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AN OPTIMUM CHANNEL ROUTING ALGORITHM 
IN THE RESTRICTED WIRE OVERLAP MODEL!

Dian Zhou

Coordinated Science Laboratory 
1101 W. Springfield Avenue 

University o f Illinois, Urbana, IL 61801

Abstract

In this paper, we study the channel routing problem in the knock-knee 
mode with restricted edge overlap. We present an optimal algorithm 
which achieves t = dm with an overlap of O(m) edges between any two 
nets, where t is the number o f tracks, dm is the density, and m is the 
multiplicity o f the nets. The algorithm improves upon the previous 
results o f Sarrafzadeh (1986) and has the properties: (1) it uses only 
vertical edge overlap, (2) it does not use any columns outside the chan
nel, and (3) it connects adjacent terminals of a net by shortest wires. 
Furthermore, our algorithm reduces the overlap between two nets from 

- O (m2) to O (m). The running time of the algorithm is O (dm nm), where 
n is the number of nets.

t  This work was partially supported by the Semiconductor Research Corporation under grant 87-DP-109.
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I. Introduction

The essential reason for restricting wires from overlapping is the undesired capacitance introduced by the 

overlap of two wires. In any routing mode, Manhattan or Knock-knee, the capacitance between nets generally can 

not be avoided due to the crossing sections of wires. In addition, there is a coupling capacitance which exists 

between the parallel running wires (no overlap). However, wires running in parallel are allowed in the design of 

integrated circuits because the coupling capacitance introduced in this way is much smaller than the capacitance 

introduced by the overlap of two wires in previous technologies. As VLSI technology advances, the feature width 

of the wire has been scaled down into the submicron range and becomes nearly as small as the wire thickness 

[BM,ZPK,SM]. The vertical separation between two conducting layers becomes comparable to the horizontal 

separation between two adjacent wires in the same layer. Owing to the fringe effect, the coupling capacitance 

between two adjacent wires is comparable to that between two vertical overlap wires [STJIB JDJDS ,L,CA]. This 

situation is demonstrated in Figure 1. Consequently, whether wires run in parallel or in overlap will not make quite 

such a difference for the future VLSI design in terms of the capacitance introduced. This implies that the circuit 

performance will not be very much affected if restricted edge overlaps are introduced in routing.

In the rest of this paper, we will focus on the problem of using restricted edge overlap to reduce the channel 

width. We will also investigate the routings which produce shorter edge overlap for the same channel width. We 

first introduce the definition of the problem and point out the aspects in which the improvement can be made on the 

previously known results. Then, we present a new algorithm which is shown by a case studying method. Finally, in 

the discussion section we make some comments on the routing model discussed and on the wiring problem of the 

presented algorithm.

n. Definition of channel routing in the restricted edge overlap model

A channel routing problem CRP r\ = { N i , ..., Nn } on a square grid with t tracks is as follows [S]: The hor

izontal line y = 0 is called the Top and the line y = t + 1 is called the Bottom. The columns are vertical lines 

located at positions x  =  i , i =1,2 , • • •. The leftmost column of the channel is called the left side, and the right

most column is called the right side. A net N is a subset of INx{T JB }, where the first integer denotes the abscissa, 

and T and B stand for the Top and the Bottom, respectively. A net Ni with I Ni I = k is called a k — terminal net 

A CRP rj is said to have multiplicity m if I Ni I < m for all i and I iVj I = m for at least one m . The number of
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Wires in the first layer 

Wires in the second layer

Cp Capacitance between wires running in parallel 

CQ Capacitance bwteen overlap wires

s p Separation between wires running in parallel

s0 Separation between overlap wires

h Thickness of wires

w Width of wires

Figure 1

nets across a vertical line x  =  Xo, Xog (i ,i+1) (/=1,2,...), is defined as the density at x  =  Xq, which is denoted by 

d (xq). The density of a CRP T|, denoted by dm, is the maximum value of d (xq) over all columns.

It has been shown [S] that t —dm is an existential tight lower bound for channel width if /  (n jn  ) units (for 

any integer valued function f ( n jn ) )  overlap between two nets is allowed. The algorithm of Sarrafzadeh achieves 

t - d m with edge overlap between any two nets less than O (m2). The extending strategy for routing "two-terminal 

nets" as well as the stair-like routing for connecting the terminals between the leftmost and the rightmost terminals 

of the net are used [S,MPS]. Two undesired features are therefore introduced. First, the area outside the two sides 

of the channel is used by those extending nets. In the worst case, a total dm/2 extra columns is required. Secondly, 

the length of interconnection wires is relatively longer because some nets will be extended over their leftmost termi

nals. From the view point of VLSI design, using extra columns and longer interconnection wires are undesirable, 

since they make the global layout even more complicated [U] and make the delay of the signal propagation longer
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[SPP,ZPK].

