4

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

B. Veltman, B.J. Lageweg, J.K. Lenstra

Multiprocessor scheduling with communication delays

Department of Operations Research, Statistics, and System Theory Report BS-R9018 June

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com-
puter science, and their applications. It is sponsored by the Dutch Govern-
ment through the Netherlands Organization for the Advancement of Research
(N.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Multiprocessor Scheduling with Communication Delays

B. Veltman, B.J. Lageweg

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

J.K. Lenstra

Department of Mathematics and Computer Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

This paper addresses certain types of scheduling problems that arise when a parallel computation
is to be executed on a multiprocessor. We define a model that allows for communication delays
between precedence-related tasks, and propose a classification of various submodels. We also
review complexity results and optimization and approximation algorithms that have been presented
in the literature.

1980 Mathematics Subject Classification (1985 Revision): 90B35.
Key Words & Phrases: scheduling, parallel processors, communication delays, algorithms, com-
plexity.

1. INTRODUCTION

Over the past decade, distributed memory architectures passed from the state of theoretical
models to that of real machines. To take advantage of the inherent parallelism of these archi-
tectures, new allocation and scheduling problems have to be solved. These problems differ
from their classical variants mainly in that interprocessor communication delays have to be
taken into account.

In this paper, we address such problems in the context of deterministic machine scheduling
theory. Scheduling theory in general is concerned with the optimal allocation of scarce
resources to activities over time. A processor, or machine, is a resource that can perform at
most one activity at any time. The activities are commonly referred to as fasks, or jobs. The
problems we consider are deterministic in the sense that all the information that defines an
instance is known with certainty in advance.

We will assume that there are data dependencies among the tasks. That is, some tasks produce
output that is required by other tasks as input. Such dependencies define a precedence relation
on the task set. Whenever the two tasks of a (predecessor, successor) pair are assigned to dif-
ferent processors, a communication delay occurs. For this class of problems, we formulate a
Report BS-R9018

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

model, we propose a classification that extends the scheme of Graham, Lawler, Lenstra and
Rinnooy Kan [1979], and we review the available literature. We also briefly mention a practical
project that motivated this research.

In the literature, we distinguish two basically different approaches to handle communication
delays. The first approach formulates the problem in graph theoretic terms and is called the
mapping problem [Bokhari, 1981]. The program graph is regarded as an undirected graph,
where the vertices correspond to program modules and an (undirected) edge indicates that the
adjacent modules interact, that is, communicate with each other. The multiprocessor architec-
ture is also regarded as an undirected graph, with nodes corresponding to processors. Proces-
sors are assigned to program modules. A mapping aims at reducing the total interprocessor
communication time and balancing the workload of the processors, thus attempting to find an
allocation that minimizes the overall completion time.

The second approach considers the allocation problem as a pure scheduling problem. It
regards the program graph as an acyclic directed graph. Again, the vertices represent the pro-
gram modules, but a (directed) arc indicates a one-way communication between a (predeces-
sor, successor) pair of modules. A schedule is an allocation of each task (module) to a time
interval on one or more processors, such that, among others, precedence constraints and com-
munication delays are taken into account. It aims at minimizing the completion time.

In this paper we take the second approach. Eventually, it may be desirable to combine the
two approaches in allocating a parallel program to a multiprocessor. In that case, a first step
would schedule the program modules on a virtual architecture graph, and a second step would
find a mapping of the virtual architecture graph onto the physical architecture of the multipro-
cessor [Kim, 1988].

2. THE PROCESSOR MODEL

The multiprocessor chosen consists of a collection of m processors, each provided with a local
memory and mutually connected by an intercommunication network. The multiprocessor archi-
tecture can be represented by an undirected graph. The nodes of this graph correspond to the
processors of the architecture. Transmitting data from one processor to another is considered
as an independent event, which does not influence the availability of the processors on the
transmittal path. In case of a shared memory, the assumption of having local memory only
overestimates the communication delays.

