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Abstract.  A rational cubic spline curve is described which has tension 

control parameters for manipulating the shape of the curve. The spline is 

presented in both interpolatory and rational B-spline forms, and the 

behaviour of the resulting representations is analysed with respect to 

variation of the control parameters.  
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1. Introduction 

 
      Th i s  paper  p resen t s  a  desc r ip t ion  and  ana lys i s  o f  a  r a t iona l  cub ic  

tens ion  sp l ine  for  use  in  CAGD (Computer  Aided  Geometr ic  Des ign) .  We 

propose  to  use  the  sp l ine  fo r  the  represen ta t ion  o f  pa ramet r i c  curves  in  

bo th  in te rpo la to ry  and  B-sp l ine  fo rm,  where  the  ra t iona l  desc r ip t ion  

provides tension parameters which can be used to influence the shape of the 

curves .  The ra t ional  spl ine provides  a  computat ional ly  s impler  a l ternat ive 

t o  t h e  e x p o n e n t i a l  s p l i n e - u n d e r - t e n s i o n  [ S c h w e i k e r t  ' 6 6 ,  C l i n e  ' 7 4 ,  

P r e u s s  ' 7 6 ] .  I t  a l s o  p r o v i d e s  a n  a l t e r n a t i v e  t o  t h e  c u b i c  v - s p l i n e  o f  

Nie lson  [Nei l son  ‘75]  and  the  β -sp l ine  representa t ion  of  such  cubics  by  

B a r s k y  a n d  B e a t t y  [ B a r s k y  a n d  B e a t t y  ' 8 3 ] .  I n  t h i s  p a p e r  w e  p r o p o s e  t o  

maintain the C2 parametric continuity of the curve, rather than the more 

general  geometr ic  G C2  arc  length cont inui ty  achieved by the ν -spl ine and 

-spline.  Our approach is thus different from that of Böhm [Böhm '87] or 

Nielson [Nielson '84]  in  their  development  of  ra t ional  geometr ic  spl ines .  

β

One s imilar i ty  with  the paper  [Böhm '87] ,  i s  that  the  ra t ional  spl ine 

is  not  res t r ic ted to  the 'homogeneous coordinate '  form of  having a  cubic  

spl ine numerator  and denominator .  Thus,  in  general ,  i t  i s  not  a  project ion 

from a cubic  spl ine in  4RI  into 3RI  as ,  for  example,  in  the case of  non-  

uniform rat ional  B-spl ines .  This ,  we bel ieve,  gives  more f reedom to   

develop shape control  parameters  for  the  curve,  which behave in  a  wel l  

defined and wel l  control led way.  For  s implic i ty ,  we wil l  descr ibe and 

analyse a  ra t ional  spl ine which has  one ' tension '  control  parameter  

associated with each interval, although more parameters could be introduced 

into the ra t ional  form.  Since the spl ine is  def ined on a  non-uniform knot  

pa r t i t ion ,  the  pa r t i t ion  i t se l f  p rov ides  add i t iona l  degrees  o f  f r eedom on  

the  curve.  However ,  we would normally  expect  the  parameter izat ion to  be 

def ined ei ther  on a  uniform knot  par t i t ion or  by cummulat ive chord length.  

A rational spline alternative to the exponential  spline-under-tension 

w a s  f i r s t  c o n s i d e r e d  i n  [ S p ä t h  ' 7 4 ]  a n d  w a s  d i s c u s s e d  l a t e r  w i t h i n  a    
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g e n e r a l  s e t t i n g  i n  [ P r e u s s  ' 7 9 ] .  T h e  r a t i o n a l  s p l i n e  o f  t h i s  p a p e r  c a n  

a l s o  b e  c o n s i d e r e d  w i t h i n  t h e  s e t t i n g  o f  P r e u s s ,  b u t  w e  f i n d  i t  m o r e  

c o n v e n i e n t  t o  d e v e l o p  t h e  p r o p e r t i e s  o f  t h e  r a t i o n a l  s p l i n e  p e r  s e .  