The new algorithm presented in this paper uses the restricted vertical edge overlap, and achieves the result 

t =dm with the following properties: No more than 0{m)  edge overlap between any two nets, no extra columns 

(area) required, and shorter interconnection wires. The running time of this new algorithm is 0 (d mnm). Since 

t —dm is a lower bound on the channel width if no horizontal edge overlap is allowed, the upper bound on the 

channel width obtained is therefore tight. Furthermore, since the routing is completed inside the two sides of the 

channel, the area of the routing is also optimum.

m . A new routing algorithm

The technique used in our algorithm is such that the nets across a column with their next terminals on the Top 

are always placed above the nets across this column with their next terminals on the Bottom. The algorithm con

structs the routing in a column by column fashion. While processing column i , the intervals of interest are the open 

intervals x  g ( i—1, i)  and x e  ( i, i+1). In this paper, we use x  =  i_ to denote ( t—1, i)  and x  =  i+ to denote 

(i*, i+1). For instance, d(i+) is the density in x  g ( i, i+1). The algorithm starts from a chosen column ¿o with 

density d(io_) =  dm and sweeps to the right side of the channel. Next, the algorithm starts from column i 0 and 

sweeps to the left side of the channel to complete the routing. Because there is no essential difference between 

operations in the right and left sweeps, we will only discuss the operations in the right sweep. Also, due to the 

column by column processing fashion, it is sufficient to show the routings of nets at an arbitrary interval 

X  G (i —1, i+1).

The direction of a channel (or a net) is defined to be from the left to the right. The leftmost terminal of a net 

is called the starting terminal; the rightmost terminal is called the ending terminal; and the terminals between 

the starting and the ending terminals are called continuing terminals. We will use S , E  and C to denote these 

three terminal states in a net, respectively. Let * be the empty element of a set We introduce the following 

definition:

Column State: The column state is defined by a 6-tuple (Z1.Z2.Z3,z4,z5,z6), where z\ and Z4, z ltZ4G {T,B ,*},  

are the vertical positions (Top or Bottom) of two terminals at this column, Z2 and z 5, Z2,zs g {S, C , E ,*},  are 

these terminals’ states in the nets they belong to, and z3 and Z6, Z3,Z6 g {T, B , * }, are the vertical positions (Top 

or Bottom) of next terminals of the nets with at least one of their terminals at this column.
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In the example of Figure 2(a), the state of column i is (T,C >B J3 ,S ,T), that means: (1) a net (net 6) has a 

continuing terminal on the Top at the considering column, and its next terminal is on the Bottom (the first three ele

ments of the 6-tuple); (2) another net (net 9) has a starting terminal on the Bottom at this column, and its next termi

nal is on the Top (the last three elements of the 6-tuple). For easy reference, we have denoted the net with its termi

nal on the Top (Bottom) at the current column with Nt (Nb\ A simplified expression for the routing structure of 

Figure 2(a) at interval (i —1,/+1) (shaded area) is introduced in Figure 2(b), where a virgule on a wire denotes a set 

of parallel running wires.

colmimi

Column state (C,T,B,S,B,T)

* ------- is used to express a set of wires running in parallel. Therefore
the routing structure in (a) for interval i-1 < x < i+1 is expressed by (b). 
If there are empty tracks between the parallel running wires, these empty 
tracks are assume to be kept in the same relative positions.

Figure 2
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The nets intersecting a vertical line x  are divided into two sets: U(x)  and L(x). U(x)  consists of the nets 

whose closest terminal to the right of x  is on the Top, and L(x)  consists of the nets whose closest terminal to the 

right of x  is on the Bottom. The cardinalities of U(x)  and L(x)  are denoted by NU(x)  and NL (x), respectively. 

The tracks intersecting the vertical line x  are divided into two sets: 777 (x) and TL(x)  which consist of the tracks 

for routing the nets in U (*) and the nets in L(x),  respectively. It is maintained in the algorithm that the tracks in 

777 (x) are always above the tracks in TL (x), and I777 (i+) I +  ITL(i+)l = dm. These definitions for the problem 

of Figure 2 at interval ( i— l,z+ l)  are illustrated in Figure 3. The reader should note the relations among the nota

tions of routing structure at interval ( i—l,z+1) in Figure 2(a), Figure 2(b), and Figure 3. The graphic notation intro

duced in Figure 3 will be used throughout the rest of the paper.