3. THE PROGRAM MODEL
A parallel program is represented by means of an acyclic directed graph. The nodes of this pro-
gram graph correspond to the modules in which the program is decomposed; they are called
tasks. Each task produces information, which is in whole or in part required by one or more
other tasks. These data dependencies impose a precedence relation on the task set; that is,
whenever a task requires information, it has to succeed the tasks that deliver this information.
The arcs of the graph represent these precedence constraints. The transmittal of information
may induce several sorts of communication delays, which will be discussed in the next section.
Task duplication, that is, the creation of copies of a task, might reduce such communication
delays.

In general, a task can be processed on various subgraphs of the multiprocessor graph. We

3

assume that, for each task, a collection of subgraphs on which it can be processed is specified
and that, for each task and each of its feasible subgraphs, a corresponding processing time is
given. If the processors of the architecture are identical, then for each task the processing times
related to isomorphic subgraphs are equal. For instance, one may think of a collection of
subhypercubes of a hypercube system of processors. Another possibility occurs when each task
can be processed on any subgraph of a given task-dependent size.

If preemption is allowed, then the processing of any operation may be interrupted and
resumed at a later time. Although task splitting may induce communication delays, it may also
decrease the cost of a schedule with respect to one or more criteria. We will not explore the
aspect of communication delays that are induced by preemption in detail, but concentrate on
communication delays in between precedence-related tasks.

4. COMMUNICATION
The information a task needs (or produces) has to be (or becomes) available on all the proces-
sors handling this task. The size of this data determines the communication times.

If two tasks J; and J; both succeed a task J;, then they might partly use the same informa-
tion from task J;. Under the condition that the memory capacity of a processor is adequate,
only one transmission of this common information is needed if J, and J; are scheduled on the
same subgraph of the multiprocessor graph. It is therefore important to determine the data set
a task needs from each of its predecessors. The transfer of data between J; and J; can be
represented by associating a data set with the arc (J j,J) of the transitive closure of the pro-
gram graph. This would generally lead to the specification of 8(n 2) sets, if there are n tasks.
Another possibility is to associate two sets IN (j) and OUT (j) with each task J;, representing
the data that this task requires and delivers, respectively. This requires ©(n) sets. The intersec-
tion OUT(j)N IN (k) gives the data dependency of tasks J; and J.

Each information set has a weight, which is specified by a function c: 22 5N, where D is the
set containing all information. This function gives the time needed to transmit data from one
processor to another, regarded as independent of the processors involved. Let U €2® be a data
setand let {U,,U,, ..., U,)} be a partition of U. We assume that U can be transmitted in such
a way that U{-U; is available when a time period of length at most ¢ (U !-1U;) has elapsed,
for each ¢ with 1<t<<u. We also assume that ¢(2)=0 and that c(U)<c(W) for all
Uc W €2P. These conditions state that a data set U can be transmitted in such a way that a
subset of U becomes available no later than when this subset would be transmitted on its own.

Interprocessor communication occurs when a task J; needs information from a predecessor
J; and makes use of at least one processor that is not used by J;. Let M; be such a processor.
Let F(j) denote the set of successors of J; and, given a schedule, let P(k,i) denote the set of
tasks scheduled on M, before and including J;. Prior to the execution of Ji, the data set
UG,j,k)=Uergnpkn(OUT ()N IN (1)) has to be transmitted to M;, since not only J; but
also each successor of J; that precedes Ji on M; requires its own data set. The time gap in
between the completion of J; (at time C;) and the start of Jy (at time Sy) has to allow for the
transmission of U(, j,k). The communication time is given by ¢ (U(i,j,k)). For feasibility it is
required that S, —C;=c(U(, Jj»k)). At the risk of laboring the obvious, let it be mentioned that
the communication time is schedule-dependent.

Sometimes one wishes to disregard the data sets and simply to associate a communication

4

delay with each pair of tasks. That is, a (predecessor, successor) pair of tasks (/;,Jx) assigned to
different processors needs a communication time of a given duration cj;. The communication
time is of length c;« if it depends on the broadcasting task only, it is of length c. if it depends

on the receiving task only. Finally, it may be of constant length c, independent of the tasks.

