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Abstract

Given a surface triangulation in three-dimensional space, an algorithm is developed
to iteratively remove triangles from the triangulation. An underlying parametric or
implicit surface representation is not required. An order is introduced on the set of
triangles by considering curvature at their vertices. Triangles in nearly planar surface
regions are prime candidates for removal. The degree of reduction can be specified by
a percentage or, in the case of bivariate functions, by an error tolerance.
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1. Introduction

Data reduction schemes are essential for efficient data storage. Storing and
processing more data than necessary is rather inefficient. In the context of
discretizing curves and surfaces, an efficient scheme should not use more
data points than necessary to represent a particular geometrical shape. Using
piecewise linear approximation for shape representation, keeping lots of data
points in nearly planar regions is rather unsophisticated.

Based on this observation, a data reduction algorithm is developed. Given
a surface triangulation in three-dimensional space, each triangle is weighted
according to the principal curvatures at its vertices. These curvature values are
pre-computed based on the discrete, triangulated representation of the surface.
A triangle is associated with a surface region with low curvature if the sum of
the absolute curvatures at its vertices is low. This measure is used as a weight
to determine a triangle’s significance.

The overall strategy consists of the following steps. First, curvature estimates
are computed for all vertices in the given triangulation. These estimates deter-
mine weights for all triangles. The lower the curvature values at the vertices of
a triangle, the lower its weight. The triangle with the lowest weight is identified
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and removed from the triangulation. It is replaced by a new point that lies
on a local surface approximant. The region affected by a triangle’s removal is
re-triangulated, and weights are computed for all new triangles introduced.

An iterative algorithm is developed which removes the triangle with the
lowest weight in each step. Thus, the triangulation changes iteratively, and the
local density of triangles reflects the surface’s curvature. At the end, surface
regions with low curvature are represented by relatively larger triangles.

It is possible to consider both curvature estimates at the vertices of a triangle
and interior angles. A formula combining curvatures and angles is used to
avoid undesirable “long” and “skinny” triangles. It must be mentioned that, in
some cases, a triangle cannot be removed. This is due to the re-triangulation
procedure that must not introduce piercing or overlapping triangles in the case
of (locally) planar surfaces.

The method does not require any underlying parametric or implicit surface
representation for the given triangulation. The curvature estimates themselves
are generated based on the discrete representation only. If an analytical sur-
face representation is given, one should take advantage of it and modify the
algorithm appropriately. Here, the entire technique relies on discrete surface
information as input.

Commonly, the term data-dependent triangulation is used when function
values at data points in the plane are considered for constructing a “good”
triangulation. This concept is discussed in (Dyn et al., 1988, 1990). Knot
removal strategies for spline curves and tensor product surfaces (in the context
of bivariate functions) are described in (Arge et al., 1990) and (Lyche and
Morken, 1987, 1988). Given scattered points in the plane and associated func-
tion values, an iterative knot removal algorithm is discussed in (Le Méhauté
and Lafranche, 1989). The technique presented in this paper requires a cur-
vature approximation scheme for discrete surface data. The scheme used is
discussed in (Hamann, 1993a).

The new data reduction technique is similar to the method described in
(Le Méhauté and Lafranche, 1989). However, the method discussed below
removes triangles instead of points. Furthermore, it is not restricted to a surface
triangulation obtained as the graph of a bivariate function. The new scheme
can be applied to more general surface triangulations (e.g., triangulations of
parametric surfaces and contours of trivariate functions).

The triangle removal algorithm allows the user to specify a percentage of
triangles to be removed or an error tolerance. Currently, the second alternative
is implemented for graphs of bivariate functions only. The removal of a
triangle (and therefore its three vertices) requires a re-triangulation strategy. It
is advantageous to compute a new point that replaces the vertices of a removed
triangle. The “hole” created by removing a triangle can also be re-triangulated
without introducing a new point. Unfortunately, no efficient re-triangulation
strategy could be found without the introduction of a new point.
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Fig. 1. Connected, knot-to-knot surface triangulations.
2. Definitions and requirements

Some necessary definitions are given before presenting the overall triangle
removal algorithm. A certain data stencil is involved when removing a triangle,
and certain conditions must hold for this stencil for a triangle to be remov-
able. This is outlined in the following paragraphs. Only surface triangulations
belonging to the type defined next are considered.

