
TM-53 

OFFSETTING OPERATIONS IN SOLID MODELLING 

by 


Jaroslaw R . Rossignac 

Aristides A. G. Requicha 


PRODUCTION AUTOMATION PROJECT 


June 1985 






Technical Memorand urn No. 53 


PRODUCTION AUTOMATION PROJECT 

Department of Electrical Engineering 


College of Engineering and Applied Science 

University of Rochester 


Rochester, New York 14627 


TM-53 


OFFSETTING OPERATIONS IN SOLID MODELLING 

by 


Jaroslaw R. Rossignac 

Aristides A. G. Requicha 


June 1985 


Keywords: Approximations of curves and surfaces, CAD/CAM, computa­
tional geometry, constructive solid geometry, geometric modelling, offsets. 

The work reported in this paper was supported by the National Sci­
ence Foundation under Computer Engineering Grants ECS-81-04646 and 
ECS-84-03882, and by companies in the Production Automation Project's 
Industrial Associates program. Any opinions, findings, conclusions or rec­
ommendations expressed or implied are those of the authors and do not 
necessarily reflect the views of the N .S.F. or the Industrial Associates of 
the P.A.P. The paper is based in part on Rossignac's Ph.D. Dissertation 
submitted to the Electrical Engineering Department of the University of 
Rochester. 





ABSTRACT 


The range of operations on solids supported by current geometric mod­
elling systems is very limited. Typically, solids represented in a modeller can 
be transformed by rigid motions and combined by Boolean operations. This 
paper introduces another family of transformations, called solid offsetting, 
which map solids into solids. 

Offset solids are expanded or contracted versions of an original object. 
Offsetting operations are potentially useful for tolerance analysis, clearance 
testing, design-rule checking in VLSI, modelling of etching and coating pro­
cesses, cutter path generation for numerically-controlled machine tools, col­
lision free path planning for robot motions, and for constant-radius rounding 
and filleting ("blending") of solids. 

This paper discusses mathematical properties of solid offsetting, asso­
ciated representations and algorithms, support of offsetting operations in 
solid modellers, and applications. Results of an experimental implementa­
tion are presented. 





TABLE OF CONTENTS 

1. Introduction 

2. Mathematical definitions and properties of offsets 

2.1 Definitions 

2.2 Equality and inclusion 

2.3 Closure under offsetting operations 

2.4 Rigid motions and Boolean operations 

2.5 Successive offsetting 

2.6 Boundaries and n-offsets 


3. Computational requirements 

3.1 Representations 

3.2 Algorithms 


4. Boundary evaluation 

4.1 Tentative face generation 

4.2 Surface/surface intersection 

4.3 Classification procedures 


4.3.1 Curve/solid classification 

4.3.2 Point/solid classification 

4.3.3 Distance between a point and a solid 

4.3.4 Neighborhoods 


4.4 Simplified BReps 


5. An experimental implementation 

6. Applications 

6.1 Blending 

6.2 Other applications 


7. Summary and conclusions 

References 





1. INTRODUCTION 


Solid modelling theory and technology are becoming increasingly well 
understood, and their commercial and industrial exploitation is progressing 
rapidly [Requicha & Voelcker 82, 83]. However, the range of operations 
on solids supported by current modellers is very limited. Typically, solids 
represented in a modeller can be transformed by rigid motions, which are 
straightforward and well-known in computer graphics [Newman & Sproull 
79, Foley & van Dam 82), and can be combined by Boolean operations, 
which are complex but important [Requicha & Voelcker 85]. Initial results of 
research aimed at modelling bending operations have been reported recently 
[Fournier & Wesley 82, Barr 84]. 

This paper introduces a new family of transformations, called solid off­
setting (abbreviated 8-offsett~'ng), that map solids into solids. We discuss 
mathematical properties of solid offsetting, representations and algorithms 
to support offsetting operations in solid modellers, applications, and exper­
imental results. 

Offset solids are expanded or contracted versions of an original object. 
To s-offset a solid S by a positive distance r one adds to the solid all the 
points exterior to S that lie within a distance r of the boundary of S . For 
a negative s-offset one subtracts from the solid all the points of S within 
a distance r from its boundary. (Formal definitions are given in Section 2 
below.) Positive and negative s-offsets for a simple L-shaped "2-D solid" 
"are shown in Figure 1. 

(a) (b) (c) 

Figure 1 

A simple L-shaped object (a), a positive offset (b)' and a negative offset (c). 

1 




Solid offsetting appears to be very useful. Potential applications are 
summarized in Section 6 below. They cover a wide range, from tolerance 
analysis and clearance testing, through modelling of such physical processes 
as coating or etching, to rounding and filleting - notice the vertex rounding 
effects in Figures 1b-c. 

Operations related to solid offsetting have been used to calculate mass 
properties of solids [Lee and Requicha 82b], to plan collision-free paths for 
robots [Lozano-Perez & Wesley 79], to check design rules in VLSI [Barton 
& Buchanan 80], and to generate cutter paths for numerically-controlled 
(NC) machine tools [Pressman & Williams 77, Faux & Pratt 79]. In [Lee 
and Requicha 82b] the primitives in a solid's constructive solid geome­
try (CSG) representation [Requicha 80] are expanded and contracted to 
reduce set inclusion and disjointness tests to point membership classifica­
tion, which determines whether a point is inside, on the boundary of, or 
outside a solid. In [Lozano-Perez & Wesley 79] obstacles are expanded, 
again to reduce solid interference tests to point membership classification. 
2-D objects are expanded and contracted in VLSI applications to detect 
violations of minimum-distance, maximum and minimum size, and non­
overlap rules. In NC and related applications one offsets smooth surfaces 
by "moving along the normal" by a distance r to generate other surfaces, 
and offsets planar curves similarly to generate other curves. (We refer to 
this operation as normal off8etting or simply n-off8etting, to distinguish it 
from solid offsetting.) The current understanding of normal offsetting is 
summarized in [Tiller & Hanson 84] and [Klass 83]. Briefly, there is no ac­

. cepted mathematical definition of n-offsetting for surfaces and curves that 
are only piecewise smooth, and even when surfaces and curves are smooth 
n-offsetting may lead to cusps and self-intersections. Heuristic approaches 
proposed in [Tiller & Hanson 84] provide reasonable results in many but 
not all of the possible cases. 