The rational spline is based on earlier work, [Delbourgo and Gregory 

'85] ,  in  the  use  o f  a  r a t iona l  cub ic  Hermi te  in te rpo lan t .  Th i s  in te rpo lan t  

i s  used  in  the  deve lopment  o f  the  in te rpo la to ry  ra t iona l  sp l ine  p resen ted  

he re ,  see  a l so  [Gregory  '86] .  Pa r t i cu la r ,  da ta  dependen t ,  cho ices  o f  the  

tension parameters can be shown to lead to special  rational forms which can 

be  used  in  the  cons t ruc t ion  of  shape  preserv ing  sca la r  curve  in te rpolan ts ,  

as  in [Delbourgo and Gregory '83] and [Schaback '73].  More recently,  

Goodman [Goodman '88] has considered GC2 shape preserving, parameteric,  

ra t iona l  cubic  sp l ine  in te rpolan ts .  Here ,  however ,  we  wi l l  v iew the  

tens ion  parameters as an interactive design tool for manipulating the shape 

of a parametric curve.  

   T h e  r a t i o n a l  c u b i c  H e r m i t e  i n t e r p o l a n t  i s  i n t r o d u c e d  i n  S e c t i o n  2  

t o g e t h e r  w i t h  s o m e  p r e l i m i n a r y  a n a l y s i s .  S e c t i o n  3  d e s c r i b e s  t h e  

i n t e r p o l a t o r y  r a t i o n a l  s p l i n e  a n d  a n a l y s e s  i t s  b e h a v i o u r  w i t h  r e s p e c t  

t o  the tension parameters.  Finally,  in Section 4,  a B-spline type represent-  

a t i o n  o f  t h e  r a t i o n a l  s p l i n e  i s  d e v e l o p e d  a n d  s t u d i e d .  

 

2.  C1 piecewise rational cubic Hermite interpolant 

L e t   b e  v a l u e s  g i v e n  a t  k n o t s  tn,....,0,i,RF N
i =∈ i  ,  i  =  0 , . . . , n ,  

w h e r e  t 0  <  t 1  <  . . .  <  t n ,  a n d  l e t  D i  ∈  R N ,  i  =  0 , . . . , n ,  d e n o t e  f i r s t  

der iva t ive  va lues  def ined  a t  the  knots .  Then  a  p iecewise  ra t iona l  cubic  

H e r m i t e  p a r a m e t r i c  f u n c t i o n  p  ∈  C 1 [ t 0 ,  t n ]  i s  d e f i n e d  f o r  t∈  ( t i ,  t i + 1 ) ,   

i  =  0 , . . . , n - l ,  b y  
 

P(t) = Pi (t; ri) 
  

 
( ) ( ) ( ) ( )( )

( ) ( )θ1θ3r1
FθDhF rθ1θDhF rθ1θFθ1

i

1i
3

1i i1ii
2

i iii
2

i
3

−−+
+−−++−+−

= +++   (2.1) 
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where 
 

 ( ) .1randtth,)/ht(ttθ ji1iiii −>−=−= +                (2.2) 
 

Here,  p∈  C1  [ t 0 ,  t n ]  means that  each component  funct ion of  p  :  [ t 0 ,  t n ] R→ N  

i s  con t inuous ly  d i f fe ren t i ab le  on  [ t 0 , t n ] .  We wi l l  a l so  use  .  to  deno te  

the  uni form norm,  e i ther  on  [ t 0 , t n ]  or  [ t i , t i + 1 ] ,  th i s  be ing  the  maximum of  

the uniform norm of the components of our parametric function. 

The function p(t) has the Hermite interpolation properties that 

 p(t i)  =  F i  and  p(1) (t i) = D i , i  =  0 ,..., n  .    (2.3) 

The  r i ,  i  =  0 , . . . , n - l ,  wi l l  be  used  as  " t ens ion"  pa ramete r s  to  con t ro l  the  

s h a p e  o f  t h e  c u r v e .  T h e  c a s e  r i  =  3 ,  i  =  0 , . . . , n - l ,  i s  t h a t  o f  c u b i c  

H e r m i t e  i n t e r p o l a t i o n  a n d  t h e  r e s t r i c t i o n  r i  >  - 1  e n s u r e s  a  p o s i t i v e  

( n o n - ze ro)  denomina tor  in  (2 .1 ) .  

 For ri ≠ 0, (2.1) can be written in the form 

 Pi(t;ri)  =  R0 ( ;rθ i)Fi  +  R1 ( ;rθ i)Vi + R2 (θ ;ri)Wi + R3 (θ ;ri) Fi+1 ,   (2.4) 

where 

 Vi = Fi + hi Di / ri  ,    Wi = Fi+1 – hi Di+1 / ri ,     (2.5) 

and the Ri( ;rθ i )  are appropriately defined rational functions with 

        (2.6) ∑
=

=
3

0j
ij 1)r ; (θR

Moreover ,  these  func t ions  a re  ra t iona l  Berns te in-Bezier  weight  func t ions  

which  a re  non-negat ive  for  r i  >  0 ,  s ince  the  denominator  in  (2 .1)  can  be  

wr i t ten  as  

      (2.7) .θθ)(1θrθ)θ(1rθ)(1 32
i

2
i

3 +−+−+−

Thus in IRN, N > 1 and for ri  > 0: 

(i) (Convex hull  property) The curve segment Pi  l ies in the convex hull  of 
the control points {Fi, Vi, Wi, Fi+1} . 

