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Abstract: As a step toward automating the ability to locate generic objects in an image, we propose an approach based on
model-driven correction of an initial low-level scene partition. To accomplish this, we define generic data structures for
geometric shapes, along with robust rules for parsing the image geometry and performing a shape-motivated resegmentation.
We successfully apply the system to the task of locating and outlining complex rectitinear cultural objects in aerial imagery.
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1. Introduction

People can often perceive and label objects they
have never seen before using generic functional
and structural concepts. One way to emulate this
ability is to segment an image and then generate a
set of labels for the resulting regions. Syntactic im-
age partitions are indeed a good starting point for
generic shape analysis because the resulting regions
generally provide relevant, context-free informa-
tion about unpredictable shapes. Unfortunately,
since objects of interest are rarely characterized
solely by the statistical signatures upon which stan-
dard segmentation methods rely, these methods
will always be prone to uncorrectable errors. Thus,
although a grear deal of attention has been paid to
the label-generation step, the weakest link in the
process is the segmentation procedure itself.

The goal of this work is therefore to investigate
the use of generic shape constraints to refine and
correct an initial image segmentation. We will refer
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to this process as ‘resegmentation’, since we are ef-
fectively revising an initial hypothesis for the scene
partition provided by a low-level segmentation
algorithm; a shape hypothesis derived from the
segmentation is used to predict the corrected out-
line of a semantic object, and the validity of this
prediction is then evaluated.

We use generic, as opposed to specific or tem-
plate-like, shape models so that we can find in-
stances of unpredictable shapes. This approach
provides us with a logically complete semantic ex-
tension of the conventional low-level segmentation
process that overcomes many of the inherent weak-
nesses of purely syntactic methods.

Other approaches to object delineation that de-
pend upon low-level partitioning methods will
always make substantial errors in their task be-
cause they lack knowledge of the objects of interest
and of the scene. Most current object-modeling
approaches {(e.g., GHoucn (Ballard, 1981) or
ACrRONYM (Brooks, 1981; Binford, 1982)) use ex-
plicit shape templates, but cannot deal either with
generic shapes or with anomalies in the image or its
partition. Other approaches, such as the building
finder of Nevatia and Huertas (1985} and the
airport-extraction system of McKeown et al.
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(1984,1983), stll impose strong conditions on
allowed shapes and context and have insufficient
ability to compensate for inaccurate segmentations
and incomplete edge maps.

To achieve the goal of reliably outlining objects
of interest, we have developed a rule-based re-
segmentation system that allows the available
semantic knowledge to interact closely with the
low-level image-data. The following bodies of
knowledge form the core of our approach:

* Generic geometric models to describe arbitrarily
complex shapes,

* Models of expected segmentation anomalies to
generate relevant hypotheses for segmentation cor-
rection.

¢ Noise-tolerant parsing rules that form the
critical interface between real image dala and the
theoretical models.

We confirm the validity of this method by apply-
ing it to the problem of delineating cultural objects
in aerial imagery. Qur goal, therefore, is to start
with challenging images like that in Figure | and to
locate instances of generic cultural objects.

We begin by defining geometric models to sup-
port our task. Next we describe the characteristics
of the low-level image partitions we use as input to
the systermn. We then formulate a set of rules used
to instantiate these models starting from such im-
age partitions and to obtain the information need-
ed for the resegmentation procedures. Finally, we
show some exampies of the results obtained when
our approach is applied to real images containing
complex cultural objects.

2. Shupe models

Cultural objects usually have very characteristic
rectilinear geometric structures that are easy for
people to see but difficult for a machine to extract.
To describe such structures of arbitrary complexity,
we need an appropriate generic shape model.

First, we replace the standard definition of edge
oricntation (Nevatia and Babu, 1978, 1980) by a
more topologically significant orientation based on
image regions: exterior region edges are oriented
with the interior of the region on the left of the
traversal directions, as are interior boundaries sur-
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rounding ‘holes’ in the region. This orientation
may differ from the definition of orientation based
on the sign of the derivative across the edge when
the figure-ground intensity difference changes sign
on the object boundary. Region-based orientations
enforce topological consistency and support spatial
reasoning tasks that are difficult using derivative
signs along. (See Fua and Hanson (1985) for more
details on this approach.)