5. CLASSIFICATION

In general, m processors M; (i =1, ..., m) have to process n tasks J; (j =1, .. .,n). A schedule
is an allocation of each task to a time interval on one or more processors. A schedule is feasible
if no two of these time intervals on the same processor overlap and if, in addition, it meets a
number of specific requirements concerning the processor environment and the task charac-
teristics (e.g., precedence constraints and communication delays). A schedule is optimal if it
minimizes a given optimality criterion. The processor environment, the task characteristics and
the optimality criterion that together define a problem type, are specified in terms of a three-
field classification | 8| v, which is specified below. Let o denote the empty symbol.

5.1. Processor environment
The first field @ = & a, specifies the processor environment. The characterization ¢; = P indi-
cates that the processors are identical parallel processors. The characterization P indicates that,
in addition, the number of processors is at least equal to the number of tasks: m =n.

If e, is a positive integer, then m is a constant, equal to a3; it is specified as part of the prob-
lem type. If a; = °, then m is a variable, the value of which is specified as part of the problem
instance.

5.2. Task characteristics
The second field 8 C {f8;,...,B8;} indicates a number of task characteristics, which are
defined as follows.
1. B € {prec,tree,chain,°}.
B1 = prec: A precedence relation — is imposed on the task set due to data dependencies. It is
denoted by an acyclic directed graph G with vertex set {1,...,n}. If G contains a directed
path from j to «, then we write J;—/J and require that J; has been completed before J; can
start.
By = tree: G is a rooted tree with either outdegree at most one for each vertex or indegree at
most one for each vertex.
B1 = chain: G is a collection of vertex-disjoint chains.
B1 = °: No data dependencies occur, so that the precedence relation is empty.
2.8, € {com,cjg,cjxycopscc = 1,0}
This characteristic concerns the communication delays that occur due to data dependencies.
To indicate this, one has to write 8, directly after 3.
B2 = com: Communication delays are derived from given data sets and a given weight func-
tion, as described in Section 4. In all the other cases, the communication delays are directly
specified.
B2 = cjx: Whenever J;—J; and J; and J are assigned to different processors, a communica-
tion delay of a given duration cj occurs.
B2 = ¢j»: The communication delays depend on the broadcasting task only.

B2 = cs+: The communication delays depend on the receiving task only.
B, = c¢: The communication delays are equal.
B2 = ¢ =1: Each communication delay takes unit time.
B2 = °: No communication delays occur (which does not imply that no data dependencies
occur).
3.B83 € {dup, °}.
B3 = dup: Task duplication is allowed.
B3 = o: Task duplication is not allowed.
4.8, € {any,setj,sizej,cubej,ﬁx-,O}. :
B4 = any: Each task can be processed on any subgraph of the multiprocessor graph.
B4 = set;: Each task has its own collection of subgraphs of the multiprocessor graph on
which it can be processed.
B4 = size;: Each task can be processed on any subgraph of a given task-dependent size.
B4 = cube;: Each task can be processed on a subhypercube of given task-dependent dimen-
sion.
Ba = fix;: Each task can be processed on exactly one subgraph.
B4 = °: Each task can be processed on any single processor.
5.B5s € {op;=1}.
Bs = °: For each task and each subgraph on which it can be processed, a processing time is
specified.
Bs = p;=1: Each task has a unit processing requirement.
6.8¢ € {pmitn, °}.
B¢ = pmin: Preemption of tasks is allowed.
B¢ = o: Preemption is not allowed. ‘
7.B7 € {C,C = 1,°}.
This characteristic concerns the communication delays that occur due to preemption. To
indicate this, one has to write 8; directly after S.
B7 = c¢: When a task is preempted and resumed on a different processor, 2 communication
delay of constant length occurs.
B7 = ¢ =1: Each communication delay takes unit time.
B7 = °: No communication delays occur.

5.3. Optimality criterion
The third field y refers to the optimality criterion. In any schedule, each task J; has a comple-
tion time C;. A traditional optimality criterion involves the minimization of the maximum com-
pletion time or makespan C 1,y =max)<;j <, C;. Another popular criterion is the total completion
time ZCJ :27= 1 C]

The optimal value of y will be denoted by v", and the value produced by an (approximation)
algorithm A4 by y(4). If y(4)< py for all instances of a problem, then we say that 4 is a p-
approximation algorithm for the problem.

