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Abstract: We present an approach for the automated interpretation of transaxial cranial magnetic resonance images. After a 
brief outline of our notation and basic assumptions, the overall design consisting of a neurological inference engine, a set of 
image processing operators and a configurating component for these operators is presented. 
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1 .  I n t r o d u c t i o n  

The appearance of magnetic resonance images 
CMR-images') depends on several machine param- 
eters and a set of spatially varying tissue param- 
eters. Some of these tissue parameters are the spin 
density (p), the spin-lattice-relaxation time (T1) and 
the spin-spin-relaxation time (T2). Examples for 
machine parameters are the repetition time (TR) or 

the echodelay time (TE) (cf.[9]). 
As an example, we give the signal function for a 

measurement called spin-echo sequence, which is 
approximately 

S( x, y) oc p( x, y),(1 - exp(- TR/ Tl ( x, y) ) ) 
• e x p ( -  TE/Tz(x,y)). 

The values for the tissue parameters p, T~ and T2 
can be derived for each voxel represented by a pixel 
from a set of measurements with different TE and TR 
values. 

We can thus define the (2 + 3)-dimensional Eu- 
clidian space MR2 which is generated by two spa- 
tial coordinates and three coordinates for the tissue 
parameters p, T~ and T 2. For  a fixed type of a MR 
measurement sequence and the set of all grey-level 
tomograms T, we define the functions 

Fr : M R 2  --~ T, 

the index t denoting a tupel composed of the name 
of the sequence and its characteristic machine para- 
meters; the tomogram in Figure 9 is a value 
of the function F, with t = (SPIN-ECHO, T E ---- 200, 
T R = 1500). With Fp, FT1 and FT2, we denote the 

functions which compute the p-, T~- and 
T2-parameter images, respectively. 

By an interpretation of (MR-) images we mean 
the labelling of pixelsets - image regions - with ana- 
tomical names. This is achieved by recursive knowl- 
edge-based separation of pixel sets in MR 2 applying 
methods from pattern recognition, image process- 
ing and artificial intelligence according to a pre- 
specified plan. Thus the image interpretation prob- 
lem is divided into a set of subproblems each of 
which is solved by an especially designed operator. 

A control framework is responsible for the con- 
figuration of these operators. The configuration 
task consists of 

- a planning phase in which the locations of ana- 
tomical or pathological structures defined by a neu- 
rological inference engine are considered as goals 
and a set of operators is selected to achieve these 
goals, 

and an execution phase in which these opera- 
tors are activated and their results are evaluated. 
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Figure I. The part of the brain discussed in this paper. 

Depending on this evaluation, operator parame- 
ters may be tuned to improve imperfect results. If 
this does not lead to satisfactory results, another 
planning phase is initiated to generate an alterna- 
tive plan. 

The whole system makes use of the two types of 
medical knowledge first described in [4]: one type is 
encoded textually in the 'primary description of 
pathologies' which defines and orders (objective) 
signs and (subjective) symptoms of the human 
body; the other type is encoded textually and picto- 
rially in the 'secondary description of pathologies' 
which defines and orders normal and pathological 
units of the human body. 

The architecture of the system reflects the clinical 
use of these two knowledge sources. 

The characteristics of this system are: 
(a) The evaluation of MR tomograms by a radi- 

ological expert is based on other data than com- 
puter vision in MRz: Whereas the clinician uses 
only greylevel images, our computer system can uti- 
lize multispectral information in MR2 directly. 

(b) The validity of an evaluation of a tomogram 
by a radiologist is based on attribution of individual 
competence. Radiology has not developed an ope- 
rationalized method to discriminate correct and in- 
correct interpretations of medical images. Instead, 
we provide an operationalized approach. 

(c) The language used for the description of MR- 
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tomograms in radiology is based on terms whose 
determinance and uniformity cannot be discrimi- 
nated from ordinary language. By incorporating 
the radiological terms into an evaluation of image 
processing operators their determinance and uni- 
formity is increased [12]. 

The system has been developed for diseases locat- 
ed in the transaxial supraorbital slice of the brain 
shown in Figure 1. 

