m2 — m  (6.7)

The communication model for the multilevel solution algorithm is

T cs (m) =  2 [(d -  1) (T0 +  16m /B )  +  T0 +  8 m /B ]  (6.8)

The parameters T0 and B are given in connection with (6.5), and (6.8) is valid for m<64

d\m 1 2 5 10 15 20
2 5.36 1.43 0.24 0.062 0.028 0.016
3 5.36 1.38 0.23 0.058 0.027 0.015
4 5.36 1.35 0.22 0.056 0.026 0.015
5 5.36 1.34 0.22 0.055 0.025 0.015

Table 6.2. Communication to computation ratio, T cs / (TpFps), for the 
multilevel solution algorithm applied to minimum dimension problems.
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Table 6.2 shows how communication affects the efficiency of the multilevel solution 
algorithm applied to minimum dimension problems, i.e. the computational complexity 
Fps  is computed from (6.7) for n2<*_i =  m. Comparing with Table 6.1, it is seen that the 
solution algorithm is communication bounded to a larger extent than the LU-factorization 
algorithm.

Communication cost only depends on m and d (6.8) while the computational com
plexity is O (n2d_im). This means that Table 6.3 shows a worst-case situation, and that 
communication cost even for m = l becomes negligible for n2d_i/m  1.

The operations count of a standard forward-backward solution based on an LU - 
factored band matrix is

F b s  =  4nm +  n — 2m2 — 2m (6.9)

The speed-up of the multilevel solution algorithm can now be computed for the mini
mum dimension problem as Ss =  Tf F Bs /  (Tf F ps +  TCs)  where the complexities are given 
in (6.7) (for n2d_i =  m), (6.8) and (6.9). Table 7.3 in section 7 below shows speed-up 
values computed from Ss for selected values of m and d. The speed-up values estimated 
by Ss  are given in parantheses for comparison with experimentally determined values.

6 .3  Load balancing
From (6.1 a,b) it is clear that a uniform partitioning of the band matrix, ni =  n3 =  .. =  
njv, will lead to poor load balance for the LU-factorization. A first attempt to improve 
the load balance would be to choose 713 — ns =  .. =  n^ _ 2 and n\ =  tin =  4ri3 ̂ + 2 • This 
choice results in Fi =  F$ =  .. =  F s  and thus load balance in level 1. However, some 
imbalance still remains in the lower levels as specified by (6.1 c,d).

The lower levels could be load balanced after the same principle followed in level 1 
by chosing some of n2, n4, .., njv-i greater than m, but this is undesirable since it would 
increase the computational load of the lower levels where parallelism is harder to exploit.

The load balancing scheme chosen for the band matrix can be explained by referring 
to the complexity relations (6.1) and to Fig. 5.1. The factorization of Qi and Q3 finish 
at the same time when n\ =  4 n s p e r m i t t i n g  processor Pq to start the factorization 
of Q2 without idle time. Likewise, the factorization of Q5 and Q7 complete at the same 
time when n5 =  n7. The ratio n5 /n 3 is now adjusted such that the factorization of Q2 

and Qq finish at the same time. This would complete the load balancing of Fig. 5.1 since 
the matrix partitioning is symmetric n\ =  n̂ v, n3 =  n^_2, . . .

The balancing principle is easily generalized and (6.10) gives a general set of balance 
equations based on (6.1). For a given set of values n, m, and d, the load balance equations 
determine ni, n3, .., nn . The equations are easily solved by expressing n3, n7, .. by n\ and 
substituting these expressions into the last equation and solving it for n\.

nr =  7ijv+1_r, r =  1 ,3 ,..,  (N  — 1) /2  (sym m etry) (6 .10a)

n5 =  n7 (6.10b)
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n9 =  nu  =  ni3 =  rai5 (6.10c)

Tl2(d—*)+l =  ^2(d”1)+3 “  =  fl2d̂ \ (6.10d)

F i( n 1) =  F3 (n3) (6.10e)

F\ (ni) 4- F 2 =  F 7 (n7) 4- Fs (6.10f)

F\ (^i) 4- 2F2 =  C15 (ni5) 4- 2^x4 (6.10g)

F\ (fii) 4~ (d — 2) F 2 =  F 2d^i (tî2<<_i ) +  {d — 2) F 2d_ 2 (6.10h)

2 (ni 4- n3 4- 2n7 4- 4n15.. 4- 2d_2n2d_i) 4- (2d — l)  m =  n (6.10i)

The solution of (6.10) will in general not lead to integer values of n1?n3,.. ,  but the 
resulting values are rounded to satisfy the last equation which states that the total number 
of equations is n. When n is too small, an effective load balance is not obtained. The 
balance equations (6.10) yield nr-values smaller than m which is not permitted by the 
present implementation. This situation is dealt with by increasing the nr-values smaller 
than m to become m, and by reducing the nr-values greater than m correspondingly.

