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Abstract
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1 Introduction

Large-scale computer simulations have become an important tool in the theory of
elementary particles. There is a very rich empirical material to test quantum chro-
modynamics (QCD), which is held to be the basic theory of strong interactions[1].
Most of it is related to low energy data such as the spectrum and the structure of
hadrons, where nonperturbative methods such as lattice gauge theory (LGT) in four
dimnsions are indispensable[2].

In many practical situations of LGT it is necessary to perform gauge fixing on the
discrete lattice. This is in particular the case if one is interested in the computa-
tion of gauge-noninvariant quantities such as gluon propagators[3][7], Bethe-Salpeter
amplitudes[4] or monopole densities[5]. Gauge fixing might also be helpful to reduce
noise in the measurement of gauge invariant quantities (such as Polyakov lines or
Wilson loops)[6], or in the context of preconditioning[10].

Various methods have been proposed to achieve gauge fixing [10][13]. They are
based on iterative schemes, which might need many iteration steps and thus tend
to be rather time consuming. It is therefore of considerable interest to study their
convergence behaviour and the efficiency of their implementations on parallel com-
puters.

In this paper we will present an introduction into the issues and compare two such
algorithms for Landau gauge fixing in lattice QCD, on our local connection machines,
CM2 and CM5. We will also consider some variants of these basic algorithms, that
aim at possible acceleration gains.

2 Gauge fixing on the lattice

QCD gauge fields are defined on the lattice in terms of parallel transport operators,
Uµ(x) ∈ SU(3), µ = 1..4, that live on the links between neighbouring sites x, x+ µ̂
of a fourdimensional hypercubic lattice and are related to the continuum fields Aµ(x)
by

Aµ =
1

2i

(

Uµ(x)− U+
µ (x)

)

|traceless . (1)

Uµ(x) are matrices in a threedimensional ‘color’ space, and the set {Uµ} is called a
configuration. Under a local gauge transformation Uµ(x) transforms like

Uµ(x) −→ Uµ(x)
(G) = G(x)Uµ(x) G(x+ µ̂), (2)

where the matrices G are elements of the gauge group SU(3) and are associated to
the lattice sites.
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In the continuum formulation the local Landau gauge fixing condition, ∂µA
µ = 0,

can be viewed as the solution to the global variational problem of minimizing the
integral

∫

d4xAµA
µ. The gauge fixing condition in its global form can easily be

transformed into a lattice relation, in terms of Uµ(x) :

F (G) := Re Tr
∑

µ

∑

x

Uµ(x)
(G) = Extremum. (3)

Obviously, F (G) has an upper and a lower bound. Accordingly, there exist both
an absolute minimum and maximum. Notice that both maximizing and minimizing
F (G) will satisfy condition (3). Hence we have at least two Landau configurations
which differ by gauge transformation. This is due to the fact that, for SU(3) gauge
theory, the Landau condition is not sufficient to fix the gauge completely, which
leads to the notorious phenomenon of Gribov copies[9].

We consider next a given configuration to be cast into Landau gauge. This will
be achieved by driving F to an extremum, in an iterative process. For constructing
G(x) , we will follow the algorithms introduced in refs.[10][13], which will be referred
to as Cornell[10] and Los Alamos[13] methods.

a. The Cornell Method

In a convergent scheme, the local gauge transformationG(x) is expected to approach
unity with increasing iteration number i. The Cornell method therefore starts off
from the ansatz

G(x) = e−iα
∑

µ
∂µA

µ(x), (4)

which is expanded to first order:

G(X) ≈ 1− iα
∑

µ

∂µA
µ(x). (5)

This approximation requires a subsequent projection of G(x) back into the group
space. Aµ(x) is given by eq. (1) and the lattice form of ∂µA

µ(x) is

∂µA
µ(x) = Aµ(x)− Aµ(x− µ̂). (6)

The quantity α is a real parameter to be suitably chosen, depending on the under-
lying lattice.

b. The Los Alamos Method

One introduces

w(x) =
∑

µ

Uµ(x) + U+
µ (x− µ̂) (7)
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and rewrites eq.(3) as

F (G) =
1

2
Re Tr

∑

x

∑

µ

U (G)
µ (x) + U (G)

µ

+
(x− µ̂) (8)

