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Abstract 

Programmable logic devices (PLDs) are gaining in acceptance, of late, for designing systems of all complex- 
ities ranging from glue logic to special purpose parallel machines. Higher densities and integration levels are 
made possible by the new breed of complex PLDs and FPGAs. The added complexities of these devices make 
automatic computer aided tools indispensable for achieving good performance and a high usable gate-count. In 
this article, we attempt to present in an unified manner, the different tools and their underlying algorithms using 
an example of a vending machine controller as an illustrative example. Topics covered include logic synthesis 
for PLDs and FPGAs along with an in-depth survey of important technology mapping, partitioning and place 
and route algorithms for different FPGA architectures. 
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1. Introduction 

The original goal of  programmable logic devices was to allow the designer to implement  more 
complex logic and state machines with dramatically fewer components  than is possible with discrete 
f ixed- funct ion  logic such as the 7400-series; simultaneously retaining all the advantages of  the latter 
such as short design cycles, low development costs and less reliance on specialized skills. Despite 
the numerous competing alternatives, most of  the earlier PLDs are based on an AND-OR plane 
architecture. The inputs to the A N D / O R  planes are driven directly by dedicated input pins of  the 
device and some user-selectable input /output  pins or feedback paths. The outputs are driven directly 
from sum-of-product  logic outputs or from flip-flops. This general arrangement leads to efficient 
realizations of  sum-of-product Boolean equations. For every input variable in the Boolean equations, 
there is an input signal to the AND array and for every output there exists a signal emanating from 
the OR array. Depending on the flexibility of  the A N D / O R  arrays, these simple PLDs have been 
classified as either programmable read-only memories (PROMs) ,  programmable array logic (PAL) 
or programmable logic array (PLA)  devices, see Table 1. 

The primary limitation of  the above architecture is the restricted nature of  the A N D / O R  plane and 
the dedicated nature of  the interconnections. Gate utilization seldom exceeds 15% and a practical 
limit on the number  of  usable gates is in the low hundreds. Performance is also fixed for each level 

Table 1 

Class AND array OR array 
PROMs Fixed Programmable 
PAL's Programmable Fixed 

PLA's Programmable Programmable 

Best suited for 
Dense functions e.g. code converters 
Sparse functions with little or no common prod- 
uct terms. Small and fast. 
Sparse high-fanin functions with potentially lots 
of shareable common product terms. Compact 
and quite general. 
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Fig. 1. Major steps in design of PLDs. 

of logic. Each path through the AND/OR plane takes about 25-45 ns. Typically, these devices are 
used for realization of two-level logic such as glue logic, interface logic, decoders and so on. 

However, with advances in integration levels, a new breed of PLDs have emerged. These are 
of two main types (i) Complex PLDs incorporating multiple two-level PLDs on a single device 
with some sort of either hardwired or programmable switching matrix interconnecting them. (ii) 
FPGAs (field programmable gate arrays) which are devices whose cores are populated with an 
array of logic structures of varying granularity and programmable interconnect provided to connect 
them in a variety of different ways. For instance, the logic blocks can be SRAM-based look-up 
tables or even multiplexers with or without registers while special purpose routing switchboxes or 
segmented channels can constitute the programmable interconnect. The main advantages of FPGAs 
are their high densities (approaching 10000 usable gates per device), lower quantity production 
costs, faster turnaround design time, design security, and multiple usage possibilities for the same 
device in field through reprogramming. Consequently, they have started making serious inroads into 
the higher-density semi-custom ASIC markets which is currently dominated by mask-programmed 
gate arrays. Unlike simple PLDS, FPGA design requires the availability of powerful logic synthesis 
software capable of supporting multi-level synthesis; mapping algorithms to configure the logic blocks 
appropriately; and good place and route software to make the interconnections efficiently both in terms 
of wiring length as well as timing considerations. 

The purpose of this paper is to review some of the major concepts in system design using 
programmable devices, roughly reflecting the state of the art in the early 1990's. More importantly, 
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we identify in an unified manner the pertinent issues of this design process, the tools available, the 
nature of the algorithms and their application. A roadmap of the organization of the rest of the 
paper is shown in Fig. 1 where the numbers besides the boxes indicate the section numbers where 
that topic is discussed in this paper. Our self-imposed focus throughout this paper will be on the 
design issues and algorithms. Consequently, we cover technological details only to the extent that 
they affect the algorithms. Recent books on programmable devices [1-4] provide more information 
on implementation details of specific devices. We also do not cover architectural studies of FPGAs 
in this paper (see [5,6] ). Also, we will not be covering design verification issues. 

2. Review of PLD architectures 

Before we take a look at the algorithms themselves, it will be useful to make a brief review of 
the PLD architectures. The architectures of different PLDs (and there are more than 300 of these 
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in existence) can directly affect their suitability for a particular application. The basic distinguishing 
feature is the size which is a function of the number of input and output pins, the number of product 
terms and so on. However, other features of the PLDs can also affect the complexity considerably. 
Figure 2 depicts the various types of basic PLD structures that were elided to in the introduction. 

Historically speaking, the first PLDs were TTL-based PALs such as the 16L8 from MMI (now part 
of AMD).  These provided only combinational outputs. Later registered outputs, the ability to control 
the output polarity, feedback structures, etc were added. Yet, a particular pin was restricted to playing 
a single role. The next type of PLDs, referred to as Generic PALs, typified by the 22V10 device 
from AMD and the GAL (generic array logic) from Lattice attempted to eliminate this hardwired 
asymmetricity that existed between combinational and registered outputs by placing a common logic 
block, made up of small standard cells such as flipflops, buffers, XOR gates, etc., between the 
I /O pins and the AND/OR array. This structure, called a macrocell could be programmed by the 
user to equip a particular pin with the appropriate functionality. The next advancement was in the 
availability of reprogrammable PLDs beginning with the PEEL devices. These employed Fowler- 
Nordheim tunneling techniques to trap charges onto a floating gate through a thin oxide insulator. 
The charges remain trapped even after power is removed allowing non-volatility of programmed data, 
but could be removed by electrically erasing the device. Once fully erased, the device could then be 
reprogrammed into a new configuration. This was followed by the advent of CMOS technology such 
as the CPL devices from Samsung. The advantages of CMOS include low power requirements, low 
propagation delay, greater noise margins, and also greater integration possibilities. Most CMOS PLAs 
use a NAND/NAND array instead of the traditional AND/OR array since NAND gates place the 
faster n-channel devices in series whereas the NOR form would result in having the slower p-channel 
devices in series. From Boolean theory, it is easy to see that a two level AND-OR design is the 
same as a two-level NAND-NAND structure. Hence in CMOS PLAs, the Boolean equations are first 
converted to their equivalent NAND forms. Recently, some PLDs based on GaAs are also emerging 
which are targeted towards faster clock rates. 