6. LITERATURE REVIEW
Practical experience makes it clear that some computational problems are easier to solve than
others. Complexity theory provides a mathematical framework in which computational

6

problems can be classified as being solvable in polynomial time or NP-hard. The reader is
referred to the book by Garey and Johnson [1979] for a detailed treatment of the subject. In
reviewing the literature, we will assume that the reader is familiar with the basic concepts of
complexity theory. As a general reference on sequencing and scheduling, we mention the sur-
vey of deterministic machine scheduling theory by Lawler, Lenstra, Rinnooy Kan and Shmoys
[1989], which updates the previous survey by Graham, Lawler, Lenstra and Rinnooy Kan
[1979].

6.1. Single-processor tasks and communication delays

Colin and Chrétienne [1990] address a problem that arises in the case of scheduling tasks on an
idealized distributed multiprocessor system. They investigate P |prec,cjx,dup | Cmax Where the
communication delays are small in the sense that for all J; we have min{p;|J, EF(j)}=
max{c |Jx EF(j)}. A critical path-like algorithm is presented, which is shown to construct an
optimal schedule in polynomial time. First, a lower bound b; on the starting time is computed
for each task J;. Tasks without predecessors get a zero lower bound. For each task J that has
no lower bound yet but whose predecessors do have lower bounds, let i be such that
bj+p;+cy=max{h;+p;+cy|J;—J;} and define by =max{b; +pismax{b;+p;+ci |J—Jx,
Ji74J;}}. In the second step of the algorithm, a schedule is built such that each task and its
duplication are scheduled to start at their lower bound. An arc J;—J is critical if
b;+pj+cj>by. The subgraph of the precedence graph consisting of all critical arcs is shown
to be a spanning forest. Therefore, the assignment of each path of this subgraph to a distinct
processor leads to an optimal schedule. The algorithm runs in O (n 2_)_ time.

This work extends the paper by Chrétienne [1989], who studies P | tree,cji | C max. He shows
that, if the maximum communication delay is at most equal to the minimum processing time of
any task, the scheduling problem is solvable in polynomial time. He gives an O (n) algorithm
for problem instances with a rooted tree as a precedence relation, in which each vertex has out-
degree at most one. Due to the restriction on communication times, there exist an optimal
schedule such that for any task J; the tasks immediately preceding J; are assigned to distinct
processors, and one immediate predecessor is assigned to the same processor to which J; itself
is assigned. The algorithm has a recursive structure. Leaves are assigned to distinct processors,
and each root J; of a subtree is assigned to a processor that executes one of its immediate
predecessors, such that the partial schedule itself is optimal.

Papadimitriou and Yannakakis [1988] show by a reduction from the CLIQUE problem that
P |prec,c,p D; = 1] C max is NF-hard. They also present a polynomial-time 2-approximation algo-
rithm for P | prec,cj,dup | C nax- This rather complicated algorithm starts by assigning a lower
bound b; on the starting time to each task J;, as follows. Zero lower bounds are assigned to
source tasks. For any task J; other than a source, consider its predecessors, and for each prede-
cessor J; compute f;=b;+p;+c;». Sort the predecessors in nonincreasing order of Jfj- Next,
determine the smallest integer A satisfying f; =A=>f; = with f; >f, and such that a subset of
{Jj,s - --»Jj} of critical tasks can be scheduled within a makespan of A on one processor with
their starting times at least equal to their lower bounds. These tasks are critical in the sense
that copies of them have to precede any duplicate of J; on the processor on which this dupli-
cate is executed. The lower bound b, will be equal to A. Once the information of all the critical
tasks that precede J. is avaible, this task itself can be executed after a time b, has elapsed. It is

7

observed that the information for the critical tasks becomes available no later than time b, so
that J,, can start no later than 2b;.