=:
1

2
Re Tr

∑

x∈red or black

wG(x). (9)

The basic idea is now to construe G(x) such that F changes its size monotonically
from one iteration step to the next. This construction starts from a checkerboard
(red-black) subdivision of the lattice, with G(x) being equal to unity on the red
(black) sites at even (odd) iteration steps. The local gauge transformation now
simplifies to

Uµ(x) −→ G(x).Uµ(x).1 (10)

Uµ(x− µ̂) −→ 1.Uµ(x− µ̂).G+(x) (11)

and can be carried out in parallel on the entire lattice. This iteration step can be
recast into the simple form

w(x) −→ wG(x) = G(x) w(x). (12)

The non-unity part of G(x) is chosen to be a projection of w(x) onto the group
manifold that obeys

Re tr G(x)w(x) ≥ Re tr w(x). (13)

Note that the change in F is due to independent local changes in w(x). For this
reason one has to interchange the role of red and black points after each step.

In the following we will study the convergence behaviour of these basic methods
in conjunction with suitable acceleration techniques, implemented on the massively
parallel machines CM2 and CM5. We present results obtained on 8 gauge configu-
rations of a 84 hypercubic lattice, equilibrized at β = 5.7, as well as 2 configurations
of a 164 lattice , at β = 6.0. These lattices were generated using a combination of
heat bath and overrelaxation sweeps. The configurations are separated from each
other by 1000 sweeps.

3 Techniques

3.1 Reunitarization

We have seen that proper unitarization is an important feature of gauge fixing
iterative schemes. The Gram-Schmidt orthonormalization scheme (GS) works very
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well for the Cornell method but not at all for the Los Alamos algorithm, as it does
not ensure the validity eq. (13). This can be achieved by the projection method of
maximal trace (MaxTr), which is based on the Cabbibo-Marinari trick[11]:

The projection G(x) of a 3x3 matrix w(x) onto the SU(3) group is computed iter-
atively with the recursive step

Gi(x) −→ Gi+1(x) = Ai
1A

i
2A

i
3.

and the initial condition G0(x) = w(x), where

Ai
1 =







G̃i∗

11 + G̃i
22 −G̃i

12 + G̃i∗

21 0

G̃i∗

12 − G̃i
21 G̃i

11 + G̃i∗

22 0
0 0 1







Ai
2 =







G̃i∗

11 + G̃i
33 0 −G̃i

13 + G̃i∗

31

0 1 0

G̃i∗

13 − G̃i
31 0 G̃i

11 + G̃i∗

33







Ai
3 =







1 0 0

0 G̃i∗

22 + G̃i
33 −G̃i

23 + G̃i∗

32

0 G̃i∗

23 − G̃i
32 G̃i

22 + G̃i∗

33





 .

Denoting,

N i
1 =

√

| Gi∗
11 +Gi

22 |
2 + | Gi∗

21 +Gi
12 |

2

N i
2 =

√

| Gi∗
11 +Gi

33 |
2 + | Gi∗

31 +Gi
13 |

2

N i
3 =

√

| Gi∗
22 +Gi

33 |
2 + | Gi∗

32 +Gi
23 |

2,

the elements G̃i
mn in each matrix Ai

k equal G
i
mn, divided by the corresponding scaling

factor N i
k.

By construction, Gi ∈ SU(3), i ≥ 1 and Tr(Gi+1G0) ≥ Tr(G0). We achieve maximal
trace (within our 64 bit machine accuracy) after about N ∼ 5 − 7 steps, and use
GN for the projection of w.

3.2 Convergence criteria

We have to define an appropriate quantity that can serve as a monitor for the quality
of gauge fixing achieved during the iteration process. Our aim is to minimize the
quantity δ =| extremum(F ) − Fi |. As extremum(F ) is not known during the
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iterative procedure, we have to use other quantities than δ to judge the convergence.
In the literature two possiblities have been considered1:

1. One can use [10][7]

σ1 =
1

ncL4

∑

Tr (∂µA
µ)(∂µA

µ)+ (14)

as a direct measure of fulfillment of the Landau gauge condition. L is the
lattice size, and, for the SU(3) gauge theory, nc = 3.

