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Abstract

In this paper we give an elementary proof that polynomial curves are the only
differentiable curves which permit subdivision by standard linear techniques.
Subdivision methods for rational polynomial curves are also discussed.

CR Categories and Subject Descriptions: I3.5 [Computer Graphics|: Computational
Geometry and Object Modeling - Curve Representations; Additional Keywords and
Phrases: Polynomial, Subdivision.



l. Introduction

Subdivision has many applications in computer aided geometric design. A single
subdivision operation will trim a curve or surface. Successive subdivisions can be
used to generate linear approximations which can then be applied to provide
efficient plotting and display algorithms [3]. When combined with the convex hull
property, subdivision yields accurate, robust, intersection algorithms (3].

Because of the importance of subdivision in computer aided geometric design, we
would like to know precisely which curves and surfaces permit subdivision. In this
paper we will restrict our attention to the simplest, most common, type of
subdivision, namely linear subdivision, and we shall show that linear subdivision
is strictly a polynomial phenomenon.

2. Polynomial Curves Admit Linear Subdivision

Given a collection of control points P = (Pg,...,Py) and a collection of
continuous, linearly independent, blending functions B(t) = (Bp(t),...,By(t)),
we can define a continuous, non-degenerate, parametric curve B?P](t) by setting

B{P](t) = i_Bk(t)Pk 0t

In order for this curve to be coordinate-free, the blending functions must satisfy
the additional condition

> B (t) =1 0<t <1
Pl -

From here on we shall assume without further comment that this condition is always
satisfied.

Now such a curve is said to permit linear subdivision if anad only if for each
parameter pair (up,u;) there exist control points
P(up,uy) = (Po(ug,uy),ess,Py(ug,up)) such that
(*) B[P(Uo,ul)](t) = B|PJ|(l-t)ug + tuy]

In this case
B{P(ug,u;)1(0) = B(P](ug)
B[P(ug,u;) (1) = B[P (uy)
Hence BlP(u?Zul)](t) is equivalent to the segment of the curve B[P](t) lying

between B[P ug) and B[PJ(u)}). Therefore we say that the control points
P(uo,ul) subdivide the curve B[P](t) from ug to u; (see diagram).



B[P)(u)) = B[P(ug,u)1(1)  B[P](1)

B[P(UO,UI)](t)

B[P](ug) = B[P(ug,u;)](0)

BLP](0)
The curves B[P](t) and B[P(ug,u;)](t)

The linearity in the definition refers to the linear function (l-t)uo + .tu
inside the brackets on the right hand side of (*). Non-linear subdivision
techniques will be discussed briefly only in the final section of this paper.

We will now show that if the blending functions B(t) form a polynomial basis,
then the curves B[P](t) always admit linear subdivision. We begin with a
proposition which characterizes the curves which admit linear subdivision in terms

of conditions on their blending functious.

Let Span[B(t)] denote the space of all functions which can be written as linear
combinations of the functions Bp(t),...,By(t). That is

Span(B(t)] = {£(t) | £(t) = > ¢, B (c)}
With the standard definitions of addition and scalar multiplication for functions,
Span(B(t)] is a finite dimensional vector space over the real numbers. Moreover,
we have the following important result.
Proposition 2.1: The curves B[P](t) admit linear subdivision if and only if
Bj[(l-t)uo + tu;] € Span(B(t)]

for all j,up,u;. Moreover

™
(g
2}

B;[(1-t)ugttu ] = ;—CjkBk(t) ==> B (ugoup) =2 ey B,

.

Proof: Suppose that for all j,uy,u;
le(l-t)uo + tu;] € Span[B(t)]
Then there exist constants cjk = cjk(“O’ul) such that

le(l-c)u0 + tull = E__cjkBk(t)

Let



Pk(UO’ul) = Z—-cjkpj k =0,1,...,N

]
P(anul) = (Po(uosul): "')PN(UO)UI))

Then
B(P(ug,u)))(t) = i: B ()P, (ug,u;)
= i_ ( j_ cjkPj]Bk(t)
= J>_ ( i_ cjkBk(t)]Pj
= ;: B L(I=tuy + tu) B
= B[PJ[(l-t)u0+tu1]

Hence the control points P(ug,u}) subdivide the curve

B(PJ(t) from ug to uj. Thus the curves B[P](t) admit linear
subdivision.

