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PARALLEL MATRIX TRANSPOSE ALGORITHMS

ON DISTRIBUTED MEMORY CONCURRENT COMPUTERS

Jacyoung Choi

Jack J. Dongarra

David W. Walker

Abstract

This paper describes parallel matrix transpose algorithms on distributed memory con-

current processors. We assume that the matrix is distributed over a P × Q processor

template with a block scattered data distribution. P, Q, and the block size can be arbi-

trary, so the algorithms have wide applicability.

The commumcation schemes of the algorithms are determined by the greatest, common

divisor (GCD) of P and Q. If P and Q are relatively prime, the matrix transpose algo-

rithm involves complete exchange communication. If P and Q are not relatively prime,

processors are divided into GCD groups and the communication operations are overlapped

for different groups of processors. Processors transpose GCD wrapped diagonal blocks si-

multaneously, and the matrix can be transposed with LCM/GCD steps, where LCM is

' the least common multiple of P and Q.

The algorithms make use of non-blocking, point-to-point communication between pro-

cessors. The use of nonblocking communication allows a processor to overlap the messages

that it sends to different processors, thereby avoiding unnecessary synchronization.

Combined with the matrix multiplication routine, C = A. B, the algorithms are used
to compute parallel multiplications of transposed matrices, C = A T. B r, in the PUMMA

package [5]. Details of the parallel implementation of the algorithms are given, and results

are presented for runs on the Intel Touchstone Delta computer.
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1. Introduction

Q

Matrix transposition is a fundamental matrix operation of linear algebra [8,14] and arises in

. many scientific and engineering applications. On a uniprocessor, an algorithm involving a trans-

posed matrix may not actually require the matrix data to be transposed in physical memory.

Instead, it may be accessed simply by exchanging the row and column indices. However, in a

distributed-memory multiprocessor environment, we cannot simply interchange the global row

and column indices. Instead, the data must be physically moved from one processor to another.

Transposition of a matrix is a redistribution of its elements. Many researchers have con-

sidered the problem for different, architectures. In 1972, Eklundh [7] considered the problem

of directly accessing rows or columns of a matrix when its size is larger than the available

high-speed storage. O'Leary [12] implemented an algorithm for transposing an N × N matrix

on a one-dimensional systolic array. Azari, Bojanczyk and Lee [1] developed an algorithm for

transposing an M x N matrix on an N × N mesh-connected array processor, and Johnsson and

Ho [10] presented an algorithm for a Boolean n-cube, or hypercube.

Current advanced architecture computers possess hierarchical memories in which accesses

to data in the upper levels of the memory hierarchy (registers, cache, and/or local memory) are

faster than those in lower levels (shared or off-processor memory). To exploit, the power of such

machines, block-partitioned algorithms are preferred for dense linear algebra computations, in

" which operations are performed on submatrices, rather than individual matrix elements. In

distributing matrix data over processors we therefore assume a block scattered decomposition

" [4,6]. The block scattered decomposition can reproduce the most common data distributions

used in dense linear algebra, as described briefly in the next section.

In this paper, the parallel matrix transpose algorithms are presented based on the block

scattered decomposition. The algozithms are implemented on the lntel Touchstone Delta com-

puter. The communication schemes of the algorithms are determined by the greatest common

divisor (GCD) of the number of rows and columns (P and Q) of the processor template. If P

and Q are relatively prime, the matrix transpose algorithm involves complete ezchange com-

munication. This is called all-to-all personalized communication, in which each of Np = P. Q

processors is required to send distinct subblocks to each of the remaining Np - l processors,

and receive distinct subblocks from each of them. Bokhari and Berryman [2] have developed

binary exchange and quadrant exchange algorithms on a circuit switched mesh, where P and

Q are powers of 2. The complete exchaage communication in our transpose algorithms arises

for any processor configuration, and is not limited to the case where P and Q are powers of