2. As Gi → unit operator with i → ∞ the average trace of the gauge matrices

σ2 = 1−
1

ncL4
Re Tr

∑

G(x) (15)

can serve as an alternative monitor for convergence [14]

As F is quadratic in all variables, we propose here as a third possibility to employ
the rate of change in the iteration step Fi −→ Fi+1 as a criterium for convergence
achieved at step i

σ3 = Fi+1 − Fi. (16)

Notice that F behaves monotonically.

1e-6

1e-4

1e-2

1

0 400 800
iterations

σ1

σ2

σ3

1e-6

1e-4

1e-2

1

0 400 800
iterations

σ1

σ2

σ3

Figure 1:
left: The convergence behaviour in maximizing F, using the Cornell method and
reunitarization procedure of maximal trace. right: The same for Los Alamos method.

1In [16], extremum(F ) is appearently estimated by the last FN where N is the last iterative
step. This is however a very misleading quantity
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Figure 2: Same as in Fig. 1, but with signals appropriately rescaled.

We see from Fig. 1 that the three signals differ considerably in size. One must thus
be careful when comparing the quality of gauge fixing quoted by different authors.
Nevertheless, to the degree that the signals σj provide useful measures for the dis-
tance δ, we would expect them to show similar shapes during the iterative process,
i.e. coincident positions of maxima and minima. This is indeed the case, as the
signals can nearly be made to coincide by appropriate rescaling (see Fig. 2).

So far, we have considered gauge transformations for maximizing F (G). In order to
drive the system into a minimum of F , we simply revert the previous construction,
using G−1 = G+ instead of G. We see in Fig. 3 that the convergence behaviour of
the maximizing and minimizing procedures is very similar during the first several
hundred iterations. After that, the minimizing iterative scheme starts to oscillate
badly, with poor convergence compared to the maximizing case. Recall, however,
that the minimization procedure yet rendus a monotonic behaviour in F .

4 Accelerating Procedures

The discussed algorithms, which are basically local, perform sufficiently on small
lattices, such as 84. On larger lattices, however, they show poor efficiency, due to the
phenomenon of critical slowing down which occurs when the convergence modulating
matrix carries a large range of eigenvalues. Various methods have been proposed to
speed up relaxation, like preconditioning in the Fourier space[10], overrelaxation[12]
or multigrid schemes[13][16]. We want to comment here shortly on some of these
methods as implemented in data-parallel computing.
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1e-16

1e-12

1e-8

1e-4

1

10 20 30 40 50

σ1

iterations x 100

MaxTr: minimize
maximize

GS: minimize
maximize

Figure 3: σ1 obtained by maximizing and minimzing F using different reunitarisation
methods. After several hundred iterations, it beginns to oscillate widely.

Fourier acceleration[10] We consider the convergence behaviour of the Cornell
method which it is controlled by the matrix

∑

∂µA
µ. In momentum space, the

modes of this matrix converge with relaxation times proportional to 1
p2
. Thus the

overall relaxation τ time will be determined by the smallest momentum states:
τ ≃ 1/p2min ≃ L2. To overcome this critical slowing down, one modifies the gauge
transformation matrix G(x) in Fourier space such that all modes converge to zero
at the same rate (as fast as the fastest mode):

G(x) = e−iαW −→ e
−iF̂−1

(

ap
2
max

p2
F̂ (W )

)

(17)

where F̂ denotes the Fourier transform.

In Fig. 4 we see that this preconditioning reduces the required number of iterations
by a factor of about two2.

Note however, that the cost of the Fourier transformation is non-negligeable on
parallel machines, due to its wide range communication requirements. We used the
fast Fourier transform (FFT) subroutine, as provided by the scientific subroutine

2Nevertheless this result is not as expected from ref [10] which quotes a gain factor of 7 !
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library (CMSSL) on the CM2. This subroutine requires a special ordering of parallel
data, the so called SEND ordering. Our axis are, however, NEWS-ordered. In this
case FFT carries out an internal reordering from NEWS to SEND data structure,
prior to the actual computation of FFT[18]. As a result, the iteration step on the
CM2 is slowed down by a factor 15, through the two FFT steps, Eq. 17.

1e-6

1e-3

1

0 250 500 750 1000

σ1

iterations

unaccelerated
accelerated

Figure 4: The effect of Fourier acceleration on the convergence behaviour for the 84

lattices.