2.1. Architectural variations for  simple PLDs 

2.1.1. Multi-level structures 
AND/OR logic is good for two-level designs. Sometimes for high fanins, it may be required to 

decompose a function into a multi-level form. Since, any external feedback uses precious pads, a 
different type of device architecture called PML (Programmable Macro Logic) was introduced by 
Signetics. PML devices are unique in that they contain only a single-level of NAND gates. The output 
of every NAND term feeds back into the inputs of the NAND array. Therefore, every NAND array 
is connected to the outputs of all other NAND terms through programmable elements. The core of 
PML can thus be looked upon as a programmable interconnect which is a NAND array that has a 
large number of NAND terms. Figure 3 shows an SR latch and the programmable NAND array. The 
main advantages of this architecture are 

• It allows for product terms to be shared. 
• It overcomes the limitations of traditional PALs to preassign a macrocell to a particular OR gate. 

Instead, the PML structure is much more efficient in terms of utilizing the resources provided 
within the macros. 
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Fig. 3. Folded NAND arrays as exemplified by the PML devices of Signetics. 

• It allows single-level logic functions to be realized efficiently. 
• The feedback provide by the NANDs enable the user to implement complex multi-level functions 

without using valuable I /O pins or macro-cell circuitry. 

2.1.2. Macrocells 
The macrocell structures vary widely among different devices. Some of the major functions per- 

formed by macrocells are the ability to 
• generate complemented outputs. This can provide a savings in the number of product terms if 

the number of 1 s in a function is much more or less than the number of 0s. 
• register outputs by including flip/flops at the output pins. These are useful to implement state 

machines such as sequencers. The type of flip/flops also can can vary and this can affect 
the number of product terms needed as well. For example, registers are best realized with D 
flip-flops, while counters are more efficiently realized using either T or J-K flipflops. 

• feedback some outputs (both combinational and registered) internally as additional inputs to 
generate other product terms. This feature makes it possible to implement multilevel logic, 
sequential logic, amongst others. 

• to preset all flipflops so as to be able to bring the system up in a known state. 
• selectively enable output pins based on either local or global control. These are important in 

implementing multilevel PLD networks. 
• output polarity that can be used to generate positive or negative logic signals. 
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Fig. 4. Product term steering through reallocation. 

• product steering in PALs: The macrocells in some complex PALs often provide product-steering 
features, i.e, special ways of assigning product terms to a block. This enables the PLD to be 
used for implementing larger fan-in circuits. Three main techniques for doing so are called 
allocation, joining and expander logic. 
(1) In allocation, a particular macrocell can have more product term inputs by taking logic 

from an adjacent macrocell. This helps for instance in generating wider OR gates than are 
directly possible. In the Intel device shown in Fig. 4, each output normally can generate an 
OR of upto 4 terms. But for larger fan-in requirements, the product terms of neighboring 
macrocells can also be used up to a maximum of 16 inputs. 

(2) Joining refers to the ability to share inputs to a macrocell between its combinational and 
sequential parts as required. It can be done without incurring any timing penalty. 

(3) Finally, expander logic techniques provide additional product terms that can be assigned to 
any macrocell needing it. Thus expander logic can be viewed as providing PLA product 
term sharing functionality in a PAL device at the cost of an extra level of delay. Figure 5 
shows the expander logic implemented in the Altera macrocell. 

2.1.3. More complex PLDs 
A generic block diagram of a complex PLD, typifying the MAX (multiple array matrix) family 

from Altera [7] is shown in Fig. 6. Other commercial offerings of such complex PLD devices 
with gate-counts of between 1500 and 10000 include devices from AMD Mach and Plus Logic. 
For instance, the EPM5128 device from Altera has eight dedicated inputs including the clock, 64 
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programmable I /O pins, eight logic blocks (LBs),  16 macrocells and 32 product term expanders per 
LB. Each expander term (see Fig. 5) makes it possible to implement a function with upto 35 product 
terms inside a single macrocell which can be contrasted to only eight terms per function for most 
PAL families. The dedicated input pins come in along the top and are distributed to each of the eight 
LBs. The PIM (programmable interconnect matrix) routes global signals. All on-chip signals also 
have a path to the PIM if so needed. 

2.2. FPGAs 

Instead of programmable AND or OR arrays, FPGAs have an array of programmable logic cells 
interconnected by a programmable wiring matrix. These logic cells have limited fanin and fanout and 
so placement and routing of the logic cells can have a significant impact on the timing performance 
of a device. FPGAs place the most demand on design tools that are fully automated and time efficient 
and so we shall review algorithms pertaining to FPGA design in greater detail in this paper. In a 
sense, FPGAs can be viewed as an extension of PLDs that account for the need to incorporate more 
flip-flops and random logic along with fast local interconnections. 
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Fig. 7. FPGA architectural styles. 

FPGA architectures can be characterized based on: 
• Array style: FPGAs from Xilinx [8] and Actel[9,10] use a channelled architecture with distinct 

logic blocks separated by routing channels. The Xilinx model resembles the traditional island- 
style of gate-array architecture with logic blocks separated by channels in both directions; while 
the Actel resembles the standard-cell format with logic blocks in rows separated by routing 
channels. There are even sea-of-gate array offerings with mainly local interconnections such as 
Algotronix, Concurrent Logic and GEC-Plassey. These are shown in Fig. 7. 

• Logic block: Arrays differ in the logic block functionality as well. Xilinx uses a fairly large 
logic block with table-lookup functionality and two D flip-flops. Actel logic blocks, on the other 
hand are very small and are multiplexer based. Altera logic blocks directly support multi-level 
combinational logic (AND-OR-EXOR). 
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Routing resources: Xilinx arrays provide specialized routing blocks to enable interconnection of 
a subset of input pins to one another. Actel arrays are based on the use of segmented channels 
with antifuses. Algotronix and CAL reuse some of the logic cells themselves to act as routing 
resources. This will be elaborated in the routing subsections since they play a key role in 
the algorithms. In most implementations, some long-range global busses are also provided to 
improve the routability of the design. Special clock schemes are also directly provided which 
minimizes the clock skew problem that can otherwise occur. 
Programmability: Programming of a PLD or FPGA is accomplished by enabling or disabling 
interconnections in the device's programmable array so as to obtain a certain logic function. This 
process is referred to as array personalization. There are two types of programmable FPGAs: 

• One-time programmable: The best example are the Act series of devices from Actel which 
antifuse as the programming elements. If a high current is passed through the antifuse, it 
shorts and forma a low-resistance connection. One-time programmable arrays tend to be 
faster and hence are preferable when speed is important. Also, since an antifuse is relatively 
small, many more of them can be incorporated within the same silicon area. 

• Many time programmable: The best example here are the LCA family of devices from Xil- 
inx which uses pass transistors controlled by SRAM cells to implement the programmable 
points. The advantage is the same hardware can be reprogrammed and reused several times. 
The disadvantage is that the on-resistance is usually 2-3 times more than that of the anti- 
fuse technology and hence leads to more switching delays. All the memory cells are linked 
into one huge shift register. Reprogramming the device can thus be achieved by raising 
the voltage on a certain programming pin on the device and shifting in the appropriate 
configuration data. 