2. We implemented the complicated two-dimensional complete exchange communication prob-

lem by generalizing the one-dimensional cornplete exchange communication ba.sed on direct,
e

point-to-point communication. Details are discussed in Section 3.1.
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We have presen ted tile Parallel Universal Matrix Multip lication Algorithn_s ( P tl MMA) in [5]

for performing C ¢= t:_op(A), op(B)+/3C, where op(X) = X or X T, based on the block

scattered decomposition. One of the cases in the PUMMA package, C ¢=-_ A "r . B"r + tiC,

is implemented in two steps (T ¢: ct B . A; C ¢= T'I'+ /3C). The second step i_lvolves

parallel matrix transposition. The performance of this algorithm for evaluating C = A "r . B rl'

is compared with the algorithm for evaluati_lg C = A • B on the Intel Delta machine in

Section 4.

2. Design Issues

The way in which an algorithm's data are distributed over the processors of a concurrent

computer has a major impact on the load balance and communication characteristics of the

concurrent algorithm, and hence largely determines its performance and scalat)ility. The block

scattered decomposition provides a _,imple, yet general-purpose way of distributing a block-

partitioned matrix on distributed memory concurrent computers. In the block scattered de-

composition, described in detail in [4,6], an M × N matrix is partitioned into [)locks ofsize r × s,

and blocks separated by a fixed stride in the column and row directions are assigned to the

same processor. If the stride in the column and row directions is P and Q blocks respectively,

then we require that P. Q equal the number of processors, Nt,. Thus, it is useful to inmgine the

processors arranged as a P × Q mesh, or template. The processor at position (p, q) (0 < p < P,

0 < q < Q) in the template is assigned the blocks indexed by,

(p+ i. p, q+ j.Q), (1)

where i = 0 .... , [(Mb- p- 1)/PJ, j = 0.... , [(Nb-q- l)/QJ, and Mb × Nb is the size in

blocks of the matrix (Mb = [M/r 1, ib = [N/sl).

Blocks are scattered in this way so that good load balance can be maintained in parallel

algorithnm, such as LU factorization [3,6]. The nonscattered decomposition (or pure block

distribution) is just a special case of the scattered decomposition in which the block size is

given by r = [M/P 1 and s = [N/Q 1. A purely scattered decomposition (or two-dimensional

wrapped distribution) is another special case in which the [)lock size is given i)y r = s = l.

If P and Q are relatively prime, the matrix transpose algorithm involves a two-dimetmional

cornplete exchange communication, where each of Np processors is required to send distinct

subblocks to each of the remaining Np - 1 processors, and receive distinct sul)blocks from each

of them. We irnplernented the complicated two-dimensional conlplete exchange algorithm by

generalizing the one-dimensional complete exchange algorit, hni. Three one-dimensional cotll-

plete exchange communication schemes are shown in ["igure I, where each processor ne_(ts on(,

subblock from ¢_ach other l)rocessor, and the number in parentheses denotes the ntttnl)er of
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(a) block distribution over template (b) LCM block distribution

Figure 3: A matrix with 12 x 12 blocks is distributed over a 2 x 3 processor template. (a) Each
shaded and unshaded area represents different templates. The numbered squares represent
blocks of elements, and the number indicates at which location in the processor template tile
block is stored ....all blocks labeled with the same number are stored in the same processor,
The s/anted numbers, on the left and on the top of the matrix, represent indices of row block

and column block, respectively, (b) Tile matrix has 2 x 2 LCM blocks, Blocks belong to tile
same processor if tile relative locations of blocks are the same m each square LCM block. The
definition of the LCM block is defined in the text..

subblocks to transmit.

The binary exchange scheme completes in |log 2P] steps and the amount of data transmit-

ted in each step is fixed at 21"l°gaP]-_ subblocks, where P is tile number of processors. The

rotating scheme can avoid network congestion, but requires P- 1 steps and the amount of data

transmitted in the initial steps is large. In the direct point-to-point communication scheme.

the number of steps is the same in the rotating scheme, but tile amount of data transmitted in

each step is only one subblock.