( i i )  ( V a r i a t i o n  d i mi n i s h i n g  p r o p e r t y )  T h e  c u r v e  s e g me n t  P i  c r o s s e s  a n y  
( h y p e r )  p l a n e  o f  d i me n s i o n  N - l  n o  mor e  t i me s  t h a n  i t  c r o s s e s  t h e  
" c o n t r o l  p o l y g o n "  j o i n i n g  F i ,  V i ,  W i ,  F i + 1 ,  (See  [Goodman  ' 89 ] . )  
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Remark 2 .1  In  the  sca la r  case  N=l ,  p roper t ies  ( i )  and  ( i i )  apply  to  the  

curve  segment  ,  wi th  cont ro l  po in ts  ),t,(tt,RI))r(t;P(t, 1ii
2

ii +∈∈

 
  )}F,(t,)W,/rh(t,)V,/rh(t),F,{(t 1i1iiii1iiiiiii +++ −+  
 
This is a consequence of the identity 

 
 1ii3ii1ii2iiii1ii0  t)r;(θR)/rh(t)r;(θR)/rh(t)r;(θR)tr;(θRt ++ +−+++≡  

          (2.8) 
 

In  fac t ,  ( t ,p ( t ) )  can  be  cons idered  as  an  appl ica t ion  of  the  in te rpola t ion  

s c h e m e  i n  R 2  t o  t h e  v a l u e s  ( t i ,  F i )  ∈  R 2  a n d  d e r i v a t i v e s   ( l , D i )  ∈  R 2 ,   

i  =  0 , . . . , n .  

 

 
 

Figure 2.1. The rational cubic segment in R2 

 
The rational cubic (2.1) can be written in the form  
    
   .)r(t;e(t))r(t;p iiiii +=l      (2.9) 
 
where 

 
          (2.10) ,θFθ)F(1(t) 1iii ++−=l

 

  ,
θ)(13)θ(r1

})θD(Δ1))(θDθ){(Δθ(1h
}r{t;e

i

1iiiii
ii −−+

−+−−−
= +    (2.11) 

 
          (2.12) .)/hF(FΔ ii1ii −= +

 
This immediately leads to: 
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P r o p o s i t i o n  2 . 2  ( T e n s i o n  p r o p e r t y )  T h e  r a t i o n a l  c u b i c  H e r mi t e  i n t e r -  

p o l a n t  ( 2 . 1 )  c o v e r g e s  u n i f o r m l y  t o  t h e  l i n e a r  i n t e r p o l a n t  ( 2 . 1 0 )  o n  

[ t i ,  t i + 1 ]  a s  ,  i . e .  ,ri ∞→
 

 .0limlim =−=
∞→∞→ iirir

Pe
ii

l       (2.13) 
 

Moreover ,  the  component  func t ions  of  e i  t end  to  zero  monotonica l ly ,  bo th  

uni formly  and  poin twise  on  [ t i , t i + 1 ] .  

Remark 2.3.  The tension property can also be observed from the behaviour of 

the control points Vi,  Wi defined by (2.6),  and hence of the Bernstein- Bézier 

convex hull,  as  .ri ∞→

In  the  fo l lowing  sec t ion ,  a  C 2  ra t iona l  sp l ine  in te rpo lan t  wi l l  be  

cons t ruc ted .  Th i s  requ i res  knowledge  o f  the  2 'nd  der iva t ive  o f  (2 .1 )  

which ,  a f t e r  some s impl i f i ca t ion ,  i s  g iven  by  
 

 ,
θ)}(13)θ(r{1h

}θ)(1δθ)θ(1γθ)(1θβθ2{α)r(t;P 3
ii

3
i

2
i

2
i

3
i

i
(2)

i −−+
−+−+−+

=     (2.13) 
 

Where 
 

       (2.14) 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

+−−=
−=

−=
+−−=

+

+

++

i1iiiii

iii

i1ii

i1ii1iii

DD)D(Δrδ
,)D3(Δγ

,)Δ3(Dβ
,DD)Δ(Drα

 