The data structures that form the basis for our
approach 1o generic rectilinear shape recognition
are summarized graphically in Figure 2, and are
defined as follows:

» Pivels ~ Image data, perhaps including derived
data such as that produced by convolving the
image with various operators.

s Aromic edges — Elementary, contiguous sets of

Figure 1. (a} A typical serial image containing a complex
building. {b} A svntactiv image partition overlaid on the image,
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Figure 2. Summary of the definitions and notations used to
represent the data structures denoting generic rectilinear objects.

pixels satisfying a straight-edge criterion and hav-
ing an assigned orientation.

s Fdges — Sets of collinear atomic edges that
appear to represent semantic edges that have been
broken by the segmentation process.

* Reluted edge puirs — Pairs of edges associated in-
to rectilinear geometric structures such as parallels,
corners, and T's. The parallels play a central role
in this system because they are very characteristic

S B

Line Relationship:
Corner Relationship:

T Relationship: ( : f
Shared-Edge Relationship: / /

Figure 3. Summary of the relationships among geometric struc-
tures that serve as the links in the relationship network charac-
terizing a complex geometric object.

Parallel Relatianship:
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of cuitural structures and enclose areas that can be
used for area based reasoning.

* Enclosures — Parallels whose ends may or may
not be closed by perpendicular edges. Parallels
with end-closures are described as U’s and boxes.

* Networks — Sets of geometrically related en-
closures that will be used to describe rectilinear ob-
jects of arbitrary complexity,

In Figure 3, we list the geometric relationships
that may be formed among enclosures in order to
build the networks. The geometry of these rela-
tionships is very similar to the geometry of related
edges and can be parsed using analogous rules. All
open circles denote a relationship of some kind
among enclosures, with the different letters within
the circles signifying the type of boundary-closing
rules that should be used to complete the particular
structure. Below is a summary of the meaning of
each structure in Figure 3.

* Line relationship. Two sets of parallels that
obey a rough collinearity criterion can be joined,
much as a set of collinear atomic edges may be
merged as components of a composite edge.

* Corner relationship. Two sets of perpendicular
parallels form a corner, just as edges do.

® T relationship. A parallel that may be linked in-
to a perpendicular composite edge belonging to
another parallel without breaking any atomic edge
forms a T with the other-parallel.

* Paraliel relationship. Two sets of parallels that
are paralle!l to another may be independent, or may
be evidence for a missing parallel structure be-
tween them.

e Shared-edge relationship. Structures sharing
edges occur often in complex objects with multiple
semantic pieces or significant noise sources in the
middle of a single semantic structure. Shared edges
can consist of a single physical edge with opposite
orientation interpretations in two adjacent struc-
tures, or two distinct parallel edges that are inter-
pretable as arising from a single physical edge. We
denote shared edges in Figure 3 by a filled-in circle
tangent to the common edges of the parallels.

This basic vocabulary can now be used to con-
struct a language of rectilinear structures, which,
in turn, characterize cultural objects (see, e.g.,
Shirai (1978) and Tavakoli (1980)). Our represen-
tation is closely related to the generalized cone con-
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Figure 4. Examples of some typical simple structures that occur

in real images and the symbolic notation for their parsed

geomeltry. We show an L, a T, a courtyard, a set of nested T°s,
and a shared-edge.

cept (Blum, 1973; Binford, 1971; Brooks, 1981;
Rosenfeld, 1986), except that it emphasizes en-
closable associated areas rather than single areas
swept out along a skeletal core.

In Figure 4, we give the symbolic representations
that would result from error-free parses of a
number of common cultural shapes. Note that the
depiction of the structure must be thought of as a

J J

Figure 5. The evolution of interpretations that would be found

in a U with rectangular substructure under several changes in

image resolution or degradation due to noise, from good in (a)

1o poor in {¢). Atomic edges are shown at the top, with their
symbolic interpretation at the botiom.
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symbol for an internal data structure, and not as
a literal picture of the edges in the image.

In Figure 5, we illustrate the behavior of the
representation of a parallel structure closed at one
end and having a rectangular bump as the data
become increasingly noisy or undergo successive
coarsening of the image resolution. Longer edges
will usually be broken up and shorter ones will be
lost. We see that this kind of noise and confusion
is handled correctly. In particular, it is often very
difficult to distinguish an almost-invisible pro-
truding structure from noisy line data. The process
of grouping related atomic edges (e.g., those
r¢lated by being parallel and in sequence on the
same region boundary) into a composite edge is
very effective in maintaining semantic consistency
across scales and in the presence of noise.

In the next section, we present the construction
rules needed to parse the image geometry.