The three schemes have been implemented on 16 nodes of the Delta and their perfornlances

are compared in Figure 2. The binary exchange and the rotating schemes are implemented

with an odd-even communication scheme, which is preferable to a simultaneous communication

scheme on the Delta [5,1 l]. In this algorithm, odd-numbered processors send their own blocks

and even-numbered processors receive them in the first step, and even-numbered processors

send and odd-numbered processors receive ill the i_ext step, On P = 2a processors, as shown in

Figure 2, the binary exchange scheme is tile fastest, However, if P is not a power of 2, then this

scheme becomes very complicated and may be slower than tile direct communication scheme.

The direct communication scheme is about 20% slower than the binary exchange SCtlenw for

the worst case (P = 2a), but it is simple to implement on an arbitrary number of processors.

We adopted the simple direct communication scheme for the implementation of the nlatrix

transl)ose algorith_lts, which are explained ill detail in tile next section.
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" Figure 4: An example of matrix transpose for a block scattered decomposition, when P = 2,
Q=3, and M_=N_=6,

3. Matrix Transpose Algorithms

We assume that a matrix is distributed over a two-dimensional processor mesi_, or template, so

that in general each processor has several blocks of the matrix as shown in Figure 3 (a), where

a matrix with 12 × 12 blocks is distributed over a 2 × 3 template. Denoting the least commonI

' rnultiple of P and Q by LCM, we refer to a square of LCM x LCM blocks as an LCM block.

Thus, the matrix may be viewed as a 2 x 2 array of LCM blocks, as shown in Figure 3 (b). The

concept of the LCM block was introduced in [5], and is very useful for implementing algorithms

that use a block scattered data distribution. Blocks belong to the same processor if their relatiw;

locations are the same in each square LCM blotk. An algorithm may be cleveloped for the

first LC'M block, and then it, can be directly applied to the other LCM blocks, which all haw_

the same structure and the same data distribution as the tirst LCM block, 'l'hat is, when

an operation is executed on a block of tim first LCM block, thesame operation can be (Ion('

simultaneously o_, other blocks, which have the same relative location in each I,CM block.



.

012345

0 1 2 3 4 5 0 3 2 •

2l?  }!?ii iiiiiii a)i i6- -f s ..................

A 5 _!i!!!-1.'.:'!i!i!!iBi!iI

AT
(a) marx trampose from matrix point-of-view

031425
,, , ,,,,,,,,,

0 3 1 4 2 5 0
JII Z j[lll / L - _ iwj,_

o-Fb........-F:t....'........ IX2 ..... _ ........ a

1 ' = 4

,_r
(b) matrix u'ampo_ from processor point-of-view

Figure 5: An example of matrix transpose for a block scattered decomposition, when P = 3,
Q=3, andM_=N_=6,

We now describe parallel matrix transpose algorithms. A matrix A, distributed over a

P x Q processor template, has M_ x N_ blocks anti each block consists of r x s elements,

where r and s are arbitrary, Figure 4 (a) shows an example of a matrix transpose on a 2 x 3

template. If A is transposed, the transposed matrix AT is distributed over the same P × Q

template, and it has Na × Ma blocks and each block has s x r elements, The elements of each

Mock remain in the same block, but may be in a ditferent processor, and each block is itself

tre.usposed. Figure 4 (b) shows the same example from the processor point-of-view, If P and

Q are relatively prime, as shown in the figure, blocks in the first processor P0 are scattered to

all processors. As shown in Figure 5, wtfich is the same example on a 3 × 3 square template,

the blocks in each processor are not dispersed, but they are staved as one entity to a different

processor. Parallel matrix transpose algorithms for the block scattered data distribution haw_'

several communication patterns determined by the greatest, common divisor (GCI)) of t ) and