3. The design process 

3.1. Description of the main steps 

The main steps in the design process, as outlined in Fig. 1, are 
(1) Design entry: using software such as ABEL from Data I/O, CUPL, AMAZE, PLAN to name 

a few. These programs are much more flexible and offer the user a range of options such as 
high-level logic equations, truth tables, state diagrams or structurally, in the form of schematics, 
as compared to initial offerings such as PALASM from MMI (now part of AMD).  The latter 
were extremely restricted in the sense that the circuit had to be specified in terms of Boolean 
equations only. Having a range of options is helpful because different types of circuits are most 
easily described in different ways. Counters and multiplexers are best expressed as Boolean 
equations; display drivers and code converters in the form of truth tables; state machines as 
state diagrams; circuits that are mainly datapaths such as memory or arithmetic slices are easier 
to express in structural terms. In fact, the forms can often be mixed and this adds to the ease 
of the software. 

As an illustration, we shall consider the design of a simple controller for a coin-operated 
vending machine that is supposed to deliver a package of gum after it has received 15 cents in 
either dimes or nickels, one coin at a time. A mechanical sensor is assumed to indicate to the 



R. Venkateswaran, P. Mazumder / INTEGRA TION, the VLSl journal 17 (1994) 191-240 201 

(2) 

R e s e t %  

o )° 
Present State Inputs Next State Output 

Q1 Q0 D N D1 D0 Z (open 
U U UU U U U 

01 0 1 0 
i0 1 0  0 
ii x x x 

U 1  0U U 1  O 
0 1  I 0  0 
10 i i  0 
Ii x x x 

I U U U  ± U  U 
0 1  1 1 0 
i0 i i  0 
i i  x x x 

I ±  u u  ± ~  I 
0 1  i i  1 
i0 i i  1 
ii x x x 

State Transition Table 

State diagram 

Fig. 8. Specification of the vending machine controller. 

control which coin has been inserted by asserting either the N (nickel) signal or the D (dime) 
input. The controller's output, denoted Z, has to be asserted once the required amount has been 
deposited, to dispense a packet of gum. Note, we shall assume that an external reset signal is 
activated each time by the dispensing mechanism and also that the machine does not give any 
change. So a customer who pays two dimes is out five cents. Figure 8 shows the state-diagram 
and state-table representation for this problem based on a simple state-encoding. 

The same description can be also entered in a hardware language such as ABEL. The 
advantages of using ABEL is that it understands many low-level details of different PLDs 
including polarities and macrocell configurations. Also it can accept both state-tables as well as 
logic equations. However, the designer still has to be aware of some of the low-level details such 
as the number of pins, or size of the product terms and so on. If the logic has to be partitioned 
to fit a particular device, then it has to be done by the user. ABEL cannot handle this. Figure 9 
gives an ABEL input specification for the controller. Line 3 specifies the particular device which 
in this case happens to be the P22V10 PAL which has 12 inputs, 10 outputs, and embedded 
flip-flops associated with the outputs. Line 5 specifies the output macrocell associated with pin 
21 is to be registered with positive polarity. Line 7 is an example of entry using equations while 
line 8 is a word description of the state diagram. ABEL also allows the designer to specify test 
vectors. 
Logic  optimization: Once an initial set of equations and state transitions have been specified for 
a given design, they should next be optimized for the most cost-effective implementation. Two 
steps are typically involved: 

• Logic reduction algorithms which minimize the size of the circuit by determining and 
retaining only essential terms depending on the type of circuit desired (viz. either using two- 
levels of logic or multiple levels). In the traditional minimization model, two optimization 
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i. module VendMachineController 

2. title 'Controller to dispense gum for a vending machine 
Created by Venky Ramachandran' 

3. ul device 'p22v10';"Device specified as a P22VI0 PAL 

4. "Input Pins 
Clk, Reset, N, D pin 1,2,3,4; 

5. "Output Pins 
Z pin 21; 
Z istype 'pos,reg'; 

6. "State registers with simple-encoding 
SREG = [SI, SO]; 
ZERO = [0, 0]; "nothing deposited yet 
FIVE = [0, i]; "five cents 
TEN = [i, 0]; "ten cents 
FIFT = [i, i] ; "give him the gum 

7. equations 
[Sl.ar, S0.ar] = Reset; "Reset to state ZERO 
Z = S1 & SO; 

8. state_diagram SREG 
state ZERO: if Reset then ZERO 

else if N then FIVE 
else if D then TEN 
else ZERO 

state FIVE: if Reset then ZERO 
else if N then TEN 
else if D then FIFT 
else FIVE 

state TEN: if Reset then ZERO 
else if (N # D) then FIFT 
else TEN 

state FIFT: if Reset then ZERO 
else FIFT 

9. test_vectors 

i0. end VendMachineController 

Fig. 9. ABEL input file for vending machine controller. 

criteria have been used: minterm or product term minimization and literal minimization. In 
PLA design, the first factor is important in reducing the size of the PLA while the second 
is usually irrelevant as each input is available to all product terms anyway. The reverse is 
true for FPGAs where literal minimization is often more important. The main reason is 
that the latter leads to smaller fanin circuits and places less strain on the routing fabric 
available. 

• State assignment and encoding which is especially important for finite state machine (FSM) 
designs such as the vending machine controller. A good assignment can considerably 
simplify the complexity of the next state and output equations. This step traditionally 
consists of the following four steps: 

(a) State identification: Determine an appropriate set of states that capture the required design 
and generate a state transition table. 

(b) State reduction: Identify and merge states which have identical transition and output 
functions on the same inputs. State minimization techniques, however, have limited use in 
large designs. This is because for a flip-flop to be saved, up to half the existing number 
of states may have to be eliminated. 
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(c) Register synthesis: Identify the proper types of flip-flops to be incorporated which will 
lead to a minimal design. Proper register synthesis can lead to a considerable saving in 
the number of product terms needed to generate the excitations of the state registers. For 
example, counters are usually designed using JK or T flipflops instead of D flipflops. 
This is because a transition term is always needed for a D flip-flop whenever it has to 
be set 1 irrespective of whether the flip-flop is currently holding a 1 or not. For JK and 
T flip-flops, such hold states do not need any connection; hence a product term can be 
saved. For simple pad-restricted PLAs with no internal feedback, D or T flip-flops may 
be preferred since they require only one pad. 

(d) State assignment: Assign codes to the various states and derive the required excitation 
functions. 

Logic synthesis tools are discussed in Section 4. 
(3) Partitioning: Partitioning can be defined as the process of breaking a design into pieces for 

some purpose. A circuit may be partitioned in order to assign parts of it to different chips, to 
reduce the running time of a placement or routing algorithm, or for other reasons. Partitioning 
for PLDs is usually done using function decomposition methods whereas those for FPGAs 
use more sophisticated algorithms that have been successfully applied to custom VLSI design. 
Pin assignment is also performed based on the partition generated. Partitioning methods are 
discussed in Section 5. 

(4) Technology mapping: Technology mapping can be defined as the problem of transforming a set 
of logic equations into an interconnection of parts that are instances of available elements in 
a given library. In case of PLDs, the problem of mapping the equations to the array (product 
terms) can be achieved in a straightforward fashion except for the more complex devices. In 
case of FPGAs, the problem is much more complex for two reasons: (i) Complexity of the basic 
circuit elements (lookup-tables or multiplexers in lieu of product terms) which can implement 
a variety of logic functions other than simple NAND/NOR like functions, (ii) Generality of 
the interconnection scheme which can easily support multi-level logic implementations. Good 
schemes are available, that are fast and efficient, and are covered in Section 6. 