3. Characteristics of the segmentation

We have chosen to use an Ohlander-style seg-
mentation (Ohlander et al., 1978; Laws, 1984) as
initial input to our system. In this work, we assume
that the initial segmentation may be inaccurate but
still contains significant information regarding the
objects of interest.

Because the partition is computed using recur-
sive histogram splitting, it has the following pro-
perties:

* The boundaries of regions tend to correspond to
high intensity gradients.

+ Regions tend to bleed and edges are lost in the
middle, resulting in undersegmentation of objects.
* Objects of interest may also be oversegmented,
i.e., broken into several pieces.

Resegmentation procedures therefore include:

* Hypothesizing and discovering the missing
edges.

s Grouping semantically related areas.

The tendency toward high gradients in the region
boundaries permits us to extract reliable straight
edges from these boundaries using statistical con-
sistency of the image gradient orientations. Fur-
thermore, these edges can be grouped into
geometric structures that typically enclose areas
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with uniform statistical properties.

Because significant edges may be missing from
region boundaries and merged in the middle of
regions because of noise problems, we use the suc-
cessfully found edges, combined with model-based
hypotheses, to look for the missing edges.

Regions corresponding to oversegmented ob-
jects are also related using model-based geometric
predictions. The presence of these oversegmented
objects is in fact one of the major reasons why the
region-independent structure-clustering mechanism
described below is required.

4, Rules for construction of a geometric object

The theoretical approach that we used above to
define a generic representation is not well-defined
in isolation, but requires for its implementation a
concrete description of a parsing mechanism that
incorporates knowledge about the segmentation
anomalies. We therefore define a set of parsing
rules that adequately circumvents the ambiguities
and instabilities found in the usual skeleton-
parsing procedures (Blum, 1973). The necessity for
providing such a specific, noise-tolerant prescrip-
tion as an interface between a theoretical know-
ledge-based vision system structure and the real
world is often neglected.

In Figure 6, we present an abbreviated outline of
the layers in the image parsing procedure. The
following subsections give more details of the pars-
ing algorithm and some examples of the geometric
rules it utilizes.

4.1. Parsing mechanism

The resegmentation process consists of the
following steps:
* Build elementary structures within single seg-
mentgiion regions. To provide the powerful con-
text needed for edge parsing, geometric structures
are first computed within single segmentation
regions. Aromic edges are first extracted from
region boundaries, and are then grouped into com-
posite edges that can in turn be grouped, merged,
or broken in order to yield geometrically consistent
enclosures.
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Figure 6. Outline of the rules for the extraction of cultural
objects formed from generic rectilinear structures in aerial
imagery.

* Cluster geometric enclosures. We have used
regions as a focus of attention for edge parsing. To
accomplish a similar function for structures, we
cluster enclosures from arbitrary regions that are
potentially semantically related. We associate
enclosures that tend to cluster spatially and have
either similar statistical properties of image pixels
or explainable differences in terms of a semantic
model.

® Build networks. Enclosures belonging to seman-
tically meaningful objects should be related in a
geometrically predictable way. Much in the same
way that edges from regions have been grouped in-
to geometric structures, enclosures in the clusters
will be chained into consistent networks.

* Resegment. These networks can now be used to
perform the actual resegmentation: the enclosures
are interdependent and geometrically related, and
the various types of relationships have special
meanings with respect to the kinds of linking
operations that may be performed in the final
delineation step. By using a path finder such as the
one developed by Fischler et al. (1981), the systems
can then check the validity of the links, close the
open-ended enclosures and outline new regions.

The closed networks delineate generic objects
and constitute the final output of the system.

4.2. Examples

In this system, the geometric knowledge is en-
coded as rules of the form
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I | Pattern Match

THEN l Operate on Data Structure |.

The rules allow the system to detect inconsistencies
and modify geometric relationships, eventually
yielding geometrically consistent structures. Al-
though we do not have space here to describe the
entire body of rules in detail, we provide the
following examples to illustrate their function:

* Edge-parsing rules. Consider a set of edges
forming a stair-step, as shown in Figure 7. First the
horizontal edges are merged into composite edges
forming a parallel structure. The process would
stop there if the vertical edges were not present,
but these vertical edges are used to generate the
hypothesis that other vertical edges may have been
lost. This hypothesis is then tested by checking
whether the parallel structure can be broken in a
way that is consistent with the presence of a new
edge. If it can be broken, the horizontal edges are
broken into sub-edges, yielding the final parse; fwo
distinct, refated enclosures.

