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Abstract 

Lu, M. and X. Qiao, Applying parallel computer systems to solve symmetric tridiagonai eigenvalue problems, 
Parallel Computing 18 (1992) 1301-1315. 

A block parallel partitioning method for computing the eigenvalues of symmetric tridiagonal matrix is 
presented. The algorithm is based on partitioning, in a way that ensures load balance during computation. This 
method is applicable to both shared memory- and distributed memory-MIMD systems. Compared with other 
parallel tridiagonal eigenvalue algorithms existing in the literature, the proposed algorithm achieves a higher 
speedup of O(p) oq a parallel computer with p-fold parallelism, which is linear, and the data communication 
between processors is less than that required for other methods. The results were tested and evaluated on an 
MIMD machine, and were within 62% to 98% of the predicted performance. 

Keywords. General linear recurrence; parallel algorithm; parallel computer; parallel computer performance; 
symmetric tridiagonal eigenvalue. 

1. Introduction 

The numerical solution of large symmetric tridiagonai eigenvalue problem arises in many 
important scientific applications. Usually these problems are computing intensive and require 
high-speed computations. Advances in high-speed parallel computers have allowed the 
solution of very large scientific problems that were not possible a few years ago. This trend 
will continue as more sophisticated scientific models and more efficient numerical methods 
are developed. 

Numerical algorithms can be generally classified in various ways. Since the emergence of 
modern parallel and vector computers, a new classification has become important: sequential 
and parallel. Unfortunately, algork.~.,ns are very architecture dependent with the current 
generation of parallel computers. A good algorithm for parallel and vector computers may be 
strikingly different from a good algorithm for sequential computers. Thus, it is of considerable 
importance to measure the effectiveness of a parallel algorithm. For a given problem with size 
n, let T~ be the running time of the fastest sequential algorithm, and let T n be the running 
time of a parallel algorithm using p processors. The speedup is defined as Sp-- T~/Tp. The 
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efficiency is defined as Ep = Sp/p. It is obvious that Sp ~p, and Ep _~ 1. The goal for the 
research of parallel algorithm is to construct an algorithm exhibiting linear (in p) speedup 
and hence utilizing the processors efficiently. For the sake of simplicity, we use the above 
definitions and assumptions of n, p, Tp, T~, Sp and Ep throughout this paper. For problems of 
size n we want an asymptotic speedup of the form Sp •cp-g(p ,  n), with 0_~c _~ 1, 
0 ~g(p, n)•o(1), as n - ,  o0; c should be independent of p. The functioi, g(p, n) can be 
think as a penalty for the use of parallelism on small problems. Any parallel algorithm which 
asymptotically attains linear speedup, is said to have the optimal speedup [12]. However, 
linear speedup is not always possible. There are certain computations for which the maximal 
speedup is Sp ~_ d for a constant d, which is independent of p, and such a computation clearly 
makes poor use of parallelism. For some problems, the maximal speedup is Sp = cp/log p - 
g(p, n), which is less than linear, though it is acceptable. 

The parallel algorithms in eigenvalues computation were discussed by many researchers 
[4,5,8,11,13]. However, most of them were discussing the parallel algorithms on vector or 
shared memory computers. In fact, many of them were discussing dense symmetric eigenvalue 
problems. In this paper, we proposed a new parallel method for solving symmetric tridiagonai 
eigenvalue problems. The speedup is linear, and is greater than the existing methods. 

Usually the bisection method based on the Sturm sequence [15] is used to solve the real 
symmetric tridiagonal eigenvalue problem. This method is inherently sequential, because of 
the Sturm sequence is calculated according to second order recurrence equations. There are 
some parallel methods existing in the literature for solving this kind of problems. Barlow and 
Evans [1] proposed a parallel bisection method, by using the principle on all the previously 
determined non-empty sub-intervals. However, the speedup is dependent upon the number of 
non-empty intervals available at each stage and bounded by the maximum number of 
eigenvalues. Another parallel method [2] is the multisection procedure, in which each 
sub-interval is divided into m sub-intervals. The Sturm sequence in each subinterval is 
determined in parallel on the available processors. Combining the advantages of the multisec- 
tion method and parallel bisection method, they also developed a parallel multisection 
method [2]. if p processors and m domains are given, l •p/m processors are located per 
domain. The speedup of his method lies between m and m * log2(/+ 1). In all the above 
methods, the parallelism is obtained through the simultaneous determination of several 
sequences for different sample points, but the recurrence equation is solved sequentially. 
Evans [6] has adopted the recursive doubling [10] method to the parallel computation of the 
Sturm sequence. The speedup is about p / ( 4 ,  log 2 n). The speedups of all the above 
methods are acceptable, but they are much less than linear. Motivated by the versatility and 
popularity of the divide-and-conquer technique, we developed a more powerful algorithm 
which combines the advantages of the segmentation and the cyclic reduction methods for 
solving general linear mth order recurrence equations and apply this method to solve the 
symmetric tridiagonal eigenvalue problem. The speedup of our algorithm is 0 ,4 ,  p. It is 
linear, and the data communication between processors is less than that required for other 
methods. The principle exploited in our research was applied and tested on the Sequent 
Balance 8000 [14] parallel processing ,system. The test results are within 62% to 93% of the 
predicted performance. 