Rayward-Smith [1987A] allows preemptlon and studies P | pmim,c | Cnac. He observes that
the communication delays increase Cpyyx by at most ¢ — 1. Thus, P |pmin,c =1|C pyy is solv-
able in polynomial time by McNaughton’s wrap-around rule [McNaughton, 1959]. Surprisingly,
for any fixed ¢ =2, the problem is 9F-hard, which is provcd by a reduction from 3-PARTITION.
For the special case that all processing times are at most Crax — ¢, the wrap-around algorithm
will also yield a valid c-delay schedule.

Rayward-Smith [1987B] shows by a reduction from P |prec,p;=1|Cmax that
P |prec,c =1,p;=1|Cny is NI-hard. The quality of greedy schedules (G) is analyzed. A
schedule is said to be greedy if no processor remains idle if there is a task available; list
scheduling, for example, produces greedy schedules. It is proved that
C max(G)/ Crpax <3—2/m. To this end, various concepts are introduced. The depth of a node is
defined as the number of nodes on a longest path from any source to that node. A layer of a
digraph comprises all nodes of equal depth. A digraph is layered if every node that is not a
source has all of its parents in the same layer. A layered digraph is (n,m)-layered if it has n
layers, all terminal nodes are in the nth layer, and m layers are such that all of their nodes have
more than one parent. A precedence relation is (n,m)-layered if the corresponding directed
graph is (n,m)-layered. It takes at least time n +m to schedule tasks with (n,m)-layered pre-
cedence constraints. Given a greedy schedule, let be a point in time when one or more proces-
sors are idle. The tasks processed after ¢ have at least one predecessor processed at —1 or 7.
Moreover, if all processors are idle at ¢, then every task processed after z must have at least two
predecessors processed at ¢ — 1. Therefore, from a greedy schedule, a layered digraph can be
extracted. Some computations then yield the above result.

Lee, Hwang, Chow and Anger [1988] consider a variant of P |prec,cjx | Cmax- A distance is
given for each pair of processors. Each communication delay is the product of the distance in
between the processors to which two precedence-related tasks J; and J are assigned, and the
number cjy. A simple worst-case bound is obtained for their earliest ready task heuristic
(ERT): Cmax(ERT)<(2—1/m)C pyax +Ccom, Where Cpyy is the optimal makespan without
considering communication delays and C,p is the maximum communication delay in any
chain of tasks. The ERT algorithm recursively chooses among the available tasks one that can
be processed earliest. Hwang, Chow, Anger and Lee [1989] is a rewritten version of this paper.

Kim [1988] also studies P |prec,cjx | Cmax- His approach starts by reducing the program
graph, by merging nodes with high internode communication cost through the iterative use of a
critical path algorithm. This (undirected) graph is then mapped to a multiprocessor graph by
mapping algorithms. Numerical results are given.

Sarkar [1989] defines a graphical representation for parallel programs and a cost model for
multiprocessors. Together with frequency information obtained from execution profiles, these
models give rise to a scheme for compile-time cost assignment of execution times and commun-
ication sizes in a program. Most attention is payed to the partitioning of a parallel program,
which is outside the scope of this paper. As to scheduling, Sarkar shows for a runtime schedul-
ing algorithm (RS) with restriction to P |prec | Cpax that Cpa (RS)/ Croax <2—1/m. He also
proves that P | prec, cjx | Cmax is 919-hard in the strong sense. Not surprisingly, since this result
is dominated by Rayward-Smith [1987B].

8

6.2. Multiprocessor tasks

The problems and algorithms mentioned above deal with tasks that are processed on a single
processor and focus on communication delays. The following papers disregard the notion of
communication and concentrate on tasks that require a subgraph of the multiprocessor graph.

Chen and Lai [1988A] present a worst-case analysis of largest dimension, largest processing
time list scheduling (LDLPT) for P |cube;|Cma. They show that Cnax(LDLPT)/ Cpay <
2—1/m. LDLPT scheduling is an extension of Graham’s largest processing time scheduling
algorithm (LPT) [Graham, 1966]. It considers the given tasks one at a time in lexicographical
order of nonincreasing dimension of the subcubes and processing times, with each task
assigned to a subcube that is earliest available.