Solid offsetting operations are special cases of so-called Minkowski 
sums and differences. These are important in the field of geometric proba­
bility and have been studied extensively by the French school of "mathemat­
ical morphology" [Matheron 75, Serra 82], which is primarily motivated by 
problems of texture analysis for geological applications. A few of the prop­
erties presented below have been derived independently in the mathematical 
morphology work. 

2 




The remainder of this paper is organized as follows. We begin in Sec­
tion 2 with formal definitions and mathematical properties of s-offsets, and 
show that n-offsets are useful to study the boundaries of offset solids. Sec­
tions 3 and 4 deal with representations and algorithms for offset solids. 
Section 5 discusses an experimental modeller, Section 6 addresses potential 
applications, and Section 7 summarizes the paper. 

2. 	MATHEMATICAL DEFINITIONS AND PROPERTIES OF 

OFFSETS 

In this section we define offsets, list some of their mathematical prop­
erties, and discuss the practical importance of these properties. Proofs for 
most of the results are omitted. They can be found in [Rossignac 85] and 
involve elementary point-set topology [Mendelson 75]. 

2.1 	Definitions 

We model physical solids by r-sets, which are bounded, regular, and 
semi-analytic subsets of 3-D Euclidean space (E3) [Requicha 77, 80]. (Re­
call that a set S is regular if S = kiS, where k and i denote, respectively, 
topological closure and interior.) The (regularized) positive solid offset of 
a regular set S by a positive distance r is 

Sr*r = {p:3q E S, lip - qll < r} . 

. Note that when S is empty S r* r is also empty. We refer to positive s­
offsetting also as grow~'ng or expanding. (Non-regularized positive offsets 
can also be defined (Rossignac 85], and are called generalized balls in the 
mathematical literature [Nadler 78]; offsetting operations can also be ap­
plied to non-regular sets (Rossignac 85). Offsets discussed in this paper are 
assumed to be regularized.) 

An equivalent definition is 

Sr*r= UB*(p,r), 
pES 

where B* (p, r) = {q: IIq - p II < r} is a closed ball of radius r centered at p. 
This alternative definition shows that one can think of Sr*r as the volume 

3 




swept by a solid sphere of radius, as its center moves throughout the set 
S. 

There is yet another equivalent definition in terms of point/set dis­
tances. First recall that the distance of a point p to a set S is the minimal 
distance between p and points of S. More precisely, it is defined as [Nadler 
78] 

d(p, S) = inf lip - qll·
qES 

When S is regular, and hence closed, the greatest lower bound is attained for 
at least one clo8e8t point q of S, and therefore one can replace the infimum 
with minimum in the definition. There may be several closest points. If p 
is a point of S then d(p, S) = 0, and if p is exterior to S then the closest 
points q lie in as, the topological boundary of S. 

The positive offset of a regular and non-empty S can also be defined 
as 

Sj*, = {p: d(p, S) < ,)}. 

Thus, to expand S one adds to it all the points whose distances to S do 
not exceed ,. 

The (regularized) negative solid offset of a non-empty S is defined as 
the complement of the expanded complement. More precisely, 

Sl*' = c*((c* S)j*,), 

where c* denotes regularized complement [Requicha 77, 80]. We refer to 
negative s-offsets also as contracted or shrunk solids. 

2.2 Equality and inclusion 

It follows immediately from the definitions that if two sets A and B 
are equal so are their s-offsets by " i.e., A j*, = Bj*, and A1*' = B 1*', 
Note, however, that generally neither Aj*, = Bj*, nor A1*, = B1*, imply 
A=B. 

Offsetting preserves inclusion relations. Thus, if A c B then A j*, c 
Bj*, and A1*, c B1*,. 

4 




2.3 Closure under offsetting operations 

If S is regular then its solid offsets S j* rand S1* r are also regular. 
Therefore regular sets are algebraically closed under offsetting operations. 
Offsetting by a finite r clearly preserves boundedness, and we conjecture 
that it also preserves semi-analyticity, but we have no formal proof. 

Algebraic closure of r-sets under offsetting is important. It implies that 
one can add offsetting operations to a modelling system that supports rigid 
motions and regularized Boolean operations, and be sure that the resulting 
sets are valid solids, and therefore can be used in the system as inputs for 
further operations. 

2.4 Rigid motions and Boolean operations 

Regularized intersection, union, difference, and complement, denoted 
respectively n*, U* ,-* , c*, are modified versions of their standard set­
theoretic counterparts [Requicha 77, 80]. In this paper regularized set op­
erations on solids are called simply Boolean operations. 

Rigid motions and Boolean operations are the fundamental means used 
in eSG for defining complex objects in terms of simpler, or primitive solids. 
It is tempting to s-offset solids defined by eSG by s-offsetting each primitive 
and combining the results, but it is easy to show by counterexamples that 
this procedure generally is incorrect. 

Rigid motions and s-offsets commute since offsets are defined through 
. distances, which are invariant under rigid motions. 

The following properties summarize the relationships between offset­
ting and Boolean operations. 

(c* S)j*r = c*(Sl*r) 

(c* SH*r = c*(Sj*r) 

(A U* B)j*r = (Aj*r) U* (Bj*r) 

(A n* BH*r = (A1*r) n* (B1*r) 

(A -* B)J:r = (A1*r) -* (Bj*r) 

5 



(A n* B)j*r c (Aj*r) n* (Bj*r) 

(A U* B)! *r :) (A1 *r) U* (B1*r) 

It follows from these properties that s-offsetting primitives in a eSG 
representation of 8 and combining them yields 8 j * r only in very special 
cases. For example, expanding a solid whose eSG definition contains only 
unions can be done by expanding the primitives and unioning the results. 

2.5 Successive offsetting 

Growing operations are associative and commutative in the following 
sense: 

(8j*a)j*b = 8j*(a + b) = (8j*b)j*a 

Similar properties hold for shrinking operations: 

(81*a)! *b = 81*(a + b) = (81 *b)! *a 

However, a growing operation does not generally commute with a shrink­
ing operation, and the two operations should not be viewed as "inverses" 
because 

(81 *r)j*r C 8 c (8j*r)!*r, 

but in general the inclusions are not equalities. 