Overrelaxation Overrelaxation methods are widely used in improving convergence
of iterative methods, as well as in overcoming critical slowing down in Monte Carlo
updating. In ref.[12] Mandula and Ogilvie applied overrelaxation ideas to lattice
gauge fixing. They replaced the gauge transformation matrix G(x) by an infinite
series

G̃ =
∞
∑

n=0

[ω]n
n!

(G− 1)n, (18)

where

[ω]n =
Γ(ω + 1)

Γ(ω + 1− n)
. (19)

The overrelaxation parameter ω can take values between 1 and 2. The optimal
choice is to be made empirically3. For our 84 lattices we found that the best value
for ω lies near 1.45 (cf. Fig. 5). We truncated the series after two terms (this
corresponds to the original form introduced by Adler [17]). Calculations with higher
order terms showed similar behaviour. It is worth mentioning that the overhead of
the overrelaxation is very small.

Stochastic overrelaxation[13] In this method one applies a local gauge transfor-
mation G(x)2 with probability p, instead of always applying G(x) . For p = 1 the

3Approximately, the optimal choice ωopt ∼
2

1+ 3

L

, where L is the lattice size[16][12]
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Figure 5: σ1 for different overrelaxation parameters.

procedure definitely diverges. This “go wrong once in a while” principle has the
capability, however, to render a considerable speed up of convergence of the two
gauging methods treated in this work. The actual acceleration gain turns out to
depend strongly on p. For our 84 lattices we found best convergence to occur at
p ∼ 0.9.

1e-20

1e-10

1

0 200 400 600 800 1000 1200
stochastic Overrelaxation

p=1.0

p=0.1
p=0.3

p=0.5

p=0.7

p=0.9

p=1.0

p=0.1
p=0.3

p=0.5

p=0.7

p=0.9

Figure 6: Efficacy of stochastic overrelaxation as a function of the probability p.

5 Performance on CM2 and CM5

The Connection Machines in Wuppertal The CM2 at the University of Wup-
pertal is an 8k machine with 256 64-bit floating point accelerators and 256 MByte
memory. Data IO is performed on a disk parallel storage system (Data Vault), with
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10 Gbyte capacity. The CM5 is configured as a 32 processor nodes machaine with 4
vector units to the node, and a 16 Gbyte scalabale disk array (SDA). The CM5 can
be used in both message passing and data parallel models. Given the 4 dimensional
hypercubic structure of our lattices, we implement the gauging procedures in the
data parallel model.

Implementation In the following we will describe some features of our CMFOR-
TRAN implementation on the above CM2 and CM5 machines.
First, we have to establish a proper distribution of our data (gauge fields {U})
among the processors. This has to be chosen to minimize data traffic. The data
layout has of course a direct influence on the subgrid structure, that the CMF com-
piler produces. This is especially important on the CM5 because its performance
is heavily constrained by communication. Physicswise, we are dealing with nearest
neighbour interactions. Technically, on the CM5, our nearest neighbour interactions
are mapped – by the cshift operation within CMF – onto data movements which
occur in-processor, on-chip and between-chips, in decreasing order in speed. It must
therefore be the main goal to attain a layout that minimizes the amount of off-chip
cshift operations. That implies a subgrid geometry, for which most cshifts are to
be performed on the longest axis. This is achieved by assigning suitable weights to
each axis.

The Cornell method, for example, is obviously isotropic in the sense, that all space
time directions are equivalent with respect to the amount of shift operations re-
quired. It is therefore natural to select the “canonical” layout for the gauge field
{U}, with all space time axis declared to be parallel with equal weights. The two
matrix (color) indices of {U} and the Lorentz index µ are chosen to be serial, which
leaves us finally with the array structure

U (cornell) = U(nc, nc, nl, L, L, L, L)
cmf$layout U(: serial, : serial, : serial, : news, : news, : news, : news).

nc = 3 is the dimension of color space, nl = 4 corresponds to the range of the
Lorentz index and L is the linear size of our hypercubic lattice.