Q,
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DOJ=0, Q-1
DO I=0, P-1

. [ Copy all blocks of A required by P(I' + 1, q - J) to T1

(in condensed and transposed form) ]
[Senti '1'1 to P(P+ l,q-,1)]
[ Receive '1'2 from P(p- 1, q + J) ]
[ Copy "I'2 to C ]

END DO
END DO

Figure 6: A parallel matrix transpose algorithm from tile processor point-of-view, when P anti

Q are relatively prime, P(p, q) represents PMODrp,P_,MODIq,Q), Processor t_,q (0 <_p < P and
0 < q < Q) communicates with P(p + I, q - J) to send, and P(p- l, q + j) to receive based
on direct point-to-point comnmnication, 'p + 1' and 'q- d' can be replaced with a different
combination of signs,

a.1. P and Q. relatively prime

We start with the simple case where P and Q are relatively prime, i. e, GCD = 1, In this

case blocks in P0 are scattered to all processors after being locally transposed as shown in

Figure 4 (b). This case involves the two-dimensional complete exchange communication, That
Q

is, every processor needs to communicates with every other processor. The complete exchange

problem is implemented by direct conlmunication between sender and receiver,

Figure 6 shows the pseudocode from the processor point-of-view, where P(p, q) represents

PMODtv P),MOD(¢Q) in the processor template, Processor P(p, q) (0 < p < P and 0 < q < Q)

starts to transpose blocks whose transposed blocks belong to itself, Then it deals with blocks

whose transposition are in processors in the same column of the template (P(p-i, q), 0 < i < P),

The processor sends blocks to its top neighbor, P(p - l, q), and receives blocks from its bottom

neighbor, P(p + 1, q). Before sending the blocks, it is necessary to copy the blocks to be sent

into a contiguous message buffer. Next it sends blocks to the next top processor, P(p- 2, q),

and receives blocks from the next bottom processor, P(p + 2, q).

After it completes its operations with the processors in the same colunm, it sends blocks to

the processors to the left. ill the template (P(p - i, q - 1), 0 _< i < P), and receiw::s blocks from

tile processors to the right (P(p + i, q + l)). All operations are completed in P x Q = L(:M

steps.

We interpret the algorithm from tile matrix point-of--view, In the tirst LCM block, the above

algorithm performs the operation by transposing one (wrapped) diagonal blocks at one step.

(Actually the algorithm transposes every L(:M diagonal blocks of the matrix at each step.)ii

The firsl step of the algorithm in Figure 6 requires no explicit ccmimunication, It corresponds
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(a)_rothdiago_l(A(id),MOD(j-i,LCM)-0) (b)thirddiagonal(A(id),MOD(j-i%CM)=3)

,¢....[ ^'-'-:• AL

q' •
a

(C)ftllrfll diasoaal (A(id), MOD{j.i,L_m4) (d) first diasomil(A(id), MOD(j-i,LCM)=I)

_-J'l..:I_ @1_i_::J _ ......_ " __.I_ '_.I....._ ':._:......._.:
' .-_ _.ol AT.o I _i

".,, ......... , IAL.I

(e)seconddiagonal(A(id),MOD(J.kLCM)-2) (f)fifthdiagoanl(A(id),MOD(j.i%CM)..S)

Figure 7: Snapshots of matrix transposition when P = 2, Q = 3 and Mb = Nb = 6, 'I'he
small slanted ntn_fl_erin the upper left corner in each block represents proc.essor identitication
nuntber, One wrapped block diagonal is transposed in cach step. The darkly shaded area
represents blocks to bc shifted, and lightly shaded area stands tbr their transpositiotis. "
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" DOJ = O,Q- I
If = J \* Deterimine h'-th diag,)nal block to transpose *\

. WHILE (MOD(K, P) ¢- 0) DO K =MOI)(K+Q, LCM)ENDDO
I)0 1 = O, P- 1

[ Copy every (K 'Nb : LCM)-th wral:,ped diagonal blocks in t_,_ to TI ]
[ Mow_ TI from Pp,q to P(p+ l,q- J) ]
[ Copy the received T I to C ]
If, =MOD(K +Q, LCM)