3.   C2 rational cubic spline interpolant 
We now follow the familiar procedure of allowing the derivative 

parameters Di,  i  = 0, . . . ,n,  to be degrees of freedom which are constrained    

by the imposit ion of the C2 continuity conditions 
 

  P(2) (t i +)  =  P(2) (t i -)   ,     i = 1…. , n-1 .     (3.1) 
 

These C2  condi t ions give,  f rom (2.13)  and (2.14) ,  the  l inear  system of  

"consis tency equat ions"  

1,n1,....,i,ΔrhΔrhDh1)}D(rh1)(r{hDh ii1i1i1ii1i1iii1i1ii1ii −=+=+−+−+ −−−+−−−−  

(3.2) 
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where the , i = 0,...,n-l, are defined by (2.12). For simplicity of                     
presentation, assume that D

iΔ

0 and Dn are given as end conditions (clearly                      
other end conditions are also appropriate). Assume also that 

 
ri ≥  r  > 2  ,    i = 0 , . . . , n-l .      (3.3) 

 

Then (3.2) defines a diagonally dominant, tri-diagonal linear system in the                      
unknowns Di, i = l,...,n-l. Hence there exists a unique solution which can                     
be easily calculated by use of the tri-diagonal LU decomposition algorithm.                      
Thus a rational cubic spline interpolant can be constructed with tension                      
parameters ri, i = 0,...,n-l, where the special case ri = 3, i = 0,...,n-l,                      
is that of cubic spline interpolation. We now examine the behaviour of the                      
rational spline interpolant with respect to the tension parameters ri in                      
the following three propositions: 
 

Proposition 3.1. (Global tension property) Let  denote the                      
piecewise linear interpolant defined for 

]t,t[c n0
0∈l

)t,t(t 1ii +∈  by (t) = , see                      
(2.10). Suppose that r

l )t(il

i ≥ r > 2, i = 0,...,n-l, as in (3.3). Then the                      
rational spline interpolant converges uniformly to l  as ,r ∞→ i.e.  on                      
[t 0 , t n] 
 

.0plim
r

=−
∞→

l        (3.4) 

 
Proof. Suppose ri = r, i = 0,...,n-l. Then from (3.2) it follows that                      
  
 .1n....,1i),hh/()hh(Dlim 1iii1i1iiir

−=+Δ+Δ= −−−∞→
     (3.5) 

                                                       
More generally, for ri satisfying (3.3), it can be shown that 
 

{ },D,D),2r/(rmaxDmax n0i1ni1 ∞∞∞∞−≤≤
−Δ≤      (3.6) 

 
where 
 
   

∞
Δ =

∞−≤≤
Δ i1ni1

max        (3.7) 

 

Hence the solution Di, i = l,...,n-l, of the consistency equations (2.3) is                     
bounded with respect to r. Now, from (2.11), the tension property (2.13)                      
of Proposition 2.2 can clearly be extended to the case of bounded Di.   Thus 
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applying  (2 .13)  on  each  in terval  g ives  the  desi red  resul t  (3 .4) .□  

 Proposition 3.2. (Local tension property) Consider an interval [tk,tk+1]                      
for a fixed and let the tension parameters r1}n{0,...,k −∈ i, i ≠ k, be                      
considered as functions of rk, where ri = ri (rk ) ≥ r > 2. Then, on                      
[tk, tk+1], the national spline interpolant converges uniformly to the line                      
segment , i.e. ∞→kk rasl

 .0Pr kk

mil

k =−∞→ l        (3.8) 

 

Proof. The boundedness property (3.6) holds as in Proposition 3.1 (where                      
we can assume the additional constraint rk ≥ r > 2 to the hypotheses                      
currently being imposed). Thus (2.13) applies for the case i = k. □                      
Remark 3.3.   In the case of fixed ri, i ≠ k, an analysis of the linear                      
system (3.2) shows that 
    

   .0ΔDrΔDr k1k

mil

kkk

mil

k =−=−
∞+∞→

∞
∞→        (3.9)  

 

This property reinforces the rate of convergence to zero of ek = pk - in                      
(3.8), as can be seen from (2.11) with i = k. The following proposition                      
shows that the influence of r

kl

k in this case has an exponential decay away                      
from the interval [tk, tk+1] . 