Since the density s d(z+) varies in general with i+, it is important to choose correctly where to leave an empty 

track (either in 777 (i+) or in TL (/+)), whenever a net terminates at column i . (Remember the algorithm starts from 

column i o with d (i o_) =  dm). The choice depends on the positions of the starting terminals to the right of column i . 

The empty tracks must be placed in the proper places so that the starting terminals following column i can be led 

into these empty tracks. A look-ahead method is used in the algorithm to determine the position of the empty track.

TU(i-) TU(i+)

%

§
indicates the tracks in TU( i-) Q indicates the tracks in TU(i+)

indicates the tracks in TL(i-) Q indicates the tracks in TL(i+)

Figure 3
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The algorithm uses the information of the vertical positions (Top or Bottom) of the next (dm —d(i+)) starting ter

minals following column i. A starting terminal is called the ]th starting—terminal following column i if there 

are exactly j  -  1 starting-terminals located between column i and the column where this jth starting-terminal is. If 

there are two jth starting terminals at the same column, one of them, which is chosen randomly, will be considered 

as the j+li/i starting terminal. Let set NF(i+) consist of all the jth starting-terminals following column i such that 

j  <dm — d(i+). In these \NF(i+) I terminals, NFT(i+) of them are on the Top, and the remaining 

NFB (z+) = INF (z+) I — NFT(i+) are on the Bottom. The algorithm leaves NFT(i+) empty tracks in TU(z+) and 

NFB (i+) empty tracks in TL(i+). This means that the empty tracks are always placed in the appropriate positions 

and the problem can be routed in dm tracks.

As an example, all the notations introduced above for the problem of Figure 2 are as follows:

both TU (z _) and TU (i+) consist of tracks 1 through 6;

both TL (z'_) and TL (i+) consist of tracks 7 through 11;

NU (z_) =  5 (nets 3,5,6,7, and 8);

NL (z_) =  3 (nets 1,2, and 4);

NU (i+) = 5 (nets 3,5,7,8, and 9);

NL (i+) =  4 (nets 1,2,4, and 6);

NF (/_) = 3 (starting terminals of nets 9,10, and 11);

NF (i+) =  2 (starting terminals of nets 10 and 11);

NFU (/_) =  1 (starting terminal of net 11);

NFL (z_) =  2 (starting terminals of nets 9 and 10);

NFU (i+) =  1 (starting terminal of net 11);

NFL (i+) =  1 (starting terminal of net 10).

It should be pointed out that the example in Figure 2(a) is a part of some CRP which is assumed to have the 

density dm = 11. This is why we use 11 tracks in that figure.
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As mentioned earlier that the algorithm starts right sweep from a column at which the density is the channel 

density, following initial conditions are hold consequently for the starting column i'o: NL(i<y-) =  ITL (i o_) I, 

NU(io_) =  ITU (i'o-)I»NFB(i’o-) =  0, NFT(z’o-) =  0, and l777(/o_)l +  l7L(io_)l =dm. d ( i^ )  = dm. Dur

ing the algorithm sweeps to the right, it keeps the following four invariants:

Al. The nets in U (z +) are always placed above the nets in L (/+).

A2. At the current column, any two nets overlap at most one vertical unit edge.

A3. I TU(i+) I — NU (z+) ^  NFT (i+), I TL (z’+) I — NL (z+) ^  NFB (z+). This means that the empty tracks in

TU (z'+) and TL (z+) are always in the proper places to route the following starting terminals.

A4. l7T/(z+) l '+  I 7L(z’+) I = dm.

It can be checked that the invariants Al through A4 are satisfied for the initial conditions at column iQ. We 

will study all possible states of a column and show how to route in each case to maintain the invariants. Generally, 

there are three classes of column states:

Class 1. There is only one terminal at the column.

Class 2. Two terminals at the column belong to the same net.

Class 2. Two terminals at the column belong to the different nets.