The rest of this paper is organized as follows. The symmetric tridiagonal eigenvalue 
problem is described in Section 2. In Section 3 the formal development of the new parallel 
algorithm and its complexity analysis are given. Experimental results are presented in Section 
4, and the paper concludes with Section 5. 
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2. The symmetric tridiagonal eigenvalne problem 

Given a real symmetric tridiagonal matrix 

-C! b 2 

b2 c 2 

b3 
A __ 

b 3 

c3 b4 

" i ° .  

cn 

(1) 

our purpose is to solve the eigenvalue problem 

A * X ffi~ * X, (2) 

where A is an eigenvalue of A, X is its corresponding eigenvector. When only a few 
eigenvalues and/or  eigenvectors are desired, the bisection method based on Sturm sequence 
is appropriate. 

Let Ar denote the leading r-by-r principal submatrix of A, and define the polynomials f0, 
f l , . . - , f n  by 

f o = l ,  

fr = d e t ( A . -  h i ) ,  

r--  1, 2 , . . . , n .  
A simple determinantal expansion can be used to show that: 

A('~) - -  c~ - ;~ ,  

fr(A) = ( c , - A )  * f , _ l ( A ) - b ~  * fr_e(A), (3) 
r ffi 2, " " , n .  

Because that f,,(A) can be evaluated in O(n) flops, it is feasible to find its roots using the 
bisection technique. When the kth largest eigenvalue of A (k is an integer) is desired, the 
bisection idea and the Sturm sequence property can be adopted. It was later pointed out that 
if the tridiagonal matrb: A in (I) is unreducible, then the eigenva!ues of A r_ i strictly separate 
the eigenvalues of Ar:  J 

~ , (A , )  <~r-~(A,-~)  < ~ , _ . ( A , )  < "'" <~2(A4) < ~ ( a , _ ~ )  < ~ ( A , ) .  

Moreover, if .,,,~p,,~' ~ denotes the number of sign changes in the sequence: 

{fo(A), f , (  A) ,"  " , f n (  A ) } ,  

then q(,~) equals the number of A's eigenvalues that are less than ~. (Convention: if f,(~) = 0 
then L(,O has the opposite sign from f,_~(A).) Let 

g0 -- 1, 
g l = c l - ~ ,  i - -2 ,  3 , - " , n ,  (4) 

gi = ( c i -  A) * g i - 1 - b ~  * g i - 2 ,  

where g~=f~(A), i = 0 ,  I, 2 , - . - ,n .  By using the Sturm sequence method, the algorithmic 
solution involves the repeated computing of the above recurrence Equation (4). For different 
values of A, the number of negative g 's ,  i = O, 1, 2 , . . . ,  n,  of the above sequences will indicate 
the number of eigenvalues below the sample point A. Repeated application of this procedure 
will separate the eigenvalue spectrum into small sub-intervals of size ~ (pre-defined) which 
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contain one or more eigenvalues A. Let 

where 

[::]:[c:,] 
[e:] 

0i-1=[ ci-A1 ~ ]  

=[e, l l  d,-l],O 

e i_  I ~-Ci--A+ 

d i _  I = _bE., 
then (4) can be written as 

[,t,] 0 ,  
i= 2, . . . ,n .  

leo] Xl= 1 ' 

Let 

then 

Xi=Oi-, * Xi-i,  

i = 2,. . ",n. 

