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Abstract 

Starting with the intuitive concept o r  nearness" as a binar,, relation, semi-proximity spaces (sp-spaces) are defined. The 
restrictions on semi-proximity spaces are weaker than on topological proximity spaces. Thus, semi-proximity spaces 
generalize classical topological spaces. Moreover, it is possible to describe all digital pictures used in computer vision and 
computer graphics as non-trivial semi-proximity spaces, which is not possible in classical topology. Therefore, we use 
semi-proximity spaces to establish a formal relationship between the "topological"  concepts of digital image processing and 
their continuous counterparts in [~" 

Especially interesting are continuous functions in semi-proximity spaces which are called "semi-proximity" continuous 
functions. They can be used for characterizing well-behaved operations on digital images such as thinning. It will be shown 
that the deletion of a simple point can be treated as a semi-proximity continuous function. These properties and the fact that 
a variety of nearness relations can be defined on digital pictures indicate that semi-proximity continuous functions are a 
useful tool in the difficult task of shape description. 

Keywords." Proximity: Nearness: Digital topolog',.: Image proccs',ing 

O. Introduction 

Topo logy  has been deve loped  to formulate  and treat continuity.  This  can be demonst ra ted  by the fo l lowing  

quotat ion from the translation (Alexandroff ,  1961) of  (Alexandroff ,  1932, p. 8, no. 8): 

" A  topological space is nothing other than a set o f  arbitrary elements (called points o f  the space) in which 

a concept o f  continuio, is defined. Now this concept o f  continuity is based on the existence o f  relations, which 
may be defined as local or neighborhood relations - it is precisely these relations which are preserved in a 
continuous mapping o f  one figure onto another."  

A basic property of  cont inuous funct ions is that the cont inuous image of  a connected  set is connected.  This  

property can be useful in digital image processing,  since most t ransformat ions  of  digital images  must preserve  

connectedness .  If t ransformations of  digital images  are represented by cont inuous  functions,  then we  are 
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guaranteed that they preserve connectedness. In image processing, there is a natural well-defined concept of 
connectedness that is based on the local neighborhood relations of  digital images. Thus, the concept of  digital 
continuity should also be based on the concept of local neighborhood relations. 

The most useful transformations of digital images are those which preserve connectedness in both directions, 
since they do not split or merge different components of an image. (Formally, we will say that a function 
preserves connectedness in both directions, if both the image and the inverse image of a connected set are 
connected.) If transformations of digital images were represented by functions continuous in both directions, 
then they would preserve connectedness in both directions. However, in order to define continuity in the inverse 
direction in classical topology, the inverse function must exist, and thus the original function must be 
one-to-one. So in classical topology a definition of continuity in the inverse direction does not exist for 
functions that are not invertible. Since most transformations of digital images are not one-to-one, the definition 
of continuity in the inverse direction for functions which need not be one-to-one would be a useful concept in 
digital image processing. 

Rosenfeld (1986) uses the natural metrics of digital images in the framework of classical topology to define 
continuous functions between digital images (see also Boxer, 1994). Thus, a function in Rosenfeld 's  approach 
must also be a homeomorphism, and thus one-to-one, in order to be guaranteed to preserve connectedness in 
both directions. On the other hand, if a function on 2 2 is one-to-one, then it is continuous iff it is a composition 
of the basic transformations on 7/z, i.e., translation, rotation by _+ 90 ° or by 180 °, and vertical, horizontal, or 
diagonal reflection (Rosenfeld, 1986). This result is a consequence of the fact that a function is continuous in 
Rosenfeld 's  sense iff two points with distance one are mapped onto points with distance zero or one. Thus, this 
definition seems to be too restrictive for many applications in digital image processing. This limitation on the 
types of continuous functions available also applies to topologically continuous functions on 772 which can be 
defined in the topology described in (Khalimsky et al., 1990) and (Kovalevsky, 1989). 

In this paper, a semi-proximity structure is used to define continuous functions on digital images. Such 
functions can map points with distance one onto points with distance two or more. Thus, semi-proximity 
continuous functions are more flexible than metric or topologically continuous functions, yet they still preserve 
the usual kinds of connectedness of digital images. A function between semi-proximity spaces can be defined in 
a natural way to be continuous in both directions (bicontinuous), even if the function is not one-to-one. The key 
property is the fact that bicontinuous functions between semi-proximity spaces preserve connectedness in both 
directions. This fact and the variety of semi-proximity relations which can be defined on digital images indicate 
that semi-proximity continuous functions can be used to characterize well-behaved operations on digital images 
and to assist in the difficult task of shape description. 

Moreover, semi-proximity spaces establish a formal relationship between the " topolog ica l"  concepts of 
digital image processing and their continuous counterparts in Nk (Section 5). Since [Rk with the usual topology 
is a semi-proximity space for every k = 1, 2 . . . .  and every digital image can be described as a semi-proximity 
space in such a way that digital connectedness and semi-proximity connectedness are equivalent, it makes sense 
to define semi-proximity continuous functions between ~k and digital images. It is impossible using classical 
topology, to define continuous functions between [Rk and digital images, since the digital images which are most 
commonly used in applications cannot be described as topological spaces. For example, in (Chassery, 1979) it is 
shown that there is no topology on (yz,  8) in which connectedness is equivalent to 8-connectedness (see also 
(Latecki, 1993) for a much shorter proof, which requires only the consideration of a four-point subset of  7/2). 