Since classes 1 and 2 are simpler than, or the special cases of class 3, we will discuss only the cases in class 3 

where two terminals of the column belong to different nets. Omitting the symmetric cases, we have following four

teen column states: (T,S , T , B  ,S  ,B),  ( T , S , T , B  , S , T ) ,  (T,S ,B ,B , S  ,T),  (T,S , T , B  , C  ,B),  

( T , S , T , B , C , T ) ,  ( T , S , B  ,B , C , 7 ) , ( T , S , T , B , E , * ) ,  (T,S ,B ,B  , £ , * ) ,  ( T , C t T , B , C , B ) t 

(T , C , T , B , C , T ), (T , C , B , B , C , T \  (7 , C , T , B  , £ , * ) ,  (T,C ,B ,B  , £ , * ) ,  and (T,E  ,*  ,B  , £ , * ) .

A set of pictures are drawn in Figure 4 to show the routing structures used in the algorithm for each column state. 

The necessary remarks have been noted in the captions to make it easy for reader to check the correctness of the

invariants A1-A4.



1. Column State (T , S , T , B , S , B)
Use the routing structure shown in Figure 4(a) and the following relations hold:

NL(i+)=NL(iJ) + \,
NU(i+) = NU(i-)+l,
NFB(i+) = NFB(iJ)-l,
NFT(i+) =  NFT(i_) -  1,
TL(i+) = TL(i.),
TU 0’+) = TU (/_),
l7T/(z+)l +  IT L(z+)l =  I TU (z_) I + 7 ’L(z_)l =  dm.

?
?
/

z1/
7  V?-------

/  A _________ A ____

_  s 

K

s
S - _

1

/  '

V V

Figure 4(a).

2. Column State (T , S , T , B , S , T )
Use the routing structure shown in Figure 4(b) and the following relations hold:

NL (z+) = NL (z_),
Aff/(z+)=N U (z_ ) +  2,
WFB(z+) =  iV F £ (z _ )- l,
NFT (i+) = NFT (i-) - 1 ,
T L  (z +) *  TL (z _) +  1,
7Z/(z+) =  r i/ ( z _ ) - l ,
171/ (z+) I + ITL(z+)l =  I TU (z_) I + TL(z_)l =  dm.

Figure 4(b)

3. Column State (T, S , B , B , S ,T)
Use the routing structure shown in Figure 4(c) and the following relations hold:

NL (z'+) = NL (z_) + 1,
NU (z+) = NU (z_) + 1,
AF,F (z +) =  ArF 5 (z _ ) -  1,
NFT (i+) = NFT (iJ) - 1 ,  
rL (z+) = TL(z_),
TU(i+) = TU(i-),
\TU(i+)\ + \TL(i+)\ = 1777 (z_) I +7X(z_)l = dm.

Figure 4(c)



4. Column State (T , S , T , B , C , B )
Use the routing structure shown in Figure 4(d) and the following relations hold:

NL(i+) = NL(iJ),
NU(i+)=NU(i-)+  1,
NFB (i+) = NFB (/_),
NFT(i+)= N F T (iJ )- l ,
TL (z+) =  TL (i_),
TU(i+) = TU(i-),
\TU(i+)\ + \TL(i+)\ = 1777 (z_) I + rL (i_ )l =  dm.

Figure 4(d)

5. Column State (7 \ 5 , 7 \ B , C , 7 )
Use the routing structure shown in Figure 4(e) and the following relations hold:

NL (i+) =  NL (/_) — 1,
NU(i+)=NU(i-) + 2,
NFB(i+) = NFB(iJ),
NFT(i+)-NFT(i-) -  1, _ _  .
r u ( / +) = r i / ( i _ )  +  i ,
TL (i+) =  TL (i_) — 1,
1777 ( i+) I +  ir L ( / +)l =  171/ (i_) I +  7L(i_ )l =  dm.

Figure 4(e)

6. Column State (T, S , B , B , C ,T)
Use the routing structure shown in Figure 4(f) and the following relations hold:

NL (z+) =  NL (z_),
Wl/(z+) =  W U (z-)+ l,
NFB(i+) = NFB(i-),
NFT(i+)=NFT(iJ) - 1 ,
TU(i+) = TU(i.) ,
TL(i+) = TL(i.),
I71/(z+)l +  IT L(z+)l =  l7Z/(z_)l +  7L(z_)l =  dm.

X  A

j n
/  A

r — ^ —
S___ A ___

n
K

 ̂ *
s

7— V

Figure 4(f)
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7. Column State (T , S , T , B , E , * )

Use the routing structure shown in Figure 4(g). If NFT(i-) = 0, or NFT(iJ) * 0  and the (dm—d(i+))th 

starting-terminal following column i is on the Top, or there is no (dm-d(i+))th starting-terminal following column 

i , route in structure (a) and the following relations hold:

NL (f+) = NL (/_) — 1,
NU(i+) = NU(i.) + 1,
NFB (i+) = NFB (z_),
NFT(i+) < NFT(i-),
TU(i+) = TU (i-)+ l,
TL (/+) = TL (i_) — 1,
r (i+) < d(j_) + WFB (i_) + NFT(i-) < dm.