Proposition 3.4. (Exponential decay property) Let Di , i = l,...,n-l,                      
denote the solution of the consistency equations with tension parameters                      
ri ≥ r > 2, i = 0,...,n-l, and let , i = l,...,n-l, denote the solution                     
with parameters , i = 0,...,n-l, where

iD̂
2rr̂i >≥ ii rr =ˆ ,  for i ≠ k. Then                                                                

 

,1)n(0,...,i,m1kiandmkiforΔ
γ1

γ)2(1γ4DD
m

ii −∈++=−=
−
+

≤−
∞∞

)
 

(3.10) 

where  
∞

Δ  is the constant defined in (3.7) and 

 

γ  = l/(r-l) < 1 .       (3.11) 

 

( Thus ,  for  example ,  if  r  =  3  then γ   =  1/2. ) 

The proof of this result is based on an analysis of the consistency 
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equations expressed in the matrix forms 

(I+F)D = b and  .bD̂)F̂(I =+

 Here F and  are tri-diagonal matrices with zero diagonals which agree in                      
rows  i ,  i  ≠  k , k + l  as do also the right hand sides b and .  Now 

F̂
b̂

).b̂(b)F̂(I]b)F̂(IF)[(ID̂D 111 −+++−+=− −−−  

 An appropriate perturbation analysis of the first term of the right hand                      
side, together with an analysis of which follows that of                      
[Demko '77] {see his Proposition 2.1), then gives the desired result. The                      
details of the proof are lengthy and hence, for brevity, are omitted here.                      
Examples 3.4. The tension behaviour of rational cubic spline interpolants                      
is illustrated by the following simple examples for a data set in R

1)F̂(I −+

2.                     
Figures 3.1 show the effect of a progressive increase in global tension                      
from r = 3 (the cubic spline case) to r = 50. The effect of the high                      
tension parameter is clearly seen in that the resulting interpolant                      
approaches piecewise linear form. 
 
 
 
 
 

 r =3 r = 5 r = 50 
 

 
 
 
 
 
 
   Figures 3.1 Rational spline interpolants with global tension r i  = r 
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 r4 = 3 r4 = 5 r4 = 50 

 

 
 
 
 

Figures 3.2 Rational spline interpolants with tension r4 varying 
 
 
The Figures 3.2 illustrate the effect of progressively increasing the value                   
of a tension parameter in one interval, whilst elsewhere the tension                   
parameters are fixed.  A progressive 'local' flattening of the curve can be                   
seen. 
 
4. Rational cubic B-spline representation 

In this section we propose the construction of a local support rational                   
cubic B-spline basis. A method for evaluating the rational cubic B-spline                   
representation of a curve will be suggested by a transformation to                   
piecewise defined rational Bernstein-Bezier form. This form will also                   
expedite a proof of the variation diminishing property for the rational                   
B-spline representation. 

 
For the purposes of the analysis, let additional knots be introduced                   

outside the interval [t0,tn], defined by  t-3 < t-2 < t-1 < t-0 and                   
 Let   .tttt 3n2n1nn +++ <<<

 
ri  ≥  r > 2 ,  i = -3 ,…, n+2 ,                                           (4.1) 

 
be  tension parameters  defined on this  extended par t i t ion.   Rat ional  cubic  
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spline functions ,3n,...,1j,j +−=ψ can be constructed, see Figure 4.1,                      
such that 

 

                 (4.2) 
⎪
⎩

⎪
⎨

⎧

≥−+

<

=
−

j.jjj

2j

j

ttfortt)(tψ

,ttfor0

(t)ψ

 

 Figure 4.1  The rational spline  jψ
 

On the two intervals [ti,ti+1), i=j-2,j-1, jψ will have the rational                      
cubic form 
 

)/r)(tψh)(t(ψ)r;θ(R)(tψ)r;θ(R(t)ψ ii
(1)
jiiji1iji0j ++=  

 
    (4.3) .)(tψ)r;(R)r/)(tψh)(t(ψ)r;(R 1iji3i1i

(1)
ji1iji2 +++ θ+−θ+

 
The requirement  that  ( in  par t icular  a t  t),(cψ 2

j ∞−∞∈ j - 2 ,  t j - 1  and t j )                 
uniquely determines ,  since it  can then be shown that ,jψ
 

⎪
⎪
⎭

⎪⎪
⎬

⎫

=−++=

==

==

−−−−−−−

−−−−−−

−−

1,)(tψ),/r1(1h)/rh/r(hd)(tψ

d)(tψ/rhd)(tψ

0)(tψ)(tψ

j
(1)
j1j1j2j2j1j1j1jjj

1j1j
(1)
j2,j2j1j1jj

2j
(i)
j2jj

    (4.1) 