2. Methods 

A. Neurological inference engine 
A neurological inference engine is designed for 

utilizing knowledge of the 'primary description of 
pathologies' to restrict possible locations of lesions 
(defined in the 'secondary description of patholo- 

gies'). 
Signs and symptoms are grouped according to 

the classes defined by the clinical symptomatology 
and represented as frames. Generally all frames rep- 
resenting knowledge about signs and symptoms 

contain: 
(i) an attribute 'anatomical_location' containing 

a list of anatomical locations where the local sign 
or symptom may be caused; 

(ii) an attribute 'neurological_evidence' which 
contains a list of pathologies the system knows to 
be a possible reason for the local sign or symptom; 

(iii) an attribute 'status' which allows to declare 
whether the local sign or symptom is present for the 
patient under consideration. 

Two frames belonging to two different symptoms 
are connected by an 'iS-A'-edge if and only if the in- 
tensional meaning of one (frame-)name comprises 
the intensional meaning of the other one; as an 
example the internal ordering of epileptical attacks 
is displayed in Figure 2. 

.ADVERSIVE EPILEPTICAL ATTACKS ~ EPILEPTICAL ATTACKS WITH OPTICAL AURA 

EPILEPTICAL ATTACKS~GRAND MAL~STATUS EPILEPTICUS 

~ JACKSON ATTACK 

--PSYCHOMOTORICAL ATTACKS 

Figur•2•Part•fth•graphicdisp•ay•ftheneur•••gica•kn•w•edgebasesh•wing̀e•i•eptica•attacks•• 
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Since the machine internal extension of a symp- 
tom, i.e. its presence and its markedness for a pa- 
tient [15], has to be evaluated interactively by a ~ 
medical ~ user, the user interface contains panels 
which allow the assignment of values to the ‘status’- 
attribute by a simple mouse click; in Figure 3 such 
a panel is shown for the group of symptoms ‘epilep- 
tical-attacks’. 

Thus symptomatical profiles of patients are de- 
termined comfortably by establishing sentences of 
the type 

“Patient P has presumably symptom or sign S” 

as true or false. 
Every symptomatical profile is converted au- 

tomatically by an inference mechanism into a pro- 
file of possible locations of lesions. 

The names of all locations are also related to fra- 
mes which principally contain: 

(i) an attribute ‘evidence-counter’ where the 
symptomatical hints of evidence that a lesion may 
be present at this location are counted; 

(ii) documented data about the normal p-, T,- 
and T2-distributions; 

(iii) a list of all signs and symptoms the system 
knows to be indicative for a defect at this location. 

The (anatomical) locations are ordered in a di- 

Figure 3. Active images for the symptoms shown in Figure 2. 

rected AND/OR-graph G = (N,E) (cf. Figure 4): Eve- 
ry element of the set of nodes N is labelled with 
exactly one anatomical name or one of the two la- 
bels ‘image’ or ‘background’; the set of edges E = 
{[m,n] 1 m, no IV} is defined in the following way: 
starting with the root ‘image’ the labels of the suc- 
cessors have to denote 

(Extxacrmii$ (Intracriia~ 

/A 
(yiiziL3 (Fluids) (Brdn) 

A A 
(-gEcJ(~J(=](-] 

Figure 4. Part of the hierarchical ordering of anatomical locations. 

75 



Volume 8, Number 2 PATTERN RECOGNITION LETTERS September 1988 

(a) an ana tomica l  subs t ruc ture  01" the s t ructure  

deno ted  by the predecessor ,  e.g. 

in t rac ran ia l  ---, fluids. 

(b) a set of  ana tomica l  s t ructures  which form a 

comple te  par t i t ion  of  the s t ructure  deno ted  by the 

predecessor ,  e.g. 

in t racran ia l  ---, hemispheres.  

The edges therefore define a 'HAs PARTS'-rela- 

tion. F o r  a node  m, the set of successors 

succ(m) = {n~, n2, n3 . . . . . .  n,} 

is conjo ined  by an AND if and  only if n~,n z . . . . .  n~ 
form a comple te  (ana tomica l )  pa r t i t ion  o fm.  A sub- 

tree of the first five levels of  G is shown in Figure  

4. 
F o r  a pat ient  all nodes  of  type (a) with a posi t ive 

entry  in the a t t r ibu te  'evidence_counter '  are defined 

as goals  for a conf igura tor  of image in te rp re ta t ion  

ope ra to r s  (cf. B and C). 

The interface between the neurologica l  inference 

engine jus t  descr ibed and the user is shown in Fig-  

ure 5. 