In Sections 1 and 2, semi-proximity spaces, connectedness, and continuity are defined. It is also proved that a 
semi-proximity bicontinuous function, which need not be one-to-one, preserves connectedness in both direc- 
tions. In Sections 3 and 4, some basic definitions of digital topology are reviewed, digital metric continuity is 
defined, and some useful descriptions of digital images as semi-proximity spaces are given. In Section 6, some 
examples of  semi-proximity continuous functions on digital images are given. It is shown in Section 7 that 
semi-proximity continuity can be used to describe connectivity preserving thinning. Finally, in Section 8, 
properties of semi-proximity and other digital continuous functions are discussed. 
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1. Semi-proximity spaces 

Riesz (1909) introduced proximity structures in his "'theory of enchantment".  In the early fifties Efremovi~ 
rediscovered the subject (see Naimpally and Warrack, 1970; Engelking, 1977). The axioms for Riesz and 
Efremovi6 proximity structures were developed to axiomatize the properties of the relationship between sets A 
and B in a metric space which could be defined by stating that " A  is close to B "  (i.e. A 6 B) iff 
D ( A ,  B ) =  inf{d(x, y): x ~ A ,  y ~B} = 0. The five axioms of Efremovi~ are now widely accepted as a 
definition of a proximity structure. The topologies generated by proximity structures are always completely 
regular. So, in defining a "nearness"  relation which is suitable for studying problems associated with digital 
images, where the topological spaces considered will not be completely regular, we will consider a generaliza- 
tion of a proximity structure, called a semi-proximity, which uses only four of  the axioms for a proximity 
structure. Further, semi-proximity spaces generalize Herrlich's definition of nearness spaces (see Herrlich, 
1974). Finally, we will show that underlying each semi-proximity space there is a Cech closure mapping and, 
conversely, that (~ech closure mappings can be used to construct semi-proximity spaces. It should be noted that 
Cech (1966) refers to semi-proximity relations which arise from a semi-uniformity as proximity relations. 

Definition 1.1. A relation 6 on the power set of X. denoted P(X), which (VA, B, C ~ P(X)) satisfies: 

(p~) ( A U B )  6 C  ~ A 6 C o r B 6 C .  

(P2) A 6 B ~ ,4 4= 0 and B 4= 0, 

(P3) A N B # O  ~ A 5 B, 

(p,;) A 6 B  ~ B 6 A .  

will be called a (symmetric) semi-proximi O' on P ( X ) .  
If A 6 B will say that A and B are near. We will write A 3 B if A and B are not near. Finally, if X is a 

set and 6 is a semi-proximity relation on P ( X ) ,  then (X, 8)  will be called a semi-proximity space. 

For completeness, we note that ~ : P ( X ) ~ P ( X )  is a Cech closure mapping if 0 ~ = 0 ;  ( V A m P ( X ) )  
A _ A~; and (VA, B ~ P( X)){ A ~ B Y = A '~ tO B~ (Cech, 1966, Chapter 14, p. 237). Theorem 1.2 establishes the 
relationship between semi-proximity and Cech closure spaces. It also follows from Theorem 1.2 that every 
topological space is a semi-proximity space, since every topological space is a Cech closure space. 

Theorem 1.2. I f  6 is a semi-proximi O' ,'elation opt P(X) ,  then ~ : P ( X ) ~ P ( X ) ,  gi~,en by A c =  { x ~ X: 
A 6 {x}} is a Cech closure mapping on P ( X ) .  Conversely, ff ~ : P( X ) --+ P ( X )  is a Cech closure mapping and 
61 and & are gicen by (VA, B ~ P( X )) 

(i) A a ,  B ,~ A ~ , B ~ - ~ O  and (ii) A 6 ,  B ¢=, ( A f ? B ' 4 = O o r a C N B = g O ) ,  

then (X ,  81) and (X, 6, ) are semi-proximi O, ,spaces 

Proof.  Let 6 be a semi-proximity relation on P ( X  ). Bv (p:), 0 ¢ = 0. By (P3), A _CA c. Finally, 

(a 6 {q}=(by 6(x} or B 6{x}} 

A 6 B 

Let now ~ : P ( X )  ~ P ( X )  be a (~ech closure mapping. Then (pj). (Pc), and (P4) are easily verified for 61, 
while (p3) follows from A c-/B c_ (A c'~ B) L GA" q B':. 

For az, we show first (pj): (A U B )  & C * : , ( A  . ¢ B ) , - ~ C ~ * O  or ( A U B ) c C 3 C 4 = O  ~ ( A N C C 4 = O  or 
B N C "  * O ) o r ( A ~ t ~ B ~ ) r > C  ~ O  ~ ( A C ' C  ~ 4 = 0 o r ~ 4 ' , ~ ' ( ' 4 = 0 ) o r ( B ~ C ~ - # 0 o r B ~ c ~ C * 0 ) c a ( A  a 2 C 
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or B 62 C), which implies (Pl). (P2) follows easily by considering cases. (P3) follows from the fact that 
AC3Bc_AC3B ~ and A , ~ B c _ A " ~ B .  C l e a r l y , ( p 4 ) h o l d s  for 6,_. [] 

2. Connectedness and continuity in semi-proximity spaces 

In this section we define the concepts of connectedness and continuity in semi-proximity spaces. Initially we 
will precede each analogous definition with " s p "  for semi-proximity.  It should be noted that for T 1 topological  
spaces, sp-connectivity and sp-continuity agree with their topological counterparts. 

Definition 2.1. Let (X,  6 ) be a semi-proximity space and let Z _ X .  A pair of non-empty subsets A, B of X 
such that Z = A  UB and A ~ B is called an sp-separation of Z. Z is sp-connected in (X,  6)  if there is no 
sp-separation of Z in (X,  6), otherwise Z is sp-disconnected. In particular, a semi-proximity space X is 
sp-connected if there is no sp-separation of X. 