[ g i - I  ] 
I * [gi_2], 

This is a general linear recurrence problem. 
Given a general linear ruth order recurrence equation 

x l = b  I, xo=b o, . . . ,  X 2 _ m = b 2 _ m ,  

Xi . .~-ai_l ,  I * X i_  I " k a i - l ,  2 * xi_2..}- . . .  - b a i _ l . m  * X i _ m " k b i ,  

i--- 2, 3,. . . ,n.  
Let 

X i - i  

X i - m + l  

o i _ l  = 

a i - i , l  

1 

0 

a i -  1,2 

0 

1 

• • • a i -  l,m - I a i -  I ,m 

... 0 0 
• - o  o . .  0 

1 0 

(5) 

(6) 
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Bi= , i = 2 , . . . , n ,  

bo 
B I  = . . 

b~',~ 

By using the vector-matrix form, we have 

Xl = Bi, (7) 
Xi=Oi_ I*  Xi_ I + B i, i=  2 , ' " , n .  

So (5) is a special case of (7), where B~ = 0 (i > 2), and m = 2. In the next section, we 
describe a new parallel method for solving (7) and use it to solve the symmetric tridiagonal 
eigenvalue problem. 

3. The new parallel algorithm 

The general linear first order recurrence can be expressed as the determination of the 
sequence of xi: 

xm =bt '  (8) 
xi=a~_ I , xi_t + b  ~, i = 2 , 3 , ' " , n ,  

where a i and b i (i = 1, 2 , . . . ,  n) are known. The parallel algorithm for solving (8) is well 
investigated by many researchers [9,10]. The new method in this paper aims to the combina- 
tion cf the advantages of the segmentation [7] and the cyclic reduction method [3]. The basic 
idea of the cyclic reduction method for solving general linear first order recurrence problems 
is to combine adjacent terms of the recurrence together in such a way as to obtain a relation 
between every other term in the sequence, that is to relate xj, say, to xj_ 2. This relation is 
also a linear first-order recurrence, although the coefficients are different and the relation is 
between alternate terms. Consequently, the process can be repeated to obtain recurrence 
relating every fourth term, every eighth term, and so on. When the recurrence relating every 
nth term (i.e. after log2n levels of reduction), the value at each point in the sequence is 
related only to values outside the range which are known or equal to zero, hence the solution 
has been found. This method is efficient when it is used on vector computers. However, it has 
some disadvantages when it is used on an MIMD machine. The parallelism is changeable 
during the computation. The overhead is due to the heavy data transformation. The meaning 
of the segmentation is obvious. In fact, it is a divide-and-conquer method. The high 
parallelism can be achieved by this method, but it also has the disadvantage of the high 
overhead of data transformation. Motivated by the versatility and popularity of the divide- 
and-conquer technique, we attempt to develop a more powerful algorithm combining the 
advantages of the above two methods. 

A general linear ruth order recurrence problem can be described as: 

Xt = Bl, (9) 
X i f # i _ l  * Xi_t + Bi, i=  2 , " ' , n ,  
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where X i, B~ and 0~ are defined as in (7). For solving (9) on an MIMD machine with 
parallelism p, we divide {Xi}, i = 1, 2 , . - - ,  n, into p groups each with k = nip vectors. For 
the sake of  simplicity and without loss of generality, we assume that k is an integer. This is 
the segmentation approach. Now Equation (9) is divided into p groups each with k equations. 
T h e / t h  group consists of  the following equations. 

X l ,  k+j+ l  -'~ 01" k+j * X l ,  k+j "~'BI* k+ j+ l '  

where O<_l<_p- 1 and 1 <_j<_k. 
Instead of combining adjacent terms, here we try to relate every term with the first one in 

the same group. 

X l . k + 2 = O I . k + l  * X i . k + l  + B i , k +  2, 

and 

X l . k + 3 = O l , k + 2  * 

---OI.k+ 2 * 

where 

Hence, 

where 

= O i , k +  2 * 

= O}12k+l * 

X l  • k + 2  + Bi * k+3  

(OI , k+  1 * X l , k + l  + B i , k + 2 )  + B I , k + 3  

01,k+ l* Xi.k+ 1+(01,~+2 . Bi.k+2+Bt.k+3) 

Xl  k+ I + R ( I )  • Z' l  * k + 3 '  

( I )  _ Oi , .o(o) OI.k+l  , k + 2  ~I- ~+I' 