Definition 2.1. A connected, knot-to-knot surface triangulation is a finite set of

triangles satisfying the following conditions (cf. Fig. 1):

e Each edge in the triangulation is shared by at most two triangles (no
bifurcations).

e A vertex in the triangulation can be shared by any number of triangles.

e Each triangle has at least one point in common with another triangle (con-
nectivity; requires at least two triangles).

e If a vertex of a triangle is shared by a second triangle, then this point is also
a vertex of the second triangle (knot-to-knot property).

e No triangle has an intersection with the interior of any other triangle (no
piercing/overlapping).

Two triangles are called neighbors if they share a common edge.

Definition 2.2. Considering a connected, knot-to-knot surface triangulation, the
triangle platelet P; associated with a triangle 7; (identified with the index triple
(v{,v},v}) specifying its vertices) is the set of all triangles 7 sharing at least
one of 7T;’s vertices as a common vertex.

The triangle platelet P; is the data stencil in the surface triangulation that is
affected by the removal of triangle 7;.
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Fig. 2. Triangle platelets with connected/disconnected corona and with cyclic corona.

Definition 2.3. The set of triangles
Ci = Pi\{Ti} (1)

is called the corona of the triangle platelet P;. The corona C; is called connected
if for each pair of triangles 7;, 7;, € C; triangles 7;,,...,T; € C; exist such
that

T, and T, are neighbors, i=1,...,m—1; (2)

otherwise, the corona is called disconnected. The corona C; is called cyclic if it
contains triangles 7}, 7}, and 7}, such that

T, and T}, , ..., are neighbors, i =0,1,2; (3)

otherwise, the corona is called acyclic. The corona C; is called complete if
each triangle in C; has exactly two neighbors which are also elements of C;;
otherwise, the corona is called incomplete.

Only triangles surrounded by a connected and acyclic corona can be removed.
Fig. 2 illustrates triangle platelets with connected/disconnected corona and one
with a cyclic corona.

Definition 2.4. The set of vertices in the triangle platelet P; without the vertices
of triangle 7; itself is called the boundary vertex set of the triangle platelet P;.

Based on the knowledge whether triangles are neighbors or not, it is possible
to order the triangles in a corona (e.g., counterclockwise). The edges implied
by the boundary vertex set can be ordered such that a polygon describing
the polygonal boundary of the triangle platelet is obtained (“platelet boundary
polygon”). In the following, it is assumed that both 7;’s vertices and the
vertices of its platelet boundary polygon are oriented in the same way. This
order and the platelet boundary polygon can be computed straightforward. An
example is illustrated in Fig. 3. Arrows indicate the orientation of edges.

It must be emphasized that certain triangles cannot be removed in nearly
planar surface regions if their removal would introduce serious problems for
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Fig. 3. Triangle platelets with ordered triangles defining their corona and oriented platelet boundary
polygons.

the re-triangulation process. Based on this observation, a half-space test is used
that determines whether a triangle can be removed or not. This test projects
a triangle platelet into the plane implied by triangle 7; being a candidate for
removal. The test involves these steps:
(1) Determine the plane equation of the plane P given by 7;.
(i1) Define an orthonormal coordinate system in P with 7;’s centroid as
origin and two orthogonal unit vectors in P.
(111) Compute the distances of all points of the platelet boundary polygon
from P.
(iv) Project all points of the platelet boundary polygon into P and express
the projections in terms of the local coordinate system in P.
(v) Compute line equations L; in P determined by the projected line
segments of the platelet boundary polygon.
(vi) Test whether the centroid of 7; lies in the (planar) region obtained as
the intersection of all half-spaces L; > 0. If this condition is violated,
T; must not be removed.
These steps are now discussed in detail. The outward unit normal vector of
the plane P is denoted by

dl Xdz

_— 4
1, = da]) )

n= (n*,n",n")t =

where d, = a;—apand d, = a,—aare defined by 7/’s vertices a ;, and “|| ||”
is the Euclidean norm. Writing the plane equation for P as

n-(x—¢c)=Ax+ By +Cz+ D =0, (5)
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where ¢ is 7;’s centroid, two orthogonal unit basis vectors in the plane P are
defined by

d,
b= —— and b, =nxb,. 6

The signed distances d;, j = 0,...,n;, of the (n; + 1) platelet boundary
points y; = (x;,),2;)" are

dj=ij+Byj+Cz,-+D. (7)

Projecting these platelet boundary points into P yields the points

yP=y;,—dn. (8)

Expressing yf in terms of the local coordinate system yields the tuples
(uj,v;) = (dj-by,d;-by), (9)

where d; = y¥ —c.