For the preemptive problem P |cube;,pmin | Cyax, Chen and Lai [1988B] give an o@m?)
algorithm that produces a schedule in which each task meets a given deadline, if such a
schedule exists. The algorithm considers the tasks one at a time in order of nonincreasing
dimension. It builds up a stairlike schedule. A schedule is stairlike if a nonincreasing function
fi{1,...,m}—>N exists such that each processor M; is busy up to time f (i) and idle after-
wards. The number of preemptions is at most n(n —1)/2. By binary search over the deadline
values, an optimal schedule is obtained in O (n2(logn +log max pj)) time.

Van Hoesel [1990] also studies P | cubej,pmin | C o and presents an O (nlogn) algorithm to
decide whether the tasks can be scheduled within a given deadline 7. Instead of building up
stairlike schedules, this algorithm produces pseudo-stairlike schedules. Given a schedule, let ¢
be such that processor M; is busy for [0,#;] and free for [#;, T]. A schedule is pseudo-stairlike if
t;<t, <T implies h <i, for any two processors M, and M;. Again, the tasks are ordered
according to nonincreasing dimension. Dealing with J;, the algorithm recursively searches for
the highest i such that p;>T —¢;. It schedules J; on processors M;_%—1y, - - ., M; in the time
slot [t;,7),and on M; , 1, ..., M; 2% in the time slot [¢; . 1,p; — (T —¢;)]. By a combination of
this algorithm and binary search, Cp,y can be determined in O (nlognlog(n +max; p;)) time.
Furthermore, since each task except the first is preempted at most once, the algorithm creates
no more than n — 1 preemptions, and this bound is tight.

Blazewicz, Weglarz and Drabowski [1984] propose an O(nlogn) algorithm for solving
P |sizej,pmin | C nax, Where the tasks require either one or two processors for processing. An
initial step computes Cp, Without giving an optimal schedule. Subsequently, the 2-processor
tasks are scheduled using McNaughton’s wrap-around rule [McNaughton, 1959]. A modifica-
tion of this rule schedules the single-processor tasks one at a time in order of nonincreasing
processing times. The following paper extends this result.

Blazewicz, Drabowski and Weglarz [1986] present an O(n) algorithm for solving
P |sizej,pj=1| Cmax, Where the tasks require either one or k processors. After calculating the
optimal makespan, it schedules the k-processor tasks and next the single-processor tasks. For
the problem with sizes belonging to {1,2, ..., k}, an integer programming formulation leads to
the observation that for fixed k the problem is solvable in polynomial time. However, if k is
specified as part of the problem instance, then the problem is strongly 9¥-complete. For the
preemptive case P |size;,pmin | Cyay, Where the tasks require either one or k processors, a
modification of McNaughton’s wrap-around rule [McNaughton, 1959] leads to an O(rlogn)
algorithm. Similar to Blazewicz, Weglarz and Drabowski [1984], an initial step computes Cpax-
A linear programming formulation shows that for any fixed number of processors the problem

Pm | sizej,pmin | C may With sizes belonging to {1,2, ..., k} is solvable in polynomial time.

Bozoki and Richard [1970] study P | fix; | C max- They concentrate on incompatibility, where
two tasks are said to be incompatible if they have at least one processor in common. A branch
and bound algorithm is presented. Lower bounds for the optimal makespan are the maximum
amount of processing time that is required by a single processor, and the maximum amount of
processing time required by tasks that are mutually incompatible. Upper bounds are obtained
by list scheduling according to priority rules such as shortest processing time (SPT) and max-
imum degree of competition (MDC). The degree of competition of a task represents the number
of tasks incompatible with it. MDC gives tasks with large degree of competition priority over
tasks with low degree, breaking ties by use of SPT. In branching, an acceptable subset of tasks
that yield smallest lower bounds is selected at each decision moment z. A set of tasks is accept-
able if the tasks are mutually compatible, each task of the set is compatible with each task that
is in process at time #, and each task is incompatible with at least one task terminating at 7.