If iVFT(i_) *  0 and the (dm-d(i+))th starting-terminal following column i is on the Bottom, route in struc

ture (b) and the following relations hold:

NL (i+) — NL (z_) — 1,
NU (i +) = NU (z _) + 1 ,
NFB(i+) = NFB(iJ) + 1,
NFT(i+) = NFT(i-) -  1,
TU(i+) = TU(i_),
TL(U) = TL(i_),
l7T/(i+)l +  IT L ( i+) I =  irt/(z_)l + rL (z _ )l =  dm.

; A__
« 's

//?/

Figure 4(g)
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8. Column State (T,S ,B ,B , E , * )

If NFT(i-) = 0, or NFT(i-) *  0 and the (dm-d(i+))th starting-terminal following column i is on the Top, 

or there is no (dm-d(i+))th starting-terminal following column i , route in structure (a) and the following relations 

hold:

NL (i+) =  NL (i_) +  1,
NU (i+) =  NU (i_),
NFB (i+) =  NFB (i_),
NFT(i+) < NFT(iJ),
TU(i+) = TU(i.),
TL(i+) =  TL(iJ),
t (z+) < dii-)  +  NFB (/_) +  NFT(i-) < dm.

If NFT(i_) ^  0 and (dm-d(i+))th starting-terminal following column i is on the Bottom, route in structure 

(b) and the following relations hold:

NL (i+) =  NL (j_) + 1,
NU(i+) = N U (i-\
NFB (i+) =  NFB (/_),
NFT(i+) -  NFT(i-) -  1,
TU(i+) = T U (i-)-  1,
rL ( i+ )= rL (i_ )  +  i ,
i r i / ( / +)i + i rL ( i+)i =  i r i /( /_ ) i  + 7L (i_ )i = ^ m.

(b)

Figure 4(h)



9. Column State (T ,C , T , B  ,C  ,B)
Using the routing structure shown in Figure 4(i) and all parameters do not change.

X
?
'  .

.
7 — v7---------- V

7
S
<
s
S —< s i

Figure 4(i)

10. Column State (T,C , T , B  ,C  ,T)
Use the routing structure shown in Figure 4(f) and the following relations hold:

WL(z+) = N L (z_ )-l,
NU (i+) = NU (/_) + 1,
NFB (*+) = NFB (i_),

‘ NFT(i+) —NFT(i-),
7 I/( t+) = 7I/(i_) + l,
rL(i+)=rL(i_)-i,
I TU (i+) I + 17L(z+)l = ir i/ ( i_ ) l +7L(z_)l = d m.

Figure 4(j)
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11. Column State (T, C , B , B , C ,T )
Use the routing structure shown in Figure 4(k) and the following relations hold:

NL(i+)=NL(iJ),
NU (i+) = NU (i_),
NFB (i+) = NFB (i_).
NFT(i+) = NFT(i_),
TU(i+) = TU(i-),
TL(i+) = TL(i-l
1777 (/+) I + I7L(î+)I = I TU (i_) I +rL(i_)l = dm.

Figure 4(k)

12. Column State (7\ C , T , B  , E , * )
t

Route in the structure shown in Figure 4(i). If the (dm—d(i+))th starting-terminal following column i is on

the Bottom, or there is no (dm-d(i+))th starting-terminal following column i , route in structure (a) and the follow

ing relations hold:

5
__A__

a □ u
i. n ? —iNU(i+) = NU(i-),

NFB(i+)<NFB(iJ) + l,
NFT(i+) =  NFT(iJ),
TU (i+) =  TU (i_),
TL(i+) = TL(i.),
t (/+) < d(i_) + NFB (i_) + WFT(z_) < dm 7 ^

(a)

If the (dm—d(i+))th starting-terminal following column i is on the Top, route in structure (b) and the follow

ing relations hold:
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NL (z+) = NL (i_) — 1,
NU(i+) = N U (i-\
NFB (z+) = NFB (z_),
NFT(i+) =  NFT(i-) +  1, 
ri/(i+) = 7I7(i_)+l,
TL (i+) =  TL (i_) — 1,
i r c / ( /+)i + i7 L (i+)i = i r i /( i_ ) i  + 7L (i_ )i = 4 * .

