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Absiract

A method for the approximation of the three principal curvatures at points on a discretized,
trisingulated 3D manifold in 4D space { referred to as 3-surface) is presented. The approximation
scheme is based on the fact that a parametric 3-surface can locally be approximated by the graph
of a trivariate function. Using a local coordinate system, a least square polynomial approximation
is constructed for the estimation of the principal curvatures at each 3-surface point, Curvature 15
extremely useful for the analysis of qualitative characteristics of surfaces. The technique presented
is an example of extending existing surface interrogation methods to multivariate data. Such a
genernlization is valuable for scienlific visualization.

Kevwonds: Approximation; Curvature; Differentioble manifold; Goauss-Weingarten map; Least square
approximation; Scattered data: Triangulation

1. Introduction

The theory of parametric surfaces can be generalized 10 parametric 3D manifolds
(3-manifolds) in 4D space, which are referred 1o as 3-surfaces in the following. The
notation

x(w) = (x(w, v, w), ¥l v, wh, z(uo,w) a(u,po,w)) ()

is used for 3-surfaces. The graph of a trivariate function f is a special 3-surface, since
its parametrization is given by

x(w) = (u.o,w fluo,w)). (2)
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ESIH O16T-RA96( 93 EDN45.]



a2 8. Homann S Compurer Aided Geomerric Design I {1594) 621-632

A 3-surface can locally be approximated by the graph of a trivariate function. This fact
is used for the approximation of the three principal curvatures at points { x;, ¥, 2, o)
on a discretized, triangulated 3-surface.

Curvature is essential for understanding qualitative properties of curves, surfaces, and
3-surfaces (see (Farin, 1992) ). Qualily interrogation of parametric surfaces used in car
body and ship hull design makes extensive use of curvature plots. The curvature of a
3-surface is rendered in its 3D parameter space by slicing in u-, v-, and w-directions and
coloring the slicing planes according to curvature. Other visualization techniques for 3D
data are discussed in (Hagen et al., 1993) and (Niclson and Hamann, 1990}, Curvaturc
plots are also used for the analysis of bivariate/ trivariate scattered data interpolants ( see
{ Nielson et al., 1991)).

This paper presents a method for the approximation of principal curvatures al 3-surface
points. Normal vectors must be known at each 3-surface point for the approximation.
Based on the triangulation and the normal vectors, local least sgquare approximanis are
construcied. These are differentiated, and their graphs’ curvalures are used as curvature
estimates at the 3-surface points. The estimation of a normal vector at a point on a
triangulated 3-surface is based on averaging the normals of tetrahedra sharing that point.
This is analogous to the approximation of a normal at a point in a triangular surface
mesh by averaging the normals of nangles surrounding the poinl. Normal vectors al
points on the graph of a trivariate function f are given by the function's gradient. The
gradient approximation schemes discussed in (Stead, 1984) for hivariate data can be
generalized to trivariate data. A gradient estimation scheme that works particularly well
for structured, rectilinear data is described in (Zucker and Hummel, 1981).

The method presented in this paper can be used for the analysis of multivaniate data.
Analysis tools for multivariate data are becoming increasingly important, in particular
in computational fluid dynamics (CFD) and the finite element method (FEM). Sophis-
ticated analysis and visualization techniques for vector and tensor fields have recently
been developed (see (Helman and Hesselink, 1990) and (Delmarcelle and Hesselink,
19923 ). Another application for curvature estimation 15 the area of scattered data in-
terpolation. Future interpolation methods might wtilize curvature input following the
trend in geometric modeling of curves and surfaces (“geometric continuity,” see ( Farin,
1992)).

The concepts of differential geometry and vector calculus used in this paper can be
found mm ( Auslander and MacKenzie, 1977; Chuang and Hoffmann, 1990; do Carmo,
1976; Farin, 1992; Marsden and Tromba, 1988; O"Neill, 1969). A comprehensive work
on differential geometry 15 (Spivak, 1970), Data reduction schemes, which relate the
significance of data points to curvature, are described in ( Hamann, 1994) and ( Hamann
and Chen, 1994a,b).

