
ORNL/TM-12309

" Engineering Physics and Mathematics Division

Mathematical Sciences Section

PARALLEL MATRIX TRANSPOSE ALGORITHMS

ON DISTRIBUTED MEMORY CONCURRENT COMPUTERS

Jaeyoung Choi §

Jack J. Dongarra §t
David W. Walker §

i
J

§ Mathematical Sciences Section

Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

t Department of Computer Science
University of Tennessee at Knoxville
107 Ayres Hall

" Knoxville, TN 37996-1301

w

Date Published: October 1993

Research was supported by the Applied Mathematical Sciences Re-
search Program of the Office of Energy Research, U.S. Department
of Energy, by the Defense Advanced Research Projects Agency un-
der contract DAAL03-91-C-0047, administered by the Army Re-

search Office, and by the Center for Research on Parallel Comput-
ing

Prepared by the

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

managed by
, Martin Marietta Energy Systems, Inc.

for the

U.S. DEPARTMENT OF ENERGY ,_. ___' under Contract No. DE-AC05-84OR21400 ¥

)

DISTRIBU'fION OF "[HIS DOCUMENT IS UNLIMITE'O _'i'_

. Contents

1 Introduction ... 1

2 Design Issues .. 2
3 Matrix Transpose Algorithms 5

3,1 P and Q : relatively prime 7

3.2 P and Q : not relatively prime 9
4 Results .. 13
5 Conclusions and Remarks 18
6 References .. 18

_°0

- 111-

0

PARALLEL MATRIX TRANSPOSE ALGORITHMS

ON DISTRIBUTED MEMORY CONCURRENT COMPUTERS

Jacyoung Choi

Jack J. Dongarra

David W. Walker

Abstract

This paper describes parallel matrix transpose algorithms on distributed memory con-

current processors. We assume that the matrix is distributed over a P × Q processor

template with a block scattered data distribution. P, Q, and the block size can be arbi-

trary, so the algorithms have wide applicability.

The commumcation schemes of the algorithms are determined by the greatest, common

divisor (GCD) of P and Q. If P and Q are relatively prime, the matrix transpose algo-

rithm involves complete exchange communication. If P and Q are not relatively prime,

processors are divided into GCD groups and the communication operations are overlapped

for different groups of processors. Processors transpose GCD wrapped diagonal blocks si-

multaneously, and the matrix can be transposed with LCM/GCD steps, where LCM is

' the least common multiple of P and Q.

The algorithms make use of non-blocking, point-to-point communication between pro-

cessors. The use of nonblocking communication allows a processor to overlap the messages

that it sends to different processors, thereby avoiding unnecessary synchronization.

Combined with the matrix multiplication routine, C = A. B, the algorithms are used
to compute parallel multiplications of transposed matrices, C = A T. B r, in the PUMMA

package [5]. Details of the parallel implementation of the algorithms are given, and results

are presented for runs on the Intel Touchstone Delta computer.

- V-

1. Introduction

Q

Matrix transposition is a fundamental matrix operation of linear algebra [8,14] and arises in

. many scientific and engineering applications. On a uniprocessor, an algorithm involving a trans-

posed matrix may not actually require the matrix data to be transposed in physical memory.

Instead, it may be accessed simply by exchanging the row and column indices. However, in a

distributed-memory multiprocessor environment, we cannot simply interchange the global row

and column indices. Instead, the data must be physically moved from one processor to another.

Transposition of a matrix is a redistribution of its elements. Many researchers have con-

sidered the problem for different, architectures. In 1972, Eklundh [7] considered the problem

of directly accessing rows or columns of a matrix when its size is larger than the available

high-speed storage. O'Leary [12] implemented an algorithm for transposing an N × N matrix

on a one-dimensional systolic array. Azari, Bojanczyk and Lee [1] developed an algorithm for

transposing an M x N matrix on an N × N mesh-connected array processor, and Johnsson and

Ho [10] presented an algorithm for a Boolean n-cube, or hypercube.

Current advanced architecture computers possess hierarchical memories in which accesses

to data in the upper levels of the memory hierarchy (registers, cache, and/or local memory) are

faster than those in lower levels (shared or off-processor memory). To exploit, the power of such

machines, block-partitioned algorithms are preferred for dense linear algebra computations, in

" which operations are performed on submatrices, rather than individual matrix elements. In

distributing matrix data over processors we therefore assume a block scattered decomposition

" [4,6]. The block scattered decomposition can reproduce the most common data distributions

used in dense linear algebra, as described briefly in the next section.

In this paper, the parallel matrix transpose algorithms are presented based on the block

scattered decomposition. The algozithms are implemented on the lntel Touchstone Delta com-

puter. The communication schemes of the algorithms are determined by the greatest common

divisor (GCD) of the number of rows and columns (P and Q) of the processor template. If P

and Q are relatively prime, the matrix transpose algorithm involves complete ezchange com-

munication. This is called all-to-all personalized communication, in which each of Np = P. Q

processors is required to send distinct subblocks to each of the remaining Np - l processors,

and receive distinct subblocks from each of them. Bokhari and Berryman [2] have developed

binary exchange and quadrant exchange algorithms on a circuit switched mesh, where P and

Q are powers of 2. The complete exchaage communication in our transpose algorithms arises

for any processor configuration, and is not limited to the case where P and Q are powers of

2. We implemented the complicated two-dimensional complete exchange communication prob-

lem by generalizing the one-dimensional cornplete exchange communication ba.sed on direct,
e

point-to-point communication. Details are discussed in Section 3.1.

- 2 "

We have presen ted tile Parallel Universal Matrix Multip lication Algorithn_s (P tl MMA) in [5]

for performing C ¢= t:_op(A), op(B)+/3C, where op(X) = X or X T, based on the block

scattered decomposition. One of the cases in the PUMMA package, C ¢=-_ A "r . B"r + tiC,

is implemented in two steps (T ¢: ct B . A; C ¢= T'I'+ /3C). The second step i_lvolves

parallel matrix transposition. The performance of this algorithm for evaluating C = A "r . B rl'

is compared with the algorithm for evaluati_lg C = A • B on the Intel Delta machine in

Section 4.

2. Design Issues

The way in which an algorithm's data are distributed over the processors of a concurrent

computer has a major impact on the load balance and communication characteristics of the

concurrent algorithm, and hence largely determines its performance and scalat)ility. The block

scattered decomposition provides a _,imple, yet general-purpose way of distributing a block-

partitioned matrix on distributed memory concurrent computers. In the block scattered de-

composition, described in detail in [4,6], an M × N matrix is partitioned into [)locks ofsize r × s,

and blocks separated by a fixed stride in the column and row directions are assigned to the

same processor. If the stride in the column and row directions is P and Q blocks respectively,

then we require that P. Q equal the number of processors, Nt,. Thus, it is useful to inmgine the

processors arranged as a P × Q mesh, or template. The processor at position (p, q) (0 < p < P,

0 < q < Q) in the template is assigned the blocks indexed by,

(p+ i. p, q+ j.Q), (1)

where i = 0 , [(Mb- p- 1)/PJ, j = 0.... , [(Nb-q- l)/QJ, and Mb × Nb is the size in

blocks of the matrix (Mb = [M/r 1, ib = [N/sl).