Conversely suppose that the curves B[P](t) admit linear
subdivision. Then for each parameter pair (uo,ul) there
exist control points

P(ug,uy) = (Pglug,u}),eee,Py(ug,uj)) such that

B{P(ug,up))(e) = B[PJ[(l-t)ug + tu)]
Let v be a unit vector, and select the control points P so that

P0+V k =3

Then since E::Bk(t) = 1, it follows that

P0 + Bj[(l—t)uo + tul]v => Bk[(l—t)u0 + tul]Pk

u

B[P][(l—t)uO + tuI]

BIP(ug,u;)1(e)

Z—-Bk(t)Pk(uO’ul)

Therefore subtracting Py from both sides and then dotting with
v, we obtain

Bj[(l—t)u0+tul] => [(Pk(uo,ul)-PU).v]Bk(t) € Span[B(t)]

QED



Corollary 2.2: If the blending functions B(t) form a basis for all polynomials
of degree N in t, then the curves B{P](t) admit linear
subdivision.

Proof: I1f the blending functions B(t) are polynomials of degree < N in
t, then for each parameter pair (ug,u;) the functions
B[(l-t)ug+tu)] are clearly also polynomials of degree < N in
t. Hence if the blending functions B(t) form a basis for all
polynomials of degree N in t, then certainly

By[(1-t)ug + tu)] € Span(B(t)]

Therefore by proposition 2.1 the curves B[PJ(t) admit linear
subdivision.

QED
The most important polynomial curves in computer aided geometric design are the

Bezier curves. The blending functions tor these curves are the Bernstein
polynomials

BY(e) = (Pred(1-e)td G = 0,1, 000,N

For Bezier curves the following explicit subdivision formulas are known [2]:

B [(L-t)ugreu, ] = > [ 3 B “Cu )BiCu ) 1BYN (D)
] kK b=
= — Nek, .k
Pelugoup) =2 L2 By "(u,)8;(u))]P,
i hti=j

3. Linear Subdivision is Strictly a Polynomial Pheonomenon

Consider again a collection of control points P = (PO,...,PN) and a
collection of continuous, linearly independent, blending functions

B(t) = (Bg(t),...,By(t)). By proposition 2.l the curves B|P](t) admit linear
subdivision if and only if

Bj[(l“t)uO + CU]_] & Span[B(t)J

for all jrug,u;. We shall now show that if the blending functions are
differentiable, then this condition implies that the blending functions are
polynomials.

In the following table we summarize our assumptions on the blending functions
B(t) together with the immediate consequences these conditions have for the space
of functions Span|B(t)].



Assumptions on B(t) Consequences for Span|B(t)]

Al. B (t),...,BN(t) are linearly ==> Cl. Dim(Span[B(t)]) = N+l
independent

A2. B,(0) € C'[0,1] ==> 2. Span[B(t)] € c}(0,1]

A3, Bj[(l-t)u0+tu1] € Span(B(t)] ==> (3. Span[B((l—t)uo+tul)J € Span(B(t)]

Now these conditions on the function space Span(B(t)| in turn imply that the
functions f(t) in Span[B(t)] have the following properties:

Pl. fo(t),eee,fy4 (t) € Span(B(t)] ==> there exist constants
CQs+e+sCN+]» DOt all zero, such that > cpfp(t) = 0.

P2. f(t) € Span[B(t)] ==> £(t) € cl(o,1]
P3. £(t) € Span[B(t)] ==> f[(l-t)ug+tu;] € Span(B(t)]

To show that the blending functions are indeed polynomials, we shall use these 3
properties to demonstrate that

£(t) € Span|B(t)] ==> £(t) is a polynomial of degree <N
To get started, we need a somewhat technical result. Let {f,(t)} be a
sequence of functions. We shall write f,(t) -=> £(t) if and only if £ (t)

approaches f(t) pointwise. That is,

fn(t) -=> f(t) <==> Lim fn(to) = f(to) for all t

n->00 0
Lemma 3.1: fn(t)e Span[B(t)] and £,(t) ==> t(t) ==> £(t) € Span|B(t)]
Proof: Since a rigorous proof of this result is a bit technical, we defer

the proof to the Appendix (see proposition A.2).