(5) Place and route: This is of consequence only for FPGAs. Placement algorithms such as the 
min-cut approach or standard-cell placement techniques are used to generate an initial placement 
so as to maximize the chances of the router. The routing problem differs from routing in custom 
design styles because the wiring segments that are available for routing are preplaced and can 
be connected together in only specific patterns. The router has to also resolve conflicts arising 
due to assignment of wiring segments to different nets. Some timing features are also needed 
to minimize the number of programmable elements within the path so as to minimize the total 
delay. Earlier, we had classified FPGAs into row-based, matrix-based or plane-based (sea-of- 
gate) style architectures. The routing algorithms differ for each of them as it is directly related 
to the underlying resources available. 

(6) Device fitting: Device fitting for most PLDs [11 ] deals only with pin assignment, node as- 
signment, macrocell configuration and control term configuration. Pin assignment refers to the 
assignment of an output to a particular pin, similarly node assignment refers to the selection 
of the appropriate node or internal point. These are non-trivial problems if, for example, there 
exist different types of macrocells. Macrocell configuration takes into account the programmable 
resources in a device's macrocell in transforming the minimized equations onto the device. The 
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various handles that can be used include choice of feedback, output polarity and so on. Control 
configuration involves choosing between options for register preset, output enable and so forth. 
These are highly architecture dependent and general techniques have not been developed. Usu- 
ally the fitter will have some device specific code that will accommodate the unique features of 
that device. The final output is typically a JEDEC-style fuse map or, in the case of FPGAs, a 
configuration bitmap that has been derived from the routed netlist. These are then used to pro- 
gram the device using a piece of custom hardware called a device programmer that is attached 
to a host computer containing the configuration data. In some cases, the same hardware can be 
repeatedly personalized and this feature becomes extremely useful in correcting design errors 
or in accommodating changes in the initial design specifications. 

3.2. Example 

We illustrate the above steps by way of the custom XACT design software [ 12] for use with the 
Xilinx LCA (logic cell array) family of FPGA devices. 
(1) Entry: The design is first specified, say using ABEL, and translated into an external netlist 

format (XNF) file. The XNF format is primarily provided to provide a uniform interface to the 
various design-entry tools. One or more XNF files can be created per design. These files have 
a one-to-one correspondence to the design but are not LCA-specific. 

(2) Optimization and partitioning: The XNF files are manipulated in several ways to create an 
optimized circuit targeted specifically to a particular LCA. Multiple XNF files can be merged 
together into a single circuit and the Xilinx circuit optimizer (XNFOPT) program can be 
invoked to better fit the circuit to the particular LCA's constrained structure. For example, if the 
circuit uses very wide gates, then it can be decomposed into a set of four or five input gates that 
are amenable to single CLB implementations. In practice, XNF files are first converted to an 
intermediate form called a MAP file, which represents a partitioned circuit. Each of the circuit 
partitions in the map file corresponds to one CLB or IOB in the target device. After the MAP 
files have been generated, they are then converted to an LCA design file using the program 
Map2LCA. The LCA file is actually a command script that controls the XACT software during 
the placement and routing portion of the implementation phase. The entire design can be merged 
and converted into a single LCA design file or the various design segments can be maintained 
as separate LCA files and merged later. This decision depends on the size and complexity of 
the circuit being implemented. 

(3) Implementation: The LCA file created above is then fed to the automatic place and route 
(APR) program which results in the generation of a new LCA design file that includes the 
calculated logic block placements and signal routings. These can also be manually inspected 
using the XACT design editor and modified if so desired. Once an acceptable solution is 
achieved, then the final step is to convert it to a binary bit pattern using a program called 
Makebits. For prototyping, the bit pattem can be downloaded from the host computer using a 
special download cable. However, this method is vulnerable to power failures. A more permanent 
solution is to store the bit-pattern in a PROM that is installed on the board along with the LCA 
with provisions to boot the LCA from the PROM on power-up. 
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4. Logic synthesis algorithms 

4.1. Two-level synthesis techniques 

As discussed in the previous section, when applied to PLAs, the primary goal is to minimize the 
total number of product terms. 

4.1.1. Logic minimization 
For the two-level minimization problem, the following steps are typically performed for each 

function: 
( 1 ) Exhaustively generate a set of prime implicants from the sum of products expressions. 
(2) Choose a minimum set of the prime implicants generated so that all the minterms of the function 

are covered. Each of these implicants represent a product term when mapped onto the PLD. 

Exact methods: For small problems, Step 1 can be done using Karnaugh maps or a standard algorithm 
such as the Quine-McCluskey tabular method, while a minimum cover can be obtained using Petrick's 
method. Typically, several rules regarding essential rows and columns, dominated rows and dominating 
columns can be applied to simplify the prime implicant table prior to applying Petrick's algorithm. 
While this procedure is sufficient for PALs, it may not yield optimal results for PLAs. This is because 
in PLAs, product terms can be shared between different functions (product-term sharing) leading to a 
substantial decrease in the overall number of product terms needed. For PLAs, therefore, the multiple- 
output variant of QM method is used wherein we try to optimize the total number of implicants for 
a group of functions taken together. These are the so-called multiple-output prime implicants which 
in fact do not need to be prime in the individual functions. 

Heuristic approaches: Unfortunately, these methods are NP-complete because the number of minterms 
for a function with n variables can be as high as 2 n-1 (parity function) and the number of implicants 
can be as high as 3 n. So, an exhaustive generation method such as QM is not practical for large 
circuits. Consequently, several heuristic algorithms such as Mini, Espresso [13], etc. have been 
designed. The idea is to derive a minimum cover with high probability without first generating all 
prime implicants. Efficient computational techniques based on unate functions have been developed 
for Espresso and fairly good solutions are typically produced. Typically, Espresso performs three steps 
iteratively: 
(1) The first step is called expansion wherein each implicant is expanded as much as possible; cov- 

ered implicants are dropped from further consideration while essential implicants are converted 
to don't-cares. 

(2) The next step is reduction wherein the primes generated in expansion are trimmed to the smallest 
size without losing any minterm coverage. 

(3) The final step is sometimes referred to as reshaping wherein the best irredundant cover is 
generated. 

Figure 10 shows the input and output PLA personalization files produced by Espresso using the 
state assignment shown in Fig. 8. The first two lines show the number of inputs and outputs while 
the next two associate symbolic names to them. This is followed by the PLA personalization matrix 
with standard notations (a 1 or a 0 in the AND plane denotes a variable in true or complemented 
form while a - indicates a don't-care. Similarly a 1 in the OR plane denotes a product term that is to 
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.i 4 

.o3 
• ilb ql q0 d n 
.ob dl dO z 
.p ii 
0000 000 
0001 010 
0010 i00 
0100 010 
0101 i00 
0110 ii0 
1000 I00 
i001 ii0 
i010 ii0 
ii-- iii 
--ii --- 
.e 

Espresso input file 

.i 4 

.03 

.ilb ql q0 d n 
• ob dl dO z 
.p7 
-0-i 010 
-i-i i00 
-i-0 010 
i-i- 010 
ii-- 011 
--I- i00 
i--- i00 
.e 

Espresso output file 

Fig. 10. Espresso files for vending machine design. 

be included in the SOP expression for the corresponding output). Thus, from this particular matrix, 
we have 

d l = q l  + D + qO. N, 

dO=qO'. N + qO. N' + ql • D + q l • qO, (1) 

Z =q l  • q0. 