The points yf define a planar polygon which might intersect itself. The
line equations of the single segments are expressed using the local coordinate
system. The implicit line equation for the (oriented) line L;(u,v) is given by

Li(u,v) = —Avj(u—u;) + Auj(v—v;) =0, (10)

where Auj = U(j41)mod(ni+1) = %j and AVj = V(jy1)mod(ni+1) ~ Vj-

These line equations are used to determine whether a triangle 7; can be
removed or not. If the centroid ¢ (having local coordinates (0,0)) lies in the
positive half-space of all lines L;, the triangle 7; can be removed. This implies
that ¢ must be an element of the solution set to the system of the linear
inequalities

Lj(u,v) > 0. (11)

Only triangles surrounded by a connected and acyclic corona passing this half-
space test can be removed. Fig. 4 shows the half-space test applied to a triangle
T; that passes the test.

3. Computing weights for triangles

In order to determine the weight of a triangle in the surface triangulation,
the principal curvature estimates at its vertices and its interior angles are
considered. The principal curvature estimates are part of the input of the
reduction scheme and are based on an approximation scheme for surface
triangulations (see (Farin, 1992) and (Hamann, 1993a)).
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Yi
P A
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P

Fig. 4. Boundary vertex set and projection into P; triangle passing half-space test.

Definition 3.1. The sum A of the absolute values of the principal curvatures k;
and x, at a point x in a surface triangulation is called the absolute curvature,

A = [iy| + [ra. (12)

Each triangle is weighted by the three absolute curvatures at its vertices.
In order to consider the shape of a triangle, the interior angles are taken
into account as well. Equilateral triangles are favored. The combination of
absolute curvatures and interior angles as significance measure requires the
next definitions.

Definition 3.2. The angle weight o; of a triangle 7; is given by

o =2((icosaj)-1) € [0,1], (13)

j=1

where o, j = 1,2,3, are T}’s interior angles.

The following lemma proves that the range of g; is in fact the interval [0, 1].
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Lemma 3.3. Denoting the interior angles of a triangle by oy, ay, and a3, the
range of the function

3

f(ai,a2,03) = ) cosa; (14)

j=1

is the interval [1,3].

Proof. Since ELI a; = m, it is sufficient to analyze the bivariate function
g(aj,a) = cosa; + cosay + cos(m — (a; + az))

on the domain D = {(aj,a;) | aj,az = 0,a; + a; < n}. One easily proves
that g equals 1 on D’s boundary:

g(0,a3) =1 4+ cosay + cos(m —ay) = 1,
g(a;,0) =cosa; + 1 +cos(m—a;) =1, and
glapj,m—a;) =cosa; +cos(m—a;) +1=1.

A critical point must satisfy the equations

—6g (ay,2) = —sina; + sin(7x — (a; + a3)) =0
3&1

and
og : .
——(a,az) = —sinay + sin(z — (o) + a3)) = 0.
8052

Therefore, sina; = sina; is a necessary condition, which holds for a; = a»
and a; = m — «,. The first case (a; = ay) defines the univariate function

h((l’l) = 20080:1 + cos(m — 20:|)

having critical points at a; = 0 and a; = j7, since #'(0) = A'(§n) = 0.

Considering «; = iz results in the function value f (37, 37, 37) = 3. The

second case (ay = m—a;) defines part of D’s boundary where f equals 1. [

The weight function in Eq. (13) assigns maximum weight to an equilateral
triangle and small weights to “long” and “skinny” triangles.

Definition 3.4. The curvature weight p; of a triangle 7; is given by the sum of
the absolute curvatures at its vertices,

3
pi =) A, (15)
j=1

where 4; = |rc{ | + |rc{|, J = 1,2,3, are the absolute curvatures at 7;’s vertices.