Blocks are scattered in this way so that good load balance can be maintained in parallel

algorithnm, such as LU factorization [3,6]. The nonscattered decomposition (or pure block

distribution) is just a special case of the scattered decomposition in which the block size is

given by r = [M/P 1 and s = [N/Q 1. A purely scattered decomposition (or two-dimensional

wrapped distribution) is another special case in which the [)lock size is given i)y r = s = l.

If P and Q are relatively prime, the matrix transpose algorithm involves a two-dimetmional

cornplete exchange communication, where each of Np processors is required to send distinct

subblocks to each of the remaining Np - 1 processors, and receive distinct sul)blocks from each

of them. We irnplernented the complicated two-dimensional conlplete exchange algorithm by

generalizing the one-dimensional complete exchange algorit, hni. Three one-dimensional cotll-

plete exchange communication schemes are shown in ["igure I, where each processor ne_(ts on(,

subblock from ¢_ach other l)rocessor, and the number in parentheses denotes the ntttnl)er of

-3-

/or , I_,#/ ,_l)
lot 1o_ i<"_' _ i<i ;ii<:_!!o ' 1_7_ito!i /<;i:_ :

' o',<4>b''<',;'.;_L{:3,/o_,Io,o_ t.:, <:,.
o)i,4,,:SJ l;:i ,0 _0_',<.._,_o)<''0, ;:,; _<' o_,<.Aoio7 7 \o_ ,or \or 7 __

stepI step2 step3 step1 step2 sicp3 stepI step2 step3

(a) BinaryExchange (b) Rotating (c) Direct Communication

Figure 1' Three complete exchange communictitioii schemes on 8 processors. Tile nulnber ill
parentheses denotes the amount of data to transmit.

i

_., I I I I 1 _

,_ 2.5- ,+

,-, 2.0 = ," _

, ," Rotating
s

1

1.5 " ,," -
t

,g

i 1.0 - ,*" ,1"#"," "*1""__+Direct Comm_ _0.5- , _,,.__..,.+.'"""Binal-yExchange

0.0) "i' i) I
0 20 40 60 80 I00

BlockSize (Kbytes)
. Figure 2: CoIllparison Ofthree exchange COllilrllullictitiolischenies Oil 16 processors.

.

0 1 2 3 4 5 6 7 8 9 1011 0 "1 2 3 4 5 6 7 8 9 1011

...... - ;i
4 ._iii,ii!i_i!!il:_iil O_ 2 li!oi! ;_;i' :._:!_0 I 1 -2 4

6 0 1 2 l:ii_ili_iii_iiilii_!!lo i 2 ii_]:_ii!,,,_,_ 6 0] 1 | 2 0 1 2 !iiOiiiili_!iiiiii21O! iii!iiii_ii

(a) block distribution over template (b) LCM block distribution

Figure 3: A matrix with 12 x 12 blocks is distributed over a 2 x 3 processor template. (a) Each
shaded and unshaded area represents different templates. The numbered squares represent
blocks of elements, and the number indicates at which location in the processor template tile
block is storedall blocks labeled with the same number are stored in the same processor,
The s/anted numbers, on the left and on the top of the matrix, represent indices of row block

and column block, respectively, (b) Tile matrix has 2 x 2 LCM blocks, Blocks belong to tile
same processor if tile relative locations of blocks are the same m each square LCM block. The
definition of the LCM block is defined in the text..

subblocks to transmit.

The binary exchange scheme completes in |log 2P] steps and the amount of data transmit-

ted in each step is fixed at 21"l°gaP]-_ subblocks, where P is tile number of processors. The

rotating scheme can avoid network congestion, but requires P- 1 steps and the amount of data

transmitted in the initial steps is large. In the direct point-to-point communication scheme.

the number of steps is the same in the rotating scheme, but tile amount of data transmitted in

each step is only one subblock.

The three schemes have been implemented on 16 nodes of the Delta and their perfornlances

are compared in Figure 2. The binary exchange and the rotating schemes are implemented

with an odd-even communication scheme, which is preferable to a simultaneous communication

scheme on the Delta [5,1 l]. In this algorithm, odd-numbered processors send their own blocks

and even-numbered processors receive them in the first step, and even-numbered processors

send and odd-numbered processors receive ill the i_ext step, On P = 2a processors, as shown in

Figure 2, the binary exchange scheme is tile fastest, However, if P is not a power of 2, then this

scheme becomes very complicated and may be slower than tile direct communication scheme.

The direct communication scheme is about 20% slower than the binary exchange SCtlenw for

the worst case (P = 2a), but it is simple to implement on an arbitrary number of processors.

We adopted the simple direct communication scheme for the implementation of the nlatrix

transl)ose algorith_lts, which are explained ill detail in tile next section.

.

012345
iii iii i

I

, li!i ilF iiiili!ili iil]3! 4 -5-
iol 121i ii!i,..

2 2 iiiii!iii i!l!iiliii!ilil 2 S-4

AT
(a) matrix transposefrom matrix pomt.o.,'F'.view

031425
,...i!_i?.!i_:,.._.,,....... .,

4 _t 4 I l_ , transpose _

53 if _ _, .',::#1_
5

A

• Ar
(b) matrix transpose from processor point-of-view

" Figure 4: An example of matrix transpose for a block scattered decomposition, when P = 2,
Q=3, and M_=N_=6,

3. Matrix Transpose Algorithms

We assume that a matrix is distributed over a two-dimensional processor mesi_, or template, so

that in general each processor has several blocks of the matrix as shown in Figure 3 (a), where

a matrix with 12 × 12 blocks is distributed over a 2 × 3 template. Denoting the least commonI

' rnultiple of P and Q by LCM, we refer to a square of LCM x LCM blocks as an LCM block.

Thus, the matrix may be viewed as a 2 x 2 array of LCM blocks, as shown in Figure 3 (b). The

concept of the LCM block was introduced in [5], and is very useful for implementing algorithms

that use a block scattered data distribution. Blocks belong to the same processor if their relatiw;

locations are the same in each square LCM blotk. An algorithm may be cleveloped for the

first LC'M block, and then it, can be directly applied to the other LCM blocks, which all haw_

the same structure and the same data distribution as the tirst LCM block, 'l'hat is, when

an operation is executed on a block of tim first LCM block, thesame operation can be (Ion('

simultaneously o_, other blocks, which have the same relative location in each I,CM block.

.