It follows immediately from the definition of Span[B(t)] and lemma 3.l that the
set Span[B(t)] is closed under the following operations:

l. addition

2. subtraction

3. scalar multiplication
4, pointwise limits

We shall use these closure properties to prove many of our subsequent results.

Proposition 3.2: f(t) € Span[B(t)] ==> (1-t)f (t) € Span[B(t)]
Proof: Let f(t) € Span[B(t)] and define

f£L(1=t)/n + t] = £(t)
i1/n

Then by P3, g,(t) € Span|B(t)|, and by P2 and L Hopital”s rule

gn(t) =



Lim g (t) = Lim £L(1=t)/n _{71511_._._5__&&1
n=>00 n->00
£{(1-t)h + t] - £(t)

= Lim n

h=>0

= (1-6) (t)

Hence g (t) -=> (1-t)f"(t). Therefore by lemma 3.1
(1-t)f~"(t) € Span[B(t)] .

QED

Proposition 3.3: f(t) € Span[B(t)] ==> tf (t) € Span[B(t)]

Proof: We proceed as in proposition 3.2. Let f(t)¢€ Span(B(t)] and
define
_ f[(1-1/n)t] - £(t)
gn(t) B -1/n

Again by P3, g,(t) € Span[B(t)], and by P2 and L"Hopital”s rule

Lim g (t) = Lim £l(1-1/n)t] - £(t)

=500 * n->00 ~l/n
- Lim f[(l—h)fi - £(t)
h=>0
= tf’(t)

Hence g, (t) -=> tf (t). Therefore by lemma 3.1
tf (t) € Span[B(t)]

QED
Corollary 3.4: f(t) € Span[B(t)] ==> £(t) € Span[B(t)]
Proof: This result follows immediately from propositions 3.2,3.3 since
£7() = (1-t)E (£) + tf (t)
Corollary 3.5: f(t) € Span(B(t)] ==> f(k)(t)é Span([B(t)]
Proof: This result follows immediately from corollary 3.4 by inductioh
on k. '

Notice that corollary 3.5 implies that
L]
£(t) € Span[B(t)] ==> f(t) € C [0,1]

In particular, the blending functions themselves must be infinitely
differentiable. Moreover we can extend these results even further.



Proposition 3.6:

Proof:

Proposition 3.7:

Proof:

Corollary 3.8:

Proof:

£(t) € span(B(t)] ==> tIf(K)(t) € Span[B(t)] 0 <j <k
By induction on k. From proposition 3.3 and corollary 3.4 this
result is clearly true for k=l. Now suppose it is true for k=n;

we shall show it is true for k=n+l, By corollary 3.4 and the
inductive hypothesis

Je(tD oy = e3(eHM () € Span(B(t)] O £j<n

Hence we need only show that tn+lf(n+l)(t) € Span(B(t)].
But by the inductive hypothesis

e0£(M) (t) ¢ span[B(t)]
Hence by proposition 3.3
tnﬂf(nﬂ)(t) = t[tnf(n)(t)]’ - ntnf(n)(t) € Span(B(t)]
QED

£(t) € Span(B(t)] ==> £(N*(e) =y
By proposition 3.0

e3g(N*1) (¢) € span[B(t)] J = 0,1, .00,N¥]

Hence by Pl there exist constants C(,sss,CN+]» DNOL all zero,
such that

I (D)
j

Thus for all t

> ¢

() =0

f(N+1)

1> c.ed) (t) =0

j

But §:>cjtj is a non-zero polynomial of degree < N+l; hence
E:_Cjtj has at most N+l roots. Therefore f(N+1)(t) =0
except possibly at N+l isolated points. Hence by continuity

f(N+l)(t) =0 for all t.