B. Hamann / Computer Aided Geometric Design 11 (1994) 197-214 205

Definition 3.5. The triangle weight w; of a triangle 7; is given by

Wi = 0;pi. (16)

4. Removing a triangle from the triangulation

Assuming that triangle 7; has the lowest triangle weight among all triangles
and that it is removable, triangle 7; is removed from the triangulation by re-
placing its vertices by a new point p, whose construction is explained next. The
new point is connected to each point in P;’s boundary vertex set determining a
first re-triangulation. The new point is computed by considering the local sur-
face geometry. This is achieved by constructing a local least-squares polynomial
approximation to the data and requiring p to lie on this approximant.

Two possibilities are discussed for the construction of the new point p
replacing the triangle 7;. The first possibility is to construct a bivariate function
f (u,v), using an appropriate coordinate system for the points determining 7;’s
triangle platelet (like the one used in the half-space test), and to evaluate f at
(0,0). The second possibility is to compute an implicit function f (x,y,z) = 0,
considering a similar set of data points, and to generate the new point by
intersecting a line with the implicitly defined surface.

The first possibility has been chosen for the implementation and is described
in detail. The construction of the bivariate function f (u,v) follows the same
principle as the half-space test. The only difference is the choice of an origin
o in the plane defined by the triangle 7;. The corona determines where the
origin is placed. The rationale for choosing different origins lies in the desire
to remain close to the polygonal boundary of the original surface triangulation
when the surface triangulation is not closed. Obviously, the five cases listed
below are heuristic. The different cases for choosing the origin are as follows:
e If the corona C; is complete, the centroid of 7; is chosen.

e If T; has three neighbors, but its corona is open, the common vertex of 7;
and the first and last triangle in C; is chosen.

e If T; has two neighbors, and the first and last triangle in C; are both (are
both not) neighbors of 7}, the mid-point of 7;’s edge not shared by another
triangle is chosen.

e If 7; has two neighbors, and the first (the last) triangle in C; is a neighbor
of T;, and the last (the first) triangle in C; is not a neighbor of 77}, the vertex
only shared by 7; and the first (the last) triangle in C; is chosen.

o If 7; has a vertex not shared by another triangle, this vertex is chosen.

These different choices for the origin e are shown in Fig. §.

Denoting the vertices in 7;’s triangle platelet by x,...,x, (which includes
both T;’s vertices and its boundary vertex set), they have local coordinates
(#j,v;) in the plane P. Considering these points’ distances d; from P, a



206 B. Hamann / Computer Aided Geometric Design 11 (1994) 197-214
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Fig. 5. Different choices for origin ¢ of local approximant.

least-squares, degree-two polynomial is constructed using the conditions

€2,0 €2,0
u12 uvy Uy 'Ulz (2 1 €11 CL1 d]
. Cl.O = U CI,C' — . (1?)
T, T, T €o,2 Co,2 )
Un;” Un;Un; Un; Un;~ Up, 1 Co,1 Co,1 dﬂi
€0,0 €0,0

Solving the normal equations determines a local approximant, provided that
the determinant of UTU does not vanish. If it does vanish, the number of
points used in the construction is increased appropriately. Finally, the point

p=o0+f(0,0)n, (18)

where n is T;’s outward unit normal vector (ordinate direction of f'), is used to
replace triangle 7;. Since this new point becomes a vertex in the triangulation,
principal curvature estimates must be computed for it. These estimates are
obtained directly from the local approximant f using the following lemma.



B. Hamann / Computer Aided Geometric Design 11 (1994) 197-214 207

Lemma 4.1. The two principal curvatures k, and k, of the graph (u,v, f (u,v))T
C R3, u,v €R, of the bivariate polynomial

fuv) =Y cipujivt (19)
i+k<2
ikz0

at the point (0,0, £ (0,0))T are given by the two real roots of the quadratic
equation

det (202,0(1 + c01%) = C11€10C01 — K —2C20C10C0.1 + ¢1.1 (1 + 1,0°) ) _0
e (1 + co1?) —2co2€10c01  —Cri€100,1 + 2¢02(1 + ¢10%) — K

(20)

Proof. The principal curvatures of f’s graph are the eigenvalues of the matrix

-1
Yt [V + £ Sk
A—ll (ﬂwﬂw)(ﬁtﬁ} 1+J‘;2) ’

where /;, = \/1 + .2+ f,? (see (do Carmo, 1976)). Evaluating —A4 for
u = v = 0, one obtains the matrix

2
1 (202,0 C1,1 ) (1 + €10° €1,0€0,1 )
L \c11 2¢o oo 1+ ¢y

where /| = \/ 1 + ¢102 + co,12, having the characteristic polynomial given in
(20). O

-1

The two roots of (20), x; and k;, determine the absolute curvature at the
point p and therefore the curvature weights for all triangles sharing p as a
common vertex.