012345

0 1 2 3 4 5 0 3 2 •

2l? }!?ii iiiiiii a)i i6- -f s

A 5 _!i!!!-1.'.:'!i!i!!iBi!iI

AT
(a) marx trampose from matrix point-of-view

031425
,, , ,,,,,,,,,

0 3 1 4 2 5 0
JII Z j[lll / L - _ iwj,_

o-Fb........-F:t....'........ IX2 _ a

1 ' = 4

,_r
(b) matrix u'ampo_ from processor point-of-view

Figure 5: An example of matrix transpose for a block scattered decomposition, when P = 3,
Q=3, andM_=N_=6,

We now describe parallel matrix transpose algorithms. A matrix A, distributed over a

P x Q processor template, has M_ x N_ blocks anti each block consists of r x s elements,

where r and s are arbitrary, Figure 4 (a) shows an example of a matrix transpose on a 2 x 3

template. If A is transposed, the transposed matrix AT is distributed over the same P × Q

template, and it has Na × Ma blocks and each block has s x r elements, The elements of each

Mock remain in the same block, but may be in a ditferent processor, and each block is itself

tre.usposed. Figure 4 (b) shows the same example from the processor point-of-view, If P and

Q are relatively prime, as shown in the figure, blocks in the first processor P0 are scattered to

all processors. As shown in Figure 5, wtfich is the same example on a 3 × 3 square template,

the blocks in each processor are not dispersed, but they are staved as one entity to a different

processor. Parallel matrix transpose algorithms for the block scattered data distribution haw_'

several communication patterns determined by the greatest, common divisor (GCI)) of t) and

Q,

-7-

q

DOJ=0, Q-1
DO I=0, P-1

. [Copy all blocks of A required by P(I' + 1, q - J) to T1

(in condensed and transposed form)]
[Senti '1'1 to P(P+ l,q-,1)]
[Receive '1'2 from P(p- 1, q + J)]
[Copy "I'2 to C]

END DO
END DO

Figure 6: A parallel matrix transpose algorithm from tile processor point-of-view, when P anti

Q are relatively prime, P(p, q) represents PMODrp,P_,MODIq,Q), Processor t_,q (0 <_p < P and
0 < q < Q) communicates with P(p + I, q - J) to send, and P(p- l, q + j) to receive based
on direct point-to-point comnmnication, 'p + 1' and 'q- d' can be replaced with a different
combination of signs,

a.1. P and Q. relatively prime

We start with the simple case where P and Q are relatively prime, i. e, GCD = 1, In this

case blocks in P0 are scattered to all processors after being locally transposed as shown in

Figure 4 (b). This case involves the two-dimensional complete exchange communication, That
Q

is, every processor needs to communicates with every other processor. The complete exchange

problem is implemented by direct conlmunication between sender and receiver,

Figure 6 shows the pseudocode from the processor point-of-view, where P(p, q) represents

PMODtv P),MOD(¢Q) in the processor template, Processor P(p, q) (0 < p < P and 0 < q < Q)

starts to transpose blocks whose transposed blocks belong to itself, Then it deals with blocks

whose transposition are in processors in the same column of the template (P(p-i, q), 0 < i < P),

The processor sends blocks to its top neighbor, P(p - l, q), and receives blocks from its bottom

neighbor, P(p + 1, q). Before sending the blocks, it is necessary to copy the blocks to be sent

into a contiguous message buffer. Next it sends blocks to the next top processor, P(p- 2, q),

and receives blocks from the next bottom processor, P(p + 2, q).

After it completes its operations with the processors in the same colunm, it sends blocks to

the processors to the left. ill the template (P(p - i, q - 1), 0 _< i < P), and receiw::s blocks from

tile processors to the right (P(p + i, q + l)). All operations are completed in P x Q = L(:M

steps.

We interpret the algorithm from tile matrix point-of--view, In the tirst LCM block, the above

algorithm performs the operation by transposing one (wrapped) diagonal blocks at one step.

(Actually the algorithm transposes every L(:M diagonal blocks of the matrix at each step.)ii

The firsl step of the algorithm in Figure 6 requires no explicit ccmimunication, It corresponds

-8-

.._ '_J' 1.1 ._,J '_..;_:::::_i._ItJ.....71

(a)_rothdiago_l(A(id),MOD(j-i,LCM)-0) (b)thirddiagonal(A(id),MOD(j-i%CM)=3)

,¢....[^'-'-:• AL

q' •
a

(C)ftllrfll diasoaal (A(id), MOD{j.i,L_m4) (d) first diasomil(A(id), MOD(j-i,LCM)=I)

-J'l..:I @1_i_::J __ " __.I_ '_.I....._ ':._:......._.:
' .-_ _.ol AT.o I _i

".,, , IAL.I

(e)seconddiagonal(A(id),MOD(J.kLCM)-2) (f)fifthdiagoanl(A(id),MOD(j.i%CM)..S)

Figure 7: Snapshots of matrix transposition when P = 2, Q = 3 and Mb = Nb = 6, 'I'he
small slanted ntn_fl_erin the upper left corner in each block represents proc.essor identitication
nuntber, One wrapped block diagonal is transposed in cach step. The darkly shaded area
represents blocks to bc shifted, and lightly shaded area stands tbr their transpositiotis. "

-9-

i

" DOJ = O,Q- I
If = J * Deterimine h'-th diag,)nal block to transpose *\

. WHILE (MOD(K, P) ¢- 0) DO K =MOI)(K+Q, LCM)ENDDO
I)0 1 = O, P- 1

[Copy every (K 'Nb : LCM)-th wral:,ped diagonal blocks in t_,_ to TI]
[Mow_ TI from Pp,q to P(p+ l,q- J)]
[Copy the received T I to C]
If, =MOD(K +Q, LCM)

END DO
END DO

Figure 8: A parallel matrix transpose algorithm from tile matrix point-of-view, when P and
Q are relatively prime. One diagonal block is transposed at one step. The 'While' statement

should be executed until MOD(K, P) becomes 0. (start : limit : intv) represents values of x,
where x = start. + intv. y, y = 0, l,..., and x can't exceed limit.

to an in-place transpose of tile diagonal blocks of A (A(i, i)) (See Fig, 7(a)). Then every P

diagonal blocks of A (A(i, j), MOD(j - i, P) = 0) (See Fig. 7(b)) are transposed in the first

outer loop (J = 0) of Figure 6. In the next outer loop (J = 1), the next P diagonal blocks

(A(i,j),MOD(j-i,P) = 1) are transposed. In Figures 7 (c) and (d), P0 (P(0,0)) sends blocks

• to P:_ (P(0, 2}), and receives from PI (P(0, l)), where Po, Pt and P:_are in the same row. 'rhet_

P0 sends blocks to P5 (P(1, 2)), and receives from P4 (P(1, l)), and so on. The pseudocode for

• the algorithm from the matrix point-of-view is shown in Figure 8. Processors need to determine

a diagonal block of A (A(i,j), MOD(j - i, LCM) = K) which they start to transpose in the

outer J loop in order to communicate with other processors in the same row of the template.