2. Curvature of graphs of trivariate functions

As mentioned in the introduction, a parametric 3-surface can locally be approximated
by the graph of a trivariate function. Therefore, the curvature properties of a 3-surface
can be investigated by analyzing graphs of local trivariate approximants. The curvature
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properties of such graphs are reviewed in this section.

The graph of a trivariate function f{w,e.w), f in class C", m = 2, mapping an
open set § C R into R can be viewed as a regular parametric 3-surface using the
parametn zation

x(w) = (wo,w, flwo,w)),  (uo,w) €5 C R (3)
The partial derivatives of this 3-surface are
Xy Xy &y {l.ﬂ-ﬂ-f-] (0, Ilnl',url'] '[Ur“-l-fuil
Luy Iﬁl' I-u-' - {ﬂ.ﬂ,ﬂ_f,.} {ﬂlﬂrnr.fur} [ﬂlﬂrnv.fh'n'] {4}
Tw Tow | (0,0,0, f) (0,0,0, fru) |
=t (0,00, fiw)
and the 3-surface normal miu) at x(w) is given by
cross product (Xy, X Xy) (= fo.=fo.=fu 1) (5)

W)= leross product (., %o, 50|~ 1 + thi 3+ ﬁ_! n Jru-"'

Remark. The components of the normal vector i = (a',n*, n°, n") of a 3-surface are
defined by the determinant of the 4 x 4 matrix containing its first derivative vectors.
Thus, the normal vector of the graph of a trivariate function is given by

(1 0 0 I
g 1 0 J
¥ : T
wi+nl+nK+n"L= 0o 0 1 Kl {6)
L o fw L

Definition 1. The rangent space at a point Xg = x(up) on a regular 3-surface x{u) is
the set of all points y in B satisfying the equation

y=xq +axylug) + bx () +cxylmg), abeceR {(T)

The Gauss-Weingarten map (see (do Carmo, 1976)) for the graph of a trivariate
function is given by

gy dypz a3
—A=— @ a3 @3
23] 171 13

| [fa Su S\ (145 Rfe fufe\T

5? .ful: fﬂ-‘ fl-‘- fh..rr 1 +.|F|T fl-'fﬂ-' ' (8)
fiw T T N Nafw Tolw LETE

where [= /1 + f2+ f2+ fi.

Definition 2. The three (real) cigenvalues sy, x3, and 3 of —A in (8) are called
principal curvatures of the graph of the trivariate function f{u,v,w), They are the
roots of the characteristic polynomial of —A, the cubic polynomial
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det{ —A — kf)=x" + (a1 + a37 + a13) 2
+ (a8 +ay, 835 +ayaasy — ay ay ) — @y 3a) — dy3di g ) K
+dy, ay 2835 + @y a3 383, + d) 3dy,143,2
— @),y 3683 2 = @) 24y @33 — @) 3d7 203 1. (9)

The average H of the principal curvatures is called mean curvature, and the product K
15 called Gaussian curvarure,

H =3k + w1+ w3), K = xy x5 (1)

3. Curvature approximation of triangulated 3-surfaces

This section describes the curvature approximation scheme for 3-surfaces. The scheme
15 hased on the construction of a local polynomial approximation to the given data. This
approximation requires a triangulation of the data points and normal vector estimates at
the 3-surface points. At each 3-surface point, a least square quadratic polynomial is com-
puted, and the principal curvatures of the graph of this approximant are used as curvature
estimates at that point. The following theorems are needed for the approximation.

Theorem 1. Each regular parametric 3-surface x{u) of class m, m = 2, can locally be
represented in explicit form f = f(%,7,2), where f is ar least C* continuous. Choosing
a 3-surface point xy as origin of a local coordinate system and the f-axis in the same
direction as the surface normal ny at xq, the Taylor series of f, considering terms up
fo degree two, i5

F(2, 9. 8)=3(eap0t” + 2¢) 1089 + 2000, %8
+cpa0f + 2e00.192 + copatt). (11)

Any three unit vectors in the tangent space at xy determining a right-handed orthonormal
coondinate system can be chosen. Changing the orientation of the three unit vectors
apprapriately yields the osculating paraboloid ar xg,

J(2,5,2) = §(Fapof® + Tozof® + Bopaf®). (12)

The principal curvatures at xq are the coefficients of the osculating paraboloid, i.e.,
K1 =Ta00 K1 =To2p and K3 = Top2.