B. Interpretation operators 

Based on the defini t ion of the graph G = (N,E)  

(cf. A) an o p e r a t o r  O is defined for a set of  ( ana tom-  

ical) names  N as a funct ion 

O : M R  2 × N ~ M R 2  × N 

(p,m) ~ (p,n), n~{m}wsucc(m). 

In Figure  4, the names  ' i n t r ac ran ia l '  and  'ext ra-  

c ran ia l '  e.g. denote  a comple te  par t i t ion  of  'head ' .  

BACKGROUNO BONE I mi ~'r~=-- "~,,,ml~'a= 
/ EXTRAelI'N'L<'KIN / BASAL  I'OANGLLA n I I 

FR(~I TAL *,-L08~ 4"W M 4"ANII 

BRAIN 4.L OB E S ~f '~OCCIPITAL ( ' L O B ~ ' ~ - -  OCCIptTAL (-LOIBE *-W M NIL 

~ I ~ A I ~  /BRAI. -- ~_..-.TEIwlPI~AL 4 - L .  -O M , (CI TU~IO.)) ' 

"T E MPOBAL ~1" O~E'~-"'-"T EMIPI~ A L ("IL OBE ¢"WM iwa. , , t , ,~ .~ 

CEFIEBELL UM'~'HEMLSPHEIIES ~'OF wCEIRE BELLUM'<L~aI~TLHE% I {(1 " r u ~ o , ) )  I ~I~AI~ ~1 ~,VEi~,t,.CEIIEBI1LUM ~T~.et~,~ !COIIPUS't"CALL0$UM 

DIENCEPHALDN I 

,ENTRICLE FLUII} 
t rophy 'O!  " ~Opttcu5 5. trophy ~ol ~N ~opt|cus'* btdt 

,AEFECTIVE,0-LEVELUNG-[IuT'NEM~PHIER~~I~~ I . . . . . . .  , . . . . .  . . . . . .  I /A.KtNETK~ o , . p A n l C )  6.Sy~lqlOM A ) I Y  4"(3F ( ¢ " I I 3 F ' T )  
!,kL TERATIIOI~ ,,-OF ~-THE (-VI~IAL 4-S ySTEM ~ DISTUItBANCE ('OF ('OPTICAL ( ' ~ A T ~  ~ A T N  i SUb'PF.,CTED . . . . . . . . . . . . .  

~APNASIA 

~ WI[RNICKE *'APIHASIA Q, I 
_ _  kpRAXIA ~.1:OII relllOtH ~ltkNl~l rm~a*r , a w 1,1, d d I/1 1 II ~111 I1¢:1 K =,1 II |zTII ~4-. 

rlTY .4.ATAXIA 41'OF 4-EXTIIIEMnlES WIlTH 41-MUse [ :  t' L~a ~ Lv ~ a'¢l~l °'etl~'l ~-IPt~NOMENA ..... ATAXIA W SLATEFIAJ SUSPEC'rED itqtllllt~lWb3 U n l l  a O n  
U 

I P T O M S ~ E ~ A  , I b'USPF, CTED r . . . . . . . . . . . . .  

STAtUSW.PLEPTIULB 
J a c k . o n - A t t a c k ' 5  $I a t e  

,syfhomotoric al-At t a,:ks's Star 

Figure 5. On this display it is possible to assign the values 'suspected' and "not_suspected' to the attribute 'status' of the group of symp- 
toms 'epileptical_attacks" and 'alterations_of_the visual_system" by means of active windows. Here the symptoms 'Jackson_attack" 
and 'psychomotorical_attack' give one hint for the presence of a tumor at the parietal and frontal lobe of the brain; this is indicated 

in the upper part of the display by another active window showing the values of the respective evidence counters. 
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An operator constructed to realize this partition in 
MR 2 is the identity on 

{(p, BACKGROUND) I P e MR2} 

and has the values 

{(p, INTRACRANIAL), (p, EXTRACRANIAL)} 

on 

{(p, HEAD)Ip~MR2}. 

We exemplify these definitions for transaxial 
MR-images through the ventricular system (cf. Fig- 
ure 1) by means of a detailed description of four 
basic operators: FINDHEAD, FIND_INTRACRA- 
NIAL, FIND_FLuIDS and FIND_VENTRICLES. As 

shown in Figure 4, these operators introduce a set 
of (anatomical) names, the unique root ('image') 
being the only predefined one. 