In fact, combinations of growing and shrinking operators are very use­
. ful, because of their rounding and filleting effects. We define rounding of 8 
by r as 

Rr (8) = (81 *r )j *r , 

and filleting as 

Figure 2 shows that Rr rounds the convex edges and vertices of a solid, 
while Fr fillets the concave edges and vertices. 

6 




(a) (b) 

Figure 2 


A set S and its rounded (a) and filleted (b) versions. 


7 




2.6 Boundaries and n-offsets 

The topological boundary of an expanded solid S j* r is contained in 
the set of points that are at a distance rfrom S, i.e., 

a(Sj*r) c {p:d(p,S) = r}. 

Figure 3 shows that the inclusion above generally is not an equality. 

Figure !J 

Point p is at distance r from S but is not on the boundary of S j* r. 

The analogous result for contracted solids is 

a(Sl*r) c {p:d(p,c*S) = r}. 

One can also show that, for p ¢ S, d(p, S) = d(p, as). These proper­
ties are useful for constructing supersets of the boundaries of offset solids. 
Boundary supersets are important for boundary evaluation and other pro­
ced ures discussed in Section 4. 

The boundary of a solid (i.e., r-set) S is a G 1 continuous surface (i.e., 
has continuous unit normal [Barsky & DeRose 84]) except at singulari­
ties, which may be I-dimensional (curves) or O-dimensional (points). The 
singular curves are themselves Gl continuous (i.e., have continuous unit 
tangents) except at singular points. For a (fiat-faced) polyhedral solid S 
the singular curves of as are the solid's edges, and the singular points the 
vertices. When S is curved the singularities typically are a proper subset of 
the edges and vertices that appear in the solid's boundary representation. 

8 




Let us construct a superset of a(Sj*r). (Similar arguments apply to 
S l*r.) First observe that, for p ¢:. S, the distance d(p, S) must be attained 
for some point q of as, and q must be in one of the following sets: 

1) F = as - (all singularities); 
2) E = (singular curves) - (singular points); 
3) V = singular points. 

We analyze each case separately. Suppose that q c F. Then, in a 
neighborhood of q there is a parameterization q = q(u, v), and the distance 
lip - qll must reach a minimum, which implies 

8q 8q
(p - q) . - = 0 and (p - q) . - = 0au av 

where the dot denotes inner product. Therefore the vector p - q is normal 
to F at q because ~ and ~ are tangent to the surface. (We assume 
regular parameterization and therefore ~ and %; are not parallel.) Now 
construct the set Flit by displacing each point q of F by a distance r along 
the unit normal nat q, i.e., let p = q+rn. Flit is called the positive normal 
offset, (abbreviated positive n-offset) of F, and is the conventional "offset 
surface" used in NC applications, as noted in Section 1. It is clear from 
the construction that Flit includes all the points p for which the distance 
d(p, S) = r is attained for some q in F. Note, however, that not all points 
of Flit are at a distance r from S; some may be at a smaller distance, 
as shown in Figure 4. Similar arguments show that FII;, the negative n­

. offset of F, defined by displacing q inward by r, contains all points p at 
distance r from the complement of S. N-offsets of smooth surfaces need 
not be smooth because they may self-intersect (see [Willmore 58, p. 117] 
for self-intersection conditions). In fact, n-offsets of surfaces need not even 
be surfaces. For example, the negative n-offset by r of a sphere of radius r 
is a point - the center of the sphere. 

9 




Figure -4 

Point p is in the n-offset by r of the face F 
of S but its distance to S is less than r. 

Consider now q E E. Parameterizing the curve in a neighborhhod of 
q as q= q(t) and differentiating the distance lip - qll yields 

aq
(p - q)'8t = o. 

Therefore p must lie in the normal plane to E at q because ~ is tangent to 
the curve. Since lip - qll = r, p lies in a circle of radius r and center q in the 
normal plane. The set of points p on such circles for all q in E is called the 
·positive n-offset of E. (Negative n-offsets for curves are empty.) Ellt can 
be viewed as the surface swept by a circle of radius r when its center moves 
along the trajectory, or spine E. N-offsets for curves are closely related to 
right circular constant generalized cylinders used in computer vision [Shafer 
& Kanade 83), and were called canal or tubular surfaces in the mathematical 
literature of the turn of the century [Monge 1849, Salmon 1882], where they 
were defined in terms of envelopes of families of spherical surfaces. 

Finally, if q E V then q is an isolated point, and we define positive 
n-offset by r of a point q simply as a spherical surface of radius r centered 
at q. (Negative n-offsets for points are empty.) 

The set obtained by n-offsetting the G 1 2-D subsets of as, the G 1 1-D 
subsets of its singular curves, its singular points, and unioning the results is 

10 




simply called the n-offset of as. It follows from the previous discussion that 
the n-offset of as contains all points at distance r from S, and therefore is 
a superset of the boundary of the offset solid Sr·r. 

The solids representable in most of the existent solid modellers must be 
bounded by planes, cylinders, cones, spheres - sometimes called the "nat­
ural quadrics" , because they are easy to produce by conventional machining 
operations such as drilling and milling [Hakala et. al. 80] - and tori. (In 
the sequel we refer collectively to all these surfaces as standard surfaces.) 
Importantly, n-offsetting a standard surface produces a surface of the same 
type. (Note, however, that n-offsetting other quadrics, e.g. an ellipsoid, 
does not generally produce quadrics.) N-offsetting an edge of intersection 
of two standard surfaces produces a canal surface, and, if this latter is 
smooth, n-offsetting it produces another canal surface with the same spine. 
We conclude that to support offsetting operations in standard modellers 
only a new type of surface - a canal surface - must be introduced. The 
required canal surfaces, however, may be quite complicated because their 
spines may be the intersection of other canal surfaces, when offset solids are 
combined by Boolean operations and offset further. Closed form equations 
for canal surfaces can be obtained readily only in very simple special cases. 

3. COMPUTATIONAL REQUIREMENTS 

Our primary goal is to support offsetting operations in solid modellers 
"that contain both CSG and boundary representations (BReps), and to en­
sure that offset solids are treated like other solids in the modeller, i.e., that 
they can be displayed, combined by Boolean operations, further offset, and 
so forth. This section discusses representational and algorithmic require­
ments for achieving this goal. 