Proof. Sec (Spivak, 1970), [

Remark. In Theorems | and 2, the independent variables are denoted by £, §, and 2
in order to indicate their relation to the local coordinate system at xp.

Theorem 2. Let [ be the trivariate polynomial
Fl0,W) =Y e '@, i+ j+k<n, ijikz0, (13)
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where a point in 3D space has coondinates i, 0, and W it with respect to a coordinate
svstem given bv an origin 0 and three orthonormal basis vectors by, b, and b,
Changing the erientation of the orthonormal basis vectors changes the represeniarion
af the trivariate pelynomial, but not its graph {(4,0,%, f(4,0,%))}.

Proof. Sec surface case treated in (Hamann, 1993), [

Al each 3-surface poinl, the curvature approximation scheme considers a cerlain
neighborhood of data in the triangulation, which is called platelet. This allows the
localization of the approximation process.

Definition 3. Given a triangulation of a set of 3-surface points, the platelet P; associated
with the point x; is the set of all tetrahedra (determined by their index-quadruples
(v, 2 43, Ja) ) sharing x; as a common vertex,

Po=| M dsja) li=jy Vi=g Visj vi=j} (14)

The vertices of F; are called platelet poinis,

These are the steps required for the approximation of the three principal curvatures
at a 3-surface point x;:
(i) Determine the platelet points associated with x;.
(i) Approximale the oulward normal a; at x;.
{iii) Compute the tangent space T passing through x; having normal n;.
(iv) Define a local coordinate system for T with x; as origin and three orthonormal
basis vectors in T
(v} Compute the distances of the platelet points from T
(vi} Project the platelet points onto the tangent space 7.
(vii} Represent the projections obtained in {vi) with respect 1o the local coordinate
system constructed in (iv).
(viil) Interpret the projections of the platelet points in T as independent variables
and their distances from T as function values,
(ix) Construct a polynomial f approximating the data derived in ({viii).
(x) Compute the three principal curvatures of f's graph at x,.

Some of these steps are explained in further detail. Let {y; = (x;, ¥, 2.0} | j =
0,....m} be the set of platelet points associated with x;. All 3-surface tetrahedra in x;'s
platelet must have the same orientation for the approximation of an outward (1) normal,
Since the associated platelet in paramcter space is given by the triples (wmj, v, wy),
J=0,....m, implying a set of 3D domain tetrahedra, the boundary of the union of
these domain tetrahedra is a set of triangles. If the vertices of all these triangles are
ordered consistently (all clockwise/all counter-clockwise), the 3-surface platelet points
on the 3-surface are ordered consistently as well (see ( Edelsbrunner, 1987) ).

An outward normal vector is computed for each 3-surface tetrahedron in x;'s platelet.
Such an outward normal vector is defined by the cross product of the three vectors

(vhotp b g ) =2 =9, Je € {0,....m}\ {i} k=1,2,3, (15)
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where & implies the order of the three 3-surface points of a boundary face in x;'s plateler.
The components of the 3-surface tetrahedron’s outward normal vector (#%, AY, A% /")
arc given by the determinant
vy 5oy I

;

3 ¥
i vy U J! (16)
1

=X aY p o omE ey o | ¥
AT+ 7+ K+i"L o Kl
o vy of L
Eventually, the outward unit normal vector m; = (n*, 0¥, 0%, n") al x, is estimated by
averaging the outward normal vectors of all 3-surface tetrahedra in x;’s platelet and
normalizing the result.

The implicit linear equation for the tangent space T al x; is

A (x—xi)=n"x+n'v+ itz +na-(ng+ny+0fn+ )

=Ax+By+Cz+Da+E=0. (17}
The four vectors
& (1.0,0,0)
a3 (0,1,0,0)

m) o \=fufofu D1+ 4 24 12

are lincarly independent and define a basis for R*. Obviously, @, a;, and a3 are not
necessarily perpendicular to n,.