B.1. Operator FIND_HEAD 
In this section an operator realizing the partition 

{(p, IMAGE) I P ~ M R 2 } 
{(p, BACKGROUND) I P ~ MR2} 
D{(p, HEAD) IpeMR2} 

is described. 
At an intact skull, the outmost anatomical struc- 

ture of the head is skin. In contrast to calcifications, 
bone structures and background, the signal intensi- 
ty of skin is rather high in Fp (cf. Figure 6). 

Furthermore, the contour of the head in the slice 
we examine resembles an ellipse. Since the regions 
with low values in Fp within the head are rather 
small, this slice of the head can be modelled as an 
ellipse-shaped disk. 

This leads to the generation of an elliptical coor- 
dinate system for these tomograms in the following 
way (Figure 6): The center of the coordinate system 
is calculated in Fp by regarding all image points as 
points of a solid object with a mass proportional to 
its spin density. The calculation of the center of 
gravity of this object yields the center. In a similar 
way, the base vectors are calculated by means of the 
covariance matrix: The eigenvectors of this matrix 
multiplied with the corresponding eigenvalues form 
the desired base of the coordinate system. This is 
equivalent to the calculation of the axis and mo- 
ments of inertia (cf. [13]). 

Figure 6. Spin density image with overlayed elliptical coordinate 
systems. 

Figure 7. Transformed spin density image (r: horizontal, ~0: verti- 
cal) with an intermediary solution for the head contour after four 

iterations. 

A representation of our image in these coordi- 
nates shows a spherical disk-like structure. A subse- 
quent (r, tp)-polar-coordinate transformation yields 
an image where the contour of the head approxi- 
mately forms a straight line parallel to the ~p-axis 
(Figure 7). 

In this representation, generated by two coordi- 
nate transformations, we detect the head contour in 
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Figure 8. (a) Solution for head contour in transformed spin density image. (b) Backtransformed version of (a). 

the following way. First, in the corners  of the origi- 
nal image a mean  spin density of the background  

- determined by noise - is calculated. As an initial 
con tour  we take a straight line with r(cp)= rma x- 
Subsequently,  an iterative loop consisting of two 

steps is activated. 
In the first step, the value r(~0) of the contour  is 

decremented as long as the corresponding value of 
spin density is lower than  the mean  background  
spin density value. Because of background  noise 

these values of r(~0) will differ for different values of 
~p. 

In a second step, each value of r(~o) is replaced by 
the mean r(~o) value in a specified window a round  
the respective tp-value of the contour  (Figure 7). 

The i teration terminates,  if there are no changes 
between two steps (Figures 8a, 8b). 

B.2. Operator FIND INTRACRANIAL 

In this section an opera to r  realizing the part i t ion 

Figure 9. (a) Solution for the head contour in transformed spin-echo image. (b) Backtransformed version of (a). 
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{(P, HEAD) I PE MR2) --* 
{(p, INTRACRANIAL) ]pc  MR2} 

k~) {(p, EXTRACRANIAL) I p ~ MR 2 } 

is described. 
To detect the intracranial region of the head in 

transaxial tomograms, we first use the head contour 
yielded by the operator FIND_HEAD. We assume 
that the contour of the intracranial region is ap- 
proximately parallel to the contour of the head for 
an intact skull. Furthermore, we know that bone 
structures have relatively low values in Fp com- 
pared with the intracranial region. Additionally, 
bone is the only structure in the head with an ellip- 
se-like shape and low spin density. 

This information is used by shifting the head con- 
tour towards smaller r until the sum of spin density 
along the contour is minimal. This starting contour 
lies entirely within the bone. To find the intracrani- 
al contour, the same iterative procedure as de- 
scribed in B. 1 is applied (cf. Figure 9). 

B.3. Operator FIND FLUIDS 
In this section an operator realizing the partition 

{(p, INTRACRANIAL) ] p ~ M R  2 } 
{(p, FLUIDS) ] p ~ MR21 
U I (P, BRAIN) [ p E MR2 ] 

is specified. 
The (cerebrospinal) fluid (CSF) has a very high 

intensity in Fr2 (Figure 10a). Moreover, a histo- 

gram analysis of the T2-distribution in the intracra- 
nial regions shows two modi: a lower one caused by 
the brain matter, a higher one caused by CSF (Fig- 
ure 10b). 

An approximation of this T2-distribution by a 
sum of two gaussian distributions yields a criterion 
for a partition of the intracranial region into fluid 
and brain regions (cf. [2]). 