Communication cost has not been included into the load balance equations since com
munication cost is such a small fraction that it can only be taken properly into consider
ation for m <2. This can be seen from the following argument.

Equation (6.10e) is modified to include communication cost:

F\ (ni) =  F3 (n3) 4- (To 4- 32m2/ # )  /T F

Since F3 (n3) =  2n3m  (4m 4-1), communication is only going to affect n3 after rounding 
if

2 (lo  4- 32m2/B^) /T p  >  2m (4m 4-1)

The break-even value for m is m =2.52 which means that communication cost is too 
small in a relative sense to be included in the load balance if m > 2. This is in good 
agreement with Table 6.1.

It is obvious from (6.1) that the execution time for the multilevel LU-factorization is 
proportional to n when n\ =  n3 =  . . .  =  njv- When the partitioning is based on the load 
balance equations (6.10), the complexity Fplu defined in (6.3) and thus the execution 
time is still proportional to n since n2<*_i in (6.3) depends linearly on n through the load 
balance equations (6.10). The derivative obtained by solving (6.10) is:

dn2d_i/dn 4 (4m 4-1) /  (2m 4- 1) +  2 4- 4 4- 8 4 - . . .  +  2d~l ( 6.11)

The multilevel solution algorithm can be load balanced using the equations (6.10) 
where F r functions from (6.6) are substituted for Fr. This entails some approximations 
besides ignoring communication cost. First, (6.10) has n\ =  nn while F\ (ni) ^  F n (ni);
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and secondly, F r ^  Fr which means that balance is only obtained for the forward sweep. 
The discrepancies, however, are either 0 (m ) or 0 (n r) and do not lead to serious imbalance.

A crude approximation to the solution algorithm load balance can be based on the 
equation F i( n i) =  F 3 (n3) , nx — and n3 =  n5 =  .. =  n^_2. This leads to nx «  
2n3 which should be compared with the corresponding relation nx «  4n3 for the LU - 
factorization. This implies that optimum load balance requires different partitionings of 
the band matrix for LU-factorization and solution. Since the solution must be based 
on the result of a factorization and the load distribution chosen for the factorization, 
load distribution should in practice be chosen to minimize total execution time of LU - 
factorization and solution(s).

The minimization of the execution time of a multilevel LU-factorization followed by 
a sequence of solution steps (e.g. for pseudo-Newton iteration) is a complicated prob
lem and will not be addressed. If only one solution per LU-factorization is needed, the 
forward sweep of the solution algorithm can be merged with LU-factorization leading to 
a multilevel Gaussian elimination, and this part can easily be load balanced by solving 
(6.10) with Fr -f- Fr substituted for Fr. The backward sweep will not be well balanced, 
but execution time can only be reduced by a different load distribution for a very large 
number of processors and very small value of m.

7 Performance of the parallel band matrix solver
7.1  Execution time model
Figure 7.1 shows an execution time model for sequential band LU-factorization (marked 
Tblu)• Execution time for the sequential algorithm is proportional to Fblu defined in 
(6 .2 ).

The execution time graph for the parallel multilevel algorithm has more complicated 
features. For a given number of processors, p = (N + l)/2 , the smallest problem that can 
be solved has dimension n=m  N. Therefore the execution time graph starts at n=m  N.
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Figure 7.1.: Executing time T  as a function of problem dimension 

n for a given set of m and N (=2d+1-1).