Gram-Schmidt orthogonalization is used for the construction of an orthonormal basis
for B* consisting of the basis vectors m,, by, by, and by, where by, by, and b; are
computed sequentially as

_oa — ey mmy
ey — (a nng”
3 ay— ((az-mdm+ (ay-by)by)
|az = ( (@ m)m + (az- by )by )|
ay— ((a-m)m = (ay-by by + (@ - ba) By
las = ((as - m)m + (@ by) by 4 (@3- B2 )Bn) |
("l J|" denoting the Euclidean norm).

The perpendicular, signed distances d;, j = 0,...,m;, of the platelet points y, from
the tangent space T are

and (19)

by

dJ =A|I_r+ﬂ}r‘| +C:J| +ﬂﬂ'_ll +E-| 12':}}
Projecting the platelet points y; onto T yields the points _rJT. where

y{ =y, —dm. K1
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Each point j:,'r in T is expressed with respect to the coordinate system given by the
origin x; and the basis vectors by, b, and b;. Computing the difference vectors

d_.'=I_|IT_l[J! j‘=['|-ll'l|ﬂ|'|- {ﬂ}

and expressing d; as linear combinations of the basis vectors by, by, and by in T, one
obtains the required representation

di=(d;-b)b + (d; by)by + (d; - ba) by, (23)
Thus, the local coordinates D[jj- are
(g, v, wy) = (dy - by, dj- b d - By). (24)

The local coordinates u;, ¢y, and w; are viewed as independent variables, and the
signed distances d; are viewed as function values (in direction of &) of a polynomial
fim, v, w) of degree two (see Theorem 1 ). The function [ is defined by the interpolation
conditions

_.I"{H;'. s Wil = tj.. - -J_f'[l:'},n,{#f + 2c|,|,mlii-'} + 2£'|,|;|,|H"|H'}
+ €020 + 2en,1.005mw5 + copaw]), (25)

J= 1...,om. Allernatively, the interpolation conditions can be written in matrix form
a5

200
uf 2y 2uypwy r-‘f 2rywy wf CL10 d
i : : : : | |2 | mvemd=]
) 3 o2
My Quplla gy by Qi W “"i €o,1.1 dn,
Co,0,2
(26)
The normal equations of the implied least square approximation problem are
UTUe=0"d, (27)

This 6 = 6 system is solved using Gaussian elimination, If the determinant of LU
vanishes the set of platelet points is expanded by using additional points in the platelet’s
neighborhood.

A theorem from multidimensional differential geometry ensures that the three principal
curvatures at a point on the graph of a trivariate function are always real.

Theorem 3. The principal curvatures k), k3, and k3 at any point on the graph {{a, v, w,
flu,0,w))} of a trivariate function f of class m, m = 2, are real. They are the
eigenvalues of the Gauss-Weingarten map associated with the graph.

Proof. Ses (Spivak, 1970). O
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Theorem 4. The principal curvarures xy, k1, and k3 of the graph {(u, v, w, flu, 0, w) ) }
af the frivariate polynomial

Flwv,wi=t(cypa® + 26y ) 0140 + 2ey g, uw
+ epzot? + 2oy 0w + copant) (28)

at the 3-surface poimt (0,0,0, F{0,0,00) are given by the three roots of the cubic
polynomial

5
" — {200+ Co2:0+ Copzln”
: 2 a
+ {€2000020 + €2008002 + €0 20002 — €1 40 — €100 — Eﬁ.m]"

— {e2,0,0€0,2.000,0.2 + 261,100 0,1C0,1,10 — E:.ﬂ-.uﬁ?u.l - '-'l:l.l.l}'i-'qh}.u - f-'ﬂ.l}.l"fi:.u:'-
(29)

Proof. According to Definition 2, the principal curvatures of f's graph are the eigen-
values of the matrix

I fu.u _..Fur _.fu'h' E+.{E f"_fl. .fl-f.irh- N
—11:? fouo Fu  fou Tufe l+.||r4;-r fefu . (30)
foo fow faw) \ fufw  fofw 1+ f2

where [ = /1 + f2+ f + f2. Evaluating —A for (&, v, w) = (0,0,0), one obtains the
Symmetric matrix

Cann €00 i
-A= | e 0 €20 ol {31)

Crol oo cong

having the characteristic polynomial (29). O

The roots of the characteristic polynomial {(29) are used as approximations of the
three principal curvatures o x;.