3.1 Representations 

The (conceptually) simplest approach is to treat offsetting operations 
as "commands" that are entered by a user, executed, and discarded. Exe­
cution of the commands should produce both CSG and boundary represen­
tations for the offset solid that results from the operation. We investigated 
this approach and found that it is difficult to generate automatically CSG 

11 




representations for offsets of complicated solids, and that the resulting rep­
resentations are difficult to manipulate algorithmically. (CSG representa­
tions for offsets of simple solids, e.g. blocks, cylinders, spheres and cones, 
are easy to generate.) 

We opted for an alternative approach, in which offset solids are repre­
sented by an extended form of CSG called esc with offsetting, or simply 
eseo. Representations in CSGO are trees containing offsetting operators 
as nonterminal nodes, in addition to the usual rigid motion and Boolean 
operators. Figure 5 shows a CSGO tree; by convention, the left subtree of 
a motion or offset node is a solid, and the right subtree contains the param­
eters that define the motion or the offset distance. What representations 
and algorithms are needed in a dual CSGO/BRep modeller? 

_. 

Block 1 Dx Block 2 r 

Figure 5 

A CSGO tree. 

CSGO trees are a trivial extension of the usual CSG trees, but BReps 
for offset solids are considerably more complex than those for solids bounded 
by the standard quadric and toroidal surfaces. Offsetting introduces new 
types of surfaces in a modeller - canal surfaces - and, since offset solids 
may be combined by Boolean operations, edges of intersection between 
canal surfaces or between canal and standard surfaces may also appear. 
Therefore we need representations for canal surfaces and for subsets of their 
intersection curves. 

Canal surfaces can be represented indirectly, by their spine curves and 
radii, with the spine implicitly represented by two intersecting surfaces. (In 

12 




essence, these are sweep representations [Requicha 80].) However, these rep­
resentations are computationally awkward because they lead to a nightmare 
of indirections. Think, for example, of intersecting a curve with a canal sur­
face represented by a radius and a spine, when the spine results from the 
intersection of two other canal surfaces, which in turn are represented indi­
rectly, and so forth. Our approach is to represent canal surfaces indirectly 
(and exactly) but also carry an approximate representation, which is used 
in all the necessary numerical calculations. 

The entire curves of intersection between two canal surfaces, or between 
a canal and a standard surface may be represented indirectly by using point­
ers to the surfaces. However, these curves need not be I-manifolds (i.e., 
they may self-intersect) and therefore a subset of a curve cannot be repre­
sented simply by the host curve and a pair of endpoints [Requicha 80]. The 
standard representations for curve segments in solid modelling are based on 
parameterizations of the curves, but we do not know of any general meth­
ods for parameterizing the intersections of canal surfaces. These difficulties 
led us to represent edges through parameterized approximations. We also 
carry references to the intersecting surfaces, which may be used to refine 
the approximations when needed. 

Edge approximation is a crucial issue in our approach. We devised a 
new approximation technique, called piecewise constant curvature approx­
imation, which is especially well-suited for solid modelling [Rossignac 85, 
Rossignac &, Requicha 85]. Edges are approximated by piecewise circular 
. curves, and the canal surfaces that result from n-offsetting such edges are 
approximated by smoothly joined pieces of tori and cylinders. The result­
ing curves have continuous unit tangents, and the surfaces have continuous 
unit normals, i.e., both are G 1 geometrically continuous [Barsky &, DeRose 
84]. (In the sequel we use the abbreviation pee both as a noun to denote 
"piecewise circular curve" , and as an adjective to mean "piecewise constant 
curvature" . ) 

In summary, our approach is to add offsetting nodes to eSG trees, and 
to represent in BReps the new surfaces and edges introd uced by offsets both 
indirectly (exactly) and by pee approximations. 

13 




3.2 Algorithms 

Today's solid modellers have facilities for generating calligraphic and 
shaded displays of the represented objects, for computing mass properties, 
and for evaluating the boundaries of objects defined by Boolean operations. 
What algorithms are needed to support such facilities in a CSGO/BRep 
system? 

Calligraphic displays usually are generated in solid modellers by ap­
plying standard computer graphics techniques to edge lists, or to BReps. 
Shaded displays, however, often are generated directly from CSG by ray 
casting. The basic ray casting algorithm can be written in pseudo-code as 
follows [Roth 82]. (We use a pseudo-code based on the Algol/Pascal family 
of languages; procedures are assumed to return values.) 

ALGORITHM 1 

begin 
for each Pixel in Screen 

do begin 
E +- CreateRay(ViewPoint, Pixel); 
EwrtS +- ClassEdge(E, S); 
if EinS # 0 

then begin 
P +- FirstPoint(EinS); 
/ +- CompIntensity(P, LightSources); 
Display(/) ; 
end,, 

end', 
end. 

In words: cast a ray E between the viewpoint and each pixel in the 
screen, find the first point P where the ray enters the solid S, use an 
illumination model to compute the appropriate intensity /, and write it 
onto the screen. The essential procedure in this algorithm is ClassEdge, 
which takes an "edge" (i.e., a curve segment) E and returns EwrtS = 
(EinS, EonS, EoutS), where EinS, EonS, EoutS are, respectively, the sub­
sets of E that are inside, on the boundary of, and outside the solid S [Tilove 
80, Requicha & Voelcker 85]. 

14 




There are many methods for computing mass properties of solids [Lee 
& Requicha 82a], but the most commonly used in dual-representation mod­
ellers are based on ray casting or cell classification [Lee & Requicha 82b]. 
The ray casting algorithm involves the ClassEdge procedure mentioned 
above. Cell classification requires a procedure ClassPoint(P, S), which de­
termines whether a point P is in the interior, boundary, or complement of 
asolidS. 

Boundary evaluation is a considerably more complicated process than 
display or mass-property calculation. Again, there are many approaches to 
boundary evaluation, but several CSG/BRep modellers, including PADL-2, 
use a more elaborate version of the following basic algorithm. 

ALGORITHM 2 

begin 
Generate a sufficient set of Tentative Faces; 
Generate a sufficient set of Tentative Edges; 
for each Tentative Edge E 

do begin 
EwrtS +- ClassEdge(E, S); 
AddToBRep(EonS) ; 
end,, 


end. 