The two lines before the inner DO-loop compute the value of K.

3.2. P and Q : not relatively prime

In the previous section, we have investigated the case when P aod Q are relatively prime, which

involves complete exchange communication. In this section we consider the case of GC'D > 1.

The former algorithm is a special case (GCD = l) of this algorithm.

Figure 9 shows an example of transposing a 12 x 12 matrix on a 4 × 6 template from tile

processor point-of-view. Each processor has its own 3 x 2 (= LCM/P x LCM/Q) array of

blocks. Tile processors can transpose the matrix with 6 (= LCM/P. LCM/Q : LCM/(;CD)

communications steps. As shown in Figure 10, a processor P(p,q) starts to communicate
t

with P(15,_), where /3 and (_ are computed from p and q (details are explained later of this

section). Once P(_,O) is determined, it communicates with othor processors, whose vertical
=

and horizontal intervals are GCD from P(/_, _}. The two loops of the algorithm in Figure (i are

-10-

,°

0 6 1 7 2 8 3 9 4 10 5 11 0 6 1 7 2 8 3 9 4 10 5 11

4 N::p P2 P3 P4P& '_ 0 PI'F2 F F4 P5
!:-;:i:.::.'-d_ ,, ,

' o 'F F5 p,; P-7 Pg Po P,n ,, 5 ,_ -7 Fg-Po P,nlP',,
v • _ ,J ,I.v _.i. V I _ ,./ JtV_ • it

9 9
]

2 2

a P!2 P!3 P!4 PI5]:1!6 F,17 6 _ip!2 P,a'...P}i!_P15i_16 PI7
10 10

3 3
t

rz F: s ,o 20 P21 F,o F24 z []8 F'19 P P2' 22 FI 11 ,,i, 11 I

Figure 9: A matrix transpose example on a 4 x 6 template.

(f" p,q "_

...... L..'_.(LCM/e)aCO)

+(LCMIQ)GCD, _ (LCMIQ)GC_ _(LCMIQ)GC_DT"_'.._+GCD /' %3+(U:M/e)GCOJ

Figure 10: Processor map for communication. A processor P(p, q) starts to communicate with
P(/5, _}, then it communicates with other processors, whose vertical and horizontal intervals are

GCD from P (/5,4).
m

-ll-

ca

PARDO K = 1,GCD

g = MOD(q- p, GCD)
• i5 = MOD(p + g, P); _ = MOD(q - g, Q)

DO J = 0, LCM/P- 1

DO I = O,LCM/Q - 1
[Copy to T1 (in condensed and transposed form) all blocks of A

required by P(i5 + I x GCD, _- J x GCD)]
[Send T1 to P(fi+ I x GCD, O- J x GCD)]

[Receive T2 from P(fi- I x GCD, O+ g x GCD)]
[Copy T2 to C]

END DO

END DO
END PARDO

Figure 11: A modified matrix transpose algorithm from the processor point-of-view. Operations
of GCD groups of processors are overlapped.

• '_ _ _ _ _ = '= _' _" [] _ '" '_ _ =_ii_ m w _, _im _,

= ul _ z_ z_ z_ = _i_J _u _z _ block> ,_ [m w _ I_ _ m__--mli!iiuJ iw

.t_.g __t$_l

tm /_! _fll 711 [] _1 tm tm ml #./I _ _! _1 _/I I_ _ 121 i _ #dJ I_._ "-

,_lfl, I

........ :::;:::: :!..........

il ..6 !ii_ii_ ii!::ii_iii!i_oI_i_i::i _i_i_!l ' [,i_ii!_!_ _iil_-
="........ <processor template> :_ _

......:_;i_i:.......... _:ii:!ii_!:........ _ _ ::h_:::::: i!:i:,;;_.,.;::.!

,,,,,ii1,,'I! ii
. (a) U'aasposin8the zeroth wrapped block (b) traasposi_8 the f_t wrapped block

Figure 12: Two snapshots of matrix transposition for transposing the zeroth and first wrapped

. block diagonals, when P = 4, Q = 6 and Mb = Nb = 12. In this example, transposing of even
numbered wrapped block diagonals can be overlapped with that of odd numbered.

12-

Ao,o Ao, A ,oA,o!i!!ii jji....... ./,_!i!i_i!i!iiiiiiii_il'i!iil!if!!!iii!!iii!i

iii! !ii Jii!!!ii!i!ii!!31!iii!i!!ii. _ iiNii!:iiii_ili!_!::!ii!i!_

__ 8]"

i!i i!!!!iii[ii!__-_'j:_:_ _ _ _ _ii!ii:.:S,?:i?!!!i!iSa!!ii!!iiiiiiii::ili::i::_:'Ji!!iii!!ililiUiiii.lii!i!!
A R

Figure 13: Matrix transposition when P = Q = GCD = 3. Processo,'s transpose 3 (= GCD)
diagonal blocks at one step, so that the transposition is done in one step.

PARDO K = 1, GCD
g = MOD(q- p, GCD)

/3 = MOD(p + g, P); ,_= MOD(q - g, Q)
DOJ=0, LCM/P- 1

K = J * Deterimine K-th diagonal block to transpose *\
WHILE(MOD(K-g,P)#O) DO K=MOD(h'+Q, LCM) ENDDO
DO I=0, LCM/Q-1

[Copy every (K : Nb : LCM)-th diagonal blocks in P(p,q) to T1]
[Move TI from P(p,q) to P(]5+ I x GCD, 4- J x GOD)]
[Copy the received T1 to C]
K = MOD(K +Q, LCM)

END DO
END DO

END PARDO

Figure 14: A modified matrix transpose algorithm from matrix poiut-of-view. GCD diagonal
blocks are transposed simultaneously.

13-

changed from Q and P to LCM/P and LCM/Q. The pseudocode of the algorithm is shown

• in Figure 11.

Figure 12 shows two snapshots of the same example, from the matrix point-of-view, to

• transpose the zeroth and ttle first diagonal blocks of A (A(i,j), MOD(j .-. i, LCM) =Oand 1,

respectively.) The processors which have the blocks to 3end out are shaded at the bottom. In

the example, only P. Q/GCD processors are involved in biock communication in each step.

Processors are split into GCD groups of processors, and a processor P(p, q) belongs to a group

g if it has the same value of g = MOD(q - p, GCD). Processors in a group g send and receive

their blocks to other processors in another group g' = MOD(GCD - g, GCD). The operations

of each group can be overlapped.