Let (X,  ~) be a topological space, where ~ is the closure operator generating the topology. If we consider the 
sp-relation defined by A 6 B ¢*A A B ~ 4: ~ or A ~ ~ B 4: ¢,  then sp-connectedness agrees with the usual 
definition of connectedness in topological spaces. Further, if (X,  ~) is a Cech closure space, then for the 
sp-relation defined by 6, sp-connectedness agrees with Cech connectedness. 

We will adopt the convention that if we are working in a semi-proximity space, we will write " A ,  B is a 
separation for Z "  instead of the technically correct statement " A ,  B is an sp-separation for Z " .  A similar 
convention will be adopted for all " ' sp"  terms defined in this paper. 

Definition 2.2. Let (X,  6~ ) and (Y, 6 2) be semi-proximity spaces. A function f :  X ~  Y is sp-continuous if 
(VA, B ¢ P( X))  ( A 61 B ~ f (  A) 62 f(B)) .  A function f :  X- - ,  Y is im, erse sp-continuous if (i) (Vii,  B 
P ( X ) ) ( f ( A )  62 f ( B ) = f  ~( f (a))  6~ f ' ( f (B) ) )  and (ii) the inverse image of every point in f ( X )  is 
connected. A function f : X -~ Y will be called sp-bicontinuous if it is continuous and inverse continuous 1 

Note that if f :  X - ~  Y is a function from X onto Y, then f is int~erse sp-continuous iff (i) (VC, D 
P(Y)) (C 62 D ~ f  1(C) 61 f -~ (D) )  and (ii) the inverse image of every point in Y is connected. Further, the 
definition of sp-continuity agrees with the usual definition of continuity in proximity spaces. 

The most important property of  an sp-bicontinuous function, which is proved in Theorem 2.6, is that it 
preserves connectedness in both directions. It is this property of bicontinuous functions along with the fact that 
they need not be one-to-one which make them an interesting tool in digital image processing. 

The following example shows that an sp-bicontinuous function between topological spaces need not be an 
open mapping. Let f :  [0, 2] -~ [0, 1], f ( x )  = rain(x,  1 ), be a function between closed intervals of  real numbers. 
We treat the set of intervals as sp-spaces with ~ defined by A 6 B ¢* A C3 B ~ =g ~ or A ~ A B e: ~, where ~ is the 
usual closure operator. Then f is sp-bicontinuous, but it is not open (any open set in (1, 2] is mapped onto {1}). 

Theorem 2.4 will show that the continuous image of a connected semi-proximity space is connected. 
Theorem 2.5 will show that an inverse continuous function preserves connectedness in the inverse direction. 

~Let (X, ~) be a topological space, where c is the closure operator generating the topology. If the sp-relation is defined by 
A ~ B ¢~ A (~ B c :e 0 or A c ~ B ~ 0, then for T I topological spaces, sp-continuity agrees with the usual definition of continuity. Moreover, 
if f: X ~ Y is an sp-bicontinuous bijection between T 1 topological spaces, f is a topological homeomorphism. This is actually true for R 0 
Cech closure spaces, where a closure space is R o if ~ satisfies the condition ( R~t (Va, b ~ X)(a ~ {b} c ¢~ b E {a}~). 
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Lemma 2.3. Let (X, 6 ) be a semi-proximi~, space. Then 

(VA, B ~ P ( X ) ) ( A  6 B a n d A c C  & B c _ D = C  6 D). 

Proof.  B y ( p l ) ,  A 6 B ~ ( A  ~ C )  6 B ~ C  6 B. B y ( p l ) a n d ( p 4 ) , C  6 B ~ C  6 ( B U D ) ~ C  6 D. [] 

Theorem 2.4. Let (X,  6~ ) and (Y, 6~ ) be semi-proximi~' spaces and f:  X--* Y be a continuous function. If X 
is connected, then f( X ) is connected. 

Proof.  Let X be connected, f ( X )  disconnected ~ 3C,  D _c Y, C :# ~, D :g 0 such that f ( X )  = C UD and 
C62 D ~ X c _ f  l ( f ( X ) ) = f  I ( C ) U f  I(D). f 1(C) and f I (D)  non-empty and X is connected 
f -I(C) ~1 f I(D)' By continuity of f,  f ( f - I ( C ) )  6~ f ( f  l(D)). However, by Lemma 2.3, f ( f - l ( C ) ) c _ C  
and f ( f - l ( D ) )  _ D ~ C 6~ D. which is a contradiction. [] 

Theorem 2.5. Let (X,  61 ) and ( Y, 6~ ) be semi-proximiO: spaces and f:  X ~ Y be im,erse continuous. I f  f ( X )  
is connected, then X is connected. 

Proof.  Let f ( X )  be connected and X be disconnected. So, there exist B ~ ~, B' :g ~ subsets of X such that 
X = B U B '  and B ~t B'. Since f ( X )  is connected and f ( X ) = f ( B ) W f ( B ' ) ,  we obtain f (B)  62 f(B').  By 
inverse continuity of f, f (B)  62 f (B' )  ~ f l ( f (B))  ~ f l( f(B')). 

If f l ( f (B))  = B and f ~(f(B')) = B', we have a contradiction. So, at least one of these equalities does not 
hold. For example, let B be properly contained in f ~(f(B)). This means that there exists y ~ f ( B )  such that 
f - l ( { y } )  N B' 4= ~. Since y ~ f (B ) ,  we also know that f ~({y}) © B 4: ~J. The fact that f ( X )  = B U B' implies 
that f l ( { y } ) = ( B ~ f  ~ ( { y } ) ) U ( B ' ~ f  i({y})). From Lemma 2.3 it follows that B a f  l ( (y})61 B ' N  
f ~({y}), which means that f ~({y}) is disconnected. This is a contradiction. [] 

As a simple consequence of Theorems 2.4 and 2.5, we obtain that if f is bicontinuous, then f preserves 
connectedness in both directions. 