Du and Leung [1989] show that P2 | chain,size; | C max and P5 | size; | C oy With sizes belong-
ing to {1,2,3} are strongly NF-complete. A dynamic programming approach leads to the obser-
vation that P2|any | Cpax and P3|any | Cax are solvable in pseudopolynomial time. Arbi-
trary schedules for instances of these problems can be transformed into so called canonical
schedules. A canonical schedule for the machine environment with two processors is one that
first processes the tasks using both processors. Such a canonical schedule for two processors is
completely determined by three numbers: the total execution times of the single-processor
tasks on processor M; and M, respectively, and the total execution time of the 2-processor
tasks. In case of three processors, similar observations are made. These characterizations are
the basis for the development of the pseudopolynomial algorithms. The problem
P4|any | Cpax Temains open; no pseudopolynomial algorithm is given. For the preemptive
case, they prove that P |any,pmin |Cpmay is strongly 9P-complete by a reduction from 3-
PARTITION. With restriction to two processors, P2 |any,pmin | C pyy is still P-complete, as is
shown by a reduction from PARTITION. Using a result of Blazewicz, Drabowski and Weglarz
[1986], Du and Leung show that for any fixed number of processors Pm |any,pmin | C pay is
also solvable in pseudopolynomial time. The basic idea of the algorithm is as follows. To each
schedule S of Pm | any,pmtn | C may, there is a corresponding instance of P |size;,pmin | C max
with sizes belonging to {1, ...,k}, in which a task J; is an /-processor task if it uses / proces-
sors with respect to S. An optimal schedule for the latter problem can be found in polynomial
time. All that is needed is to generate optimal schedules for all instances of
P |sizej,pmitn | C oy that correspond to schedules of Pm |any,pmin | Cmax, and choose the
shortest among all. It is shown by a dynamic programming approach that the number of
schedules generated can be bounded from above by a pseudopolynomial function of the size of
Pm | any,pmin | C .

7. SCHEDULINK

The work presented here has been carried out at the CWI in Amsterdam as part of the Schedu-
Link subproject within the ParTool project. The latter project aims at the creation of a parallel
development environment, which is a set of integrated methods and tools that enable the
development of programs for parallel processors, with a strong emphasis on programs for
scientific and technical computations. The subproject ScheduLink will provide in one of these

10

tools. It concerns the design and analysis of methods for the scheduling of a given computation
graph on a given processor model, allowing for communication delays. Below we will specify
the scheduling problems we are studying.

The multiprocessor chosen consists of a collection of m identical parallel processors, each
provided with a local memory and mutually connected by an intercommunication network.
The multiprocessor architecture is represented by an undirected graph.

Transmitting data does not influence the availability of the processors but is an independent
event. One can therefore regard the multiprocessor graph as a complete graph. Yet, by assum-
ing the processor graph to be complete, one disregards routing problems that may occur during
the transmission of data, If, for instance, three processors M, M,, M are linearly connected
(e.g., {M,M,} and {M,,M3} are edges), then the simultaneous transmissions of data from
M, and M; to M3 will influence each other. In general, it will take more than the time
represented by the model. However, in the type of application under consideration several
good routes are usually available, so that the communication time between two processors is
practically independent of the chosen route.

The memory size of a processor is large enough to handle each of its tasks. The decomposi-
tion of a parallel program has to satisfy this property. It is also desirable that information
which is available on a certain processor remains available throughout the entire process. Oth-
erwise the unnecessary transmission of data might cause a delay. If, for instance, tasks J, and
J 3 need the same information from task J; and are scheduled on the same processor, then one
transmission of data would be sufficient if the local memory size of the processor is large
enough. It remains to be seen whether this assumption is realistic. In case of a shared memory,
our assumption of having local memory only overestimates the communication delays.

We assume that the multiprocessor is represented by a complete graph of identical proces-
sors. Hence, it suffices to concentrate on the sizes of the subgraphs of the multiprocessor graph
and to make no distinction concerning the identities of the processors belonging to a subgraph.
In the most general case we consider, each task can be processed on all subgraphs of a
predetermined size. These sizes tend to be small with respect to the total number of processors
available. Execution times on the subgraphs do not differ, because all the processors are identi-
cal, so that each task J; requires a given processing time p;.

Preemption of a task produces high communication costs and will therefore not be allowed.
A task, once started, has to be processed without interruption until it is finished.