B~l)*k+3= 01.  k + 2  * BI, k+2+BI,  k + ~ -  

X l , k + 4 - ~ O I , k + 3  * 

toOl ,k+ 3 * 

~-'Ol,p+ 3 * 

= o~2~+1 * 

X l  • k + 3  Jr- B I . k+4  

(~"' • + BP2 k + 4 + V l * k + l  * XI k + i  B I , k + 4  

o(" • x1,~+,+(Ol , + ~ ,  BI'2,+~+BI.,+.) I * k + l  * 

X I *  k + l  "t" B122k+4, 

0~2', ~ + , = 0 , .  k + 3 * 0~' :  ~ + , ,  

B/22k+4 = 01. ~+3 * B /?~+3  + B I .  k+4. 

Using the method of induction, we have 

Assume 

XI • k+j = OI • k + j - I  

= OI • k + j -  1 

~-" OI * k + j - I  

* XI • k+i-I 4"BI * k+j' 

[otJ -3) ~ .~. l~(J--3) -I- B t , k+j * ~ I*k+l]  * X l * k + l  U l , k + j - I  

, a ( j - 3 )  * +(01  k+j-I * t " l * k + j - l + a l * k + j )  V l * k + l  * Xl  k + l  • R ( i - 3 )  

= 0 ( J  - 2 )  l * k + l  * X l , k + l + l ~ ( J - 2 )  "~1 * k +j' 

j =  1, 2, 3 , . . . , k .  

(0) 
I * k + l  V ! , k + l ,  

B<0> - n I * k+j -- sJI * k+j' 

(-1) = I ,  
l , k + !  

B(-l) - n I * k + j - - ~ .  
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We can obtain the following relations: 

X/ k+j 0}J*k2)+l * Xl k + l  + B ( J - 2 )  • = * I * k + j '  

where 

(10) 

/ n ( j - 2 )  , 0 ( J - 3 )  
V l * k + l  = Ot*k+j-I 

'-2~ . mi -3 )  + B  t (11) [n}'.k+j 0,.k+j_, . ,+j, 

O<_l<p-- 1, 2<_j<k,  

and (9) becomes a smaller problem which needs fewer recurrent computations. Let j = k + 1, 
from (10) we can get the following equation: 

. t- i ~ ( k -  I )  
_ i t l ( k - I )  , XI k+l --U(l+l)*k+l X~t+l~, k + l - " t ,  k+t • , (12) 

O < l < p - 9  

where the coefficients are obtained from (11). When the first vector of every group (X t . k + l 's) 
are calculated, the remaining (n - p )  X's  can be obtained from (~,0) (or from (9)). 

Thus, the all computational process consists of 3 phases: 
(i) Calculate no-t> and B ° -  i) from (11). This computation is parallel for l, (0 < l < p  - 1), '11 * k + l  l * k+j 

but sequential for j (2 < j < k). 
(it) Calculate X{I + i~ • k + l( 0 ~ ! < p - 1) sequentially, 

= a ( k - I )  * X !  k+ + n ( k - I )  I V  isknown). X(l+l)*k+l t ' l *  k + l  * I U( l+  I) * k+  II. "at I 

When these vectors are calculated, the results should be transferred between processors in a 
distributed memory MIMD system. The data communication needed is only a vector, i.e. 
m - 1 data for an mth order  linear recurrence problem. 
(iii) Calculate X I , k+j, 

O < l < p - 1 ,  2 < j < k  

using (10). This can be done i~. parallel for ! on p processors, but sequential for j. 
This method can be easily used to solve symmetric tridiagonal eigenvalue problems. From 
Equations (10)-(12) and (5), if we divide vectors X i = [~i_,] into p groups each with k vectors, 
then we have 

where 

= o I .  * 0}°2 I * k + l  k + 2  k + l  :[ 1 [e,k+ el .  k + 2  d l .  k + 2  , 

1 0 J 1 

[e l .k+ 2 * e l . k+l  + d l . k +  2 
[ el • k + l  

[e~12 k+, .to~ ] ~ l * k + l  / 

~-  I ~,(0) ,4(0) l '  
L ~ / *  k + l  = l * k + l J  

e ! l ) k + l  . k + 2  * k + l ' ~ l *  k + 2 ,  
..l_ #1[ el 

A(I)  - -  d 
t * l . k +  I - t - / . k + 2  t * l . k + l .  