Theorem 2.6. Let ( X, 6~ ) and (Y, 6~ ) be semi-proximin, spaces and f : X ~ Y be bicontinuous. Then, X is 
connected ¢:, f(  X ) is connected. 

Theorem 2.7 follows easily from the definitions and the properties of the image and inverse image functions. 

Theorem 2.7. Let (X, 61 ), (Y, 64) and (Z, 6~) be semi-proximi~' ,spaces and f :  X--* Y and g : Y - ~ Z  be 
functions. 

(i) If  f and g are continuous, then g ~ f ts continuou.s 
(ii) If  f and g are im,erse continuous, then g o f is imerse continuous. 

(iii) If  f and g are bicontmuous, then g o f is bicontinuous. 

3. Metric continuity 

The following definition of metric continuity is taken from (Rosenfeld, 1986). Rosenfeld has adopted the 
standard metric definition of continuity for digital pictures. However, to define metric continuity, Rosenfeld 
considers only metrics which fulfill the following conditions: 
(i) for all x, y ~ #",  such that x-4:y, d(x, y)>~ 1, and 

(ii) if x = (x  1 . . . . .  x , )  and y =  (3'1 . . . . .  y,),  then d(x, v) = 1 iff there exists j, 1 ~<j ~< n, such that I x j - y j l  
= 1  and x i = y i  for all i :~/ .  
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Obviously, the familiar Euclidean metric on 2"  and 4-distance which correspond to 4-adjacency on 7/2 
satisfy these conditions. However. the 8-distance based on 8-adjacency on l 2 does not satisfy condition (ii). 
Since digital pictures are equipped with natural metrics satisfying conditions (i) and (ii), metric continuity is a 
useful but restrictive property. Let r and s be natural numbers and let d r and d, be two metrics on 7/~ and 7/', 
respectively, which fulfill conditions (i) and (ii). A function f :  (7/~, d ~ ) ~  (2~, d,) is metric continuous at a 
point p ~ l ~ if (Ve >~ 1)(38 ~> 1)(Vq ~ 7/r)(d~(p, q) <,% ~ ~ d , ( f ( p ) ,  f ( q ) )  ~< e). A function f :  (Z ~, d~) 
(7/', d,) is metric continuous if it is metric continuous at every point p ~ W r. 

Although Rosenfeld refers to such functions as continuous, we will use the term metric continuity to avoid 
possible confusion with sp-continuity. The definition of metric continuity is analogous to the familiar 
epsilon-delta definition of continuity for real-valued functions. It is easy to show (see Rosenfeld, 1986) that the 
definition of metric continuity is equivalent to the following one. 

A function f : (7/~, d~) ~ ( 2 ' ,  d,)  is metric" continuous at a point p ~ 77 ~ if 

( V q ~ 7 7 ~ ) ( d ~ ( p ,  q)<~ 1 ~ d ~ ( f ( p ) ,  f ( q ) )  <~ 1). 

A simple consequence of this property is that metric continuous functions preserve metric connectedness, 
where a set X is metric connected in ( ~ ,  d,)  iff (Vp, q ~ X )  there exists a sequence of  points p =  
p~, p : , . . . ,  p,, = q such that d r ( p ,  p~ t) <~ 1, 1 < i <~ n. For the 4-distance on 772, the corresponding metric 
connectedness is equivalent to 4-connectedness. Theorem 3.1, which along with its proof is found in (Rosenfeld, 
1986), indicates that metric continuity may be too restrictive for many applications in digital image processing. 

Theorem 3.1. l f  f :Z:  -~ ~_: is metric continuous and one-to-one, then f is a translation, possibly combined 
with a t,ertical, horizontal, or diagonal reflection or with a rotation by + 9 0  ° or by 180 ° 

4. Semi-proximity relations on digital pictures 

We will now show that there is a natural way to define a Cech closure operator on 7/k, and that connectivity 
in the corresponding semi-proximities agrees with the usual connectivity of digital pictures. First we recall some 
basic concepts of digital topology: The 4-neighbors of a point (x, y)  in Z 2 are its four horizontal and vertical 
neighbors (x  + 1, y), (x  1, y)  and (x, y + 1), (x, y - 1). The 8-neighbors of a point (x, y)  in 77 2 are its 
four horizontal and vertical neighbors together with its four diagonal neighbors (x  + 1, y + 1), (x  + 1, y - 1), 
( x -  1, y +  l), and (x 1, y - 1). For n = 4  or 8, the n-neighborhood of a point (x, y)  in 2~ 2 is the set 
N~((x, y))  consisting of (x ,  y)  and its n-neighbors. In an analogous way, one can define 6-, 18-, and 
26-neighbors and -neighborhoods in ~ ,  and so on for 77k. If two points x and y are n-neighbors or x = y  we 
say that they are n-adjacent and write n-adj(x, y)  or simply adj(x, y). By an n-path from p to q we mean a 
sequence of points p = p ~ ,  p , , . . . , p k = q  such that p~ is an n-neighbor of Pi ~, l < i ~ k .  A set X is 
n-connected it for every pair of points p, q in X, there is an n-path contained in X connecting p with q. 