* Resegmentation rules. Suppose the system has
built the network, formed by an open-ended
parallel and a U that form a T, as shown in Figure
8. The T relationship is used to hypothesize the
location of the links. The prediction is then check-
ed by the path finder. If the links are found, they
will be used to close the whole network, forming a
new region; if not, the T relationship will be
broken and the system will generate two separate
regions, one for each structure.

These two examples illustrate the following
features of the system:

* Hypotheses about a geometric structure can be
systematically made and refuted.

» The validity of a hypothesis made on the basis
of high-level knowledge can be checked by re-
examining the low-level data.

Redundancy is an important characteristic of
our rule-base design; several different consistent
paths of making and breaking associations will
lead to the same or equivalent structures. In our
edge-parsing example, several reasons might have
lead to the merging of two atomic edges into a
composite one: the edges being contiguous and
having similar directions, their being both parallel
to a third edge, or their being part of two L-related
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Figure 7. The parsing of a parallel structure with steplike in-
ternal structure. {a) The atomic edges. (b) The composite edges
merged into a composite parallel. (¢) Breaking the composite
parallel. A vertical edge is evidence for breaking the ariginal
composite edges, thus breaking the parallel structure as well. {d)
Final symbolic parse: a parallel on the left forms the stem of a
T structure; the T structure is joined to the linking edge of the
U on the right.

enclosures. In general, because of noise, not all
three cures will be usable, but there is a high pro-
bability that at least one will, which helps to make
the result relatively stable in the presence of noise
and lost edges.

[
—

(=) {d)

Figure 8. Resegmenting a network. {a) The initial T-network
formed by a paralfel and a U, (b} The predicted links berween
the two enclosures, (¢} The final resegmented region if the links
really exist. (d) The links were not found. The system chooses
the alternate hypothesis and closes each structure separately.
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5. Results

We now apply the entire procedure to a series of
images containing complex cultural objects that
would be difficult to extract using more conven-
tional approaches.

For this application, a context model must be
provided to supplement the fundamental geometric
reasoning capabilities of the system during the
clustering phase. The following model has proven
sufficient to extract buildings from a wide class of
grey-level aerial images:

The different parts of buildings seen in an aerial
image at moderate resolution are made of uniform
material, Differences in image intensities of these
parts are due to differences in the illumination
angle or shadowing of slanted surfaces. Three-
dimensional structures may, or may not, have
detectable shadows.

Figure 9. The resultant symbolic representation of the parse net-
work of the entire building structure.
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In Figure la, we show a very complex building
scene. Starting from the Ohlander-style segmenta-
tion overlaid in Figure 1b, in which the central
building is completely broken up, the system ex-
tracts geometric structures. Using our model, the
system finds the network of associations depicted
symbolically in Figure 9 that can be interpreted as
a flat roof; recall that this symbolic network stands
for a complete representation of the object using
the internal data structures of the system. Running
the linking procedures, the system delineates the
complex building structure, as shown in Figure 10.

Next, in Figure 11, we show a pair of images of
the same house digitized from different sources at
different resolutions. In one case, the house is
segmented into one single region; in the other, into

Figure 10. The result of using the parsed geometry to predict
region closing paths and joining operations, yiclding the tinal
semantically motivated building shape.

Figure 11. (a} A high-resolution aerial image containing a com-
plex building. (b) Low-resolution image of the same building on
a different day.
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(a) Q (b)

Figure 12, The resuftant svmbolic representations of the parse
network ol the building structure at the two resolutions, (a) and
{m.

three regions corresponding to each of the various
roof parts. Parsing these gives the two symbolic
networks of Figure 12, and the resultant structure
delineations in Figure 13. The final results are dif-
ferent; however, the three regions in the high-
resolution image form a single network and are
therefore considered as one cultural object. Based

Figure 14. {a} An aerial image comaining many shaded build-
ings. (b) A partition of the image.

Figure 13. The result of using the parsed geometry to predict Figure 15. The result of using the resegmentation procedure to
region closing paths and joining operations, vielding the final outline all the idenutiable building areas. At this resolution, the
semantically-motivated building shapes at the 1wo resolutions regions corresponding o some substructures of the buildings,

ta} and (b). had insufficient geometry 10 be detected.
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on semantic grounds, they can therefore be merged.
The resulting region is then almost identical to the
corresponding region in the low-resolution image.
This example illustrates how this system can be
used to provide consistent parses of the same ob-
jects seen in very different conditions.