The problem is interpreted from tile matrix point-of-view. In general, for transposing

the k-th diagonal block of A (A(i,j), MOD(j - i, LCM) = k), a group of processors 91, =

MOD(k, GCD) send the blocks to another group g_ = MOD(GCD - gk,GCD). Since the

operations are ovr-!apped over different groups of processors, processors transpose GCD diag-

onal blocks simultaneously. So, the matrix can be transposed with LCM/GCD steps. For the

extreme case of P = Q = GCD = 3 as shown in Figure 13, processors transpose 3 (= GCD)

diagonal blocks at one step. That is, the transposition is done in one step. A processor P(p, q)

exchanges data with processor P(q,p). Tile pseudocode of the algorithm from the matrix

point-of-view is shown in Figure 14. The code includes the case of GCD = 1.

96 processors 64 processors 48 processors

P × Q Time (second) P x Q Time (second) P × Q Time (second)
6 x 16 0.404 4 x 16 0.596 4 x 12 0.652
8 x !2 0.330 8 x 8 0.572 6 x 8 0.546

12 x 8 0.307 16 x 4 0.475 8 x 6 0.527
16 x 6 0.381 12 x 4 0.547

Table 1: Dependence of performance on template configuration for fixed number of processors
(M=N=2400).

4. Results

In this section we present performance results of the parallel matrix transpose algorithms on

the Intel Touchstone Delta computer. The performance of the transpose algorithms cannot be

represented in floating point operations per second (flops), since there is no multiplications or

additions in the transpose algorithms. The algorithms are combined with a matrix multipli-

cation routine in the PUMMA to compute C = aA T, BT + tiC in two steps (T ¢:: aB. A;

C ¢:: T T + _ C). We assume that a = 1 and/3 = 0 in our test, Tile performance of A T , B T is,m

compared with thai, of A. B.

- 14-

i i i i I I

§8,0- -
.... AxB

7.o-
6.0- - .

s.o- ,,:,

4.0- /7I

3.0- -

2.0- -

1.0-

0.0 , , , I...... _ i
0 1200 2400 3600 4800 6000 7200

MatrixSize,M

Figure15'.PerformancecomparisonofA .B and A T.BT on 15x 16template.(P = 15,Q = 16,
and GCD = 1). C ¢:: A T B T is implemented in two steps, T ¢= B. A, and then C ¢:: T 7'.

Matrix elements are generated unifornfly on the interval [-1, 1] in double precision. Con-

versions between measured runtimes and performance in gigaflops (Gflops) are made assuming
i

an operation count of 2MNL for the multiplication of a M x L by a L x N matrix. In our test

examples, all processors have the same number of blocks so there is no load imbalance. Tile

algorithms were implemented with force type communication [9].

First, we considered how, for a fixed number of processors Np = P x Q, performance depends

on the configuration of the processor template. Some typical results are presented in Table 1

for a fixed number of processors. In the test, the block size is fixed at 5 x 5 elements. It may be

seen that the template configuration does have some effect on performance. The performance

difference is between 19 and 24 %. For rectangular templates with different aspect ratios, the

algorithm prefers those with small Q to those with small P. On the Delta, conmmnication

speed along vertical links seems faster than along horizontal links,

Figures 15 ,-, 19 show the performance of the routines on 15 x 16 (GCD = 1, i.e., P and

Q are relatively prime), 14 x 16 (GCD = 2), 12 x 16 (GCD = 4), 8 x 16 (GCD = 8), and

16 x 16 (P = Q = GCD = 16) templates, respectively. In all cases the block size is fixed

at 5 x 5 elements. The solid and the dashed lines show the performance of A "r, B T and

A. B, respectively. The difference of the two lines shows the loss of performance due to matrix
i

transposition.

The transposed multiplication routine shows good performance relative to matrix multipli- t,

cation. The loss of performance due to the matrix transpose routine is about 2 or 3 %. The

15-

I 1 1 1 I I

'7.0- ---- A xB_'x BT

6.0- . -

5,0- " -
J

• s/tj

4.0 - '_S -

,'7

3.0- / -
2.0- -

L.O- -

0.0 i i i i i i
0 1120 2240 3360 4480 5600 6720

Matrix Size, M

Figure 16: Performance comparisonofA .B and AT.B T on 14× 16template. (/J = 14,Q = I{),
and GCD = 2)

i

i i I,, I i , i I_

t .o..... -L_ AT×BT ''"

50- ,,';;'Y
4.0 - "/

,/

3.0-

2.0-

1.0-

0.0 I I I I ' I I I

0 960 1920 2880 3840 4800 5760 6720

Matrix Size, M
p

Figure 17: Performance comparisonofA.B and AT,B T on 12x lti teml)iat('. (t x= 12,Q = 16,
and GC'I): 4)

-16-

........... t_ i i I i i I,

.4,0- ---- A xB "

Xr ., ...--:

.3,0- -

2.0- ,,_'/

/0j

L,O-

0,0 i ' i ii i , ,
0 800 1600 2400 3200 4000 4800 5600

Matrix Size, M

Figure 18: Performance comparison of A. B and AT . B T on 8 x 16 template. (P - 8, Q = 16,
and GCD = 8)

b

I I I I I

8.0- AxB "'"

6.0-7'0" ----- ATx B'r,..-':" ..._--'"" ='" .- "

5.0 - "/,_
/

4.0- /'
0I

3.0-

2.0-

1.0-

0.0 • ,, , 'u , _.......... i
0 1600 3200 4800 6400 8000

Matrix Size, M

Figure 19: Performance comparison of A, B and AT. B 7' on 16 x 16 t,emplate, (t' : Q =
GCD = 16),

-17-

t' _<_ Matrix ,_ize Block Siz(' Tilnl, (s.eolid)
. i x I I,{_P)7

8 x 16 4800 × '1800 5 x 5 |,ti12
llllll × it()1) 1,51t4

, --- 1 × I],28(i

12 x I(3 4800 × 4800 ,q × ,r) 0.8,_)_i
I00 × ll)l) 0.882

1 x I 1,48,1

14 x I(_ ,r)(_00× 5(100 <r.)× 5 I, llili
50 × 50 I,i(ii

1 × I l,,il
15 × I/i liOOli× 6000 ,_) × 5 1,4:17

2,5× 2,_) 1,420
I × 1 1,1)(t7

16 × l(i (i,100 × t_4(}O 5 × r) I,I)(17
,i00 × 400 1.!)(;7

Table 2: Depelidelice of perforlliall('e Oli t)lock me,

trilnsliose routine iit_ excellelit perforlnance if P aiid Q arc relatively prime, lii other c_es

(GCD > 2), iletwork congestioii lilay degrade the l)erforiiiance of the rolithie,

P x Q Matrix Size (A,B) A. B (t){,) A'r BT (%)

. 1 x 1 500 × 500 36.70 (100,0) 35,04 (100,0)

8 x I(I 5(100 × 5600 32,05 (87.:1) _1l}.57 (87,:1)
12 x 10 6720 x 0720 32.09 (87.4) 31.64 (90,1)

