N

N

A very fast multiplication algorithm for V.L.S.I.
implementation

J. Vuillemin

» To cite this version:

J. Vuillemin. A very fast multiplication algorithm for V.L.S.I. implementation. RR-0183, INRIA.
1983. inria-00076375

HAL Id: inria-00076375
https://inria.hal.science/inria-00076375
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00076375
https://hal.archives-ouvertes.fr

N° 183

A VERY FAST
MULTIPLICATION ALGORITHM
FOR VLSI IMPLEMENTATION

Jean VUILLEMIN

Janvier 1983

v

A VERY FAST MULTIPLICATION ALGORITHM
FOR VL'SI IMPLEMENTATION

Jean Vuillemin

INRIA - Rocquencourt
Abstract :
We present a simple recursive algorithm for"mUItiplying two
binary N-bit numbers in parallel 0(log . N) time. The simplicity
of the design allows for a regular layout. The area requirement
of this algorithm is comparable with that of much slower designs

classically used in monolithic multipliers and 1in signal

processing chips, hence the construction has definite practical
impact :

Resume :

Nous décrivons un algorithme récursif simple permettant de multi-
Plier deux entiers binaires de N-bits en un temps parallele 0(logN).
La simplicité de sa conception rend possible une disposition
réguliere du plan du circuit des masques. La surface . de ce circuit
est comparable a celle requise par 1les algorithmes habituellement
utilisés dans les multiplicateurs monolithiques ‘et dans les

processeurs de traitement du signal. Cette construction presente
un intéret prathue direct.

i

1 Introduction

While O0(log N) time algorithms for computing the product of two
N-bits binary numbers have been known for close to twenty years
((Wwallace 64),(Dadda 65),...) they have not much been used in
modern integrated circuits. Because of their complex nature,

such algorithms have generally been discarded by designers of
integrated multipliers.

Designers have chosen instead to implement a comparatively slow
((TRW 77), (Matsumoto 80),(Cand-Scan-Ros 82),...) O(N) time
seq-mult algorithm, which trades theoretical speed for regularity
of design and silicon area.

The O0(log N) time multiplication algorithm par-_mult proposed
here 1is simple enough to admit a regular layout whose area
requirement is only marginally bigger than that of seq-mult.
It's recursive definition makes it ideally suited for
macro-generating regular mask descriptions from a high level
algorithmic specification (Luk 83). We thus propose par-mult as
a practical alternative to current VLSI multiplier design,
whenever speed is the dominant design ecriterion.

Indeed, we estimate that han-mnl& computes 16 (resp. 32) bits
products 2 (resp. 3) times faster than seq-mult ; yet it only
uses 30 ¥ (resp. 40 %) more area,

A prototype circuit and complete analysis of par-pult is
performed by (Luk 83).

4}

2 Description of the algorithm

We describe the algorithms Par-Mult and Seg-Mult in this section,
postponing layout considerations until section 3.

2.1 Binary notation-and statement of the problen

Let A = <a(n-1),...,a(0)> be a n=~bit binary sequence. ' Such a
sequence denotes the _ natural _ number
val{A}=SUM{0=<i<n:a(i)®(2%%i)}. Function yal, which maps binary
sequences {0,1}%#*n into natural numbers {a:0<{=za<(2%%*n)} defines
the semantics of binary notation.

A binary. multiplier is an algorithm for transforming two binary
sequences A and B into P=MULT(A,B) , the binary representation of
the product val{A}*val{B}. If A and B are respectively m and
n-bit sequences, P is a (m+n)-bit sequence. For the algorithm to

be correct, sequence P must satisfy: ~ :

NON val{P}=SUM{k>=0:p(k)#*(2%%k)}
=SUM{i,j>=0:a(i)®*b(j)*(2%%#(i+j))}
=val{A}*val{B}. ‘

Multipliers realized as integrated circuits encode bit values in
the physical world as states of a bi-stable electronic device.
For example, in MOS technologies, bits are represented by the
presence or absence of electrical charges on localised capacitive

~Wwires. - Inputs and, outputs to such circuits must appear in this
. representation, ‘

To implement a multiplication algorithm on silicon, we must
decompose its description to the point where it is entirely made

of atomic actions, whose functionality is exactly matched by an

electronic realisation (gate) in the technology. Designing such
algorithms is conceptually no different from producing machine
code from high-level descriptions.