Thus, one starts with tentative faces that are guaranteed to include 
-- the faces of the desired object. Then, pairwise intersection of tentative 

faces generates tentative edges, which are guaranteed to include those of 
the object. Extraneous portions of these tentative edges are discarded by 
classifying them with respect to the solid and retaining only those segments 
that are on the solid's boundary. (See [Requicha & Voelcker 85] for details.) 

The code fragment above may be imbedded in various boundary evalu­
ation procedures - see e.g. [Tilove et ai. 84]. The following is conceptually 
straightforward, and practically useful. It constructs incrementally a BRep 
for a solid S represented by a CSG tree. BReps for the left and right (when 
applicable) subtrees of S are assumed to have been previouly computed, by 
prior calls to BEval. 

15 



ALGORITHM 3 

procedure BEval(S); 
begin 
case S of 

Primitive: BuildPrimBRep; 
Motion: MoveBRep(S . Left ); 

Boolean: begin 
TFaces +-- Faces of S .Left and S .Right; 
for each Pair of TFaces F, G 

do begin 
E+--FnG; 
EwrtS +-- ClassEdge(E, S); 
AddToBRep(EonS); 
end; { do } 

end; { case} 
end; { BEval } 

In words: look at the top node of the CSG tree of S; if S is a primitive 
simply build its BRep; if it is a rigid motion node, apply the motion to the 
appropriate BRep; otherwise (the node is a Boolean operator) generate ten­
tative faces by taking the faces of the two subtrees of S, and use Algorithm 
2. 

Algorithm 3 can be readily modified for operation on CSGO representa­
tions. We need to add another branch to the case statement when the node 

.. corresponds to an offset operator. The new branch also will use Algorithm 
2, but we need a different way to generate tentative faces. We also need 
procedures to intersect these faces (some of which will lie in canal surfaces), 
and to classify edges with respect to solids represented in a CSGO/BRep 
dual scheme. 

We conclude that the algorithmic requirements of boundary evaluation 
subsume those of display generation and mass property calculation. In 
essence they are: tentative face generation, surface/surface intersection, 
and edge classification. These three topics will be discussed in the next 
sections. 

16 




4. BOUNDARY EVALUATION 

This section discusses the main components of a boundary evaluation 
procedure for offset solids. As we saw earlier, the classification procedures 
required by boundary evaluation also provide means to generate displays 
and compute mass properties. 

4.1 Tentative face generation 

At each offset node in a CSGO tree we must generate a sufficient set 
of tentative faces, whose union is guaranteed to include the boundary of 
the offset object. This amounts to computing a superset of the boundary 
of the offset solid S r* r or S 1* r, which may be done by n-offsetting as, 
as shown in Section 2.6. Therefore we must n-offset the smooth faces, and 
singular curves and points of as. The necessary information is contained 
in the BRep of S, and n-offsetting standard faces, canal faces, curves and 
points is straightforward. 

One must ensure that the BReps used contain all the singularities. For 
example, the apex of a cone is a singular point and must be n-offset, but is 
not contained explicitly in many BRep schemes. (A convenient method for 
generating such isolated singular points in a BRep is to pass through them 
"dummy edges" [Rossignac 85].) 

Note also that, instead of n-offsetting the actual faces of S, one can 
n-offset super/aces of S, i.e., 2-D sets that include the actual faces, and still 
.produce a superset of the boundary of the offset solid. This is important 
because faces my be arbitrarily complex and therefore difficult to n-offset, 
while superfaces that are geometrically simple can be n-offset easily. 

The following facts may be used to generate smaller supersets, and 
therefore to speed-up tentative face generation, as well as subsequent com­
putations. (We assume below that the positive direction of the normal to 
the faces or superfaces of S is toward the exterior of S.) 

• 	 Negative n-offsets (towards the interior of S) of faces need not be con­
sidered when computing tentative faces for Sr*r. Similarly, positive 
n-offsets of faces are not needed for S l*r. 

• 	 Concave edges need not be n-offset for Sr*r. Similarly, convex edges 
are not needed for S 1* r. BRep edges that separate tangent faces 

17 




are not singular curves, because the normal to as is continuous, and 
therefore never need to be n-offset. 

4.2 Surface/surface intersection 

Tentative edges are generated by pairwise intersection of tentative 
faces. If these lie in natural quadrics, the standard intersection routines 
of a solid modeller may be used; parameterizations for the resulting edges 
are readily available. But if the tentative faces are toroidal or are canal sur­
faces, approximate methods seem inevitable. Our approach has two steps: 
first we generate points on the intersection, and then we connect them by 
interpolatory PCCs. These two steps are explained in more detail below. 

The curves of constant u and constant v in the "natural" parameter­
izations F(u, v) of the standard surfaces are lines and circles, as shown in 
Figure 6. These lines and circles are called generators. To compute points 
in the intersection of two tentative faces we intersect a grid of u and v 
generators of one face with the other face. (We found that both u and 
v generators must be considered, otherwise intersections almost "parallel" 
to one of the families of generators may be missed entirely.) Because the 
generators are lines or circles, their intersection with standard surfaces can 
be computed by solving algebraic equations of degree at most four, and this 
can be done analytically [Rossignac 85]. At each point of the intersection 
we compute the normals to both faces. The cross product of the normals 
is the direction of the tangent to the intersection curve. 

Figure 6 

Standard primitives with generators. 

18 




The result of the first step just described is a set of points and tangents. 
The second step is more delicate. It involves matching pairs of consecutive 
points along the curves and using the two points in each pair as endpoints 
for a span of a PCC approximation. Our matching algorithm is as follows. 
The intersections between the u and v generators of a face FI with a face F2 
are computed and stored. These intersection points lie in the boundaries of 
grid "cells" in u, v space - see Figure 7. We analyze each cell separately. 
If there are only two intersections in a cell's boundary we match them; 
otherwise we recursively subdivide the cell until each subcell contains only 
two intersections or a minimum resolution is reached. Matching at the 
lowest resolution level is done heuristically. It does not ensure that the 
topology of the intersection is correct, but such errors have never caused us 
any difficulties in our solid modelling work. (We experimented with various 
methods for matching points by using position and tangent information, 
but none of them were as reliable and efficient as the cell-based approach, 
which requires essentially no searching.) 