• 14 x 16 6720 x 6720 ;12,52 (88,8) 32,11 (i)l.(l)
i5 x 16 7200 x 7200 ',12.78 (89.3) 32.4:1 (02.(i)

16 × 16 8000 × 8000 31,22 (85,1) 30,:18 (8(3.7)

Table It: Perforniance per ilode iri Mflol)s. Block size is fixed to 5 x 5 elenlelitS. I x I telnplate

gives [)erforlnallce of assembly-coded lnatrix I[ltlltiplicatioil. Nunlbers ill parentheses rel)reselil I
etticiency compared with the ,)erformance on 1 processor,

Table 2 shows how the block size affects the i)erh)rmalm of the algorithms, it, indttdes

three ca_es of the block she, two extreme eases the smallest aml largest, possible |)lock sizes

and 5 × r) block of eleme.ts. If P = Q, processors directly copy all blocks at, once, s() block size

does not affect tile performance. For the case of the smallest block size (1 × 1 elemelit) wheli

P :# Q. processors make a copy element by clef.eat, so it takes a little more time t,o .take a

copy. The routilieS with the smallest block sizes arc slower tliati those with the largest possible

block size_ by between 1,5% and 31%. This difrere.ce is negligible, compared with the total

' elapsed tinl(, of the iilatrix lnultiplication.

Perforlllailce per liode is showll ill Table 3, The l x 1 template gives the lierforllltUl('e or

, tho &sselriibl)'-coded level 3 BLAS Inatrix niultiplication rOiltilie for the two (_tise_A . B ltlld

-18-

A T. B r, Processors have about 859{ efficiency for A B, and 87c_ for A "r. 13r if t' = Q = i(;.

The routines perfornl better on tenRi)lates for which P .# Q. Processors achieve at)out 899{,

and !)3()_of elliciency for each ctme if/' a.d Q are relatively prime.
I)

5. Conclusions and Remarks

We have presented parallel matrix transpose algorithms based on tile block scattered decotll-

position. The algorithms have good i)erfornmnce for arbitrary processor configurations on the

lntei Delta computer.

If P and _ are relatively prime, the transpose routine involves complete exchange c,:,mnlu-

nieation on a two-dinlensional tetnplate. We haw, apl)roached this complicated l)rot)le.) willl a

direct point-to-point communication scheme (se,, Section 2). When P altd 0,1are not relatively

prime (G('I) > 1), the processors' operations are overlapt)ed over different groups, so thai only

LCM/¢;('I) communications are required.

In our Fortran implementation, we assume that the first dimension of the matrix nlay be

different from the number of rows of the matrix in a processor. Eve. when P = Q, ttle processor

!leeds to copy blocks of A to a communication butbr before sending, and copy the received

buffer !_ blocks of C after receiving.

The parallel matrix transpose algorithms have been combined with matrix multiplication

routines. The integrated routines comprise a ge.erabpurpose matrix multiplication package,

called PIr MMA [5], for MIM D message-passing computers, The package h_ good performance

for a wide range of decomposition parameters, that is, its performance depends weakly on

processor configuration and block size.

The P[_MMA package is currently available only for double precision real data, but will be

implemented in the near future for other data types, i,e,, single precision real and complex, and

double precision complex, To obtain a copy of the software a.d a description of i_ow tu u:,e it,

send tile message "send pum_a frola ILs¢" to nstliblornl,gov,

Acknowledgment.

The authors would like to thank Eduardo D'Azevedo at ORNI. for his helpful suggestions

to improve the quality of the paper, This research was performed in part using the lntel

Touchstone Delta System operated by tile California Institute of Technology on behalf of the

Concurrellt Supercolllputlng Consortiulll, Access to this facility was provided through tilt'

(.'etlter for H.esearctl ou Parallel (_Onll)uting
0

8. References
i1

[1] N, (;. Azari, A, W, Bojanezyk, and S,-Y. Lee, Synchronous an,t _ynchronous algorithms

fo, malrix lransposition on M('AI'. In ;'PIE [bl. 975, Advanced Al.qor, thms and Arch,-

" trcture forS|gna! l'rocrsst.9Ill, pages 277288, 198_,

• [2] S, II, lh_khari and 11. Berryman. Complete exchange (m a cireuil switched mesh_ In

Procecdtnqs of the 1999 Scalabh thgh tYtformanct Compute.9 ('ottfrr¢.c¢, p:tges 300

30{;, IEEE Press, 1I;92,

[3] j, ('hoi, J. J. Dongarra, R. Pozo, and 1), W. Walker, ScaLAt'A('K: A scalable linear

algebra librari for distribuled memory collcurrel|t computers, lit Procrcdt;igs of Fourth

.s)lmpostum on the Fr'ontters of Massively I'arallcl ('omputatw. {._h,l.¢an, ;'trgt.ta), IEEE

('omputer Society Press, Los Alamitos, California, October 10-21 1992,

[4] J, ('hoi, J. J. l)ongarra, and D. W, Walker, 'l'he design of scalable sufiwar{, librarie:_

for distributed memory concurrent contputers_ in Proceedings of E.vironment a.d Tools

for Parallel Scientsfir Computing Workshop, (Saint Htla,:v du ?'ou,,et, France), Elsevier

Science Publishers, September 7-8 1902.

[5] J, (_'JlOi, J, J. l)ongarra, and I). W. Walker, PUMMA : Parallel universal matrix lilUJ-

tiplication algorithms on distributed memory concurrent computers_ Technical tJcporl

TM-12252, Oak Ridge National Laboratory, Mathematical Sciences Section, April 1993.

" [fi] J, J. D{mgarra, R. van tie (;eijn, anti D, Walker, A look at scalable linear algebra libraries.

In Proceedtntls of the 199l] Sealable Httlh IJrrJormancr (:omput,.9 Confere.cr, pages 372

" 379, IEEE Press, 1902.

[7] J, O, Eklundh, A fast computer method for matrix transposing, IEEE "l'raasactwns o.

Computers, 21:S01-S03, 1972.

[8] (;, H, (;olub and ('., V. Van l.oan_ Matr,x (:'omputattons. The Johns Ilopki.s University

Press, Baltimore, MI), 1989. Second Edition,

[9] In,el (',orporation, Touchstone Delia Fortran (.'alls Reference: Manual, April 191)1.

[10] S. L, JohlisSOl/ arid (L-T. tlo, Algorithlt/S h)r matrix traltSl)ositioli oil bo(dean It-Cube

! configured ensemble architecture, SIAM J, Mat.tz/lnaL Appl, 9:410 45,1, July 1088,

[11] li,Litt!elield, Characterizing and tuning comn,unications performance for real _q)l)lica -

tions, It; t'roceedtngs, F, rst lntel Delia Apphcatton Workshop, (,'('S1.'.1_.9_ _, I'asadt.a,

('ah/orn,a, pages 179. ID0, February 1992. presents,Jolt overheads,

[12] D, I', O'l.eary. Systolic arrays for matrix traltsposv arid other reordcrings_ IEE/,/ 'l'ralts.