Let N ( x ) b e  some m-neighborhood of x ¢  Z ~ 

( V Y ~ P ( 2 ~ k ) ) { Y  ~ : = { x e E ' :  N ( x ) ~ Y ~  

then ~ is a 0ech closure operator on Z k. Thus, bv 
and ¢5, on 7/k given bv 

(i) A a, B =, A ' ~ B < ~ O  

Observe that, for 8, with i = 1 or 2, 

(VA, B ~ P ( 2  k))( ,4 8, B ** 

If we define c on P(7/k) by 

Theorem 1.2, ~ determines two semi-proximity relations 6 a 

and (ii) A 8, B ~, ( A ~ B~ 4= fl or AC Cq B * ft ) . 

w e  have  

( 3 ~ A ,  b ~ B ) { a }  8 i {b}). 
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- ~ - ~ - 

(a) (bY 

Fig. 1 Fig. 2. 

Thus, 61 has the following simple characterization in terms of the neighborhoods of points: 

(VA, B ~ P ( 7 / ~ ) ) ( A  al B ~ ( ( 3 a e A .  h ~ B ) N ( a ) ~ N ( b ) ~ ) .  

Similarly, ~: has a point-wise characterization given by 

(VA, B ~ P ( ~ ' k ) ) ( A  3, B ~ ( ( 3 a ~ A ,  h ~ B )  a ~ N ( b )  or b ~ N ( a ) ) ) .  

Since in digital pictures a ~ N(b)<=, h ~ N ( a ) ~ .  m-adj(a, h), we obtain a simple equivalence for 62 in terms 
of adjacency' given by' 

(VA, B ~ P ( Z ~ ) ) ( A  5, B ~ ( 3 a ~ A ,  b ~ B )  m-adj(a ,  h ) ) .  

Thus, 6: is just an extension of m-adjacency to sets. Using this definition, it is easy to observe that the 
sp-connectedness induced by 6, is exactly' the m-connectedness on 2 k for every m-adjacency relation. This is 
an important property,, since m-connectedness is an intuitive concept of connectedness in digital pictures. If we 
define 81 using 4- or 8-neighborhoods, then ,51-connectedness does not induce m-connectedness on 77~: If we 
consider the two-point set in Fig. 1. then it is ~-connected  but not m-connected. 

The most commonly' used digital pictures are (2 k, m, n. B) pictures with changeable (m, n)-connectedness, 
where B is the set of black points (see Kong and Rosenfeld, 1989). We will now define an sp-relation which is 
suitable for describing such pictures. We will begin by defining a relation 7 for points in B of (77 k, m, n, BY: 

(Vx ,  3' ~ B ) ( x  y y)  iff ( 3 p ~ B ) ( ( m - a d j l a .  p)  and n -ad j (p ,  3')) 

or (n-adj( , ,  t ' ) a n d  m-ad j (p ,  y ) ) ) .  (Y)  

Note that Y is reflexive, since if x =  ~. then x 3/ y, bccausc p can equal either x or y. This follows from the 
fact that for any k-adjacency, if a h, then k-adj(a, h). F()r example, if B is the set of  black points given in 
Fig. 2(a) with 8-adjacency in (2 : ,  8, 4, B) and a, h ~ B, then a 31 b. since there is p ~ B such that 8-adj(a, p )  
and 4-adj(p,  bY. This is clearly not the case for a and b in Fig. 2(bY. The extension of y to the sets of  black 
points is straightforward: 

(VA, C ~ P ( B ) ) ( A  y £')  iff ( 3 a  ~ A .  v ~ (  )( ~ y y ) .  

By checking (p l ) - (p4)  of Definition 1.1, it can easilx be shown that (B, y )  is a semi-proximity space. 

T h e o r e m  4.1. Let A g Z  ~ a'tth m-adjacency m (J*, m. n, ,4) and let (A ,  "y) be a semi-proximity space 
defined by ( y ). Then, ,4 V)-connected ~ A is m-c~mm'('ted. 

Proof.  First we will show that sp-connectedness implies m-connectedness. Let A be m-disconnected and let 
C, D be an m-separation of A. This implies that there is no m-path in A joining any point in C to some point 
in D. Thus, C, D is also an sp-separation of A. Assume now that A is sp-disconnected and C, D is an 
sp-separation of ,'4. It is clear that ( V x ~  C, y ~ D)( x y y). Thus, C, D is also an m-separation of A. If this 
were not the case, then ( 3 x  ~ C, v ~ l))(3m-path(  x, v ) ~  A). Since an m-path is a finite sequence of points, 
we obtain (3e  ~ (% d ~ D)(e. d ~ m-pathi x, v) and m-adi( c, d)). But this implies that C y D, a contradiction. 
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5. A semi-proximity relationship between ~ ~r and E ~ 

Using semi-proximity spaces we can establish a formal relationship between the " topological"  concepts of 
digital image processing and their continuous counterparts. For example, a set o~ _c Z k is a digital arc if a is an 
sp-bicontinuous image of a closed interval with the usual topology. Similar characterizations can be given for 
digital simple curves and digital surfaces. This is impossible in classical topology, since the digital images 
which are most commonly used in applications cannot be described as topological spaces. Chassery (1979) 
showed that there is no topology on (~2, 8) in which connectedness is equivalent to 8-connectedness (see also 
(Latecki, 1993) for a much shorter proof, which requires only the consideration of  a four-point subset of 7/2). 