To reduce data complexity, this criterion is ap- 
plied to a segmented image consisting of some 
hundred connected pixelsets with a homogeneous 
tissue parameter distribution in MR z (Figure 11); 
these regions are generated by a cluster analysis in 
(p ,  T 1, T 2 ) as a subspace of M R  2 together with a 
connectivity condition (cf. [2], [l 1]): Each pixel in a 
region is classified with a binary clustering algo- 
rithm starting with the whole image; all subregions 
smaller than a predefined size are eliminated; each 
subregion is recursively partitioned with the same 
algorithm until the number of subregions is one. 

The decision whether an intracranial region is la- 
belled as CSF or brain is made in the following way: 
For each region, the sum of all pixels belonging to 
the lower mode of the histogram is compared with 
the sum of pixels belonging to the upper mode; the 
greater number leads to an attribution of the re- 
spective label (Figure 12). 

B.4. Operator FINDVENTRICLE 

In this section an operator realizing the partition 

I(P, FLUIDS) ] p ~ M R2 } ~ { (P, VENTRICLE) I P ~ MR2 
w{(p, EXTERNAL CSF) I pe MR2} 

i~ cioec.rlhod 

Figure 10. (a) Tz-image of intracranial region. (b) Modified T2-histogram of intracranial region. 

79 



Volume 8, Number 2 PATTERN RECOGNITION LETTERS September 1988 

mined and interpreted by a rule-based system con- 
taining 24 rules leading to small conflict sets and 
realizing the following semantics (cf. [3]): All groups 
which are adjacent to extracranial regions are ex- 
cluded as candidates for the ventricular system. In 
the set of the remaining groups in each hemisphere, 
the one nearest to the center of gravity is interpreted 
as ventricular system; all other groups are labelled 
as external CSF (Figure 13). 

An example for the rules used has the following 
logical shape: 

Figure 11. Spin density image with superimposed segment boun- 
daries. 

The ventricular system of transaxial slices of the 
brain consists of those central CSF regions which 
are not connected to external CSF regions in adja- 
cent slices. 

The information which has to be utilized for de- 
tection of the ventricular system is its central posi- 
tion in terms of the coordinate system defined abo- 
ve. 

Thus groups of adjacent CSF regions are deter- 

If the present task is to collect ventricle candidates 
& there exists a region with name ( I ) 

& with distance ( D ) to the center of the coordi- 
nate system 

& with position in hemisphere ( HEMI > 
& with current interpretation 'FLUIDS' 

& there does not exist a region with position in 
hemisphere ( HEMI > 
& with interpretation FLUIDS 
& with distance to center smaller than ( D > 

then generate a symbol 
& bind it to a variable ( ID > 
& modify the current interpretation of ( I  > to 

'VENTRICLE-CANDIDATE' 

&mark  ( l >  with ( I D >  
& start the task collect neighbours of ( ID ) 

Figure 12. Regions interpreted as CSF (white) or brain (gray). 
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In OPs5 that looks like: 

(P COLLECT-VENTRICLE-CANDIDATES 
(TASK ACTION-COLLECT-VENTRICLE- 

CANDIDATES) 
/(REGION ^region-number ( I  

^hemisphere ( HEMI 
Adistance-to-center ( D 
Ainterpretation FLUIDS) ( REGION ~ } 

(REGION ^hemisphere (HEMI 
^interpretation FLUIDS 
^distance-to-center I < ( D ) }) 

(BIND ( ID ) (GENATOM)) 

(MODIFY ( REGION ) 
^interpretation VENTRICLE-CANDIDATE 

a 

~id ( I D a )  
(MAKE TASK COLLECT NEIGHBOURS ( ID ~ )) 

Finally, we document the application of the oper- 
ators just described (and an additional one) to the 
MR2-data of the patient with the clinically docu- 
mented neurological profile of symptoms shown in 
Figure 5. After definition of the 'intracranial' part 
of the image by FIND_HEAD and FIND INTRACRA- 
NIAL the regions with high TE-values are labelled on 
a segmentation of the intracranial part (cf. Figure 
14a); the subsequent detection of the ventricular 
system by FINDVENTRICLE (cf. Figure 14b) leads 
to a set of non-central regions with high T2 (cf. Fig- 
ure 14c): Here a tumor which the neurological infer- 
ence engine suspected in the temporo-parietal left 

b 

d 

Figure 14. Detection of the ventricular system and a low-grade astrocytoma in a transaxial supraorbital MR-image. 
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part of the brain is discriminated by an operator 
which detects large parameter-homogeneous com- 
ponents (cf. Figure 14d). 