END DO
END DO

Figure 8: A parallel matrix transpose algorithm from tile matrix point-of-view, when P and
Q are relatively prime. One diagonal block is transposed at one step. The 'While' statement

should be executed until MOD(K, P) becomes 0. (start : limit : intv) represents values of x,
where x = start. + intv. y, y = 0, l,..., and x can't exceed limit.

to an in-place transpose of tile diagonal blocks of A (A(i, i)) (See Fig, 7(a)). Then every P

diagonal blocks of A (A(i, j), MOD(j - i, P) = 0) (See Fig. 7(b)) are transposed in the first

outer loop (J = 0) of Figure 6. In the next outer loop (J = 1), the next P diagonal blocks

(A(i,j),MOD(j-i,P) = 1) are transposed. In Figures 7 (c) and (d), P0 (P(0,0)) sends blocks

• to P:_ (P(0, 2}), and receives from PI (P(0, l)), where Po, Pt and P:_are in the same row. 'rhet_

P0 sends blocks to P5 (P(1, 2)), and receives from P4 (P(1, l)), and so on. The pseudocode for

• the algorithm from the matrix point-of-view is shown in Figure 8. Processors need to determine

a diagonal block of A (A(i,j), MOD(j - i, LCM) = K) which they start to transpose in the

outer J loop in order to communicate with other processors in the same row of the template.

The two lines before the inner DO-loop compute the value of K.

3.2. P and Q : not relatively prime

In the previous section, we have investigated the case when P aod Q are relatively prime, which

involves complete exchange communication. In this section we consider the case of GC'D > 1.

The former algorithm is a special case (GCD = l) of this algorithm.

Figure 9 shows an example of transposing a 12 x 12 matrix on a 4 × 6 template from tile

processor point-of-view. Each processor has its own 3 x 2 (= LCM/P x LCM/Q) array of

blocks. Tile processors can transpose the matrix with 6 (= LCM/P. LCM/Q : LCM/(;CD)

communications steps. As shown in Figure 10, a processor P(p,q) starts to communicate
t

with P(15,_), where /3 and (_ are computed from p and q (details are explained later of this

section). Once P(_,O) is determined, it communicates with othor processors, whose vertical
=

and horizontal intervals are GCD from P(/_, _}. The two loops of the algorithm in Figure (i are
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Figure 9: A matrix transpose example on a 4 x 6 template.

(f" p,q "_

...... L..'_.(LCM/e)aCO)

_+(LCMIQ)GCD,_ _ (LCMIQ)GC_ _(LCMIQ)GC_DT"_'.._+GCD /' ...... %3+(U:M/e)GCOJ

Figure 10: Processor map for communication. A processor P(p, q) starts to communicate with
P(/5, _}, then it communicates with other processors, whose vertical and horizontal intervals are

GCD from P (/5,4).
m
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PARDO K = 1,GCD

g = MOD(q- p, GCD)
• i5 = MOD(p + g, P); _ = MOD(q - g, Q)

DO J = 0, LCM/P- 1

DO I = O,LCM/Q - 1
[ Copy to T1 (in condensed and transposed form) all blocks of A

required by P(i5 + I x GCD, _- J x GCD) ]
[Send T1 to P(fi+ I x GCD, O- J x GCD) ]

[ Receive T2 from P(fi- I x GCD, O+ g x GCD)]
[ Copy T2 to C ]

END DO

END DO
END PARDO

Figure 11: A modified matrix transpose algorithm from the processor point-of-view. Operations
of GCD groups of processors are overlapped.