Architecture-based minimizations: Another minimization technique that can be useful for PLA designs 
is that of  input reduction. This involves the detection and elimination of logically redundant inputs 
and can be achieved using a tabular approach similar to the implicant covering procedure. Yet 
another optimization technique is made possible in some PLAs (e.g. the Signetics series) using a 
complementary array connection. This is simply an OR term which can have connections to all 
product terms; the complement of this OR is then made available as a new input to the AND array. 
This feature can be made use to generate default conditions (for example, in a BCD counter, this 
can be used to detect if the input is a non-BCD number and take appropriate action). It can be also 
profitably used in sequencer designs to test for illegal states and make the transition to a valid state. 
Often the alternative approach of specifying the default conditions in terms of Boolean equations can 
lead to many more product terms and is more complex. 

4.1.2. State-assignment methods 
A crude estimate of an upper bound on the total number of product terms needed is given by the 

sum of the number of distinct destination states for each input in the state transition table. However, 
with a good assignment this number can be significantly reduced. Choosing the best assignment is 
NP-hard since the maximum number of distinct state assignments for N states using q variables is 
2 q - -  1 ! / 2  q - -  Nlq!. Further constraints are imposed on state assignment due to static and dynamic 
hazard considerations. For example, to avoid a static hazard, adjacent states should vary by just l 
bit position. The same holds when state variables are used as outputs as in Moore machines. One 
of  the CAD tools available for state encoding is called nova [ 14] from the University of  Berkeley. 
Intuitively, nova clusters states that are mapped into the same next state by some input and those that 
assert the same output into separate groups. In the terminology of state assignment, these are called 
input constraints. Nova attempts to assign adjacent encodings within the smallest Boolean cube to 
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states in the same group. A related concept is output constraints. States that are next states of a 
common predecessor state are given adjacent assignments. 

Nova implements a wide range of state-encoding strategies any of which can be selected while 
running the program. Some of these strategies are as follows: 
(1) Greedy: prioritizes satisfying input constraints and only looks at new state assignments that 

show a strict improvement over those already examined. 
(2) Hybrid: also prioritizes satisfying input constraints but also considers some state assignments 

that are worse-off in the short run but can potentially lead to better results. This minimizes the 
possibility of getting trapped in a local optimum. 

(3) Annealing: same as hybrid but uses a more sophisticated annealing schedule for improving state 
assignment. 

(4) I /0  hybrid: same as hybrid except it also tries to satisfy output constraints at the same time. 
(5) One-hot: uses a one-hot encoding which rarely minimizes the number of product terms but can 

significantly reduce the number of literals. Hence, this technique is more useful for FPGAs than 
it is for PLAs. 

(6) Random: As the name indicates, assignments are tried out randomly and the best found reported. 
(7) Exact: obtains the best encoding satisfying input constraints. Still may not be the best overall 

due to output constraints. 

Example 4.1. For the vending machine example, the various encoding algorithms 
following assignments: 

Number of Number of 
ZERO FIVE TEN FIFF product terms literals 

Greedy 
Annealing 
Hybrid 
IO hybrid 
Random 
One-hot 

PLA 
area 

The input file to nova is shown in Fig. 11. Each line has the following syntax: 

I n p u t s P r e s e n t -  NextState  - StateOutputs  

Some of the resulting PLA personalization files generated using Espresso on these state assign- 
ments are also shown. Not in each case the order of the inputs and outputs are D, N, ql ,  q0 and 
d l ,  dO, Z respectively. For the vending machine example the IO-hybrid strategy does poorly but the 
rest excepting the one-hot method give more or less the same area. The PLA area is computed to a 
first approximation by the formula Area = (2i + o)p  where i, o, p are the number of input variables, 
output variables and product terms used. The equations for the best case (annealing) which has 6 
distinct product terms is given below: 

dl  = N  I - D / • ql + N-  ql I • q01 + ql I • D + ql • q0, 

d 0 = q 0 '  • N + q0.  N' + q l '  • D + ql • q0, 

Z = q l  • q0. 

of nova yield the 

01 10 00 11 6 21 66 
10 01 00 11 6 20 66 
10 01 00 11 6 20 66 
00 11 10 01 8 23 88 
01 10 11 00 6 23 66 
1000 0100 0010 0001 9 21 153 
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00 ZERO ZERO 0 
01 ZERO FIVE 0 
i0 ZERO TEN 0 
00 FIVE FIVE 0 
01 FIVE TEN 0 
i0 FIVE FIFT 0 
00 TEN TEN 0 
01 TEN FIFT 0 
i0 TEN FIFT 0 
-- FIFT FIFT 1 
ii - - 

N o v a  input file 

. i 6  

. 0 5  

.p9 
.i 4 .i 4 i-i--- 00100 
.o 3 .o 3 -ii--- 01000 
.p 6 .p 6 -i-i-- 00100 
00-1 010 001- 100 -i--i- 00010 
-i00 ii0 -I00 i00 001--- i0000 
-01- 100 -i-0 010 00-i-- 01000 
-i-i 100 -0-1 010 00--i- 00100 
--ii 011 i-0- ii0 ..... 1 00011 
i--0 Ii0 --ii iii i-0--- 00010 
.e .e .e 

Greedy Annealing One-hot 

Espresso outputs generated based on nova state-assignments 

Fig. 11. Nova files ~r vending machine design. 

In contrast the equations for the one-hot encoding style are 

d3 = N I • D' • q3, d2 = N .  q3 + qT • D ~ • N I, 
d l = D . q 3 + N . q 2 + D  ~ .N ~.q l ,  d 0 = q l . N + q 0 + q 3 / - D .  

Z =q0,  

The one-hot encoding needs the most product terms; however an inspection of the next-state and 
output equations reveals that only 21 literais and 11 gates with fanin of 3 or less (5 2-input ANDs, 
3 3-input ANDs, 1 2-input OR and 3 3-input ORs) are required. Smaller fanin gates are one reason 
why this technique is popular for FPGA designs that are heavily fanin constrained. 

4.2. Multi-level logic synthesis 

Unlike simple PLDs, the multi-level logic synthesis [ 15] is the logic minimization type of choice 
for FPGAs. This is because the logic blocks in FPGA have very limited fanin and fanout capabilities. 
The more powerful routing structures also support the multi-level implementations. Note that the use 
of expander terms in complex PLDs is also an instance of a multi-level logic structure and so much 
of the following discussion is also applicable for them. 

4.2.1. Multi-level logic minimization 
The primary goal of multi-level logic minimization is to minimize the total number of literals in a 

Boolean equation. This generally leads to fewer resource requirements but also often leads to more 
logic levels and hence increased delay in logic paths. Such delays, if found unacceptable, can lead 
to further constraints. The main idea is to compute the factors and subfactors of a design's Boolean 
equations; these determine the number of logic levels possible. Each factor or subfactor can be treated 
as an internal input that can be fanned out to multiple outputs or other logic levels. A popular tool 
for multi-level synthesis is the misH [ 16] program developed at the University of Berkeley. 