We attempt here to deSéribe the silicon-structure of the proposed
multiplier, by successively refining a high-level description of
the algorithm, in a top down (and ultimately error free) manner.

2.2 Primitive building bloecs for multiplication

If we represent 1 by ¢true and 0 by false ,.the product a%*b of
bits a and b is implemented as the logical and(a,b) an atomic
gate of the technology.

Using m copies of the primitive and, we <c¢can construct the
operator Dbit-product, computing the product of a m-bit binary
number A by bit b:

(2) bit-product(A,b)=<and(a(m=1),b),... and(a(0),b)>
val{bit-product(A,b)}=val{A}®*val{b}
=if b=0 then O else A.

In hardware implementations, a parallel broadcast of bit b on a
common bus (wire) ensures that bit-product introduces a (small)
delay, independant of m, the number of bits in A.

Another useful primitive is shift(i,A), which adds i zeroes to
the right (least significant bit) of sequence A:

(3) . shift(i,A)=<a(m-1),...,a(0),0,. .0>
val{ghift(i,A)}=val(a)®(28=i),

In parallel multiplieés, the gshift operator is "hard-wired" so as
to introduce zero delay.

We shall fix later (section 2.4) the structure of the adders from
which we assemble our multiplier. It will suffice for the time
being to consider addition as a primitive operator add
satisfying: . ‘

(4) val{add(A,B)}=val{A}sval(B}.

i

2.3 Algorithms Seq-Mult and Par-Mult

Formula (1), defining multiplication, can be rewritten as
(5) val{P}=val{A}#*val{B}=SUM{>=0:val{A}*b(j)*(2%%3j)}.

It follows that we can compute P=MULT(A,B) bylinitially forming
all summands val{A}*b(j)*#(2%*#%j), and adding them all.

The classical algorithm Seg-Mult essentially sums up the operands
in n-1 sequential stages.

We propose, for Par-Mult to sum up the operands in a paballel
tree, 2 by 2, then 4 by 4, ... , in log(n) parallel stages.

The following recursive definitions of both algorithms show their
similarities and differences : : .

(Seq-Mult) o
SEQ-MULT(A,B)::= |
if 0=<val{B}=<1

then bit-product (A,b(0)) ‘
else add(shift(k,SEQ-MULT(A,B1)),SEQ-MULT(A,BO))

where k=1, .
B=<b(n-1),...,b(0)>, B1=<b{(n-1),...,b(1)>, BO=<b(0)>.

(Par-Mult)
PAR-MULT(A,B)::=
if 0=<val{B}=<1
then bit-product(A,b(0))
else add(shift(k,PAR-MULT(A,B1)),PAR-MULT(A,B0))

where k=n/2+1 ’ '
B=<b(n=-1),...,b(0)>, Bi1=<b(n-1),...,b(k)>, BO:(b(k91)q.f.,b(0)>.
The correctness of both algorithms, as expressed by (1) and (5),
follows from (2),(3), and (4), together with

(7) - . val{B}=val{B1}%(2%#%k),

this last expression holding true for both algorithms (k=1 or
k=n/2+1). ' : ‘ '

Both algorithms perforn exactiy’n-1 additions in the course of
multiplying a. m-bit sequence A by ¢the n bits of B. Because of

parallelism, these additions are <completed within log(n) (baes 2

logarithm) stages in Par-Mult, while Seg-Mult requires n-1 such '
stages.

Each algorithm can be depicted by a tree of successive additions,
as in Figure 1.