By the results in Section 1, (~",  6) is a semi-proximity space having the usual topology of  ~"  if we define 
(VA, B ~ P ( ~ " ) X A  6 B iff A G B ~ 4= ¢ or A ~ ~ B 4= ~), where ~ is the usual closure operator defining the 
topology of ~*. By the results in Section 4, Z~ k with m-adjacency is a semi-proximity space if we define 
(VA, B ~ P(Y_~))(A 6 m B iff (=la ~ A ,  b ~ B) m-adj(a, b)). Therefore, it makes sense to define sp-continuous 
functions between (~",  6)  and (~,k 6m). Note that this is the first formal link between the most commonly used 
digital pictures and R". In the approach presented in (Khalimsky et al., 1990) and (Kovalevsky, 1989), ?7 k can 
be treated as a T O topological space. However, the structure of 77 k obtained this way is not the one most 
commonly used in digital pictures with 4-, 8-, 6-, or 26-adjacency relations. Theorem 5.2 will show that a digital 
arc can be described as the sp-bicontinuous image of a closed interval with the usual topology. A digital arc is 
commonly used in computer vision and computer graphics, and is defined as follows. 

Definition 5.1 (Rosenfeld, 1979). A finite set a c Z k is an m-arc connecting p with q iff ce is m-connected 
and each point in a - { p, q} has exactly two m-neighbors in a ,  while the endpoints p and q have exactly one. 
A finite set C _  Z k is a simple closed m-curve iff C is m-connected and all points in C have exactly two 
m-neighbors in C. To rule out degenerate cases the usual restriction on the minimal number of  points in a simple 
closed curve is assumed: a 4-curve has at least eight points and an 8-curve at least four points, and so on for 
every m-adjacency relation. 

Theorem 5.2. A finite set a c Z_ ~ is an m-arc ~, a is an sp-bicontinuous image of  a closed interval with the 
usual topology, i.e. (3 . / ' : ( I ,  6 ) ~ ( 2 ~  k, 6 , , ) ) ( f ( l ) =  c~ and f is sp-b icontinuous ), where (I, 6 ) c ( ~ ,  6) is a 
closed interval. 

Proof.  " ~ " An m-arc c~ connecting p with q can be regarded as a sequence of points p = Pl, P2,.  •.,  P, = q 
such that Pi is an m-neighbor of p, ~, 1 < i ~< n (Rosenfeld, 1979). Let ([0, n], 6)  c ( ~ ,  8) be an interval and 
let f : ( [ 0 ,  n], 6 ) - ~ ( Z  'k, 8 , . )be  defined by f([0, l ] ) = p = p l  and f ( ( i ,  i +  1 ] ) = p i  for i =  1 to n - 1 ,  where 
(i, i + 1] is a half open, half closed interval. Clearly f([0, n]) = a.  All points in a - {p, q} have exactly two 
m-neighbors in a ,  while the endpoints p and q have exactly one, and we have a similar situation for the 
relation 6 among the intervals [0, 1], (i, i +  1], where i =  1 to i - 1 .  So, it is easy to see that f is 
sp-bicontinuous. 

" = "  Let f : ( L  8)  ~ ( 2  zx. 6,,)) be an sp-bicontinuous function such that f ( 1 )  = a ,  where I___ (~,  8)  is a 
closed interval. Since f is an sp-bicontinuous function, f ( 1 )  = a is m-connected. Note that (Vx ~ a X f - l ( x )  
is connected); therefore ] ~(x) is a subinterval of 1 (we treat points in ~ as (degenerate) intervals). 

Now, I = U x~ , , f  J(x) is the union of a collection of pair-wise disjoint intervals; every interval in this 
collection is 6-near exactly two other intervals in I; except for exactly the two subintervals of I which contain 
the endpoints of I, say these are f t ( p )  and f ~(q). These two subintervals are 6-near exactly one other 
subinterval. By the sp-bicontinuity of f, we obtain that all points in a - {p, q} have exactly two m-neighbors 
in a .  while p and q have exactly one. [] 
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{a) ] (b) 

Fig. 3. 

Theorem 5.3. A finite set C c__ Z k satisfying the restriction on the minimal number of points is a simple closed 
m-curue ~ C is an sp-bicontinuous image of  a unit circle with the usual topology, i.e. 

( 3 f : ( S ' ,  8 ) -~ ( ~_ k, 6,, ) )( f (  S' ) = C and J i., sp-hicontinuous ), 

where (S l, 6 ) ~ ( ~  2 6) i,s a unit circle. 

Proof.  The proof is very similar to the proof of Theorem 52.  [] 

6. Examples of semi-proximity continuous functions on digital pictures 

We give some examples of sp-continuous functions on digital sets. The digital sets considered in these 
examples are subsets of (7/:, 8. 4, B). We will illustrate them as grey-colored squares in the following figures. 
For any X c_ Y 2 with 8-adjacency, 6"- is defined by 

(VA ,  B ~ P ( X ) ) ( A  6, B iff ( 3 a ~ A ,  b c B ) ( S - a d j ( a ,  b ) ) ) ,  

and y is defined by (VA, ( ~ P(B))( .4  7 C) iff ( 3 x  ~ :4, v ~ C) (x  y y), where 

(Vx,  y ~ X ) ( x y  3') iff ( 3 p ~ X ) ( ( 8 - a d j ( x ,  P ) a n d 4 - a d j ( p ,  y ) )  

or (4-adj( .~, p)  and 8-adj( p,  y ) ) ) .  

Let g be the function between the two digital pictures given in Fig. 3(a), i.e. g ( x ) = x '  if x 4= b, and 
g(b)  = e'. If we use 62 for both pictures, then g is sp-continuous, since it is clear that u 6 z ~, ~ f ( u )  62 f (v ) .  
Similarly, if we use y for both pictures, then g is sp-contmuous. 

Now let h be the function between the two digital pictures given in Fig. 3(b), i.e. h(x)  = x', for every x ¢ b, 
and h(b) = e'. If 6, is used in both pictures, then h is not sp-continuous, since b 6._ p, but h(b) 62 h(p) ,  i.e., 
e' 62 P'- However, if we use y for both pictures, then h is sp-continuous, since b y p and h(b) 3 /h (p) .  Note 
that in this case h maps points with 8-distance one onto points with 8-distance two and it still preserves the 
8-connectivity of the digital image. 