C. Configurating system 

Principally, several ways for the decomposition 
of the interpretation task exist in the graph G; in 
Figure 4 you find e.g. two paths to the node 'INTRA- 
CRANIAL'~ 

IMAGE --~ HEAD --~ INTRACRANIAL 

or 

IMAGE ~ TISSUES ~ INTRACRANIAL. 

Therefore, different sequences of operators may 
be used to solve the interpretation task. Further- 
more, it is possible to define different operators to 
solve the same problem using alternative methods. 

This leads to a variety of possible sequences of 
operators for the solution of the interpretation 
problem. As a consequence, a control framework 
for the configuration of operators is required (cf. [7], 
[8]). 

An expert (e.g. the designer) is able to compose 
the interpretation operators, tune their parameters 
and select alternative approaches in case of failure: 
He uses knowledge and experience about the per- 
formance of the operators under certain conditions 
and about their sensitivity to control parameters. 

The ultimate goal is the elimination of the inter- 
action between system and expert to achieve a fully 
automated interpretation of our MR-images. To do 
so, three topics have to be discussed with respect to 
configuration: 
- knowledge representation, 
- knowledge acquisition, 

inference. 

C. 1. Knowledge representation 
Three general types of knowledge are involved in 

configurating interpretation operators. We will 
refer to them as technical, temporary and experi- 
enced knowledge. 

Technical knowledge includes the definition of the 
required input data and parameters for each opera- 
tor; furthermore, the input and output pixel sets are 
included which describe the specific problem an op- 
erator is designed for. Technical knowledge is static 
in the sense that it is never changed once an opera- 
tor is integrated into the system. 
82 

Temporary knowledge is only generated and used 
for one case. It is categorized into three types: 

- facts (e.c. transversal slice of head, measure- 
ment method), 

- constraints (e.c. required speed and accuracy) 
and 

- hypotheses (e.c. expected pathologies based on 
clinical findings). Examples for these 3 types are: 

If 'VENTRICLE' Is-A-GOAL; an anatomical region 
then TAKE-OPERATOR 'FIND VENTRICLE 9'; a spe- 

cialized operator 
because "SLICE-9'; a radiological term: the slice of 
the brain shown in Figure 1 
IS-A-FACT 

If 'FIND VENTRICLE_ 9' IS-SELECTED-METHOD; a se- 

lected operator 
then SET 'MINIMAL-REGION-SIZE': = 128; one of its 
parameters 
because 'REASONABLE-TIME'; a constraint set before 
execution 
IS-A-CONSTRAINT 

If  'PATHOLOGY' IS-A-GOAL 

then TAKE 'RS4_I' ;  an operator 
because 'TEMPORAL-PARIETAL-TUMOR'; a location 
derived from the neurological inference engine 
IS-A-HYPOTHESIS 

Based on these facts, constraints and hypotheses, 
a plan is generated. Such a plan is exactly one sub- 
graph of G the root of which is some element of N 
(normally 'image') and whose terminal node is the 
goal. Arbitrary (anatomical) names in N can be se- 
lected as goals (cf. A). It is also possible to define 
more than one goal leading to a tree-structured 
subgraph as a plan. 

Temporary knowledge may be entered by the 
user at the start of the configurating process and 
during the process, as will be discussed below. 

Experienced knowledge forms the kernel of the 
configurating knowledge. It represents reasons for 
the selection of operators and the setting and tuning 
of parameters. Experienced knowledge is acquired 
from the expert during the operation of the system. 
It is therefore stored in a dynamic knowledge base 
which will comprise and retained more knowledge 
after each run of the configuration systcm. 
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C.2. Knowledge acquisition 
Dynamic knowledge acquisition of experienced 

knowledge is essential since it is impossible to ac- 
quire and represent this kind of knowledge in ad- 
vance. The expert can not formulate all his configu- 
rating knowledge by introspection. Therefore, a 
knowledge acquisition component is included to 
guide the decisions of the expert in certain situa- 
tions and represent them in such a way that the sys- 
tem will be able to make the same decisions in simi- 
lar situations. 