With the notation defined and used in the previous sections, the problem we consider in its
most general form is denoted by P | prec,com,dup,size; | C ymax. This model is different and more
general than the models that have been considered in the literature. In the first place, by the
combination of communication delays and multiprocessor tasks and, secondly, by the specifi-
cation of communication delays by means of data sets.

ACKNOWLEDGEMENT
The Partool project is partially supported by sPIN, a Dutch computer science stimulation pro-

gram.

REFERENCES
J. BLAZEWICZ, M. DRABOWSKI, J. WEGLARZ (1986). Scheduling multiprocessor tasks to

11

minimize schedule length. IEEE Trans. Comput. C-35, 389-393.

J. BLAZEWICZ, J. WEGLARZ, M. DRABOWSKI (1984). Scheduling independent 2-processor tasks
to minimize schedule length. Inform. Process. Lett. 18, 267-273.

S.H. BOKHARI (1981). On the mapping problem. IEEE Trans. Comput. C-30, 207-214.

G. Bozoki, J.P. RICHARD (1970). A branch-and-bound algorithm for the continuous-process
task shop scheduling problem. AIIE Trans. 2, 246-252.

G.I Cuen, T.H. Lar (1988A). Scheduling independent jobs on hypercubes. Proc. Conf.
Theoretical Aspects of Computer Science, 273-280.

G.I. CuEN, T.H. La1 (1988B). Preemptive scheduling of independent jobs on a hypercube.
Inform. Process. Lett. 28, 201-206.

P. CHRETIENNE (1989). A polynomial algorithm to optimally schedule tasks on a virtual distri-
buted system under tree-like precedence constraints. European J. Oper. Res. 43, 225-230.

J.Y. CoLIN, P. CHRETIENNE (1990). C.P.M. scheduling with small communication delays and
task duplication. Oper. Res., to appear.

J. Dy, J. Y-T. LEUNG (1989). Complexity of scheduling parallel task systems. SIAM J. Discrete
Math. 2, 473-487.

M.R. GAREY, D.S. JoHNSON (1979). Computers and Intractability: a Guide to the Theory of NP-
Completeness, Freeman, San Francisco.

R.L. GRaHAM (1966). Bounds for certain multiprocessing anomalies. Bell System Tech. J. 45,
1563-1581.

R.L. GraHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1979). Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5,
287-326.

C.P.M. vaN HOESEL (1990). Preemptive scheduling on a hypercube. Unpublished manuscript.

J.J. HWANG, Y.C. CHOw, F.D. ANGER, C.Y. LEE (1989). Scheduling precedence graphs in sys-
tems with interprocessor communication times. SIAM J. Comput. 18, 244-257.

S.J. KM (1988). A General Approach to Multiprocessor Scheduling, Dissertation TR-88-04,
University of Texas at Austin.

E.L. LAWLER, J.K. LENsTRA, A.H.G. RINNoOY KAN, D.B. SHMOYS (1989). Sequencing and
scheduling: algorithms and complexity. To appear in the Handbooks in Operations Research
and Management Science, Volume 4: Logistics of Production and Inventory, edited by S.C.
Graves, A.H.G. Rinnooy Kan and P. Zipkin, North-Holland, Amsterdam.

C.Y. L, J.J. HWANG, Y.C. CHow, F.D. ANGER (1988). Multiprocessor scheduling with inter-
processor communication delays. Discrete Appl. Math. 20, 141-147.

R. MCNAUGHTON (1959). Scheduling with deadlines and loss functions. Management Sci. 6,
1-12.

C.H. PAPADIMITRIOU, M. YANNAKAKIS (1988). Towards an architecture-independent analysis
of parallel algorithms. Proc. 20th Annual ACM Symp. Theory of Computing, 510-513.

V.J. RAYWARD-SMITH (1987A). The complexity of preemptive scheduling given interprocessor
communication delays. Inform. Process. Lett. 25, 123-125.

V.J. RAYWARD-SMITH (1987B). UET scheduling with unit interprocessor communication
delays. Discrete Appl. Math. 18, 55-71.

V. SARKAR (1989). Partitioning and Scheduling Parallel Programs for Multiprocessors, Pitman,
London.