The function in Fig. 4 defined by k (x )  = x' .  for ever~ x * b and k(b)  = e', is not sp-continuous for either 62 
or y,  since it does not preserve 8, or y-connectedness, which are both equivalent to 8-connectedness. 

[i!ii~ ~ iiii~!il 
..... i ..... iii~i~!l 

/ 

t:i~z, 4 
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7. Thinning and semi-proximity continuous functions 

Many operations on 2D and 3D digital images are required to preserve connectedness in both directions, that 
is, there is a one-to-one correspondence between (black and white) components of the input and output image 
and their structure. For example, this requirement must be satisfied by any preprocessing step for character 
recognition, since an object with the structure of " 8 "  should not be transformed into an object with the 
structure of " o "  or " ' i" .  Thinning (or shrinking) is a kind of transformation where connectedness must be 
preserved in both directions. Thinning is a useful operation in digital image processing, since in many 
applications it is computationally easier to recognize the structure of a "thinner" image, provided that the 
thinning algorithm did not change the structure of connected components in the image. Thinning a set B of 
black points means deleting a subset A _ B ,  i.e. changing the color of points in A from black to white. This 
suggests that every thinning transformation T : B ~ B - A should preserve automatically connectedness in the 
inverse direction, i.e., if X is a connected subset of B - A ,  then T I (X)  should be a connected subset of B. 
Therefore, to show that a thinning transformation preserves connectedness in both directions, it is enough to 
show that it maps connected sets to connected sets. 

According to (Kong, 1993), a thinning algorithm (parallel or sequential) preserves connectedness (i.e. maps 
connected sets to connected sets) iff every set deleted by this algorithm can be ordered in a sequence such that 
every point is simple after all previous points are deleted. Intuitively, a point is simple if its deletion does not 
change locally the connected components of black and white points. Thus, this definition reduces the global 
problem of connectedness preservation to a local one. We show that deleting a simple point (i.e. turning its 
color from black to white) in a digital image (7/2, 8, 4, Y) can be regarded as an sp-continuous function. Let 62 
and y be as defined in Section 6. Since thinning can be described as a recursive deletion of simple points, we 
can characterize a thinning algorithm transforming a black set Y to its subset X as a sequence of sp-continuous 
functions f,,:(Y~, 6~)~(Y, ,+l  , y ) f o r  n = l  . . . . .  k - 1  such that Y I = Y  and Y k = X  and Y n = Y n + l - ( p , } ,  
where Pn is a simple point in Y,. Since sp-connectedness relations induced by 62 and by y are both equivalent 
to 8-connectedness, it follows that this thinning algorithm preserves 8-connectedness. An advantage of this 
approach to thinning is that the connectedness preservation of a thinning algorithm follows automatically from 
sp-continuity of functions f,. The following results are stated for 2D images with 8-connectedness relation. 
However, analogous results can also be proved for other connectedness relations and 3D images. We do not 
present them here, since their proofs require a complicated pattern analysis and our main goal is to demonstrate 
the advantages of the approach of viewing a thinning algorithm as a sequence of sp-continuous functions. 
Theorem 7.2 shows that sp-continuity can be used to characterize the deletion of simple points defined as 
follows. 

Definition 7.1. A black point p in (7/2, 8, 4, B) is said to be simple iff 
(C1) p is 8-adjacent to only one black 8-component in N~(p)  - {p}, and 
(C2) p is 4-adjacent to only one white 4-component in N s ( p )  

Theorem 7.2. Let Y be a set o f  black points in (y/z 8, 4, Y)  and X = Y - {p}, where p ~ Y. I f  p is simple in 
(7/2, 8, 4, Y ), then there exists an sp-continuous function f :  ( Y, 62) ~ ( X,  y ), where 6 2 and Y are as defined 
in Section 6. 

Proof. Recall that 6, is just an extension of 8-adjacency to sets, i.e. (Va, b ~ Y ) (a  62 b ~ 8-adj(a, b)). Thus, 
we have ( V y ~  Y X p  62 y c ~ y ~  Y ~ N s ( p ) ) .  Let p be simple in (7/2, 8, 4, Y). Then, there exists a white 
4-neighbor w of p. Assume first that w is such that there also exists a black 4-neighbor q of p such that w and 
q lie on the opposite sides of p (see Fig. 5(a), where the dotted squares denote points of either color). We show 
that the function defined by f ( p )  = q and (Vy ~ Y {p})(f(y)  = y) is continuous. Since (Vy ~ Y) (p  62 y ¢~ 
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Fig. 5. Fig .  6. 

y e Y ~ N s ( p ) ) ,  it remains to show that ( V y e Y ~ N s ( p ) ) ( f ( y ) Y  f ( P ) ) .  This follows from the fact that 
(Vx ~ X ~ Ns(p) ) (x  y q), which can be easily checked. 

If there is no pair of  4-neighbors q and w of  p such that w and q lie on the opposite sides of  p and w is 
white while q is black, then, by the simplicity of p, all 4-neighbors of p are white and there is exactly one 
black 8-neighbor q of p (see Fig. 5(b)). In this case the function f ( p )  = q  and (Vy ~ Y - { p } ) ( f ( y ) = y )  is 
clearly continuous. [] 

All thinning algorithms do not delete a simple point that does not have a black 4-neighbor, since such a point 
has only one black 8-neighbor, and therefore it is an endpoint. Thus, only simple points that have a black 
4-neighbor need be considered. The following equivalence characterizes the simplicity of  such points. 