19 




If S is a primitive we use its real faces as superfaces, otherwise we use a 
set of tentative faces computed as explained in Section 4.1. The intersection 
of an edge E with a superface F in Algorithm 4 may be replaced with 
the intersection of E and the host surface in which F lies. Edge/surface 
intersection is a standard computation in solid modellers. It is usually 
accomplished by substituting the parametric definition p(t) of the edge in 
the implicit equation of the surface f(p) = 0, and solving the resulting 
equation f(p(t)) = 0 for t. 

Procedure ClassEdge calls a point/solid classifier for midpoints of seg­
ments. Note that such points may lie in edges or faces of S, but cannot be 
vertices of S. 

4.3.2 Point/solid classification 

The standard recursive point classification algorithm for CSG [Re­
quicha &, Voelcker 77] can be adapted to CSGO as follows. 

ALGORITHM 5 

procedure ClassPoint(p, S); 
begin 
case S of 

Primitive: ClassPointWrtPrim(p, S); 
Motion: ClassPoint(M- 1 (p), S.Left); { motion M } 

Boolean: Combine(ClassPoint(p, S.Left), ClassPoint(p, S.Right),S.Op); 
Offset: ClassPointWrtOffset(p, S); 

end; { case} 
end', 

Thus, we add to the case statement in the standard CSG classifier a 
branch to deal with offset operations. To classify a point p with respect to 
S = Xj*r we use the following procedure. (A similar procedure applies to 
S = Xl*r.) 

22 


http:S.Right),S.Op


ALGORITHM 6 


procedure ClassPoint WrtOffset (p, S); 

begin 

X ~ S.Left; 

r ~ S .Right; { Offset distance} 

if ClassPoint(p, X) = inX or onX 


then return inS 

else case Dist(p, aX) of 


< r: return inS; 
> r: return outS; 
= r: if Nbhd(p)= PartFull 

then 	return onS 

else return inS; 


end { case }; 

end', 


We need procedures to evaluate the distance between p and a solid's 
boundary, and to evaluate the neighborhood Nbhd(p) with respect to an 
offset solid S. These are discussed in the next two subsections. 

4.3.3 Distance between a point and a solid 

Algorithm 7 implements the method discussed in Section 2.6. It uses 
two auxiliary procedures ProjOnCurve and ProjOnSurf that compute nor­
mal projections, defined as follows. The normal projection set of point p on 

.' curve C is the set of points q of C for which the vector p - q is normal to 
the tangent to C at q. Similarly, the normal projection set of p on surface 
F is the set of points q of F for which p - q is normal to the tangent plane 
to F at q. The theory of Section 2.6 implies that the normal projection 
set contains the point (s) of C or F for which the minimal distance to p is 
achieved. But it may also contain local minima and maxima of the distance. 

23 




ALGORITHM 7 

procedure Dist(p, as); 
begin 
Dmin +- 0; 
for each singular point q of as do Dmin +- min(Dmin,IIp - qll); 
for each singular curve C of as do for each point q of ProjOnCurve(p, C) 

do Dmin +- min(Dmin,IIp - qll); 
for each superface F of S do for each point q of ProjOnSurf(p,Surf(F)) 

do if ClassPoint(q, S) = onS then Dmin +- min(Dmin,llp - qll); 
end,, 

Observe that we project p on the host surface Surf(F) of each superface 

F of S, and then discard those points in the projection that are not onS and 

therefore are not in S's smooth faces. ProjOnSurf is easy to implement for 

standard surfaces and hence for PCC approximations of canal surfaces, but 

projecting p directly on the smooth faces is non-trivial because the faces 

may be very complex. 


ProjOnCurve is straightforward for simple curves such as lines and 

circles, and hence for PCCs. For a general parameterized curve C(t) evalu­

ation of the normal projection amounts to minimizing lip - C(t) II, and this 

can be done by setting the first derivative of lip - C (t) 112 to zero and solving 

for t using a root finder. 


We presented ClassPointWrtOffset and Dist as separate procedures for 
.. simplicity of exposition. But the computations may be reorganized for 
efficiency so as, for example, to return inS as soon as a distance less than 
r is found. 

4.3.4 Neighborhoods 

Classification procedures must return neighborhood8 for the on seg­

ments to disambiguate situations wherein two solids with overlapping 

boundaries are combined by a Boolean operation [Tilove 80, Requicha & 

Voelcker 85]. For simplicity we ignored this fact in the discussion of algo­

rithms above, but one must add to the returned results EonS or onS a 

neighborhood representation with respect to S. 


Neighborhhods for midpoints of segments in the ClassEdge procedure 

are essentially two-dimensional and can be represented and combined by 


24 




standard methods [Requicha & Voelcker 85], provided that neighborhoods 
with respect to offset solids are available. These can be computed as shown 
in Figure 8. Let p be a point at distance r from a solid S, and let qi be points 
of as where the distance is attained. Then p must be in the intersection 
of the n-offsets of the faces, singular curves and points in which the qi lie. 
Since we also know on which side of the n-offset surfaces is the solid Sj*r, 
it is not difficult to generate a standard neighborhood representation for p. 

Figure 8 

Computing the neighborhood of point p with respect to Sir. 

Point membership classification also is used in Algorithm 7 to discard 
points on the surfaces of S when computing the distance from p to S. We 
cannot guarantee that such points are in the interiors of edge segments of 
constant classification, and this leads to difficulties in neighborhood ma­
.nipulation. When ambiguous on/on cases are encountered, which happens 
rarely in the context of distance calculations, one must either use so-called 
3-D vertex neighborhoods [Requicha & Voelcker 85], which are rather un­
wieldy, or the alternative methods discussed in [Rossignac 85]. 

4.4 Simplified BReps 

Boundary information normally contained in a BRep was used in the 
algorithms described above for only the following three purposes. 

• 	 Generate tentative faces. 
• 	 Intersect a curve with superfaces and segment the curve at the inter­

section points, in procedure ClassEdge. 
• 	 Compute distances to superfaces, singular curves and points. 

25 



Figure 10 

Shaded display generated by our experimental modeller. 