' actions o. ('omputrrs, 3fi:I17 122, Jattuary 19S7,

[14] (;. Strallg, l.lrlrar ,,|lqcbrcza_;rt ll,_ Al, Phc_itloll,_ Jl_rrollrl I]rtl,¢_,,|owmovich, lilt,, St_ll o

l)i{,g(_, ('A, I,_)$H..Third _{tili{_l_.

-21

" ()RNL/TM-12309

. INTERNAL DISTRIBUTION

1, B, R. Appleton 23.27, S, A, liaby
2-6, J, Choi 28, C !1, llomine
7-8, T, S, l)arland 29. T. I1, Rowan

9, E, F, D'A_evedo 3{}-34, R. F, Sil|cove¢
10-i4, J, J, Dongarra 35-39, D, W, Walker

15, J. B, Drake 40-44, I1 ('., Ward

lfl,T, iI,Dunigan 45. P, II,Worley

17, G, A, (;eist 46, Central Researcln Library
18, L, J, Gray 47, ORNL Patent ()flicq.

i9, M, R, Leuze 48. K-25 Applied Technology Library
20, E, G, Ng 49, Y-12 Technical Library
21, C, E, Oliver 50, Laboratory Records Department. R('
22, B, W, Peyton 51-5_, Laboratory Records Department

EXTERNAL DISTRIBUTION
o

53, ('hristopher IL Anderson, Department of Mathematics, University of California, Los An-

. geles, CA 90024

54. David C, Bader, Atmospheric and C,limate Research Division, Office of llealth and F,n.

vironmental Research, Ollict_of Energy Research, F,R-Tfl,U,S, Department of Energy,

Washington, I)C 20585

55. David tl, Bailey, NASA Am_, Mail Stop 258.5, NASA Anles Research ('enter, Moffel

Field, CA 94035

56, Edward H, Bareis, Computer Science and Mathematic,,, P, O, Box 58U0, Sandia National

Laboratory, Albuquerque, NM 87185

57, Colin Bennett, Department of Mathematics, University of South Carolina, Columlfia, S('.

_9208

58, l)ominique Bennett, CERFACS, 42 Avenue Gustave Coriolis, 31057 Toulouse (',erie×,

" FRANCE

. 59, Marsha J, Berger, (:ourant Institute of Mathematical Sciences, 251 Mercer Stret.t, New

York, NY 10012

-22 +

60, Mike Berry,DepartmentofComlmter Science,UniversityofTennessee,IU7 Ayres llall,

Knoxville,TN 37996-1301

61, Ake Bjorck, I)elmrtment of Mathematics, l, itlkoping ttniw+rsity, S+581 83 l,inkoping, Swe- ll
den

62. A. W. Bojanczyk, School of Electrical Engineering, ('ornell University, F,T(_ Building,

Rm 337,Ithaca,NY 14853-6367

63,John II,Bolstad,Lawrence LivermoreNationalLaboratory,L-16,P,O. Box 808,laver-

more,CA 94550

64. (,eorgeBourianoff,SuperconductingSupf.rColliderLaboratory,2550 BeckleymeadeAv-

enue,Suite260,I)ali_,TX 752117-3946

65, Roger W+ Brockett, Pierce Hall, 29 Oxford Street, Ilarvard University, Cambridge, MA

02138

fir,BillL+ Buzbee,NationalCenterforAtmosphericResearch,P.O, Box 3000,Bouhler,C',O

80307

67. Thomas A,Callcott,Director,The ScienceAllianceProgram,53TurnerHouse,University

ofTennessee,Knoxville,TN 37996

(iS.CaptainEdward A,Carmona, ParallelComputing ResearchGroup,U,S.AirForceWeapons

Laboratory,KirtlandAFB, NM 87117

89,John (aallm|, ActingDirector,Sctent|flcComputing Staff,AppliedMathematicalSci-

ences,Officeof EnergyResearch,U,S+DepartmentofEnergy,W_hington, D(' 20585

70, l-liangChern,Mathematicsand Computer ScienceDivision,Argonne NationalLabora-

tory',9700 South (.',ass Avenue, Argonne, iI, 60439

I 71. Alexandre Chorin Mathematics Department, Lawrence Berkeley l,aboratory, Berkeley,

CA 94720

72. Ray C+line, Sandia National Laboratories, Livermore, CA 94550

',t +173+ Janws Corones, Ames Laboratory, Iowa State University, Ames, IA 5001 i

74. Jean Cotd, RPN, 212i Transcanada Highway, Suite 508, Dorval, Quebe+c tt9P 1J3, CANADA

75, John J, Doming, Department of Nuclear Engineering Physics, Thornton Itall, Mt:(,ornuck"'

Road, University of Virginia, Charlottesville, VA 22901

- 23 -

76, Larry Dowdy, ('omputer Science Department, Vanderbilt University, Nashville, TN 37235
Q

77. Donald J. Dudziak, Departnlent of Nuclear Engineering, IIOB Burlingion Engineering

, Labs, North Carolina State Universily, Raleigh, N(' 27695-7909

' ') _ t78. lain S. Duff, Atlas Centre Rutherford Appleton Laboratory, Didcol, Oxon (XII 0QX

England

79, John Dukowicz, Los Alamos National Laboratory, Grou[T.:I, Los Alamos, NM 875,15

80. Richard E. Ewing, Department of Mathenmtics, University of Wyoming, Laramie, WY

8207 l

81. lan Foster, Mathematics and Computer Science Division, Argonne National Laboratory,

9700 South Cass Avenue, Argonne, IL 60439

82. Geoffrey C. Fox, Northeast Parallel Architectures Center, Syracuse University, Syracuse,

NY 13244-4100

83. Chris Fr_ley, Statistical Sciences, Inc., 1700 Westlake Ave. N, Suite 500, Seal,tle, WA

98119

84. Paul O, Frederickson, RIACS, MS 23(-5, NASA Ames Research Center, Moffet Field, CA
,i

94035

, 85. Dennis B. Gannon, Computer Science Department, Indiana University, Bloomington, IN

47401

86. J. Alan George, Vice President, Academic and Provost, Needles llall, University of Wa-

terloo, Waterloo, Ontario, CANADA N2L 3GI

"t87. James Glimm, Department of Mathematics, State University of New York, S ony Brook,