• '_ _ _ _ _ = '= _' _" [] _ '" '_ _ =_ii_ m w _, _im _,

= ul _ z_ z_ z_ = _i_J _u _z _ block> ,_ [m w _ I_ _ m__--mli!iiuJ iw

.t_.g __t$_l

tm /_! _fll 711 [] _1 tm tm ml #./I _ _! _1 _/I I_ _ 121 i _ #dJ I_._ "-

,_lfl, I

........ :::;:::: :!..........

il ............................................6 !ii_ii_ ii!::ii_iii!i_oI_i_i::i _i_i_!l ' [,i_ii!_!_ _iil_-
_=_ .................."........ <processor template> ........ :_ _ ......

......:_;i_i:.......... _:ii:!ii_!:........ _ ....... _ .... ::h_:::::: i!:i:,;;_.,.;::.!

,,,,,ii1,,'I!  ii
. (a) U'aasposin8the zeroth wrapped block (b) traasposi_8 the f_t wrapped block

Figure 12: Two snapshots of matrix transposition for transposing the zeroth and first wrapped

. block diagonals, when P = 4, Q = 6 and Mb = Nb = 12. In this example, transposing of even
numbered wrapped block diagonals can be overlapped with that of odd numbered.
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Figure 13: Matrix transposition when P = Q = GCD = 3. Processo,'s transpose 3 (= GCD)
diagonal blocks at one step, so that the transposition is done in one step.

PARDO K = 1, GCD
g = MOD(q- p, GCD)

/3 = MOD(p + g, P); ,_= MOD(q - g, Q)
DOJ=0, LCM/P- 1

K = J \* Deterimine K-th diagonal block to transpose *\
WHILE(MOD(K-g,P)#O) DO K=MOD(h'+Q, LCM) ENDDO
DO I=0, LCM/Q-1

[ Copy every (K : Nb : LCM)-th diagonal blocks in P(p,q) to T1 ]
[ Move TI from P(p,q) to P(]5+ I x GCD, 4- J x GOD) ]
[ Copy the received T1 to C ]
K = MOD(K +Q, LCM)

END DO
END DO

END PARDO

Figure 14: A modified matrix transpose algorithm from matrix poiut-of-view. GCD diagonal
blocks are transposed simultaneously.
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changed from Q and P to LCM/P and LCM/Q. The pseudocode of the algorithm is shown

• in Figure 11.

Figure 12 shows two snapshots of the same example, from the matrix point-of-view, to

• transpose the zeroth and ttle first diagonal blocks of A (A(i,j), MOD(j .-. i, LCM) =Oand 1,

respectively.) The processors which have the blocks to 3end out are shaded at the bottom. In

the example, only P. Q/GCD processors are involved in biock communication in each step.

Processors are split into GCD groups of processors, and a processor P(p, q) belongs to a group

g if it has the same value of g = MOD(q - p, GCD). Processors in a group g send and receive

their blocks to other processors in another group g' = MOD(GCD - g, GCD). The operations

of each group can be overlapped.

The problem is interpreted from tile matrix point-of-view. In general, for transposing

the k-th diagonal block of A (A(i,j), MOD(j - i, LCM) = k), a group of processors 91, =

MOD(k, GCD) send the blocks to another group g_ = MOD(GCD - gk,GCD). Since the

operations are ovr-!apped over different groups of processors, processors transpose GCD diag-

onal blocks simultaneously. So, the matrix can be transposed with LCM/GCD steps. For the

extreme case of P = Q = GCD = 3 as shown in Figure 13, processors transpose 3 (= GCD)

diagonal blocks at one step. That is, the transposition is done in one step. A processor P(p, q)

exchanges data with processor P(q,p). Tile pseudocode of the algorithm from the matrix

point-of-view is shown in Figure 14. The code includes the case of GCD = 1.

96 processors 64 processors 48 processors

P × Q Time (second) P x Q Time (second) P × Q Time (second)
6 x 16 0.404 4 x 16 0.596 4 x 12 0.652
8 x !2 0.330 8 x 8 0.572 6 x 8 0.546

12 x 8 0.307 16 x 4 0.475 8 x 6 0.527
16 x 6 0.381 12 x 4 0.547

Table 1: Dependence of performance on template configuration for fixed number of processors
(M=N=2400).