Finally, we examine the image in Figure 14a,
which contains a large number of buildings with
multiple parts and shaded roofs. The image parti-
tion in Figure 14b shows substantial problems with
the segmentation because the shaded roofs are con-
fused with the background and sidewalks merge
with the sunny parts of the roofs. Using the same
model as before, the system finds the building por-
tions delineated in Figure 13,

6. Conclusions

In this work we have proposed an approach to
the problem of finding instances of generic objects
in an image using model-driven resegmentation.
Much of the system’s effectiveness derives from
the close interaction between the low-level and
high-level information. The approach was im-
plemented and tested for the case of generic rec-
tilinear cultural objects; we have shown that, in
this domain, we can use a single untuned but rele-
vant segmentation to extract instances of complex
generic objects. We have thus achieved the follow-
ing objectives:

* Ohject delineation using resegmentation. Be-
cause segmentation regions often do not match ob-
jects of interest, we have developed models that
allow us to correct the initial segmentation and
generate semantically meaningful regions. The
resegmentation procedure incorporates significant
semantic knowledge about the object domain. Our
results correspond very closely to regions contain-
ing target objects.

* Generic shape extraction. For many important
tasks, the exact shapes of objects of interest are not
known. We define and use generic models to deal
with whole classes of objects,

* Robust parsing of real image data. Going from
the raw data to its symbolic representation is a dif-
ficult task. We have built a rule base that is robust
enough to parse incomplete and ambiguous image
information.
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In future work, we shall relax some of the con-
straints assumed here. Noncultural and nonrec-
tilinear objects, for example, have boundaries
characterizable as smooth or jagged curves. We
will add such classes of objects to our analysis by
substituting different statistical measures for those
used here to exiract straight edges. By adding sup-
port for the utilization of multiple image parti-
tions, we wilf enable the system to generate and test
a wider variety of shape hypotheses, thereby com-
pensating more effectively for undersegmentation
and oversegmentation of target objects,

References

Ballard, D.H. (1981). Generalizing the Hough transform to
detecy arbitrary shapes. Pattern Recognition 13, 111-122.
Binford, T.0. (1971). Visual perceptian by computer. Invited
talk at IEEE Systems Science and Cybernetics Conference,

Miami, December,

Binford, T.Q. (1982). Survey of model-based image analysis
systems. [nrernat. J. Robotics Research 1(1), 18-64.

Blum, H. (1973). Biological shape and visual science (Part I).
J. Theorericul Binlogy 38, 205-287,

Brooks, R.A. {198]). Symbolic reasoning among 3-D models
and 2-D images. Artificial Intell. J. 16,

Fischler, M.A. J.M. Tenenbaum and H.C. Wolf (1981). Detec-
tion of roads and linear structures in low-resolution acrial
imagery using a multisource knowledge integration tech-
nique. Computrer Graphics Image Processing 15, 201-223,

Fua, P. and A.J. Hanson {1983). Locaring cultural regions in
aerial imagery using geometric cues. Proceedings of the
Image Understanding Workshop, 271-278.

Laws, K.I. {1984). Goal-directed texiure segmentation. Tech-
nical note 334, Arificial Intelligence Center, SRI Interna-
tional, Menlo Park, CA.

McKeown, D., W_A. Harvey and J. McDermott (1984), Rule-
based interpretation of aerial imagery. Proc, IEEE Wark-
shop on Principles of Knowledge-Based Systems, 145-157
(1984); IEEE Trans. PAMI 7 (19835) 570585,

Nevatia, R. and K.R. Babu (1978). Linear feature extraction.
Proe. Image Understanding Workshop, 73-78.

Nevatia, R. and K.R. Babu (1980). Linear feature extraction
and description. Computer Graphics fmage Processing 13,
257-269.

Nevatia, R. and A. Huertas {1983). Building detection in simple
scenes. Intell. Sysiems Group Technical Report, Univ. of
Southern California.

Ohlander, R.. K. Price, and D.R. Reddy (1978). Picture
5egmentation using a recursive region splitting method. Comr-
puter Graphics Image Processing 8, 313-333.

Rosenfeld, A. (1986). Axial representations of shape. Com-
puter Vision, Graphics and Image Processing 33, 156-173.

251



Volume 5, Number 3 PATTERN RECOGNITION LETTERS March 1987

Shirai, Y. (1978). Recognition of man-made objects using edge Tavakoli, M. (1980). Toward the recognition of cultural
cues. In: A R, Hanson and E.M. Riseman, Computer Vision features. Proc. Image Understanding Workshop, 33-57.
Systems, Academic Press, New York.




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