This learning process is based on an easy con- 
cept: Each time a decision has to be made (operator 
selection, parameter setting, etc.), the system gener- 
ates a proposal. If the expert does not agree with the 
proposal, he is given the opportunity to enter an al- 
ternative decision. He is then asked for a reason of 
his decision. He may enter his reason in one of the 
categories 'facts', 'constraints' and 'hypotheses'. If 
the reason is not in the temporary knowledge base 
yet, it is added then. The complete rule 

( If goal then make-decision because reason ) 

is added to the experienced knowledge base. 
The next time the system encounters a similar 

goal, it will be able to make the same decision itself. 
The representation of the rule acccentuates thefinal 
character of the if-clause and the causal character 
of the because-clause. The syntax stresses the differ- 
ent types of the two logical conditions of the rule in 
a way which is easier to understand for a non-ex- 
pert than the logically equivalent formulation. 

Although the configuration of a set of operators 
is based on a sequence of decisions which is believed 
to yield results optimal for radiological perception, 
these results can be unsatisfactory. This means that 
either the set of possible operators is incomplete or 
that the set of reasons describing the given situation 
is inadequate. 

To exclude the second possibility of an imprecise 
description of the situation, the visual correctness of 
each intermediate result is controlled by an evalua- 
tion component. If the evaluation is positive, the 
execution can continue; if not, the user is prompted 
to evaluate the result in his terminology: a possible 
(negative) evaluation may be 

"object: T attribute: contour value: too-fuzzy". 

A vocabulary for possible attributes and values is 
presented to the user [12]. It contains terms from 
the radiological domain (cf. Table 1). Moreover, 
the user can add his own terms. 

C.3. Inference 
Inference is not limited to the retrieval of col- 

lected rules. For each goal there may (and will) be 
several rules. Only those rules with a because-clause 
matched by a predicate in the temporary knowledge 
base are activated. If more than one rule applies, a 
decision supported by the largest number of activat- 
ed rules is made (or: proposed to the user). 

This way of reasoning about decisions is strictly 
positive because it only takes support for each pos- 
sible decision into account. This makes it rather dif- 
ficult to exclude rules explicitely from being activat- 
ed under special circumstances. Therefore, a 
negative type of rule is introduced which is estab- 
lished by asking the user for his reasons for not ac- 
cepting one of the other possible decisions for a giv- 
en goal. Rules of the form 

( If goal then-don't take-decision 
because reason ) ,  

are generated and added to the experienced knowl- 
edge base. 

Although a mechanism of negative support could  
be implemented using negative predicates in the 
first type of rules, this formulation more closely 
matches the human representation. 

3. Discussion 

The whole system reflects the clinical use of the 
knowledge described in (1): Starting with a neu- 
rological hypothesis, a tomogram of that part of the 
body which presumably contains a lesion is inter- 
preted to evaluate the hypothesis using the primary 
(here: especially neurological) and secondary (here: 
especially radiological) descriptions of pathologies. 

Radiological expertise is used in two ways: it 
guides the design of the operators and is used to 
evaluate their performance. 

The attributes and values of the clinical observa- 
tion language are exploited algorithmically to de- 
tect anatomical and pathological structures; the at- 
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tributes of the clinical language used for the 
definition of the operators introduced in (2) are 
summarized in Table 1. The evaluation of the oper- 
ators is done by the same attributes and values. 

This approach offers the following advantages: 
(1) Validation: By incorporating the radiological 

terms into the evaluation of the configuration pro- 
cess, the performance of the system can be validated 
in domain specific terms. 

(2) Documentation: The picture description lan- 
guage of a radiological domain can be documented 
and refined; this allows competent judgements 
about images without continuous local presence of 
personal competence in a clinic. 

(3) Consistency: The combination of radiological 
terms with the performance of operators allows 
checks of visual consistency in a radiological do- 
main; thus, traditions can be substituted by opera- 
tionalized methods. 

The neurological inference engine has been im- 
plemented in KEE on a SYMBOLICS LISP MACHINE 
under GENERA. The interpretation operators are all 
written in OPS5 with PASCAL subprocedures for pi- 
xel level operations. They are operational on a 
VAX8600 under VMS. The configuration system is 
implemented on the same machine in OPs5. The 
execution of interpretation operators is controlled 
via VMS subprocesses. The SYMBOLICS and VAX 
machines are linked via ETHERNET. 

The system has been developed on textual and 
pictorial data of twenty patients suffering from tu- 
mors and multiple sclerosis. 
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