NY 11794

88. Gene Golub, Computer Science Department, Stanford University, Stanford, CA 94305

89. Phil Gresho, Lawrence Livermore National Laboratory, L-262, P. O. Box 808, Livermore,

CA 94550

90. William D, Gropp, Mathematics and Computer Science Division, Argonne National Lab.

oratory, 9700 South Cass Avenue, Argonne, IL 60439

91. Eric Grosse, AT&T Bell Labs 2'i ' 504, Murray llill, NJ 07974
I

92. John Gustafson, 236 Wilhelm, Ames Laboratory, Iowa State University, Ames, IA 50011

- 24 -

93. James J. ttack, National Center for Atmospheric Research, P. O. Box 3000, Boulder, CO

80307 *

94. Robert M. Haralick, Department of Electrical Engineering, Director, Intelligent Systems ,

Lab, University of Washington, 402 Electrical Engineering Building, FT-10, Seattle, WA

98195

95. Michael T. Heath, Center for Supercomputing Research and Development, 305 Talbot,

Laboratory, University of Illinois, 104 South Wright Street, Urbana, IL 61801-2932

96. Michael Henderson, Los Alamos National Laboratory, Group T-3, Los Alamos, NM 87545

97. Fred Howes, Office of Scientific Computing, ER-7, Applied Mathematical Sciences, Office

of Energy Research, U. S. Department of Energy, Washington, DC 20585

98. Gary Johnson, Office of Scientific Computing, ER-7, Applied Mathematical Sciences,

Office of Energy Research, U. S. Department of Energy, Washington, DC 20585

99. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA 02142-1214

100. Malvyn Kalos, Cornell Theory Center, Engineering and Theory Center Bldg., Cornell

University, Ithaca, NY 14853-3901

101. Hans Kaper, Mathematics and Computer Science Division, Argonne National Laboratory,

9700 S. Cass Avenue, Bldg. 221 Argonne, IL 60439
t

102. Alan H. Karp, IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304

103. Kenneth Kennedy, Department of Computer Science, Rice University, P. O. Box 1892,

Houston, Texas 77001

104. Tom Kitchens, ER-7, Applied Mathematical Sciences, Scientific Compu'_ing Staff, Office

of Energy Research, Office G-437 Germantown, Washington, DC 20585

105. Peter D. Lax, Courant institute of Mathematical Sciences, New York University, 251

Mercer Street, New York, NY 10012

106. James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

107. Rich Loft, National Center for Atmospheric Research, P. O. Box 3000, Boulder, CO 80307

108. Michael C. MacCracken, Lawrence Livermore National Laboratory, L-262, P. O. Box 808,

Livermore, CA 94550

109. Robert Malone, Los Alamos "'ational Laboratory, C-3, Mail Stop B265, Los Alamos, NM

87545

25-

110. Len Margolin, Los Alamos National Laboratory, Los Alamos, NM 87545

ll 1. Frank McCabe, Department of Computing, lmperial College of Science and Technology,

180 Queens Gate, London SW7 2BZ, ENGLAND
Q

112. James McGraw, Lawrence Livermore National Laboratory, L-306, P. O. Box 808, Liver-

more, CA 94550

113. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E. California

Blvd. Pasadena, CA 91125

114. Neville Moray, Department of Mechanical and Industrial Engineering, University of Illi-

nois, 1206 West Green Street, Urbana, IL 61801

115. David Nelson, Director of Scientific Computing, ER-7, Applied Mathematical Sciences,

Office of Energy Research, U. S. Department of Energy, Washington, DC 20585

116. V. E. Oberacker, Department of Physics, Vanderbiit University, Box 1807, Station B,

Nashville, TN 37235

117. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA 94305

118. Robert O'Malley, Department of Mathematical Sciences, Rensselaer Polytechnic Institute,

Troy, NY 12180-3590

, 119. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University of

Virginia, Charlottesville, VA 22901

120. Ron Peierls, Applied Mathematical Department, Brookhaven National Laboratory, Up-

ton, NY 11973

121. Richard Pelz, Dept. of Mechanical and Aerospace Engineering, Rutgers University, Pis-

cataway, NJ 08855-0909

122. Paul Pierce, lntel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaverton, OR

97006

123. Robert J. Plemmons, Departments of Mathematics and Computer Science, North Car-

olina State University, Raleigh, NC 27650

124. Jesse Poore, Computer Science Department, University of Tennessee, Knoxville, TN

" 37996-1300

, 125. Andrew Priestley, Institute for Computational Fluid Dynamics, Reading University, Read-

ing RG6 2AX, ENGLAND

- 26-

126. Daniel A. Reed, Computer Science Department, University of Illinois, llrbana, IL 61801
I

127. Lee Riedinger, Director, Tile Science Alliance Program, Uniw.,rsity of Tennessee, Knoxville,

TN 37996 ,

128. Garry Rodrigue, Numerical Mathematics Group, Lawrence IAvermore National Labora-

tory, Livermore, CA 94550

i29. Ahmed Sameh, University of Illinois at, Urbana-Champaign, Center for Sllpercomputer

R&D, 469 CSRL, 1308 West Main St., Urbana, IL 61801

130. Dave Schneider University of Illinois at Urbana-Champaign, Center for Supercomputing

Research and Development, 319E Talbot - 104 S. Wright Street Urbana, IL 61801

131. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaverton,

OR 97006

132. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field, CA

94035

133. William C. Skamarock, 3973 Escuela Court, Boulder, CO 80301

134, Richard Smith, Los Alamos National Laboratory, Group T-3, Mail Stop B2316, Los

Alamos, NM 87545

135.PeterSmolarkiewicz,NationalCenterforAtmosphericResearch,MMM Group,P.O. Box

3000,Boulder,CO 80307

136.JurgenSteppeler,DWD, Frankfurterstr135,6050Offenbach,WEST GERMANY

137.RickStevens,Mathematicsand Computer ScienceDivision,Argonne NationalLabora-

tory,9700South Cass Avenue,Argonne,IL 60439

138.PaulN. Swarztrauber,NationalCenterforAtmosphericResearch,P.O. Box 3000,Boul-

der,CO 80307

139.Wei Pai Tang, DepartmentofComputer Science,UniversityofWaterloo,Waterloo,On-

tario,Canada N2L 3GI

140.llaroldTrease,Los Alamos NationalLaboratory,MailStopB257,LosAlamos,NM 87545

141.Robert G. Voigt,ICASE, MS 132-C,NASA Langley ResearchCenter,Hampton, VA

23665

142. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P. O. Box 1892,

Houston, TX 77251

- 27 -

143. Andrew B. White, Los Alamos National Laboratory, P. O. Box 1663, MS-265, Los Alamos,

i NM 87545

144. David L. Williamson, National Center for At mospheric Research, P. O. Box 3000, Boulder,
Q

CO 80307

145. Samuel Yee, Air Force Geophysics Lab, Department LYP, tlancom AFB, Bedford, MAI

01731

146. Office of Assistant Manager for Energy Research and Development, tJ.S. Department of

eEn rgy, Oak Ridge Operations Office, P. O. Box 2001, Oak Ridge, TN 37831-8600

147-148. Office of Scientific & Technical lnfornlation, P. O. Box 62, Oak Ridge, TN 37830