To begin with the Boolean expressions are placed in a "tree-structure" or are manipulated alge- 
braically. The former usually is a directed acyclic graph (DAG). Each node in the DAG defines a 
function represented by a variable associated with the node. The root node defines the entire Boolean 
function. The following type of operations are then performed on this data structure. 
(1) Decomposition: This step takes a single Boolean expression and replaces it by a collection of 

new expressions. 
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(2) Factoring: This step takes an expression in two-level form and re-expresses it as a multi-level 
function. For example the function F = AD ÷ BCD ÷ E can be factored as 

F = G D + E ,  G = A + B C .  

(3) Extraction: This operates on multiple, possibly factored, functions and identifies common subex- 
pressions amongst them. It is by far the most complex of the operations to implement. The 
general strategy is to rewrite the expression for each function, say F, in a polynomial form in 
terms of subexpressions P, Q and R which represent the divisor, quotient and remainder respec- 
tively. The divisors represent the required set of possible common factors. Finding divisors is 
hard because of the complications resulting from application of the rules of Boolean algebra. 
For example, under algebraic laws the function H = A + B does not divide F. However, using 
the distributive rule, viz. X ÷ Y. Z = (X ÷ Y) (X ÷ Z)  we can rewrite F as 

F = (A + BC)D + E = (A + B) (A  + C)D ÷ E. 

Clearly, with this representation it is easy to see that ( A + B )  is indeed a divisor with ( A + C ) D  
as the product and E as a remainder. 

(4) Substitution: Substituting a function G into a function F reexpresses F in terms of G. For 
example, substituting H in the above example leads to F being expressed as F = H ( A + C ) D + E .  

(5) Collapsing: This is the reverse of substitution and is done to reduce the number of levels so as 
to meet a timing constraint. 

4.2.2. State assignment for multi-level designs 
The goal of state assignment here is to minimize the number of literals that are required for 

the next-state and output functions. Two tools, mustang [ 17] and jedi [ 18] developed at Berkeley 
do state assignments for multi-level designs. Like nova, mustang uses several alternative strategies 
for state assignment such as random, sequential, one-hot, fan-in and fan-out. Fan-in and fan-out 
strategies work by creating partitions among states based on input and output constraints, and the 
state assignment that maximizes common subexpressions among partitions is chosen. Jedi is very 
similar to mustang except it can find encodings for outputs as well as the states. It uses other solution 
strategies such as input dominant, output dominant, modified output dominant and input/output 
combination algorithms. Once, these encodings are made, the resulting state-table or expressions can 
be input to mislI for obtaining an optimized set of logic equations. 

Example 4.2. The state assignments made by mustang for the same vending machine controller are 
shown below. 

Number of Number of 
ZERO FIVE TEN FIFT productterms literals 
10 00 01 11 8 24 
01 10 11 00 8 24 
11 10 00 01 7 18 
10 00 01 11 7 20 

Random 
Sequential 
Fanin 
Fanout 

The number of product terms and literals in the resulting expressions fed to mislI is also reported. It 
can be noted that the fanin heuristic yields the least number of literals; but the random and sequential 
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#state assignment based on fanin heuristic of mustang 
.i4 
.03 
.ilb d n ql qO 
.ob dl dO z 
.p Ii 
0011 ii0 
0111 100 
i011 000 
0010 i00 
0110 000 
i010 010 
0000 000 
0100 010 
1000 010 
--01 011 
ii ..... 
.e 

%misII -f lib/script -t pla fin.mustang 
.model fin.mustang 
.inputs d n ql qO 
.outputs dl dO z 
.names ql qO z 
Ol 1 
.names d n ql qO z dl 
001-- 1 
0--i0 1 
.names d n ql qO z dl dO 
.... i- 1 
010--- 1 
i0-0-- 1 
-0-i-ii 
.end 

Fig. 12. mislI output based on ~nout-based state encoding of mustang 

versions do poorly and are even worse than those got from nova. The misII output script based on 
the state encodings with the fanin heuristic are shown in Fig. 12. Each of the names section gives the 
PLA matrix for the variable appearing last on the associated name list. For instance, the multi-level 
(here 3-level) equations computed are: 

z = q l ' .  q0, 

d l = D ' . N ' - q l + D ' - q 0 . z  ', (2) 
dO=z + D' .  N . q l '  + D . N ' . q O +  N ' . q O . d l .  

5. Partitioning methods 

5.1. Partitioning techniques for simple PLDs 

Sometimes, a single PLD is insufficient to realize a given set of functions. This could be for 
lack of either sufficient product terms, input pins or output pins. One simple method to alleviate 
the product term crunch is to employ a technique called product-term sharing. The approach is to 
choose a variable to segment the given PLA table; one table comprises the rows of the original table 
wherein the variable appears in either 0 or don't-care form while the other comprises of the rows 
with the variable in 1 or don't care form. Since, don't care entries are repeated, one heuristic is 
to choose variables having fewer don't care entries for segmentation purposes. The two tables can 
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then be independently optimized by the standard techniques. The final output can then be formed by 
ORing the corresponding outputs of the two PLDs. 

Input and output encoding schemes have also been proposed when the number of inputs and outputs 
of a given PLD are at a premium. Input encoding works by identifying a subset, m, of variables that 
cause the output to be 1 in only say c combinations of these variables. For this technique to be 
effective, we must have c << 2 m. Thus we can use another PLD which will identify these c patterns 
and encode it into c' = Flog (c)]  bits which can be then fed into a second PLD. Thus the input 
requirements for the two PLDs are now m and n -  ( m -  c') respectively. Output encoding techniques 
can be similarly devised by identifying sets of outputs which are active only in a limited number of 
combinations. Thus these outputs can be encoded using fewer bits and then fed into a subsequent 
PLD decoder to generate the original outputs. 

A whole theory of function decomposition is also available in the literature which generalizes 
the above simple strategies. Input encoding is an instance of what is known as simple disjunctive 
decomposition. Other forms such as multiple, iterative and complex disjunctive decompositions have 
also been studied. It should also be noted that such techniques can also be applied for complex PLDS 
with multiple partitions. 

5.2. Partitioning for  FPGAs 

More sophisticated algorithms are used to partition the larger systems designed using FPGAs. 
These are influenced by several aspects of the design such as: 

• The delay introduced into the circuit path is related not only to the length of the signal but also 
to the number of chip and board crossings. Interchip delays for Xilinx parts can range from 8 
to 24 ns. 

• Congestion in interchip routing. Since the number of device pins are limited, it is necessary to 
partition in such a way that all the resulting chip-crossings can be accommodated. 

• Physical limits on the logic on each chip. The Xilinx chips, for instance, can accommodate 
from 2000 to about 10 000 gates theoretically. However, the inefficiency of logic utilization, due 
to the general purpose design tools, can significantly degrade the usable gate count. Thus the 
partitioning program has also to ensure that none of the partitions is severely overloaded. 