The load balance equations (6.10) lead to the following relations:

ni >  n3 >  n7 >  ni5 >  . . .  >  n2<*_i

This means that the smallest value of n for which load balance is effective (n=n£,) is defined 
by n2d_i=m. This value is substituted into (6.1 Oh) from which n\ can be computed. 
The remaining nr-values can now be computed from equations (6.10e,f,g,..) and n i  is 
computed from (6.10i) as

iit, ~  2 +  2n7 -f 4nis +  .. +  2  ̂ 2m  ̂ +  2̂̂  — 1̂  m

Execution time is constant (Tplu =  T’m) for m N <  n <  n^.
For n >  til, the execution time increases linearly with n, according to (6.3) and (6.11). 

The speed-up of the parallel multilevel algorithm over the sequential algorithm for a given 
value of n is derived from Fig. 7.1 as Slu =  Tblu /T plu• The speed-up is a nonlinear 
function of n.

Two speed-up values are of particular interest, namely the speed-up of the minimum 
dimension problem,

S lip  =  TBLu/TpLu\n=mN (7.1)

and the maximum asymptotic speed-up computed for n > n i  :

Su j — (STblu /S u) /  (d T p u j/d n ) (7.2)
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The speed-up of the minimum dimension problem Slu1 is a worst-case value. It is 
characterized by only two parameters, m and N, and it does not involve load balancing. 

The maximum asymptotic speed-up cannot be attained since

Slu =  lim SLu
n —► oo

and it corresponds to the speed-up obtained by neglecting the computation involved in 
the lower levels of the multilevel algorithm. For a given value of n, the speed-up, Slu, is 
bounded as follows:

5m in a ^  coo LU S  bLU < 0LU
The discussion so far has only been concerned with LU-factorization. The solution 

algorithms have the same qualitative properties and S™tn and S if  are defined analogously 
to Slu 1 anci Su j in (7.1) and (7.2).

T.2 Numerical results
Figure 7.2 shows an example of the problems which were solved by the parallel multilevel 
LU-factorization in order to verify the properties of the algorithm experimentally. The 
graphs of Fig. 7.2 are of the types presented in Fig. 7.1. The dots indicate measured 
values. All results in this section are based on measurements reported in [11].

An interesting feature of Fig. 7.2 is that the graphs intersect. This has as a con
sequence that certain problems are solved more efficiently by fewer processors than the 
maximum number. The phenomenon originates from the load balance algorithm and from 
the fact that a doubling of the number of processors increases the depth of the multilevel 
algorithm by one.

25



Figure 7.2.: Execution time versus problem size for sequential (d = 0) and multilevel 

parallel LU-factorization (d > l). Bandwidth w=21 corresponding to m =10.
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m\p 2 4 8 16 32
2 - (1.06) 0.7 (0.78) 0.8 (1.03) 1.14 (1.54) 2.13 (2.44)
5 1.4 (1.56) 0.95 (0:99) 1.10 (1.19) 1.60 (1.72) 2.57 (2.67)
10 1.5 (1.69) 0.96 (0.99) 1.14 (1.17) 1.64 (1.67) 2.57 (2.59)
15 1.6 (1.71) 0.96 (0.95) 1.14 (1.10) 1.65 (1.57) 2.56 (2.43)
20 1.6 (1.72) 0.97 (0.95) 1.15 (1.10) 1.65 (1.57) 2.53 (2.43)

Table 7.1. Measured and predicted (in paranthesis) values of speed-up of the multilevel 
parallel LU-factorization over a sequential band factorization. The speed-up, , 

applies to the minimum dimension problem, N=2p-1 and n=m  N.

Table 7.1 shows measured and predicted (in parantheses) values of speed-up for the 
parallel multilevel LU-factorization algorithm applied to the minimum dimension prob
lem. All execution times are measured with a resolution of 5msec. This means that 
execution time for m =2 and p=2 cannot be measured (2-3msec) and that execution time 
for m =5 and p=2 is not very accurate (20-25msec). The measurements only include LU - 
factorization and corresponding communication for the parallel algorithm. Downloading 
of programs, set-up of problem etc. are excluded from the execution time measurements.

The predicted speed-up values are computed as explained in Section 6.1. The expres
sion for F plu given in (6.3) does not include p=2 (d = l). A special formula, which is 
easily derived, was used for this column in Table 7.1.

There is good agreement between measured and predicted speed-up values except for 
m =2 where overhead like procedure calls and initialization leads to smaller speed-up than 
expected from the model which only includes floating point operations.