Theorem 7,3. Let  p ~ Y in (Z ~. 8, 4, Y ) be such that ( 3 q  c Y - { p})(4-adj(p, q)). p is s imple in (77 2, 8, 4, B) 
i f f  the funct ion f :  ( Y, 6~ ) --~ ( Y  -- { p}, y ), f ( p )  = q and (V v ~ Y - { p} ) ( f (y )  = y ), is sp-continuous.  

Proof. " ~ '" It is just the proof of Theorem 7.2. 
" ~ "  If the 4-neighbor ot p opposite to q, say r, were black (i.e. r ~ Y), then f would not be 

sp-continuous, since r 8~ p, but the equivalence ( f ( r )  y ( ( p )  ~ r Y q) is false (see Fig. 6(a), where the dotted 
squares denote points of either color). Therefore, r must be white (i.e. r ~  Y). If there were two black 
8-components or two white 4-components. then one of the configurations (b) and (c) in Fig. 6 would occur in 
Ns(p).  In both cases, f would not be sp-continuous. Thus there is exactly one black 8-component and one white 
4-component in Ns(p). This implies that p is simple. :2 

Theorems 7.2 and 7.3 establish a relation between sp-continuous functions and thinning algorithms, which 
gives a new view of thinning as a sequence of sp-continuous mappings, so that the connectivity preservation of  
a thinning algorithm follows from the sp-continuity. 

8. Semi-proximity and other digital continuous functions 

The example given in Fig. 7 show's that semi-proximity continuous functions on digital images are more 
flexible than metric and topologically continuous functions. Consider the set of black points X on the left side 
in Fig. 7. The deletion of a simple point p ~ X cannot be described as a continuous function in Rosenfeld's 

F 
B 

Fig ~ 
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sense, since the definition of continuity in (Rosenfeld, 1986) requires that points with distance one are mapped 
onto points with distance at most one and Rosenfeld's restrictions on the distance imply that only 4-neighbors 
are allowed to have distance one. So, two 8-neighbors must have distance greater than one. Yet the point p is at 
distance one to its three black 4-neighbors, and there is no other black point (onto which p could be mapped) 
which is at distance ~< 1 to these three 4-neighbors. Thus, Theorem 7.2 (and therefore Theorem 7.3) is not true 
if we use the definition of metric continuous function given in (Rosenfeld, 1986). 

This example also shows that the deletion of a simple point p cannot be described as a digital retraction as 
defined in (Boxer, 1994), since Boxer's definition of digital retraction is based on Rosenfeld's definition of 
metric continuity: A function r : A --+ B, where B _cA, is a digital retraction if r is metric continuous and 
r (b )  = b for all b ~ B. For the same reason, the sets X and X - {p} in Fig. 7 are also not homotopy equivalent 
in the digital sense as defined in (Boxer, 1994): As shown above, there is no metric continuous function 
between X and X -  { p}, and there is no other set contained in X -  { p} which is digital homotopy equivalent to 
X and X - { p } ,  because there is no proper subset of X - { p }  onto which the X - { p }  could be metric 
continuously mapped. If we base Boxer's definitions of digital retraction and homotopy on sp-continuity, then 
X -  {p} will become a digital retract of X and the two sets will become homotopy equivalent: The function that 
maps p onto its south 4-neighbor and does not move the other points in X is sp-continuous if we treat X and 
X -  {p} as digital images described in Theorem 7.2. 

The definition of metric continuous functions cannot be extended by allowing greater distance between the 
image points, e.g. points with distance one are mapped onto points with distance at most two, since such a 
function would not preserve connectedness. In particular, a metric continuous function f :  (2 re, d 4) ---)(7/2, d 8) 
does not preserve 8-connectedness. On the other hand, the deletion of the simple point p in Fig. 7 cannot be 
described as a metric continuous function f :  (222, d s) ~ (?72, ds), since p must be mapped by f onto one of its 
black 8-neighbors, but then f ( p )  cannot be at 8-distance one to the other black 8-neighbors of p. These 
limitations also apply to continuous functions in the T 0 topology on 7/2 described in (Khalimsky et al., 1990) 
and (Kovalevsky, 1989). In this topology, x E ( y y ~  d s ( x  , y)~< 1, and therefore a topologically continuous 
function maps points with 8-distance one to the points with 8-distance at most one. 

9. Concluding remarks 

Starting with the intuitive concept of "nearness" as a binary relation, semi-proximity spaces have been 
defined. It was shown that all digital images used in computer vision and computer graphics can be treated as 
non-trivial semi-proximity spaces. Examples of different nearness relations on digital images have been given 
which induce the usual connectedness on digital images. Since the nearness relation on digital images shows 
many properties of the spatial concept "near" ,  a digital structure with this relation can be useful in spatial 
reasoning, in particular, for pictorial inferences based on digital picture generating and inspection processes. 

It was shown that semi-proximity continuous functions can be more flexible than metric and topologically 
continuous functions on digital images while still preserving the usual connectedness. Useful examples of a 
semi-proximity continuous function were given which can map points with 8-distance one onto points with 
8-distance two and which still preserve the 8-connectedness of the digital image. 

The semi-proximity presented in this paper establishes a formal relation between N~ and digital images as 
sp-bicontinuous functions. This is possible, since N" with the usual topology and digital images with their usual 
structure are sp-spaces. This relation guarantees a complete equivalence of connected components, since 
sp-bicontinuous functions preserve connectedness in both directions. These properties and a great variety of 
sp-relations on digital images implies that sp-continuous functions can be used to divide digital images into 
classes, which can be useful in the difficult task of shape description. 
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