• Complexity of intra-chip routing affects the logic utilization and can cause greater delays. 
There have been a number of techniques used for partitioning circuits and graphs such as (a) gradi- 

ent descent, (b) graph partitioning methods such as Kemighan-Lin (K-L) and Fiduccia-Matheyses, 
and (c) force-directed methods. Such algorithms have been extensively studied in the literature, for 
instance, in Chapters 3 and 4 of [ 19]. It is the intent of this section to only comment  upon how 
these methods can be useful for PLD partitioning problems. We assume the following steps will be 
performed in order: 

( 1 ) Read in the input specification and hardware description of both the logic blocks as well as the 
routing structure. 

(2) Do a critical-path analysis step. 
(3) Perform an intial partitioning and pin-assignment step. 
(4) Evaluate the solution and generate module moves/swaps. 
(5) Repeat steps 3 and 4 till an acceptable solution is produced. 



212 R. Venkateswaran, R Mazumder/INTEGRA TION, the VLSI journal 17 (1994) 191-240 

In the original K-L model, the partitioning problem is formulated as a simple graph-problem of 
dividing a set of nodes connected by a set of edges into two or more subsets so that the number of 
edges between any two subsets (or bins) is minimized. Furthermore, the problem can be generalized 
by assigning a cost to each edge and minimizing the sum of the weights of the edges crossing the 
bins instead. The K-L model considers swaps between pairs of bins at a time. When there are more 
than two bins, the K-L algorithm can be augmented with the F-M approach which considers only 
single-module moves at a time. 

The force directed approach models a network in terms of springs and spring forces between 
modules and tries to minimize the total force exerted on the system. When applied to FPGAs, care 
has to be made to prevent individual devices from overflowing. This can be done using an additional 
repulsion cost that tends to push modules into different devices. The new force cost becomes F = 
K x  + R N  where R is the repulsion coefficient and N is the number of logic blocks that are already 
occupied in the same device as the one for which the force is being calculated. Typically, the model 
has to be accompanied by some sort of gradient-descent approach that can transform the system from 
one state to another. For example in the Generalized Force Directed Relaxation method suggested 
by Goto, first single-module moves are attempted. If no such move yields an improved result, then 
the best move is used and the process repeated, with the proviso that the module must come from 
the same PLD as the one to which the last module was moved to. If a move at the second level is 
accepted, it actually corresponds to a module swap via two single-module moves. The approach can 
be extended to as many higher levels as desired without having to pay the full price of an exhaustive 
search. 

5.3. Pin ass ignment  

In addition to assigning modules to the different devices, it is also necessary to address the problem 
of assigning pins to all the connections that need to go between the devices. Typical pin assignment 
algorithms work by attempting to minimize weighted net lengths, where the length of a potential 
network can be defined as the number of chip boundary traversals that it makes. The weight of the 
network can be taken as 

(1) A constant, in which case the effect is to minimize the total network length, or 
(2) An exponential function such as K × e -(path slack), where the path slack is the difference between 

the actual delay and the required delay and K is any large constant. The idea is to increase 
the weights for time-critical nets so that they get assigned shorter routes. This step can also be 
viewed as a slack-minimization method. Since, this calls for path analysis to obtain the slack 
delay values, it is much slower than using the network oriented constant cost function 

Armed with the data on net weights and location of modules and the FPGA interconnectivity, the 
pin assignment algorithm tries to find a feasible assignment that minimizes the objective. Note that 
if the partitioning algorithm had not taken congestion into account, such an assignment may not be 
feasible because there are fewer pins than are needed to make all interchip connections. In that case, 
we can use the KL-FM or other algorithms to redo the partition paying special emphasis on the 
offending modules and go over the entire process again. 
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6. Technology mapping problem 

In this section, we look into the algorithms pertaining to the technology mapping problem for 
FPGAs. We shall assume that the given network is purely combinational. Networks containing memory 
elements can also be handled, but it would first be broken into a set of combinational functions at 
flip-flop boundaries. The network will also be assumed to be represented as a DAG similar to the 
one used for multi-level optimization programs where the intermediate nodes represented factors of 
the function. For FPGA implementations, each intermediate node is assumed to be capable of being 
implemented using a single logic module. The logic modules for most FPGAs come in two flavors: 

• Look-up tables (LUTs): These are primarily static RAMs. A LUT with k inputs can support 
any Boolean function of upto k variables. The Xilinx family of FPGAs is LUT based. 

• Multiplexers: The Actel Actl and Act2 series of FPGAs use multiplexers as the basic logic 
blocks. 

6.1. Generic library mapping methods 

The pioneering work in technology mapping algorithms is based on the formalization proposed in 
the dagon [20] and mis [ 16] systems. The overall task can be split into three components: 

• Partitioning: The given network is partitioned into a collection of multiple-input single-output 
combinational sub-networks. 

• Decomposition: Each sub-network is then decomposed into two-input functions, to increase the 
network granularity, and 

• Covering: Each decomposed sub-network is then covered by available circuit elements of a 
library so that either area or time is optimized. 

Each decomposed sub-network is defined by an appropriate DAG. The DAG is then converted into 
a tree by creating a unique instance of every input node for each of its multiple fanout edges. The 
optimal circuit implementing each tree is then constructed using a dynamic programming method 
that proceeds from the leaf nodes to the root node. For every node in the tree the optimal circuit 
implementing the subtree extending from the node to the leaf nodes is constructed. This circuit 
consists of  a library element that implements the function specified by the node and the previously 
constructed circuits implementing its inputs. The cost function can incorporate two measures: (i) an 
area measure which is simply the sum of the areas of the modules used to construct the DAG, and 
(ii) a delay measure which is the maximum delay for any leaf node where the delay of a leaf node 
is defined as the sum of the delays of all modules lying on its path to the root. 

To find the lowest cost circuit, typically all library elements that can serve as candidates for 
implementing the subfunction at any node are considered and the cheapest retained. The set of 
candidate elements are found using a version of a tree-matching algorithm. There are two main 
drawbacks associated with these techniques: 

• Requirement for explicit library enumeration: In programs such as mislI and Ceres, the library 
of cells that can be derived from the uncommitted modules needs to be captured explicitly. 
Such an enumeration can be very large for most functions. 1 Consequently, any practical 

i Remember there are 22k possible k-input functions. 
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implementation can hope to explore only a subset of all possible combinations which comes at 
the expense of quality. 
Retargettability: As a way of getting around the combinatorial problems associated with a very 
large library, programs such as mis-pga have chosen to target very specific architectures such as 
the Act-1 series. As a result, the entire library can be modeled using a few primitive building 
blocks. The resulting programs are fast and yield good solutions; but the drawback is that they 
cannot be readily extended to other implementations. 

6.2. Technology mapping for multiplexer-based FPGAs 

Next, we describe a matching algorithm [21] for multiplexer based systems such as the Act-1 
family. This algorithm has been implemented as part of the Proserpine system and avoids the pitfalls 
of the generic method. The main idea behind the matching algorithm is to model the personalization 
of the multiplexers as stuck-at-O, stuck-at-1 and bridging faults on a Binary Decision Diagram (BDD) 
data structure representing the given function. 