For m =15 and m=20 the observed speed-up is slightly greater than the predicted 
speed-up for p>4. This phenomenon could be explained by the fact that the block 
structure of the Q-matrices in the multilevel algorithm leads to the equivalent of unrolling 
of the loops of the factorization algorithm. The sequential band matrix factorization is 
programmed in a straightforward style.

Table 7.2 shows measured and predicted (in paranthesis) values of the maximum 
asymptotic speed-up for the parallel multilevel LU-factorization. Since these speed-up 
values correspond to neglecting the computational expense of the lower levels, communi
cation is also neglected in the model. The predicted speed-up values are computed from 
(6.2), (6.3), (6.11) and (7.2). There is very close agreement between measured and pre
dicted values since the top level of the multilevel algorithm is programmed very similarly 
to the sequential band matrix factorization. This means that the measured speed-up is 
very close to the ratio of floating point operations counts.

The maximum asymptotic speed-up of the parallel LU-factorization using p processors 
and load balancing has the following limit which is easily derived from (6.1a,b) and (6.2):

Sfu -> {p +  6) /4 fo r  m ► oc (7.3)
Put into words, the performance of the multilevel LU-factorization algorithm with p 
processor and load balancing according to (6.10) is identical to the performance with p+6 
processors and no load balancing (n\ =  713 =  . . .  =  tin).
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m \p 2 4 8 16 32
2 1.99 (2) 2.55 (2.56) 3.66 (3.67) 5.90 (5.89) 10.4 (10.3)
5 1.99 (2) 2.51 (2.52) 3.56 (3.57) 5.65 (5.67) 9.84 (9.86)
10 1.99 (2) 2.50 (2.51) 3.52 (3.54) 5.57 (5.59) 9.69 (9.6S)
15 1.99 (2) 2.50 (2.51) 3.51 (3.52) 5.50 (5.56) 9.66 (9.62)
20 1.99 (2) 2.49 (2.51) 3.49 (3.52) 5.48 (5.54) 9.72 (9.59)

Table 7.2. Measured and predicted (in paranthesis) values of maximum asymptotic 
speed-up, S]j j , of the multilevel parallel LU-factorization over 

a sequential band factorization.

m \p 2 4 8 16 32
2 - (0.51) 1.3 (0.73) 1.8 (1.06) 2.0 (1.66) 2.7 (2.69)
5 1.5 (1.2) 1.25 (1.36) 2.0 (1.91) 3.21 (2.94) 5.11 (4.73)
10 1.5 (1.5) 1.67 (1.56) 2.41 (2.16) 3.88 (3.30) 6.17 (5.31)
15 1.45 (1.58) 1.77 (1.60) 2.58 (2 .21) 4.07 (3.37) 6.60 (5.41)
20 1.59 (1.61) 1.78 (1.61) 2.65 (2.23) 4.11 (3.39) 6.67 (5.44)

Table 7.3. Measured and predicted (in paranthesis) values of speed-up of the multilevel 
parallel solution algorithm over a sequential forward-backward band substitution 

algorithm. The speed-up S51 m applies to the minimum 
dimension problem, N=2p-1 and n=mN.

In Table 7.3 the speed-up values of the parallel solution algorithm are given for the 
minimum dimension problem. The solution algorithm examplified by Fig. 5.2 is applied 
to a multilevel LU-factorization produced by the parallel multilevel LU-factorization 
algorithm.

The measured speed-up values in Table 7.3 for m =2 and m =5 with p<8 are rather 
inaccurate because of the resolution of 5 msec in the execution time measurements.

Disregarding the inaccurate speed-up measurements, the observed speed-up is consis
tently greater than the predicted speed-up for p>2. This somewhat surprising result was 
traced to an inadvertent exploitation of processor parallelism at the lower levels of the 
parallel solution algorithm. Floating point computation on the 80287 processor and index 
computation on the 80286 processor were to a certain degree overlapped in the parallel 
algorithm and not in the sequential solution algorithm.

There was no attempt to optimize either the sequential or the parallel implementation, 
and very careful optimization could probably improve the speed by 25%-50%. However 
communication would still be insignificant for problems large enough to justify the use 
of a parallel computer. The experimental implementation therefore fulfils its purpose of 
demonstrating the feasibility of the multilevel algorithm.