-

AsbB
Ae (bB+2b1)
Asbl
AsB
Aeb2
AOGi&ZED
Asb3

Par—Mult (A, <b3, b2, b1, bB>)

AebE , '

AeB

Aebl

POIZNGD

Asb2

Llgevar. <o

A«b3

. Segq—-Mult (A, <b3, b2, bl, bB>)
Fig. 1. Addition trees for Seq-Muli and Par- Mult.

2.4 Using carry save representation for intermediate products.

A carry save number M is a pair (R,S) of binary sequences R and
S. The value of M is the sum val{M}=val{R}+val{S} of the values
if its COmponents R and S. A convenient representation of carry
save numbers by sequences is M=<m(n-1),...,m(0)>, where digit i
is m(i)=r(i)+s(i), with value in 0,1,2, as shown in Figure 2.

Binary representatior:

<182101811>

Carry save repﬁesentotions:
299=[<11610111>,<B1R1B10D>]
=<12021811> :
=<12101811> ’

_Fig'. 2. Carry save representation.

The addition add-gsb((R,S),T) of a carry save number M=(R,S) with
a binary integer T, yielding a carry save result (R',S') can be
performed in a bit-wise manner:

(8) "add-csb((R,S),T)::=(R",S")

where . .
S'=<fa-sum(r(n-1),s(n-1),t(n=-1)),...,fa=sun(r(0),s(0),t(0))>
and

R':shift(1,<fa-carry(r(n-1),s(n-1),t(n-1)),...,fa-cabry(r(O),s(O),t(oj
The bit-wise full adder is defined by: '
(9) s'=fa-sum(r,s,t)::={(r+s+t) mod 2}

and r'=fa~-carry(r,s,t)::={(r+s+t)>1},
so that (2r'+s')=(r+s+t).

The sum. add-¢scs((R,S),(T,U)) of two carry save numbers M=(R,S)
and N=(T,U) is computed in two steps:
(10) add-eses((R,S),(T,U))::=add-csb(add-csb((R,S),T),0)
It follows directly from (8),(9) and (10) that:
(11) val{add-cscs(M,N)}=val{M}+val{N}.
The delay Tadd introduced by the parallel cohputation of add-gscs
is independant of the length of the operands, namely: :
(12) Taﬂdhcscs:Z’Tadd-csb;Z'Tfa

where Tfa is the delay introduced by one stage of full adder.

b

2.5 Par-Mult and Seq-Mult revisited

Assuming the operands A and B of multiplication to be initially
presented in binary form, the first level of addition in the
trees of Figure 1 1is used to obtain the intermediate sums
(A®*b(23),shift(1,A®*b(23j+1))) in carry save form. There is no
delay involved in the initial conversion form-¢s which is a mere
convention,. :

In the case of Seg-Mult, all subsequent addltions combine a carry
save and a binary number, thus we use add-gcsb
For Par-Mult, all intermediate results after the first'stage.are
in carry save form, and they are combined two by two using
add-cses. - '

In both cases; the final addition stage yields a carry save
representation of the product P=A®*B, The two binary sequences
forming this carry save product must then be added, in order to
produce the final result in true binary form. For this purpose,
we use a fast carry-look-ahead adder g¢la-add, such as described
for example by (Vuill-Guib 82). T

‘Computation of the numerical product 23'13 with both algorithms

is shown in Figure 3.

18111

18111

18111

gie11l

111221

12821811

Par-Mult (13, 23)=298=<100181011>

1g111

18111

N 1z

18111

1121818

12181811

- Seq—Mult (13, 23)=289=<188181011>
Fig. 3. Computation of 13 « 23 with Seq-Add and Par- Add

10

2.6 Timing anﬁlysis

If m and n are the number of bits of A and B . respectively, the
time required by Seq-Mult and Par-Mult for computing the (n+m)
bits of product P=A¥B is given by:

(13) Tseq-mult(m,n)=T0+(n-2)%#Tfa+Tcla-add(n+m); ,
S (18) Tpar-mult(m,n)=T0+2(log(n)-1)*Tfa+Tcla-add(n+m).
Here, TO represedts the time required for ihput distribution.énd
bit-wise products, . It 1is shown by (Vuill-Guib 82) that
integrated carry look ahead adders can be designed with
logarithmic delay Tcla-add(p)=T1%*log(p). It follows that

Par-Mult also has a logarithmic computing time, and it proves
faster than Seg-Mult for all values of n and m, - ’

To be fair, we must point out that Segq-Mult is almost invariably
implemented in conjunction with Booth's recoding of operand B, as
described for example in (Matsumoto 80). Such a recoding divides
the number of summands by two, improving the speed by almost the

- same factor.

Booth's recoding can be used’in'conjunction with Par-Mult just as
well, dividing by two the number of initial summands. The speed '

‘gain in that case is marginal, since it only amounts to reducing
by one the depth of the tree. of adders, at the - expense of.
recoding. All this is 'not worth the complexity and area

increase,. As it stands, Par-Mult without Booth's recoding
"remains faster than Seg-Mult with Booth's recoding for all
operand lengths. : : ' ‘

11

3 Laying out Par-Mult on silicon

We describe an efficient layout strategy for Par-Mult. Although
our target technology is MOS, the construction is general enough
to apply to other technologies, such as Bipolar, ...

Our technique for laying out Par-Mult(m,n) uses a rectangular
array of (m+n) columns and n rows. Row i initially contains the
summand bD(i)®*A, suitably shifted by 2%#%i positions, so that
column k contains th "bit-slice" of partial products b(i)*a(y),
with i+]j=k. : .

For the sake of description clarity, it proves convenient to
first define a 3 dimensional layout, suitable for 1ideal
technologies endowed with log(n) levels of connexions. This 3-D
layout is then mapped into an ordinary 2-D floorplan, so as to
fit within the stringent constraints of current technologies,
limited to one\(or two) levels of connexion.

We also 1limit ourselves to describing the "carry save®"™ part of
our multiplier: conversion from carry save to true binary at the
last stage of the algorithm uses circuitry which 1s descibed
elsewhere (Vuill-Guib 82). '

3.1 A 3-D recursive layout

Let n=2%#k with k=log(n) be the length of multiplicand B. Our
3-D layout is a parallelogram made of k superposed plane
structures.

To formally describe sueh structures, we introduce the operators
JX,JdY,Jd2Z: let P and . P' be parallelograms of respective
dimensions dx,dy,dz and dx',dy',dz'; the operation JX(P,P'),
which is only defined when dy'=dy and dz'=dz, constructs a
parallelogram of dimensions dx+dx',dy,dz by Jjuxtaposition of P
and P' along the x axis, Operators JY and JZ are defined
"mutatis mutandis". ’ ' : ' C

‘A n*%m 3-D multiplier layout is constructed by invoquing the

function par-mult-layout(0,log(n)), which 1is recursively defined
by: ’ ' _

12

(15) par-mult-layout(i,k)::=
if k=0 then bit-product-layout(i)
else JZ(REC-MULT,add-cses-layout(k))

where REC-MULT=JY(par-mult-layout(i,k-1),
: par -mult- 1ayout(1+2**(k 1), k 1)).

A pictorial view of the 3-D multiplier is given in Figure 4.

4
/ MLT (4, k-15 -

mLr (o227, 1)

csa (k)

" bix - prod (0]
" bit - prod 10)
7 biz - pod 10)
/lwt _prod (0)

,/////f* csa (1)
A / } csa (1)

CSA (2)

\ \

b

Fig. 4. 3-D 1ay6ut of Par-Mult. (a) Recursive view of MULT(i, k), (b) Unfolded 3-D version of
MULT(O, 2). \ ’

13

3.1.1 Layout of bit-product

The primitive operation
planar layout of a rectangular circuit,
identical cells. Each cell has
a diagonal (x&y-axis) input
and(b(i),a(j)) along the third
5. The index Jj of a(j) runs
convention a(j)=0 whenever j is

a(j),

)

bit-product-layout(i)

L]

generates the
formed by a row of (n+m)

a horizontal (x-axis) input b(i),
and
(z-axis) dimension,
from n+m-i-1
outside the range 0=<j<m.

computes the product
as in Figure

to j=-1, with the

&
&
13
&

4
&

]]

Fig. 5. Bit-product layout. (a) Result of bir- product -layout(i); (b) A 3-D view of the and cell.