Figure 4(1)

13. Column State (T, C , B , B , E ,*)

Route in the structure shown in Figure 4(m). If the (dm-d  (i+))th starting-terminal following column i is on 

the Bottom, or there is no (dm—d(i+))th starting-terminals following column i ,  route in structure (a) and the fol

lowing relations hold:

__NL (z+) =  NL (z_),
NU(i+) = N U ( i . ) - h  
NFB(i+)< N FB(i.) + i,
NFT(i+) =  NFT(iJ),
TU(i+) = T U (i-)-  1,
TL (z'+) =  TL (z'_) +1 , 
i  ( i+) < d (i _) +  iVFB (t _) +  A/FT (i _) < .

If the (dm—d(i+))th starting-terminal following column i is on the Top, route in structure (b) and the follow

ing relations hold:
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NL (z'+) =  NL (z_),
NU(i+) = N U ( i - ) - l ,
NFB (z'+) -  NFB (z'_),
NFT(i+) =  AFT(z'_) +  1,
TU(i+) = TU(U)t 
TL (z+) =  T L  (z_),
ITi/(z+)l +  irc ,( i+)l =  I T’i/ (z_)l + TL(i-) I =  dm.

(b)

Figure 4(m)

14. Column State ( 7 \ £ ,  * , £ , £ , * )

Route in the structure shown in Figure 4(n). If both (dm—d(i+))th and (dm—d(i+))th starting-terminals fol

lowing column i are on the Bottom, route in structure (a) and the following relations hold:

NL(i+) = NL(iJ)-  1,
NU(i+) = N U ( i - ) - l t 
NFB(i+)=NFB(i.)  +2,
NFT(i+) = NFT(i-)t 
TU(i+) = TU (i - ) -2 ,
TL (z*+) = TL (i_) + 2, 
i (z+) £ d ( i  _) + (z _) + AFT (z_) < .

If both (dm—d(i+))th and (dm—d(i+))th starting-terminals following column i are on the Top, route in

structure (b) and following relations hold:
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NL (i+) =  NL (i_) — 1, /

— A
A

AN7(i+) =  W i/ ( i- ) -  1. 
NFB (i+) =  NFB (i_), 
NFT(i+) =  NFT(i-) + 2,

/
s  V 
y

A/
uTU(i+) = TU(U) + 2,

TL (i+) =  TL (i_) -  2,
f ( i+) < d(i-)+N FB(i-) + NFT(i-) < dm.

r  P
T "—>

\ - i

(b)

Otherwise, route in structure (c) and following relations hold:

—
; /

- f —  
i -

NL(i+)= N L (i- ) -  1, 
Wi/(/+) = N l / ( U - 1, 
NFB(i+)< N FB(i.) + 1,

?
4 t

/
7---V-----
✓  ___ __A__

NFT(i+) < NFT(iJ) + 1, 
TU (i+) = TU (z'_), 
TL(i+) = TL(i.),

»sv sv* _
\■ S '

s
\TU(i+)\ + irL(/+)l = \TU(U)\ +TL(i-)\ =dm. / V

(C)

Figure 4(n)

We now analyz the properties of the presented algorithm. Since any two nets can overlap with each other 

only at the columns which contain the terminals of these two nets, and at each column there is at most one unit over

lap, the total overlap between any two nets is at most 2m (or O (m )). From the algorithm described above, obvi

ously, there is on extra columns outside the channel needed. Notice that to connect a terminal at x —X\ on the 

lower shore to the next terminal of the same net a t*  = *2 on the upper shore, the algorithm always uses a wire with 

length dm + 1*1 —x ^ .  This is the Manhattan distance between these two terminals. In this sense, the algorithm 

creats a routing with a short interconnection wires. Finally, since O (dm) time is needed for the operation of each 

column and there are at most ran non-empty columns, the running time of the algorithm is O (dm run).

V. Discussion
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We have shown that a Knock-Knee plus restricted overlap routing model is feasible in future VLSI design. A 

channel routing algorithm was presented based on this routing model, which is optimal in channel width and area 

used for routing. The edge overlap between any two nets has been reduced from the previous result of 0 ( m 2) to 

0(m).  An ideal feature of the algorithm is that it doesn’t use any columns outside the channel sides. An open 

question would be the wiring problem of this routing model: Our algorithm uses at least four layers in general, are 

there possible algorithms which achieve t = dm and are three layer wirable?
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