The second possibility to generate the point p is the construction of an
implicitly defined surface, e.g., a quadric surface f(x,y,z) = 0 using the
conditions

f(xj:yj’zj) = Z C.f,k,fxfiyjkzji = 05 j = la---anl' > 9)

i+k+i<2
ik,J0z0

and one additional linear condition, e.g.,

fLLD = Y cr=1, (21)

i+k+1<2
ik =0

where (x;,y;,z;)T is a vertex in 7T}’s triangle platelet and (x;,;,z;) # (1,1,1).
If the triangle platelet does not provide a sufficient number of conditions,
additional points are necessary.

The solution is a quadric surface that locally approximates the vertices in
the triangle platelet P;. This approach has several drawbacks. First, it requires
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Fig. 6. Removal of triangle T; and first re-triangulation.

at least nine points to compute the local approximant. Second, one has to take
care of the special case when all points belong to the zero set of a quadric.

Once a quadric has been computed, the point p replacing 7; is obtained
by intersecting the quadric with the line x(¢) = o + tn, t € R (see equation
(18)). The resulting quadratic equation

S i (x@) () (z() =0

i+k+1€2

ik,lz0
might (or might not) have a real solution. The real solution associated with
the point closest to o is chosen as the new point p. The fact that this point
might not be unique and the possibility of having no intersection at all are
additional disadvantages of the implicit approach.

Principal curvatures must be computed for the new point p on the quadric. It

is well known in differential geometry how to compute the principal curvatures
in this case, and an appropriate reference is (O’Neill, 1969).

5. Local re-triangulation and the reduction algorithm

A first local re-triangulation of the boundary vertex set and the new point p
is constructed by introducing edges from each vertex in B; to p. Fig. 6 shows
this process.

In order to obtain a good re-triangulation in the sense of optimizing the angle
weights (see Definition 3.2), an iterative edge swapping algorithm is applied
to the set of new triangles (see (Lawson, 1977) and (Choi et al., 1988)).
The main idea is to swap diagonals of (non-planar) quadrilaterals until angle
weights can no longer be improved. The diagonal of a quadrilateral is swapped
only if the region obtained by projecting it into the plane P is convex. Fig. 7
shows the improvement of angle weights by swapping a diagonal.

The overall triangle reduction algorithm can be summarized as follows:
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Fig. 7. Increasing angle weights of triangles.

Algorithm (7riangle reduction by iterative triangle removal).
Input: set 7 of N triangles (including neighborhood information),
set V of vertices (including principal curvatures), and
a percentage p € [0,100].
Output: reduced set 7 of triangles and reduced set V of vertices.

compute weights for each triangle in 7
while number of triangles is greater than (p/100)N
( among all triangles having a connected, acyclic corona and passing the
half-space test, determine the triangle 7; with minimal weight;
remove triangle 7; from triangulation (using either the bivariate or
trivariate, implicit least squares approximation);
compute a first re-triangulation;
improve the re-triangulation by
maximizing the minimum angle weight;
compute weights for all new triangles;

Triangles not surrounded by a complete corona, such as triangles containing
boundary vertices or boundary edges of the original triangulation, can be kept
by marking them at the beginning. This, however, will preserve the original
density of points on the polygonal boundary. In the case of closed surface
triangulations, this problem does not arise.

The termination criterion in the algorithm (using a percentage) can be
modified in the case of the graph of a bivariate function. A (discrete) root-
mean-square (RMS) error can be computed by computing distances between
points on the original piecewise linear function and the reduced one. The
algorithm stops when a prescribed error tolerance is exceeded.