28 




6. APPLICATIONS 

6.1 Blending 

We investigated in detail only one application of offsetting: the gen­
eration of constant-radius fillets and rounds, collectively called blends, 
in objects defined in solid modellers that support the standard surfaces 
[Rossignac & Requicha 84]. Our approach is to provide facilities for defin­
ing globally blended sub-objects by using the operators R,,(S) and F,,(S) 
of Section 2.5, and to combine these blended sub-objects by Boolean oper­
ations to obtain the desired results. An example is shown in Figure 11, and 
details may be found in [Rossignac & Requicha 84, Rossignac 85]. 

Figure 11 

A blended solid. 

29 



6.2 Other applications 

Offsetting has many other potential applications . Examples follow. 

• 	 Tolerance analysis. Three-dimensional tolerance zones may be defined 
by offsets [Requicha 83], and used to determine whether mechanical 
parts satisfy specified tolerances. 

• 	 Approximate object equality. Two solids X and Yare equal within 
some specified resolution f if X 1*feY c X j* f. The solids X and 
Y may be, for example, a desired part and the part generated by a 
sequence of machining operations. Note that inclusion relations may 
be established through Boolean operations and null object detection 
[Tilove 84, Rossignac &- Voelcker 85] because, for two regular sets X 
and Y , X c Y <=> X n* Y = X, and X = Y <=> (X - *Y) U* (Y - * 
X) = 0. 

• 	 Clearance tests. There is a clearance of at least 2r between solids X 
and Y if (Xj*r) n* (Yj·r) = 0. 

• 	 VLSI. Clearance and overlap tests for design rule checking can be per­
formed by using 2-D s-offsetting and Boolean operations. 

• 	 Physical process modelling. Processes such as coating and etching may 
be modelled, at least to a first approximation, by expanding and shrink­
ing operations. 

• 	 Cutter path generation. Computing cutter paths for NC machining by 
s-offsetting solids seems more useful than current n-offsetting tech­
niques, because it does not produce self-intersecting paths. 

• 	 Obstacle avoidance. Let B be a ball of radius r that encloses an object 
X. Then X can move without colliding with obstacles Y if there is a 
curve C (traced by the center of B) such that C n(Yj*r) = 0. 

7. SUMMARY AND CONCLUSIONS 

This paper discussed a new family of operations on solids, called solid 
offsetting, and their incorporation in modern solid modellers that contain 
dual Constructive Solid Geometry (CSG) and boundary representations. 
Offsetting operations may be used to round and fillet solids, and have many 
other potential applications. 

30 



An extended form of eSG, called eSG with offsetting (eSGO) was 
defined, and algorithms needed to support display generation, mass prop­
erty calculation, and boundary evaluation on eSGO were presented. These 
algorithms use non-trivial extensions of known eSG-based methods. 

Piecewise constant curvature approximations, discussed in detail else­
where [Rossignac 85, Rossignac & Requicha 85], were used to represent 
intersection edges. The resulting piecewise circular curves lead to simple 
and efficient procedures for computing edge/surface intersections, and dis­
tances of points to curves, which are needed by eSGO algorithms. 

Experimental results show that the methods discussed are viable, but 
more effort is needed to improve substantially the efficiency of the algo­
rithms. Known techniques for enhancing the average performance of geo­
metric algorithms [Tilove 81] may hold the key to fast offsetting computa­
tions. 

31 




REFERENCES 


[Barr 84] 	 A. H. Barr, "Global and local deformations of solid 
primitives", PROC. ACM SIGGRAPH '84, Min­
neapolis, MN, pp. 21-30, July 23-27, 1984. 

[Barsky & DeRose 84] 	 B. A. Barsky and T. D. DeRose, "Geometric conti­
nuity of parametric curves", Report No. UCB/CSD 
84/205, Computer Science Dept., Univ. of Califor­
nia, Berkeley, October 1984. 

[Barton & Buchanan 80] 	 E. E. Barton and 1. Buchanan, "The polygon pack­
age", COMPUTER AIDED DESIGN, vol. 12, no. 
1, pp. 3-11, January 1980. 

[Faux & Pratt 79] 	 1. D. Faux and M. J. Pratt, COMPUTATIONAL 
GEOMETRY FOR DESIGN AND MANUFAC­
TURE. Chichester, U.K.: Ellis Horwood Ltd., 1979. 

[Foley & van Dam 82] 	 J. D. Foley and A. van Dam, FUNDAMENTALS OF 
INTERACTIVE COMPUTER GRAPHICS. Read­
ing, MA: Addison-Wesley, 1982. 

[Fournier & Wesley 82] 	 A. Fournier and M. A. Wesley, "Bending polyhedral 
objects", COMPUTER AIDED DESIGN, vol. 15, 
pp. 79-87, 1982. 

[Hakala et al. 80] D. G. Hakala, R. C. Hillyard, P. J. Malraison and 
B. E. Nourse, "Natural quadrics in mechanical engi­
neering", PROC. CAD/CAM VIII, Autofact West, 
Anaheim, CA, November 1980. 

[Klass 83] 	 R. Klass, "An offset spline approximation for plane 
cubic splines", COMPUTER AIDED DESIGN vol. 
15, no. 5, pp. 297-299, September 1983. 

[Lee & Requicha 82a] Y. T. Lee and A. A. G. Requicha, "Algorithms for 
computing the volume and other integral properties 
of solids: I - Known methods and open issues", 
COMM. ACM, vol. 25, no. 9, pp. 635-641, Septem­

32 



ber 1982. 

[Lee & Requicha 82b] 	 Y. T. Lee and A. A. G. Requicha, "Algorithms for 
computing the volume and other integral properties 
of solids: II - A family of algorithms based on rep­
resentation conversion and cellular approximation" , 
COMM. ACM, vol. 25, no . 9, pp. 642-650, Septem­
ber 1982. 

[Lozano-Perez & Wesley 79] 	 T. Lozano-Perez and M. A. Wesley, "An algorithm 
for planning collision-free paths amongst polyhedral 
obstacles" , COMM. ACM, vol. 22, no. 10, pp. 560­
570, October 1979. 

[Matheron 75] 	 G. Matheron, RANDOM SETS AND INTEGRAL 
GEOMETRY. New York: John Wiley and Sons, 
1975. 