14

@

Although Figure 5 uses diagonal connections, it is easy enough to
replace these by connections which are all parallel to one of the
coordinate axis, ,Y or z.

3.1.2 Carry 'save adder layout

The dperator add-cscs-layout(k) generates the layout of a circuit

for adding two: carry-save numbers, entirely - made - of
interconnected full-adders fa. There are two . such fa's in each
bit-slice. The . first = fa receives its three operands

s(i),t(i),u(i) from level (k-1), producing two outputs
q(i+1),p(i) such that s(i)+t(i)+u(i)=2%q(i+1)+p(i). .The second
fa receives operand r(i) from level (k-1), operands p(i) and q(i)
from level k. - It delivers its outputs n(i+1) ‘and m(i) at level
(k+1), as shown‘in Figure 6. ’

Fhom<levél(k41)

M+

to Ievel(k+1)

Fig. 6. Layout of add-cscs.

As indicated in section 2.5, the adder add-cscs-layout(1) at.
level 1 is not performing any operation: it merely combines two
binary numbers originating at level 0, into a pair, representing
the carry-save input to level 2. Thus, level 1 comprises only
routing of signals.

3.2 Mapping 3-D ;nto 2-D layout

In order to imbed our layout in a planar technology, we use the
following rules:

Ruiebit' We keep the row structure, by alternating bit-products
and additions, according to Figure T, obtained by the recursive
definition: - '

(16) par-mult-2D-layout(i, k)i
if k=0 then bit-product- layout(i)
else JY(par-mult-2D-layout(i,k-1),
' add-cses-layout(k),
par-mult-2D-layout (i+2%% (k- 1) k- 1))

Jeve] B ‘ ~ bit-product
leel | | add-cecs | .i
Jovel B bit-product
Clel? ' ’gdd-cecc
leel B [~ bit-produet
leel | odd-cscs
Teel B | bit-product
lovel 3 add-cscs

Fig. 7. Row-layout of Par- Mull.

16

Ko

Rule 2: We keep the bit-slice structure of columns by allocating
k=log(n) vertical <channels within each c¢olumn. -Channel J is
dedicated to the layout of level j.

Rule 3: (x) Horizontal (x- axis) wires are mapped into horizontal

Wires within the same row.

(y) Vertical (y- ails) wires are mapped 1nto vertical

Wwires within the corresponding bit-slice channel.

‘ ~ (z) Third dimension (z- ax1s) wires between levels i and
i+1 run horizontally between the "i-th and the i+1-rst channel of
the correspondlng row and column, . ' o

[N

~Figure 8 shows the channel structure 6f a bit-slice, and the

corresponding routing strategy.

CLoas B) . L ‘Ad\

a ’ . L @ ‘ B . Q.
Jeve] esjl . odd ~ odd 4%
- be . b

]'BVB]] b "a~ ‘ | . "4,"
a) N . . ,
level E% odd , odd .Q..ﬂz
bl—w . -—bl
level 2% — = _ cece?l < .- gs
ne _ | N
a ‘ 4 . ™
level EL‘ edd] edd
. bs L : .,
lovel 1 %a‘, ny Y , t”
~]eve] i:.‘- . odd B 3 T : | édd . ::: .
* level 3 1;1_] eeee3 | {;.

lovel B lowl 2 lewl3 level B
Fig. 8. Column layout of Par- Mult. '

17

Such a layout keeps the tree structure adopted iﬂ Par-Mult for
summing up partial products apparent in each bit-slice, as in

Figure 8. The area penalty incured over Seq-Mult thus only
arises because of the 0(log(n)) extra wires required by the tree
structure connexion. For n up to 32, this area is less than half

of that devoted to the full-adder logic layout. Hence, Par-Mult
can be layed out within 150% of the area of Seg-Mult.