 
Where 
 
  dj = hj-1(rj-2)/(hj(rj-1-2)+hj-1 (rj-2)).      (4.5) 
 

I t  should be noted that   i s  a  member  of  our  c lass  of  ra t ional  spl ine jψ



12 
 
funct ions,  s ince the c lass  of  ra t ional  cubic  funct ions contains  a l l  
polynomials  of  degree 1  (see ident i t ies  (2 .8)  and (2.9)) .  Hence the l inear  
extension in  (4 .2)  for  t  ≥  t j  i s  a l lowable .  

The local support rational cubic B-spline basis is now defined by the                     
difference functions 

 
(t),(t)(t)B 1jjj +−= ϕϕ    j = -1,…,n+1                          (4.6) 

where 
 

j,1jjj (t))/cψ(t)(ψ(t) +−=ϕ  j = -l,...,n+2     (4.7) 
and 
 

).2/r(1h/rh/r(h)d(1)/rh/r(hd

)(tψ)t(ψc

1j1j1)j1jjjj2j2j1j1j1j

1j1j1jjj

−−−−−−−−−

+++

−++−++=

−=
 

(4.8) 
It should be observed that   has been constructed such that jψ

                    

       (4.9) 
⎪⎩

⎪
⎨
⎧

≥

<
=

+

−

.ttfor1

.ttfor0
(t)

1j

2j

jϕ

 
Thus, there immediately follows: 
Proposition 4.1.    (Rational B-spline)   The  rational  spline  functions             

Bj(t) ,  j  = -l , . . . ,n+l,  are such that 

 
(Local support)  ).t(ttfor0(t)B 2j2,jj +−∉=     (4.10) 

 

(Partit ion of unity)  .           (4.11) ].t,[ttfor1(t)B n0j

1n

1j
∈=∑

+

−=

 Figure 4.2 The rational spline (t)jϕ  
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Figure 4.3  The rational B-spline Bj  ( t)  
 
An explicit  representation of the rational cubic B-spline Bj on any 

interval [t i , t i + 1)can be calucalted from (4.2)-(4.8) as 
 

))/r(tBh)(t)(Bt;(R)(t)Br;(R(t)B ii
(1)
jiiji1iji0j +θ+θ=  

 
( ) ( ) ( ) ( ) ( ) ( )1iji3i1i

1
ji1iji2 tBr;Rr/tBhtBr;R +++ θ+−θ+     (4.12) 

where 
 

 0)(tB)(tB 1
)1(

j1j ==  for 1j,j,1ji +−≠      (4.13) 
and            
  

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

λ−=λ=

−λ=μ−λ−=

μ=μ=

+
∧

+++

∧∧

−

∧

−−−

,)t(B,)t(B

,)t(B1)t(B

,)t(B)t(B

1j1j
)1(

j1j1jj

jj
)1(

j,jjJj

1j1j
)1(

j,1j1jj

μ      (4.14) 

with 
 

      (4,15) 
⎪⎭

⎪
⎬

⎫

λ=λ−=λ

μ=μ=μ
∧

−−+

∧

.r/h,c/)d1(

,r/h,c/d

jjjjjj

1jj1jj1jjj

)

)
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Care fu l  examina t ion  o f  the  Berns te in -Bez ie r  ve r t i ces  o f  B j ( t )  in (4 .12)                
show these  to  be  non-nega t ive  fo r  r i  s a t i s fy ing  (4 .1 )  and  we  thus  have :  
Propos i t ion  4 .2  The  ra t iona l  B-sp l ine  func t ions  a re  such  tha t  

 
 (Positivity)  Bj(t)  ≥  0  for all  t .      (4.16) 
 

To apply the rational cubic B-spline as a practical method for curve 
design, a convenient method for computing the curve representation  
            

∑
+

−=

∈=
1n

1j
n0jj ],t,t[t,p)t(B)t(p      (4.17) 

    
i s  r equi red ,  where     d e f ine  the  con t ro l  po in ts  o f  t he  r epresenta t ion .  
N o w ,  b y  t h e  l o c a l  s u p p o r t  p r o p e r t y ,  

N
j Rp ∈

 

1n,,...0i,)t,t[t,p)t(B)t(p 1iij

2i

1ij
j −=∈= +

+

−=
∑            (4.18) 