Remark. It 15 known in lincar algebra that all eigenvalues of a symmetric matrix are
real. Therefore, the roots of the cubic characteristic polynomial (29) are real. The first
root of (29) is computed wsing Newton's method, the other two roots are calculated
after factorization.

4. Examples

The principal curvature approximation method has been tested for graphs of trivariate
functions. In this case, the outward normal vectors are defined by the gradient, since the
outward normal vector of the graph of a trivanate function i1s m=(—f,.—fi. —f:. 1),
The exact gradients are used for all test functions.
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Tahle |
RS errodrs of curvature approximation of graphs of mvamaie functions, 5, v.2 £ [ =1, 1]
Curvature typs
Function Mean curvaiure Cingssian curvaiure
[ Cuaslratic pedynomaal;
D4+ ¥y 428 010030 00026
2, Cuadratie polynomial:
04(xr - ¥ - %) 00011 0.0022
1, Cubic polymomial;
0150 + 2ty — 27 4 2 00025 0.0a12
4. Exponential function:
=030 v+t (L0063 2R
5, Tngonometne function;
D leosims) +cos{wvh+oosimzh) .33 (N0

The exact mean curvature H™ = (& + 5" + 5') /3 is compared with the average
of the approximated principal curvatures H* = -[.-nt',":'|1 - K;FP + xf'pj,.-";'l. and the exact
Giaussian curvature K™ = &§*&5'#5" is compared with the product of the approximated
principal curvatures K" = x, .l-:fpxﬁ

All test functions f{x.v,z), x.v.z € [—1,1], are evaluated on a 26 x 26 = 26 grid
{n =25} with equidistant spacing, i.e.,

Q—n 2j—m 2k—n

= - = ). i jk=0,....0, (32)

(X ¥ al) = (

defining the set of points on their graphs, which is
{(xiypa flxya)) i A k=0,...,n} (33)

The triangulation of the domain is constructed by splitting each domain cuboid C; ;; with
Vertices Xiypicsnen = (Xigpje Lbslts Vi lLjedhe Ko Zistjrdeex ) LA K € {0, 1}, into six
tetrahedra vielding a Delaunay triangulation. Table 1 lists the root-mean-square (RMS)
errors for the approximation of mean and Gaussian curvature,

The curvature of a tnivariate function's graph is rendered by slicing the function's
domain with planes and representing curvature by color (see (Mielson and Hamann,
1990) ). Exact and approximated curvatures are shown for the functions 2, 3, and 5 in
Figs. 1-3. The exact mean curvature is shown in the upper-left comer of each figure, the
exact Gaussian curvature in the upper-right corner, the approximated mean curvature in
the lower-left corner, and the approximated Gaussian curvature in the lower-right comner.

5. Conclusions

A technique for approximating the three principal curvatures at points on a discretized,
triangulated 3-surface has been developed. The test resulis confirm the guality of the
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Fig. | Copporie, iop). Exact and spproximoted mean and Gaussion curvotuse,
flrvz) =042 =2 =) a0z E|=L1]

Fig. 2 (oppusite, bortom ), Exact and approximated mean and Gaussian curvatare,
fle,nz) =05 + 20y — st + 27 vz € [-L 1)

Fig. 3 (undrove ). Exact and approxomaled mean and Gaussinn curvaoture,

fle, vzl =lliomims) +eos{mv) +cos{mzib,r, v E | =1.1].

approximation for graphs of trivariate functions. The curvalure approximation technigue
15 useful for the analysis of the “smoothness™ of discrete 3-surfaces arising in CFD/FEM
applications. The concept can be exiended 1o n-manifolds { n-surfaces) in (n+1)D space.
Future scaltered data approximation methods for 3-surface data using curvature input
will benefit from this scheme.
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