[Mendelson 75] 	 B. Mendelson, INTRODUCTION TO TOPOL­
OGY. Boston: Allyn and Bacon, 3rd ed., 1975. 

[Monge 1849] G',Monl?e, APPLICATIONS DE L'ANALYSE ALA 
GEOMETRIE. Paris: Bachelier, 5th ed., 1849. 

[Nadler 78] 	 S. B. Nadler Jr., HYPERSPACES OF SETS. New 
York: Marcel Dekker, 1978. 

[Newman & Sproull 79] 	 W. M. Newman and R. F. Sproull, PRINCI­
PLES OF INTERACTIVE COMPUTER GRAPH­
ICS. New York: McGraw-Hill, 2nd ed., 1979. 

[Pressman & Williams 77] 	 R. S. Pressman and J. E. Williams, NUMERICAL 
CONTROL AND COMPUTER-AIDED MANU­
FACTURING. New York: John Wiley and Sons, 
1977. 

[Requicha & Voelcker 77] 	 A. A. G. Requicha and H. B. Voelcker, "Constructive 
solid geometry", Tech. Memo. No. 25, Production 
Automation Project, Univ. of Rochester, November 
1977. 

33 



[Requicha 77] 	 A. A. G. Requicha, "Mathematical models of rigid 
solid objects", Tech. Memo. No. 28, Production 
Automation Project, Univ. of Rochester, November 
1977. 

[Requicha 80] 	 A. A. G. Requicha, "Representations for rigid solids: 
theory, methods, and systems", ACM COMPUT­
ING SURVEYS vol. 12, no. 4, pp. 437-464, De­
cember 1980. 

[Requicha & Voelcker 82] 	 A. A. G. Requicha and H. B. Voelcker, "Solid mod­
elling: A historical summary and contemporary as­
sessment", IEEE COMPUTER GRAPHICS & AP­
PLICATIONS, vol. 2, no. 2, pp. 9-24, March 1982. 

[Requicha & Voelcker 83] 	 A. A. G. Requicha and H. B. Voelcker, "Solid 
modelling: Current status and research direc­
tions", IEEE COMPUTER GRAPHICS & APPLI­
CATIONS, vol. 3, no. 7, pp. 25-37, October 1983. 

[Requicha 83] 	 A. A. G. Requicha, "Toward a theory of geometric 
tolerancing", INTERNATIONAL JOURNAL OF 
ROBOTICS RESEARCH, vol. 2, no. 4, pp. 45­
60, Winter 1983. 

[Requicha & Voelcker 85] 	 A. A. G. Requicha and H. B. Voelcker, "Boolean 
operations in solid modelling: Boundary evaluation 
and merging algorithms" , PROC. IEEE, vol. 73, no. 
1, pp. 30-44, January 1985. 

[Rossignac 85] 	 J. R. Rossignac, "Blending and offsetting solid mod­
els", Tech. Memo. No. 54 (Ph.D. Disserta­
tion), Production Automation Project, Univ. of 
Rochester, June 1985. 

[Rossignac & Requicha 84] 	 J. R. Rossignac and A. A. G. Requicha, "Constant 
radius blending in solid modelling" , COMPUTERS 
IN MECHANICAL ENGINEERING, vol. 3, no. 1, 
pp. 65-73, 1984. 

34 



[Rossignac & Requicha 85] 	 J. R. Rossignac and A. A. G. Requicha, "Piecewise 
constant curvature approximation for solid mod­
elling", Technical Memo. No. 63, in draft, Produc­
tion Automation Project, Univ. of Rochester, 1985. 

[Rossignac & Voelcker 85] 	 J. R. Rossignac and H. B. Voelcker "Redundancy 
and null object detection in constructive solid geom­
etry" , Technical Memo. No. 52, in draft, Production 
Automation Project, Univ. of Rochester, June 1985. 

[Roth 82] 	 S. D. Roth, "Ray casting for modeling solids" , COM­
PUTER GRAPHICS AND IMAGE PROCESSING, 
vol. 18, no. 2, pp. 109-144, February 1982. 

[Salmon 1882] 	 G. Salmon, A TREATISE ON THE ANALYTIC 
GEOMETRY OF THREE DIMENSIONS. Dublin: 
Hodges, Figgis and Co., 4th ed., 1882. 

[Serra 82] 	 J. Serra, IMAGE ANALYSIS AND MATHEMATI­
CAL MORPHOLOGY. New York: Academic Press, 
1982. 

[Shafer & Kanade 83] 	 S. Shafer and T. Kanade, "The theory of straight ho­
mogeneous generalized cylinders" , Report CMU-CS­
83-105, Computer Science Dept., Carnegie-Mellon 
Univ., January 1983. 

[Tiller & Hanson 84] 	 W. Tiller and E. G. Hanson, "Offsets of two­
dimensional profiles" , IEEE COMPUTER GRAPH­
ICS AND APPLICATIONS, vol. 4, no. 9, pp. 36­
46, September 1984. 

[Tilove 80] 	 R. B. Tilove, "Set membership classification: a uni­
fied approach to geometric intersection problems", 
IEEE TRANS. COMPUTERS, vol. C-29, no. 10, 
pp. 874-883, October 1980. 

[Tilove 81] 	 R. B. Tilove, "Exploiting spatial and structural 
locality in geometric modelling", Tech. Memo. 
No. 38, Production Automation Project, Univ. of 

35 



Rochester, 	October 198!. 

[Tilove 84] 	 R. B Tilove, "A null-object detection algorithm for 
constructive solid geometry" , COMM. ACM, vol. 2, 
no. 7, pp. 684-694, July 1984. 

[Tilove et al. 84] 	 R. B. Tilove, A. A. G. Requicha and M. R. 
Hopkins, "Efficient editing of solid models by ex­
ploiting structural and spatial locality", Technical 
Memo. No. 46, Production Automation Project, 
Univ. of Rochester, January 1984. (To appear 
in COMPUTER-AIDED GEOMETRIC DESIGN, 
1985. ) 

[Willmore 58] 	 T. J. Willmore, DIFFERENTIAL GEOMET RY. 
Oxford: Oxford University Press, 1958. 

36 