dl*k+l]o 

el*k+2 d! ** k + l  dl * k+l ] 
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OI27k+i =Oi  k+3 * /~(I) • v I  * k+l  

and 

= +3 +3 , / © / * k + l  
/ ~(0) 
L ~ I *  k+l  d~O)*k+ 

O) + dt • , ,,co) e l . k + 3  * e l . k + l  k+3 ~ l * k + i  

[" ~(2) ,,/(2) "l 
= / © l * k + l  ° ' l * k + l  / 

l~,(l) ,/(1) 1 
L ~ I ,  k+!  ~1 .  k + l J  

av) + dt , a(o) ] e l * k + 3  * t~ l*k+ l  * k + 3  ~ l , k + l  

] ~l?k÷l  

e}22 k + ,  = e l .  k + 3  * "t"'"* k + ,  + dt • * + 3  *. e}°2 k + , ,  

d(2) = el , ,40) + di + ,40) l* k+ l  *k+3  ~ l * k + i  *k+3  ~ l * k + l "  

In general (from the method of induction), 

~ _ O l . k + j _ l  , a( j -3 )  Ul * k + l  

I ] * - - !  * k +  el k + j - I  d l , k + j - t  • | '~l,  k+t 
1 0 /,~,(j-4) ,4(j-4) 

L~I • k + l  ' . ' !  • k +  

,~(j-3) + d i  , ,~(j-4) e l , k + j - !  * '~1. k + i  • k + j - I  ~'t.k+,. 

e(J-3) i * k + l  

"o( / -2)  ,,./(j- 2) ] 
~ 1 ,  k + i  ~ 1 .  k + l  . 

el¢?'+, 
Defining 

we have 

el: 1, 
all.?+, •o, 
el°. ~ k +~ ffi e l ,  k +j, 
d¢O) I* k +j ---- d l  * k +j' 

, , ( j -2)  I * k + l  " ~ l * k + j - I  * I * k + l ,  ~ i , k + l - - . _ e l . k + j _ l  . e(J -3)  - , 4  e(J-4)  

, ,U-2)  ~ ' i *k+ l  e l , k + j _ l  , , / ( j -3 )  .J.A d(.J-4) ~ l * k + l  ~ l * k + j - I  * I * k + l ,  

lffiO, 1 , . . . , p -  1, and j ffi 2, 3 , . . . , k  + 1. 

Obviously, 

Bi. k+j =0 .  

Substitute ark-t)  into (12), we have, ~'1 * k + l  

= [g~l+l~. k÷l]  
XU+l~.k+i [ gU+l~.k 

v t , k + l * t  gl*k l '  " 
i - - O ,  1 , ' " , p -  1. 

el • k + j ~ i  ~ ,4(j-3) q_ dl  t ' l *  k + l  * k + j - 1  

d U - 3 )  1 * k+ l  

, A ( J  - 4 )  ] m'k+! 1 

(13) 
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As gi and g, are known, we cqn calculate all the g(l+l) + k+l’s, and gtr+ i) + k’s from (13). 
Subsequently, all the other gjs can be calculated using the following equations 

X i*k+j’ 0 It k+j-1 * xl t k+j-1 (14) 

or 

X I*k+j= l+k+l 
f-pi-3 

* xl * k+l? 

j=2,3;**,k. 
(15) 

In fact this can be simply done by using the following formulas 

g? * k+j =el + k+j-1 * gI * k+j-I +d, * k+j-1 * gI t k+j-2 (16) 

or 

gl*k+j= e$L-:i 1 * &.,,,+&-& * g,.,. (17) 

From the above analysis, the parallel procedure for determining the Sturm sequence at 
point A can be given in the following algorithms. 

Algorithm I 
Input (8 sample point A 

(ii) a symmetric tridiagonal matrix 

and its order n. Suppose n =p * k. 
output 

sequence {f&), fl(~),*~*,f,(4)~ 

where fi( A)'s, (0 s i s n), are defined as in Section 2. 

Algorithm 
(i) divide {cl, c2, c3; - -, c,} and {l, d2, d,; - *, d,} into p parts and assign the Ith part on 

processor I, where di = -bf (2 I i I PSI. 
(ii) for I = 0 to p - 1 parallel do 

el.k+j= , c!_~+~+~-A, Osjsk-1. 