 
Substitution of (4+.12) then gives the piecewise defined rational Bernstein-
B é z i e r  r e p r e s e n t a t i o n  
 

)t,t[t,F)r;(RW)r;(RV)r;(RF)r;(R)t(p 1ii1Ii3ii2iiiii0 ++ ∈θ+θ+θ+θ=  
 (4.19) 

where 
 

       (4.20) 
⎪
⎭

⎪
⎬

⎫

β−+β=

α+α−=

μ+μ−λ−+λ=

+

+

+−

,P)1(PW

PP)1(V

,PP)1(PF

1i)iiii

,1iiiii

1iiij1iii

With 
 

⎪
⎪
⎭

⎪⎪
⎬

⎫

+λ=λ+λ=β

+μ=μ+μ=α

+++++

−−
∧∧

.)r/hr/h(r/h

,)r/hr/h(r/h

1i1iii1ii1ii1ii

ii1i1iiiiiii

))
    (4.21) 

 
This transformation to rational Bernstein-Bézier form is very convenient               
for computational purposes and also leads to: 
Proposition 4.3  (Variation diminishing property) The rational B-spline             
curve p(t),   defined by (4.17), crosses any (hyper) plane of            
dimension N-1 no more times than it crosses the "control polygon" p joining                       
the control points 

,]t,t[t n0∈

{ } 1n
1jjp +

−=
.  
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Proof.  Examination of the coefficients ii , βα  in (4.17) shows that                                   

 
iα  ≥  0  ,    ≥  0 ,    and    iβ iα + iβ  ≤   1 . 

 
Thus Vi and Wi lie on the line segment joining Pi, Pi+1, where Vi is                      
'before'  Wi . Also, we can write 

 
ii1iii VW)1(F γ+γ−= −  (4.22) 

 
Where )r/hr/h/()r/h ii1i1i1i1ii +(=γ −−−−  and hence 0 < iγ < 1 . Thus the                      
control polygon of the piecewise defined Bernstein-Bézier representation is                      
obtained by 'corner cutting' of the B-spline control polygon, see Figure                      
4.4. Since th e piecewise defined Bernstein-Bézier representation is                      
variation diminishing, it follows that the B-spline representation is also                      
variation diminishing. □ 
 
 
 

 
 Figure 4.4 Corner cutting to obtain Bernstein-Bézier vertices 
 

The tension properties of the rational B-spline representation are                      
examined in the following two propositions: 
Proposition 4.3 (Linear B-spline tension property) Let ri ≥ r > 2,                      
i  =  j – 2 ,…., j+1. Then 

0Blim jjr
=φ−

∞→
 (4.23) 

 
where 
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     (4.24) 
⎪
⎩

⎪
⎨

⎧

<≤−

<≤−

=φ ++

−−−

,otherwise,0
,ttt,h/)tt(

,ttt,h/)tt(

)t( 1jjj1j

j1j1j1j

j

 
is  the linear polynomial B-spline (see Figure 4.5) 
 

Figure 4.5 The linear polynomial B-spline 
 
Proof. The rational B-spline defined by (4.12) can be expressed for                      

 as ]t,t[t 1ii +∈
 ,)r;t(e)t(B)t(B)1()t(B ii1ijijj +θ+θ−= +      (4.25) 
where 
 

 
{ },

)1()3r(1
))t(B()1))(t(B()1(h

)r;t(e
i

1i
)1(

jii
)1(

jii
ii θ−θ−+

θ−Δ+−θ−Δθ−θ
= +    (4.26) 

 
,h/))t(B)t(B( iij1iji −=Δ +       (4.27)    

                  
(cf.  (2.9)-(2.11)).   Here the Bj(t i)  and Bj

( 1 )( t i)  values are defined by                
(4.13)-(4.15), where for i  = j-l ,  j ,  j+l they are dependent on r i ,  i  = j-2,                
. . . , j  + l .   Examination of the coefficients (4.15) reveals that jj ,λμ

))  ,   and                
hence the Bj

( 1 )  ( t i)  are bounded and that  
  
 .1)t(Blim,0)t(Blim)t(Blim jjr,r1jjr1jjr j1j1j2j

===
∞→+∞→−∞→ −+−

    (4.28) 

 
I t  i s  then a  s imple mat ter  to  show that   0elim i =  and that  (4 .23)  holds .□  
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Remark 4.4   From (4.28) there follow the more precise results that                                
 
 0Blim jr 1j

=
∞→+

    on [ t j+1 , tj+2 ] , 

 0Blim jjr,r,r 1jj1j

=φ−
∞→+−

   on [ t j – 2 , tj ] , 

 0Blim jjr,r,r j1j2j

=φ−
∞→−−

   on [  t j-2 , tj ] , 

 0Blim jr 2j

=
∞→−

    on [ t j-2 , tj-1 ] . 