4. Results

In this section we present performance results of the parallel matrix transpose algorithms on

the Intel Touchstone Delta computer. The performance of the transpose algorithms cannot be

represented in floating point operations per second (flops), since there is no multiplications or

additions in the transpose algorithms. The algorithms are combined with a matrix multipli-

cation routine in the PUMMA to compute C = aA T, BT + tiC in two steps (T ¢:: aB. A;

C ¢:: T T + _ C). We assume that a = 1 and/3 = 0 in our test, Tile performance of A T , B T is,m

compared with thai, of A. B.
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Figure15'.PerformancecomparisonofA .B and A T.BT on 15x 16template.(P = 15,Q = 16,
and GCD = 1). C ¢:: A T B T is implemented in two steps, T ¢= B. A, and then C ¢:: T 7'.

Matrix elements are generated unifornfly on the interval [-1, 1] in double precision. Con-

versions between measured runtimes and performance in gigaflops (Gflops) are made assuming
i

an operation count of 2MNL for the multiplication of a M x L by a L x N matrix. In our test

examples, all processors have the same number of blocks so there is no load imbalance. Tile

algorithms were implemented with force type communication [9].

First, we considered how, for a fixed number of processors Np = P x Q, performance depends

on the configuration of the processor template. Some typical results are presented in Table 1

for a fixed number of processors. In the test, the block size is fixed at 5 x 5 elements. It may be

seen that the template configuration does have some effect on performance. The performance

difference is between 19 and 24 %. For rectangular templates with different aspect ratios, the

algorithm prefers those with small Q to those with small P. On the Delta, conmmnication

speed along vertical links seems faster than along horizontal links,

Figures 15 ,-, 19 show the performance of the routines on 15 x 16 (GCD = 1, i.e., P and

Q are relatively prime), 14 x 16 (GCD = 2), 12 x 16 (GCD = 4), 8 x 16 (GCD = 8), and

16 x 16 (P = Q = GCD = 16) templates, respectively. In all cases the block size is fixed

at 5 x 5 elements. The solid and the dashed lines show the performance of A "r, B T and

A. B, respectively. The difference of the two lines shows the loss of performance due to matrix
i

transposition.

The transposed multiplication routine shows good performance relative to matrix multipli- t,

cation. The loss of performance due to the matrix transpose routine is about 2 or 3 %. The
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Figure 16: Performance comparisonofA .B and AT.B T on 14× 16template. (/J = 14,Q = I{),
and GCD = 2)
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Figure 17: Performance comparisonofA.B and AT,B T on 12x lti teml)iat('. (t x= 12,Q = 16,
and GC'I): 4)
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Figure 18: Performance comparison of A. B and AT . B T on 8 x 16 template. (P - 8, Q = 16,
and GCD = 8)
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Figure 19: Performance comparison of A, B and AT. B 7' on 16 x 16 t,emplate, (t' : Q =
GCD = 16),
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t' _<_ Matrix ,_ize Block Siz(' Tilnl, (s.eolid)
. i x I I,{_P)7

8 x 16 4800 × '1800 5 x 5 |,ti12
llllll × it()1) 1,51t4

, --- 1 × I ],28(i

12 x I(3 4800 × 4800 ,q × ,r) 0.8,_)_i
I00 × ll)l) 0.882

1 x I 1,48,1

14 x I(_ ,r)(_00× 5(100 <r.)× 5 I, llili
50 × 50 I,i(ii

1 × I l,,il
15 × I/i liOOli× 6000 ,_) × 5 1,4:17

2,5× 2,_) 1,420
I × 1 1,1)(t7

16 × l(i (i,100 × t_4(}O 5 × r) I,I)(17
,i00 × 400 1.!)(;7

Table 2: Depelidelice of perforlliall('e Oli t)lock me,

trilnsliose routine iit_ excellelit perforlnance if P aiid Q arc relatively prime, lii other c_es