(iii) for 1 = 0 to p - 1 parallel do 

f$si!l=e[*k+j * ehk+l (j-2) +d, * k+j * C?ji.-,$.l, 

d(j-1) . =e 
l*k+j 1 t k+j * dijw-/fil +d, a k+j * d!jCCl, 

j=2,3;.*,k, 

where 

,$j;ybl = 0, and el;y+l = 1. 

(iv) for I = 0 to p - 1 sequentially do 

&I+,) * k+l = &;‘i 1 * &.k+l+&& * gl*kr 

g(f+l) * k = eik+>2! 1 * 81 l k+l +dtk2il * &+k. 
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(v) for 1 = 0 to  p - 1 paral le l  d o  

g l , k + j = e l , k + j - I  * g t , k + j - I ' k d t , k + j - I  * g l , k + j - 2  

or  

,2,+ , g l . k + j  = e  t * g l * k + l  " " l . k + l  g l . k ,  

jffi2, 3 , . . . , k -  1. 

(vi) fl • k+j(A) = gl • k+j- 

Using Algorithm 1, we can easily obtain the pata!iel" algorithm for determining an 
eigenvalue of a symmetric tridiagonal matrix. For the sake of simplicity and without loss of 
generality, we only give the algorithm for calculating the largest eigenvalue of a symmetric 
tridiagonai matrix. 

Algor i thm I! 
Input (i) A symmetric tridiagonal matrix A, as in Algorithm I, and its order n. 

(ii) An interval [A i, A2] containing the largest eigenvalue A and a small positive number 

Output The largest eigenvalue A satisfying the accuracy ~. 
Algorithm 

(i) Calculate sequence {fo(A), fl(A),. •., f,(A)} (A - (A 1 + A2)/2), using Algorithm I. 
(ii) Calculate the number of sign changes in the above sequence, denoted by q(A). If 

q(A) = n, let A 2 = A; if q(A)= n - 1, let A~ = A. 
(iii) if I A~ - A2[ > ¢ go to (i). 
(iv) A = (A l + A2)/2 is the largest eigenvalue. 

Next we analyze the time complexity of Algorithm I and its efficiency. The time needed for 
evaluating a Sturm sequence on one processor is 

T m = (2T,  +2T+)  * n, 

where T+ and T,  are the time needed for one operation of addition and multiplication 
respectively. The time needed for Algorithm I on a parallel machine with parallelism p 
should be: 

r --k • r ÷ + ( k -  1) • ( 4 ,  r ,  + 2 ,  T÷) + p ,  ( 2 ,  r ,  + r÷) + ( k - 2 )  

• (2T,  + T+). 

Assume T,  = T+, and notice that usually k >> 2, we have 

Tp=k * ( 6 *  T ,  + 4 *  T+) + p ( 2 *  T .  + T+) 

--.10, k * T + + 3 *  p * T+, 

and 

Sp = 

4 , n , T +  

10k • T + + 3 ,  p • T+ 

= 0 .4  • p / ( 1  ÷ 0.3 • p • p / n )  

= 0 . 4 ,  p -  0 .12 ,  p • p • p /n .  
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Here the term 0.3 * p * p / n  represents the sequential fraction - non-parallel fraction in this 
computation. According to the criterion proposed in [8], the speedup is optimai, and it is 
greater than the previous results (see the results in [4]). When n >> p ,  Sp = 0.4 * p ,  Ep = 40%. 
In this case, this fraction can be ignored, and the speedup is a linear function of the number 
of the processors. 

For a fixed n, when p increases, the Sp increases too. Because of the influence of the 
fraction of sequential computation, there should be a critical point, forbidding the increase of 
Sp. It can be observed that Pc ffi ~ * n ) .  This provides an upper bound on the number of 
processors, beyond which no reduction in computation time can be achieved. This bound 
determines that, for example, when n = 1024, one should not use more than 25 processors 
even though they are available. This knowledge can be very useful in the efficient use of 
processors in a multiprogramming environment. For a fixed p, when n is too small compared 
with p, perhaps another algorithm, even sequential algorithm, is better than ours. This is 
because of the fact that the gain in speed achieved from increasing the amount of parallel 
execution may not outweigh the cost of introducing extra arithmetic operations. It can be seen 
that the critical point for the problem size, n, should be n c = 0.3 * p * p / ( p  - 1). Usually in 
scientific computation, n is much greater than n c. Thus, the proposed method is practical and 
acceptable. 