 
An immediate consequence of Proposit ion 4.3 (and Remark 4.4) is:                       

Corollary 4.5 (Global tension property) Let ri ≥r > 2, i = -2,...,n+l,                      
and let P denote the control polygon, defined explicitly on [ti, ti+1 ],                      
i = -l,...,n, by 

 
 .h/)tt()t(,PP)1()t(P ii1ii −=θθ+θ−= +       (4.29) 
 
Then the rational B-spline representation (4.17) converges uniformly to P                     
on . ∞→+− ras]t,t[ 1n1

Corollary 4.5 could be proved directly by studying the behaviour of the         
Bernstein-Bézier control points in (4.19) as ∞→r . We follow this                      
approach in the proof of the final proposition. 
Proposition 4.6    (Local tension property)  Consider an interval  [tk, tk+1]                              for 
a fixed and let }1,...,0{ −∈ nk
 

         (4.30) 
⎪
⎭

⎪
⎬

⎫

λ−+λ=

μ+μ−=

++

+

,P)1(PQ

,PP)1(Q

1KK1K

1KKK

 
denote two distinct points on the line segment of the control polygon                      
joining PK, PK+1 , where 
   

⎪
⎭

⎪
⎬

⎫

++=μ

++=λ

++−−−−

++−−++

,)hr/hr/h/(r/h

,)hr/hr/h/(r/h

k1k1k1k1k1k1k

k1k1k1k1k1k1k

     (4.31) 

 
(Note that Qk is 'before' Qk+1 since .)1<μ+λ Then the rational                      
B-spl ine representat ion (4.17)  converges  uniformly to  Q on  [ t  k  ,  t  k + 1 ]   as  
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∞→Kr , where 
   
 .h/)tt()t(,QQ)1()t(Q KK1KK −=θθ+θ−= +      (4.32) 
 
Proof.  It is a simple matter to show, in (4.15), that 
 
 ,0limlim 1krkr KK

=μ=λ +∞→∞→
 

 .limandlim 1krkr KK

λ=λμ=μ +∞→∞→
 

 
Thus, in the Bernstein-Bézier representation (4.19) on [tk  ,  tk + 1],  we have 
 
  1k1krkkr

QFlimandQFlim
KK

++∞→∞→
==  

 
Moreover, the Bernstein-Bézier representation can be expressed as 

 
]t,t[t,)r,t(e)r;t()r;t(P)t(P 1kkkkkkkk +∈+== l  

 
as in (2.9), where it can be shown that 
 
 ]tt[on0elimPQlimQlim 1k,kkrrkr KKK

+∞→∞→∞→
=+−≤− l  

 
which completes the proof.□   
Examples 4.7 Consider the data set in R2, identical to that of the                      
interpolatory examples 3.4, where the data now define the control points of                      
the rational B-spline representations.  Figures 4.6 and 4.7 illustrate the                      
effect, respectively, of progressive global and local increases in the                      
tension parameters. The results confirm the analysis of Corollary 4.5 and                      
Proposition 4.6 

 r = 3 r = 5 r = 50 
 

Figures 4.6  Rational B-spline curves with global tension r i  = r 
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 r4 = 3 r4 = 5 r4 = 50 
 

Figures  4 .7  Ra t iona l  B-sp l ine  curves  wi th  tens ion  r 4  vary ing  
 

5. Concluding Remarks 
An analysis of a rational cubic tension spline has been developed with                      

a view to its application in CAGD. We have found it appropriate to                      
construct a rational form which involves just one tension parameter per                      
interval, although clearly the rational form defined by (2.1) could be                      
generalized. One advantage of the use of C2 parametric continuity,                      
compared with that of more general geometric GC2 continuity, will become                    
apparent in the application of such a rational spline method for surfaces.                      
In this case we would propose to follow the approach of Nielson                      
[Nielson '86], in the use of the spline blended methods of Gordon                      
[Gordon '71]. Nielson proposes a spline blended surface of GC2 v-splines                      
but observes that only GC1 continuity results from such a spline blend of                      
GC2 curves. However, the use of parametric C2 curves in the blend will                      
alleviate this loss of continuity. 
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