3.3 On truly large time 0(log(n)) multipliers

When n gets very large (n>64), the tree structure of Figure 8 no
longer performs addition in time O(log(n)): .although signal only
traverses 1log(n) gates, gates no longer possess unit delay,
because their parasitic capacitance 1increases with the length of
output wires. As a consequence, gates become slower as they get

closer-to the root of the tree. 1Indeed, wire lengths double with
each level up 1in the tree.

A radical solution to this problem, as presented in (Vuill-Guibd
82) or (Mead-Rem 80), uses the layout of Figure 9, which has
signal amplification built into the tree structure. Tree nodes
‘at level h+1 have twice the speed and size of tree nodes at level
h. This " means that transistor gates at 1level h+1 are twice
longer than their homologue at 1level h. They are therefore able
to drive output capacitance twice bigger, within the same time
constant. A

csce3

cecs2 i, cesce?l

cscsl cscsl cacsl A cscel

ed | od | od | od | od | ad | od | ond

Fig. 9. Bit-slice layout'of Fig. 8 with signal amplification.

18

2

{

Using this technique allows to design tree structures in which
all gates have the same timing characteristic, regardless of
their heigth in the tree. Consequently, it is possible to design
time 0(log(n)) multipliers in MOS technologies, for arbitrary
large values of n. This requires however ftwo 1levels of
interconnect, since connexions of Figure 8 still have to overlap
the gates of Figure 9. _ : '

4 Coneclusion

We fee1 that the algorithm Par-Mult and its silicon 1ay6ut are
interesting from at least two points of view: A

(a) It provides a mathematically elegant‘and«eaay to program
technique for multiplying two N-bit binary integers: in time
O(logN). ’ o '

(b)) It provides an attractive practical alternative to

‘Seq-Mult, in designing fast integrated multipliers, for 8 bits

and over, This ~holds true of a large class of technologiles,
inecluding n-MOS, ¢-MOS, and bipolar. '

19

5 References

(Wallace 64) Wallace c.S., "A Suggestion for Parallel
Multipliers,”™ IEEE Trans. Electronic Computers, Vol.EC-13, Feb.
1964, pp. 14-1T7. _

(Dadda 65) Dadda L., "Some Schemes for Parallel Multipliers"™ Alta
Frequenza, Vol. 34, March 1965, pp. 349-356.

(TRW 77) TRW, "MPY-LSI Multipliers : AJ 8x8, 12x12 and 16x16,"
LSI Products, TRW, Redondo Beach, Calif., March 1977.

(Matsumoto 80) Matsumoto R.T., "The Design of a 16x16
Multiplier," LAMBDA, first quarter, 1980, pp. 15-21.

(Cand-Scan-Ros 82) Cand M., Le Scan P. and Rosset A., "A Single
Chip Digital Signal Processor", Proec. IEEE, Vol. 429, Sept.
1982, pp. 356-359,. :

(Luk 83) Luk W.K., "Silicon Compilation of a Fast Parallel
Multiplier"™ These de 3eme Cycle, Universite de Paris 1983.

(Vuill-Guib 82) Vuillemin J. and Guibas L., "On Fast Binary
Addition 'in MOS Technologies"™ Proe. IEEE, Vol. 429, Sept.
1982, pp. 147-150.

(Mead-Rem) Mead C. and Rem M., "Minimum Propagation Deléys in
VLSI", Proe. 2nd Caltech Conference on VLSI, 1981,

20

Imprimé en France

par .
I Institut National de Recherche en Informatique et en Automatique

£

w2

i