The predicted asymptotic speed-up S^j involves the computation of dT p iu /dn  which 
is computed as

dTpuj/dn — (dF2d-i/dn2d_i) (dn2d_i/dn) TF
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Because of the nature of the load balance algorithm, we have the following result for 
n> nL :

dTpLu/dn  =  (dF r/d n r) (dnr/d n ) TF (7.4)

for r=  1, 3, N.

Slu can now be expressed as

Slu = (dTpLu/dn) / [(dFi/drix) (dnx/d n) TF] = (dnx/d n)-1
The predicted asymptotic speed-up for the multilevel solution algorithm with load 

distribution for optimum LU-factorization  speed can be expressed as

S f  =  ( dTes/dn)/  [(<9 (A  +  F ,)  /* » » )  ( TF\ =  ( )_1

which is equal to S fv .
Since load balance is not for optimum solution algorithm speed, a relation similar to 

(7.4) is not valid. The partitioning is approximately twice as large as the optimum 
value. Therefore we have d F p s/d n  =  d  (A  +  A )  /dn .

A table analogous to Table 7.2 with measured and predicted values of S f  for load dis
tribution for optimum LU-factorization was constructed. As expected, it was essentially 
identical to Table 7.2, and it was therefore omitted.

Load distribution is chosen to be optimum for LU-factorization since this is close to 
minimum execution time for one LU-factorization followed by one solution step.

When one LU-factorization is computed followed by a large number of solution steps 
(e.g. Newton iteration) it may be advantageous to load balance for optimum solution 
speed. In this case we have:

S f  —* (p +  2 ) / 2  f o r  ra —> oo

This speed-up is almost twice as large as the corresponding limit value when load distri
bution is with respect to LU-factorization as stated in (7.3).

7 .3  Row interleaved factorization and solution

An alternative parallel LU-factorization and solution approach is the row interleaved 
algorithm [8]. Contrary to the multilevel algorithm, the row interleaved algorithm does 
not pay any computational penalty for the parallelization, only communication penalty. 
Each pivot row must be broadcast to all processors to permit parallel factorization. The 
execution time model for the row interleaved LU-factorization is as follows:

Trlu = n m  (2m +  1) TF/2 d +  d (T0 +  8m/B)^

The row interleaved LU-factorization can be compared with the multilevel LU-factorization 
by comparing asymptotic speed-ups. For small values of m we have S f j  > Sf^u  where 
Srlu defined analogously to S f v :
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Srlu =  (dTBLU/dn )  /  (dTRLU/dn )

Table 7.4 gives the integer m-values for which the algorithms break even, S'Qj ~  SRLU.

p 4 8 16 32
m 13 15 21 31

Table 7.4. Integer values of m for which row interleaved and multilevel 
LU-factorizations break even in asymptotic speed-up.

The entries of Table 7.5 are computed from the equation

dTRLu/dn = dTpiu/dn

where
dTpLu/dn  «  4m (2m +  1) Tf /  (2d +  6)

This value is a good approximation assuming load distribution and ’’large” m.
For m-values larger than those given in Table 7.4, the row interleaved LU-factorization 

will be superior to the multilevel algorithm. For p=2, the multilevel algorithm is always 
superior.

The values of table 7.4 were compared with measurements of an implementation of 
the row interleaved algorithm and measurements of the multilevel algorithm. The mea
surements resulted in m =14 and m =20 for p=8 and p=16, respectively. This is in good 
agreement with the predictions of the model.

The row interleaved solution algorithm performs very poorly since the number og 
broadcasts is the same as for the LU-factorization while computation is 0(m ) for each 
broadcast for the solution algorithm compared with 0 (m2) for the LU-factorization.

Concluding the comparison of multilevel and row interleaved algorithms, the former 
is superiour for narrow band problems while the latter takes over for wide band prob
lems. The LU-factorizations break even for the m-values given in Table 7.5. For one 
LU-factorization and one solution step, the m-values corresponding to break even will 
increase.

It is obvious that the m-values of Table 7.4 are sensitive to the communication and 
computation performance of the parallel computer as modeled by T0, B and Tp. However, 
there is no trend in parallel computer technology towards a substantial shift of the break
even values of m.

Finally, the multilevel solution method and the implementation techniques on the 
hypercube discribed in this paper should also be applicable to the other members of the 
family of permutations for parallel solution of block tridiagonal matrices proposed in [7].
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