It is possible that the algorithm cannot find a triangle with a connected,



210 B. Hamann / Computer Aided Geometric Design 11 (1994) 197-214

acyclic corona passing the half-space test. In this case, the algorithm stops.

6. Numerical test results and examples

The triangle reduction strategy has been tested numerically for graphs of
bivariate functions. All test functions f (x,y) are defined over [—1,1]x[—1,1]
and evaluated on a 51-by-51 grid with uniform spacing,

oy (e L) =
(x,,y,)_( l+25, 1+25), i,j=0,...,50,

determining a set of points on their graphs,
{(x:',}"js'f(x:',J”j))T | l’.}, = 0:"'350}'

A graph’s original triangulation is obtained by splitting each quadrilateral
identified with its index quadruple

(@), G+ 1)), G+1,j+1), (i,j+1))
into the two triangles

((G,7), i +1,j), G+1,j+1)) and

((Z,j), G+ 1L,j+1), (;,j+1)).

Original and reduced triangulation, which are both piecewise linear functions,

are compared at the original knots (x;,y;), i,j = 0,...,50. The discrete RMS
error is given by

50 50

1 .

j=0i=0

where / denotes the piecewise linear function implied by the reduced triangu-
lation.

Table 1

RMS errors for triangle reduction of graphs of bivariate functions

Function 50% 80% 90%

1. Cylinder: V2-—x2 .00049 .00100 00211
2. Sphere: Va4 — (x2 4 p2) .00045 .00123 .00229
3. Paraboloid: A(x2 +y?) .00061 .00159 .00362
4. Hyperboloid: A(x2—y?) .00025 .00079 .00201
5. Monkey saddle: 2(x3 = 3xy?) .00036 .00084 .00185
6. Cubic polynomial: A5(x3 4 2x2y — xy + 29?) .00038 .00103 .00216
7. Exponential function: e~ 100 00034 00092 00208
8. Trigonometric function: (cos(nx) + cos(my)) .00036 .00109 .00205
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Fig. 8. Triangle reduction of 50%, 80%, and 90% for graph of f (x,y) = .4(x2+4y2),x,y € [—1,1].

Fig. 9. Triangle reduction of 50%, 80%, and 90% for graph of f (x,y) = .15(x3 + 2x2y—xy +2y?),
x,ye[-1,1].
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Fig. 10. Triangle reduction of 50%, 80%, and 90% for graph of f (x,y) = .1(cos(mx) + cos(my)),
x,y€[-1,1].

In Table 1, the original and reduced triangulations are compared for different
degrees of reduction. The number of triangles has been reduced by 50%, 80%,
and 90%. During reduction it is ensured that the reduced triangulation still
covers the whole domain [—1,1] x [—-1,1].

The examples shown in Figs. 8—10 are based on the bivariate approach for
replacing a triangle by a new point. Each figure shows the original (upper-left)
and three reduced triangulations for different degrees of reduction (50% upper-
right, 80% lower-left, and 90% lower-right). The functions chosen in these
examples are the functions 3, 6, and 8 from the table above. The curvature
input needed is pre-computed using the approximation scheme described in
(Hamann, 1993a).

Fig. 11 shows the reduction algorithm applied to a torus, and Fig. 12 shows
the original triangular approximation of a human skull (left, about 60,000
triangles) and the result after a reduction of 90% (right). All triangles are
flat-shaded.

7. Conclusions

A new method for data reduction has been presented. This technique is
based on an iterative triangle removal principle. The degree of reduction can
be specified either by a percentage or, in the case of graphs of bivariate
functions, by an error tolerance. The test results confirm the quality of this
approach.
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Fig. 11. Triangle reduction of50%, 80%, and 90% for torus
((2 + cosu)cosv, (2 + cosu) sinv,sinu)T, u,v € [0,2x].

Fig. 12. Triangle reduction of 90% for piecewise triangular approximation of human skull.
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The method can be extended to higher-dimensional manifolds as well, e.g.,
the graph of a trivariate function, whose domain is given as a collection of
tetrahedra and whose graph lies in four-dimensional space. A curvature approx-
imation scheme for such higher-dimensional manifolds has been introduced in
(Hamann, 1993b). However, the reduction scheme has not been generalized
yet to higher-dimensional triangulations.
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