QED

£(t) € SpanlB(t)] ==> f(t) is a polynomial of degree < N.

This result is an immediate consequence of proposition 3.7.



Corollary 3.9: The blending functioms B(t) = (By(t),...,By(t)) are

polynomials of degree < N, and they form a basis for all
polynomials of degree < N.
Proof: The blending functions must be polynomials of degree < N by

.corollary 3.8, and they must form a basis for all polynomials of

degree < N since there are N+l of them and by assumption Al they
are linearly independent.

Corollary 3.10: £(t) € Span[B(t)] <==> f(t) is a polynomial of degree < N.

Proposition 3.11: The curves B[P])(t) admit linear subdivision if and only if the
blending functions B(t) form a polynomial basis. Thus linear
subdivision is strictly a polynomial phenomenon.

Proof: This result follows immediately from corollaries 2.2, 3.9.

4, Linear Subdivision and Rational Polynomial Curves

We can generalize the notion of linear subdivision to rational curves in the
following manner. Given

P = (Py,...,Py) = control points

W (wo,...,wN) scalar weights

B(t) = (By(t),...,By(t)) = continuous, linearly independent, blending
functions

we define a rational parametric curve B[P,w](t) by setting

> B (t)w P
— 'k
BlP,W](t) = ______-__E_E 0 S.t S.l

> kak(t)

We say that a rational parametric curve B|[P,w|(t) admits linear subdivision if and

only if for each parameter pair (ug,uj) there exist control points P(u,,uy)
and weights w(ug,u))

PQug,u;) = (Polug,up),eee,Py(ug,up))
W(UO,UI) = (wo(uo,ul),...,wN(uo,ul))

such that

BlP(Uo,Ul){W(UO,Ul)I(C) = Blew]l(l—t)U0+tu1]

Proposition 4.1: The rational curves B|P,w](t) admit linear subdivision if
Bj[(l-t)u0+tu1] € Span([B(t)]

for all j,ug,u}. Moreover if



Bj[(l-t)u0+tu1] - %—-cjkBk(t)
then

wk(uo,ul) = %_ c.,. W

P = B
k(Yorup) w, (ug,u))

Proof: Same as proposition 2.1.

Notice that we do not claim that the converse of proposition 4.1 is Qalid.
Nevertheless we still have the following result.

Corollary 4.2: If the blending functions B(t) rform a basis for all polynomials
of degree N in t, then the rational curves B[P,w](t) admit
linear subdivision.

Proof: Same as corollary 2.2.

Again we do not claim that the converse of corollary 4.2 is valid. However we
can prove the following partial converse.

Proposition 4.3: Suppose that
1. Bj(t) € c'lo,1]
2. B|P,w)j(t) admits linear subdivision
30 0w = (lyeee,1) ==> w(uy,uy) = (1,...,1)

Then the blending functions B(t) form a basis for all
polynomials of degree N in t.

Proof: From 2,3 it follows that the integral curves B[P|(t) admit

linear subdivision. Hence this result follows immediately from
proposition 3.11.

If we insist that the blending functions are dirferentiable and that integral
curves are used to subdivide integral curves, then by the preceding proposition the
blending functions must form a polynomial basis. Thus under these assumptions the
converse of corollary 4.2 is valid. However if we allow rational curves to
subdivide integral curves -- that is, if we can alter unit weights -- we do not
know whether the converse of corollary 4.2 is valid. Whether differentiable,

rational, non-polynomial curves could admit linear subdivision is still an open
question.

We close this section by showing that, in general, it is not possible to
subdivide a rational polynomial curve without altering the weights.

10



Proposition 4.,4: Suppose that wj # wy for some i,j. Then, in general, it is
not possible to subgivide the rational polynomial curves
B(P,w](t) without changing the weights.

Proof: Define rational polynomial blending functions b(t) by setting

b(t) = (bg(t),...,by(t))

Then by construction

—-—--% = b[P)(t)

Now if we could subdivide the rational polynomial curves
BlP,w)(t) without altering the weights, then clearly the curves
b(P](t) would admit linear subdivision. But, in general, the
functions b(t) are not polynomials so this subdivision property
of b[P](t) would violate proposition 3.1l. Thus, in general, it
is not possible to subdivide the rational polynomial curves
B[(P,w](t) without changing the weéights.