4. Experimental results 

We have run a test program on the Sequent Balance 8000 parallel processing system. This 
is a shared memory MIMD machine [!4]. There are 10 processors in this system and one is 
dedicated to the operating system. This is a practical multiprocessor system. It incorporates 
multiple identical processors (CPUs) and a single common memory. The Sequent CPUs are 
general-purpose, 32-bit microprocessors. They are tightly coupled. All processors share a 
single pool of memory, to enhance resource sharing and communication among different 
processors. 

Sequent systems support the two basic kinds of parallel programming: multiprogramming 
and multitasking. Multiprogramming is an operating system feature that allows a computer to 
execute multiple unrelated programs concurrently. Multitasking is a programming technique 
that allows a single application to consist of multiple processes executing concurrently. The 
multitasking yields an improved execution speed for individual programs. The Sequent system 
supports multitasking by allowing a single application to consist of multiple, closely cooperat- 
ing processes. The Sequent language software includes multitasking extension to C, Pascal, 
and FORTRAN. The Parallel Programming Library is to support the multitasking. Sequent 
FORTRAN includes a set of special directives for parallel loops. With these directives, we 
mark the loops to be executed in parallel and classify loop variables so that data is passed 
correctly between loop iterations. The FORTRAN compiler interprets the directives and 
restructures the source code for data partitioning. In addition to these directives and Parallel 
Programming Library, the difference between a sequential and parallel program is distin- 
guished by the compiler option-mp. 

In adopting an application for multitasking, we often have the following goals: run as much 
of the program in parallel as possible and balance the computational load as evenly as 
possible among parallel processes. For efficient multitasking we have to choose the right 
programming method. Most applications naturally lend themselves to one of two multipro- 
gramming methods: data partitioning and function partitioning. Data partitioning involves 
creating multiple, identical processes and assigning a portion of the data to each process. 
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Table l(a) 
Execution times (in seconds) 

M. Lu, X. Qiao 

n 480 960 1920 3840 7680 11520 15360 

P 

1 7.05 14.11 28.22 56.42 112.88 169.88 225.94 
4 4.79 9.28 18.30 36.29 72.33 108.38 143.30 
5 4.24 8.20 16.13 32.00 63.64 95.34 126.69 
6 3.91 7.5 14.75 29.14 58.00 86.90 115.50 
8 3.51 7.00 14.00 27.53 53.47 78.54 104.09 

n: size of the matrix 
p: number of processors 

Table l(b) 
Speedups 

n 480 960 1920 3840 7680 11520 15360 
P 

4 1.47 1.52 1.54 1.55 1.56 1.57 1.58 
5 1.66 1.72 1.75 1.76 1.77 1.78 1,78 
6 1.80 1.88 1.91 1.94 1.95 1.95 1.96 
8 2.01 2.02 2.02 2.11 2.05 2.16 2,17 

n: size of the matrix 
p: number of processors 

Table l(c) 
Efficiency(%) 

n 480 960 1920 3840 7680 11520 15360 
P 

4 36.80 38.01 38.55 38.87 39.02 39.19 39.41 
5 33.25 34.41 34.99 35.26 35.47 35.64 35.67 
6 30.05 31.35 31.89 32.27 32.44 3 ~ 58 32.60 
8 25.14 25.20 25.20 25.62 26.39 27.04 27.13 

n: size of the matrix 
p: number of processors 

Function partitioning, on the other hand, involves creating multiple unique processes and 
having them simultaneously perform different operations on a shared data set. It can be seen 
that the data partitioning is appropriate for our new parallel algorithm. It is done by executing 
the outer loop iterations in parallel in step (ii), (iii) and (v) of Algorithm L 