The Los Alamos method, on the other hand, induces an asymmetry into the code,
due to the red black splitting. We map the entire lattice onto the red (black) part
using a restricted lattice with a geometry of the form (L/2, L, L, L). In order to store
all the links on such a lattice we double the range of one particular serial index, which
we choose to be the Lorentz index, µ. Due to the resulting asymmetric geometry,
one expects to enhance the performance in assigning appropriate weights to the four
parallel axis. We found that the best performance is achieved by assigning a relative
weight of two to the short axis. As a result, we work with the array

U (LosAlamos) = U(nc, nc, 2nl,
L
2
, L, L, L)

cmf$layout U(: serial, : serial, : serial, 2 : news, : news, : news, : news).
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Performance Data For clarity, we restrict ourselves in the following to quoting
measurements from codes produced by the CMF compiler (release cmf 2.1 beta 0.1
on the CM5), using complex arithmetic in double precision. On the CM2, we are
running the slicewise CMF compiler (cmf 1.2). It goes without saying, that there
is room for improvement of the pure FORTRAN code by resorting to lower level
language programming in some kernel routines4.

We find that the local SU(3) multiplication has a performance of about 1.2 Gflops
(370 Mflops) on our CM5 (CM2) for a 164 lattice. On the CM5, this corresponds
to about 30% of the peak rate of 4 Gflops. The reason for this rather low perfor-
mance lies in the fact that the present CMF compiler does not yet produce optimal
complex arithmetic for the vector units: it translates a series of complex number
multiplications into a code with too many add-load and mul-load commands, rather
than mul-adds.

An important issue is the additional degradation of these performance characteristics
through communication. Two features have a large impact on this latter loss: 1. The
size and shape of the subgrids residing on the individual processors – the relevant
surface effects in communication can be influenced by the programmer’s layout; 2.
the latency of the cshift operations during run time5. As a result we find, on the
CM5, the performance P (84) for the 84 lattice to be only 65% of P (164). For this
reason the data presented here refer to 164 lattices only.

In table 1 we compare performance figures from CM2 and CM5, as measured on
the Cornell algorithm. Notice that interprocessor-communication is needed when
calculating the quantity

∑

∂µAµ according to Eq. 6 configuration {Uµ}, and when
performing the gauge transformation

Uµ(x) −→ G(x)Uµ(x)G(x+ µ̂).

In table 2 we present the corresponding performance data from the Los Alamos
algorithm. Within this method, the gauging step proper is carried out locally. After
each such step, however, one must rearrange the links from red (or black) into
black (or red) ordering. This gather/scatter stage involves the communication and
deteriorates the performance from the pure gauging step, which runs at 1 Gflops
on the CM5. The communication overhead being nearly 60% of run-time on both
machines, the floprate is finally degraded to an average of 304 Mflops on the CM5,
which is merely 8% of the theoretical peak performance. Note, that the computing
of σ1 is more expensive in this case, due to the data structure.

4For SU(3) matrix multiplication, e.g., a performance gain of up to 30% may be reached by
programming in DPEAC (CDPEAC) on the CM2 (CM5), respectively.

5The present implementation of CMF on the CM5 suffers particularly from the large latency
time of 300 msec.
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The situation appears to be more favorable for the Cornell method, where the time
required for communication is 37% on the CM5, and 27 % on the CM2, which leads
to an overall performance of 530 MFlops for the CM5 (198 MFlops for the CM2).

CM2 CM5
Subroutine MFlops time in % MFlops time in %
∑

∂µAµ 166.5 18.45 409.7 20.1
σ1, σ2, σ3 556.8 1.1 1481.8 1.1
SU(3)-projection 301.6 45 918.5 39.5
transformation 68 34.75 163.1 38.8

Table 1: Benchmarking the Cornell Method

CM2 CM5
Subroutine MFlops time in % MFlops time in %

Computation of G 343.85 16.6 1026 16.5
σ1 84.5 17.6 210 20
σ2, σ3 256.3 0.4 579.8 0.55
transformation 367 8.86 1202 7.8

Table 2: Benchmarking the Los Alamos Method

We should mention, that the results presented in this paper are based upon a test
version of the software where the emphasis was on providing functionality and the
tools necessary to begin testing the CM5 with vector units. The CM5 software
release has not had the benefit of optimization or performance tuning and, conse-
quently, is not necessarily representative of the performance of the full version of
this software.
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