QED

5. Conclusions and Questiouns

The main result of this paper is that linear subdivision is strictly a
polynomial phenomenon. Thus if we insist on the property of linear subdivision, we
are restricted to the set of polynomial curves. However, many simple curves such
as the circle are not polynomial curves. Thus if we want to include these curves,
we must generalize our notion of subdivision. Fortunately the notion of linear

subdivision can be extended quite naturally to rational polynomial curves. In this
extended sense most simple curves do admit linear subdivision.

Do any other curves admit linear subdivision? Are there any differentiable,
rational, non-polynomial curves which admit linear subdivision?

What about non-linear subdivision techniques? Let H(ug,uj,t) be a
continuous (differentiable) function such that:

a. H(ug,up,0) ug
b. H(ug,up,l) = uj
c. H(O,l,t) =t
d. H(uo,ul,t) is monotonic in t
We say that a curve B[P](t) admits subdivision relative to the function

H(ug,u;,t) if and only if for each parameter pair (up,u;) there exist
control points P(ug,u;) such that

11



B[P(uo,ul)](t) = B(P] [H(UO,Ul,C)]

Are there any differentiable curves other than polynomials which admit subdivision
in this broader non-linear sense?

Finally, we have not touched at all on subdivision of spline curves via knot
insertion. These subdivision techniques are discussed in detail in [1],[3]. The
interested reader may wish to consult these papers for this alternate approach to
subdivision for polynomial spline curves.

12



Appendix: Pointwise Convergence in Span(B(t)]

Let B(t) = (Bo(t),...,BN(t)) be a collection of linearly independent
functions. In this Appendix we shall prove lemma 3.1, namely that Span(B(t)] is
closed under pointwise limits. That is, we shall show that

£.(t) € Span(B(t)] and £, (t) -=> £(t) ==> £(t) € Span[B(t)]

Notice that we require no additional assumptions about the functions B(t). In
fact, they need not even be continuous for this result to be valid.

We shall adopt the following notation. Let ¢ = (cg,...,cy), then

|c|==vQ§ + eee + c§

Thus |c| is just the standard norm on RN*L,

Proposition A.l: Suppose that
£.(e) =2 c B (t)
fa(e) ==> £(t)
and let cy = (cpQyeeerCpy)-. Then {c,} is bounded in RN+1.

Proof: Suppose not. Then there is a subsequénce {cp} such that
lepl > me Let

Cn
d = e ———
m e |
m
Then |dm| = 1., Now since {dm} is a bounded sequence in
RN+l it has a convergent subsequence {dp}. Let
= Lim d
d im D
then
|d| = |Lim dp| = Lim |dj]| =1

so certainly
d#0

Now consider the sequence of functions {fp(t)}. By assumption
£(8) =2 c B (c)
£,(e) ==> £(t)

Dividing fp(t) by |c
unbounded, we obtain

| and recalling that {|c_|} is

P PI
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Proposition A,2:

Proot:

Therefore since d = Lim dp

2 d B () => 2 db(e)

Iv

dpkBk(t) -=>0
Hence

2_d8,() =0
But d # O. Therefore the functions Bg(t),...,By(t) are
linearly dependent, contrary to assumption. Thus {c,} must be

bounded in RN*!,

QED

f,(t) € Span{B(t)] and f,(t) --> £(t) ==> f(t)€ Span[B(t)]
Let £,(t) = E::cnkBk(t). Then by proposition A.l {cp}
is a bounded sequence in R *l, Therefore it has a convergent
subsequence {cy}. Let ¢ = Lim c,, and consider the sequence
of functions {gp(t)}. By assumpgion

fp(t) = >_cpkBk(t)

fp(t) -= £(c)
Moreover since c¢ = Lim p it follows that

2 cpkBk(t) <> 2 c B (t)

> cpkbk(c) -=> £(t)
Hence

£(t) = > ¢, B (t) € Span(s(t)]

QED
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