For a given symmetric tridiagonal matrix and different size n, we evaluate its largest 
eigenva!ue by bisection method using Algorithm I and H. There are two programs in our test. 
The first one named TRID uses the general bisection method, in which the Sturm sequence is 
calculated sequentially. The second one named PTRD uses the bisection method, with 
parallel Sturm sequence calculations. The parallelism is achieved by using the Parallel 
Programming Library function re_fork on the Sequent B8000. The program PTRD was 
compiled with the option-rap, and their CPU times are recorded. The measured time, the 
speedup and efficiency for different n (matrix size) and p (number of processors) are given in 
Table 1. In each case, 5 runs were made, and the measured time represents the average of 3 
experiments obtained by discarding the largest and the smallest figures. It can be seen that 
the achieved results for the speedup and efficiency are within 62% and 98% of the predicted 
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results (see Fig. 1). For a fixed n, the speedup increases as the number of processor increases. 
It is nearly a linear function of p. This proves the optimal performance of the proposed 
algorithm. For a fixed p, the efficiency increases with n. Two cases (p  -- 4 and p = 8) are 
plotted in F/g. 2. For p - -4 ,  the theoretical speedup should be 1.6. The practical results are 
between 1.47 and 1.58. They are within 91.99 and 98.54% of the predicted results. For p = 8, 
the theoretical speedup should be 3.2. The practical results are between 2.04 and 2.17. They 
are within 62.77 and 67.83% of the predicted results. This is because that the infieence of the 
sequential computation in this algorithm and the system overhead increase with p. These 
results are consistent with the theoretical analysis in the last section. 

The sequential part of the program PTRD is by no means restricted to the execution on 
one processor. In fact, the calculation of gtt+ ~ .  k can be done in parallel. For large values of 
p, this calculation can be paraUelized recursively. 

5. Conclusions 

A new parallel method for solving symmetric tridiagonal eigenvalue problems is proposed 
and analyzed in terms of its performance on the MIMD environment. Compared with 
previous results, this method has a linear speedup, which is greater than the existing results, 
and the data communication between processors is less than that required for other methods. 
The experimental results are shown to achieve the expected performance and are of 
testimony to the efficiency of the parallel algorithm. I 'he results also reflect that the overhead 
and the influence of sequential fraction in a parallel algorithm of an MIMD computation 
becomes less significant as the ratio between the problem size and the number of processors 
increases. 

In conclusion, we have noted that the segmentation (or partitioning) method can be used in 
many numerical computation problems for parallel execution. One problem is how to decide 
the partitioning strategy to minimize the overhead. Much research work needs to be done in 
the future. 

References 

[1] R.H. Barlow and Evans, A parallel organization of the bisection algorithm, Comput. L 22, (1978) 267-269. 
[2] R.H. Barlow, D.J. Evans and J. Shanehchi, Parallel multisection applied to the eigenvalue problem, Comput. J. 

26 (1983) 6-9. 
[3] B.L Buzbee, G.H. Golub and C.W. Neilson, On direct methods for solving Poisson's equations, SIAMJ. Numer. 

Anal. 7 (1970) 627-656. 
[4] J.J. Dongarra and D.C. Sorensen, Fully parallel algorithm for the symmetric eigenvalue problem, Government 

Report DE86007553. 
[5l J.J. Dongarra, Squeezing the most out of eigenvalue solvers on high-performance computers, Government 

Report DE85007569. 
[6l D.J. Evans, Design of numerical algorithms for Supercomputers, in: J.T. Deweese et al., eds.~ Scientific 

Computing on Supercomputers, (19~;9) 101-131. 
[7] Q.S. Gao, X. Zhang and J.M. Wang, Another efficient parallel algorithm for recurrence problem, Comput. Appl. 

Applied Math. China 4 (1978) 11-15. 
[8] M.T. Health and D.C. Sorensen, Pipelined Givens method for computing the QR factorization of a sparse 

matrix, Government Report DE85009772. 
[9] R.W. Hockney and C.R. Jesshope, Parallel Computers, Architecture, Programming and Algorithms (Adam Hilgor, 

Bristol, 1988). 
[10] D.J. Kuck, The Structure of Computers and Computations, vol. 1 (Wiley, New York, 1978). 
[11] D.J. Kuck and A.H. Sameh, Parallel computation of eigenvalues of real matrices, IFIP Congress, 1971 Vol. 2 

(North-Holland, Amsterdam, 1972) 1266-1272. 



Applyirig parallel computer systems to solve eigenvalue problems 1315 

[12] S. Lakshmivarahan and S.K. Dhall, Analysis and Design of Parallel Algorithm Arithmetic and Matrix Problems 
(McGraw-llill, New York, 1990). 

[13] B. Philippe, Solving large sparse eigenvalue problems on supercomputers, NASA CR 185421, NASA Ames 
Research Center, 1988. 

[14] Sequent Computer Systems, Inc., Sequent Guide to Parallel Programming, 1986. 
[15] J.H. Wilkinson, The Eigenvalue Problem (Oxford Univ. Press, New York, 1988). 