(GCD > 2), iletwork congestioii lilay degrade the l)erforiiiance of the rolithie,

P x Q Matrix Size (A,B) A. B (t){,) A'r BT (%)

. 1 x 1 500 × 500 36.70 (100,0) 35,04 (100,0)

8 x I(I 5(100 × 5600 32,05 (87.:1) _1l}.57 (87,:1)
12 x 10 6720 x 0720 32.09 (87.4) 31.64 (90,1)

• 14 x 16 6720 x 6720 ;12,52 (88,8) 32,11 (i)l.(l)
i5 x 16 7200 x 7200 ',12.78 (89.3) 32.4:1 (02.(i)

16 × 16 8000 × 8000 31,22 (85,1) 30,:18 (8(3.7)

Table It: Perforniance per ilode iri Mflol)s. Block size is fixed to 5 x 5 elenlelitS. I x I telnplate

gives [)erforlnallce of assembly-coded lnatrix I[ltlltiplicatioil. Nunlbers ill parentheses rel)reselil I
etticiency compared with the ,)erformance on 1 processor,

Table 2 shows how the block size affects the i)erh)rmalm of the algorithms, it, indttdes

three ca_es of the block she, two extreme eases the smallest aml largest, possible |)lock sizes

and 5 × r) block of eleme.ts. If P = Q, processors directly copy all blocks at, once, s() block size

does not affect tile performance. For the case of the smallest block size (1 × 1 elemelit) wheli

P :# Q. processors make a copy element by clef.eat, so it takes a little more time t,o .take a

copy. The routilieS with the smallest block sizes arc slower tliati those with the largest possible

block size_ by between 1,5% and 31%. This difrere.ce is negligible, compared with the total

' elapsed tinl(, of the iilatrix lnultiplication.

Perforlllailce per liode is showll ill Table 3, The l x 1 template gives the lierforllltUl('e or

, tho &sselriibl)'-coded level 3 BLAS Inatrix niultiplication rOiltilie for the two (_tise_A . B ltlld
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A T. B r, Processors have about 859{ efficiency for A B, and 87c_ for A "r. 13r if t' = Q = i(;.

The routines perfornl better on tenRi)lates for which P .# Q. Processors achieve at)out 899{,

and !)3()_of elliciency for each ctme if/' a.d Q are relatively prime.
I)

5. Conclusions and Remarks

We have presented parallel matrix transpose algorithms based on tile block scattered decotll-

position. The algorithms have good i)erfornmnce for arbitrary processor configurations on the

lntei Delta computer.

If P and _ are relatively prime, the transpose routine involves complete exchange c,:,mnlu-

nieation on a two-dinlensional tetnplate. We haw, apl)roached this complicated l)rot)le.) willl a

direct point-to-point communication scheme (se,, Section 2). When P altd 0,1are not relatively

prime (G('I) > 1), the processors' operations are overlapt)ed over different groups, so thai only

LCM/¢;('I) communications are required.

In our Fortran implementation, we assume that the first dimension of the matrix nlay be

different from the number of rows of the matrix in a processor. Eve. when P = Q, ttle processor

!leeds to copy blocks of A to a communication butbr before sending, and copy the received

buffer !_ blocks of C after receiving.

The parallel matrix transpose algorithms have been combined with matrix multiplication

routines. The integrated routines comprise a ge.erabpurpose matrix multiplication package,

called PIr MMA [5], for MIM D message-passing computers, The package h_ good performance

for a wide range of decomposition parameters, that is, its performance depends weakly on

processor configuration and block size.

The P[_MMA package is currently available only for double precision real data, but will be

implemented in the near future for other data types, i,e,, single precision real and complex, and

double precision complex, To obtain a copy of the software a.d a description of i_ow tu u:,e it,

send tile message "send pum_a frola ILs¢" to nstliblornl,gov,
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