6.2.1. Binary decision diagrams 
A BDD is a two-terminal leveled DAG with a single root node. The terminal nodes represent the 

values 0 and 1 respectively. Each level of the BDD is associated with a variable. Every intermediate 
node is also associated with a function and has two outgoing edges that are labeled 0 and 1. The root 
is associated with the Boolean function that the BDD represents, while an internal node is associated 
with the sum of cofactors with respect to the variables on the paths to the root. 

For instance, Fig. 13(a) shows the BDD for the exclusive OR function that could possibly arise 
as part of  a parity circuit or for the SUM function of a half-adder. Figure 13(b) shows the BDD for 
a more complex function. We will refer to BDDs representing circuit functions to be implemented as 
"function" BDDs. This is to differentiate them from the "logic-block" BDDs that represent the function 
that a given logic block represents. For instance, Fig. 14 pertains to the Actel series multiplexer based 
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Fig. 14. Act-1 logic block and two of its BDD representations. 

logic block. The figure also is useful in noting the fact that a function need not have a unique 
BDD. In fact, the structure depends on the order of the variables used to levelize the graph. This 
fact is important from the point of view of the matching algorithm to be described shortly. A lot of 
unnecessary search can be avoided based on the fact that for an input ordering, the reduced BDD 
(i.e. a BDD such that no two sub-BDDs are isomorphic) is a canonical form. Hence, it is possible 
to construct a more general structure, also called a Global Binary Decision Diagram, that represents 
the logic block structure for all possible input orderings. The main advantage of the GBDD is that it 
contains no subgraphs that are isomorphic to each other. 

6.2.2. Matching algorithm 
One part of the algorithm is fairly obvious by now. The goal is to detect a subgraph within the 

logic-block BDD that is isomorphic to the function BDD. A few observations are in order. First, it is 
sufficient to search for subgraphs of the same height as the function BDD. Secondly, it is necessary 
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Fig. 15. Effect of bridging on BDD structure. 

to consider all possible input orderings in the process. However, the number of such searches can 
be reduced by only considering non-isomorphic cases. The GBDD structure is quite useful for this 
purpose. 

The second part of the algorithm is executed if a match is found and pertains to "personalizing" 
the logic block by connecting input variables or constants 0 or 1 to each of the inputs of the logic 
block. This is done as follows: 

• The variables on the path leading from the root node of the module BDD to the root of the 
matched subgraph will be assigned constant 0 or 1 values depending on the corresponding edge 
labels. These variables can be thought of as stuck-at faults. 

• The mapping between the nodes in the matched subgraph and the circuit BDD specifies the 
input assignment to be made. 

Even when the matching algorithm fails to find a set of stuck-at faults that personalizes the logic 
block to the cluster function, it may still be possible to do so by bridging together certain inputs. The 
idea is as follows: Suppose in an input ordering variables a and b are adjacent to one another. Now 
if they were to be bridged, i.e. have the same logic value, then it is clear that of the four possible 
cofactors Fa,b,, Fa,b, Fab,, Fab, the only two still possible are F~,b, and Fab. What this implies in term 
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Fig. 16. Matching illustration using 1-bridge. 

of the logic BDD is that the subgraphs corresponding to the other two cofactors, viz., Fa, b and Fab, 
can be deleted. Also the node corresponding to the variable b can be dropped. Figure 15(a) shows 
the general case of bridging; while Fig. 15(b) shows the effect of bridging variables a and e for 
the Act-1 logic block under the first input ordering of Fig. 14. Often times, the resulting BDD is 
structurally different from the ones constructed purely on the basis of input orderings. Hence, the 
matching process can be continued on the new BDDs. Note that bridging can in principle be carried 
out for any number of variables. However, even for the simplest case of a 1-bridge fault, wherein 
only two variables are considered, the possibilities are astronomical. Clearly for each of the input 
orderings, a different pair of input variables can be considered. 

In practice, though, the one-bridge algorithm considers each of the function variables in order and 
constructs a function BDD with that variable as the first one in the BDD 6rdering. For each of the 
function BDDs, all possible input orderings are considered for the logic-block BDD. It then searches 
for subgraphs within this BDD where bridging the first two variables of the subgraph (say a and b) 
to the first variable of the function BDD (say x) results in a match being found. In actual practice, 
this determination can be done in place rather than create a new BDD as suggested by Fig. 15(b).  
The key point is to note that the effect is the same as checking for match between the subgraph of 
the function BDD specified by the stuck-at-fault x = 0 and that in the logic-block BDD specified by 
the pair of faults a = 0 and b = 0. Similarly, a match is checked between the subgraph of the function 
BDD specified by the stuck-at-fault x -- 1 and that in the logic-block BDD specified by the pair of 
faults a = 1 and b = 1. 

Figure 16 shows the logic-block BDD based on the input ordering (a f c b d e g). We consider 
the 1-bridge of  the first two variables a and f and check for isomorphic subgraphs based on the 
stuck-at notion developed above. The two subgraphs for the logic-block BDD corresponding to the 
appropriate stuck-at BDDs of the function module are also marked in the figure. From this it can be 
determined that the required personalization is a = v, b = y, c = 0, d = z, e = w, f = v, g = x. Note 



218 R. Venkateswaran, P Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240 

how the input variable v is simultaneously applied to both inputs a and f which represent the bridge 
set in this case. 

Example 6.1. Figure 17 shows the implementation of the vending machine design using Eq. (2) and 
the Actel mux-based architecture shown in Fig. 14 with b, c, d, e, f ,  g replaced by SA, A1, AO, SB, B1, 
B0 and signal a formed by the OR of S1 and SO. As can be seen, this is a three-level implementation 
and needs only 7 basic blocks and so is quite compact. The lines beginning with an asterisk have 
been added by us to clarify the function being implemented by that logic block. On the other hand, 
a two-level implementation would require upto 16 basic blocks. 

MODEL "act.in"; 

TECHNOLOGY scmos; 
VIEWTYPE SYMBOLIC; 
EDITSTYLE SYMBOLIC; 

INPUT "d" : "d"; 
INPUT "n" : "n"; 
INPUT "ql" : "ql"; 
INPUT "q0" : "q0"; 

OUTPUT "dl" : "[26]"; 
OUTPUT "dO" : "[28]"; 
OUTPUT "z" : "[24]"; 

INSTANCE "BASIC_BLOCK":physical NAME = INST0 
"A0" 
"AI" 
"SA" 
"B0" 
"BI" 
"SB" 
"SO" 
"SI" 
"out" 

******=> out = ql'q0 

INSTANCE "BASIC_BLOCK" 
"A0" 
"AI" 
"SA" 
"B0" 
"BI" 
"SB" 
"SO" 
"SI" 
"out " 

******=> out = [24]'q0 

INSTANCE "BASIC_BLOCK" 
"A0" 
"AI" 
"SA" 
"B0" 
"BI" 
"SB" 
"S0" 
"SI" 
"out" 

******=> out = ql N' + 

: "GND"; 
: "q0"; 
: "vdd"; 
: "GND"; 
: "GND"; 
: "Vdd"; 
: "ql"; 
: "GND"; 
: "[24]"; 

:physical NAME = INST1 
: "GND"; 
: "q0"; 
: "Vdd"; 
: "GND"; 
: "GND"; 
: "Vdd"; 
: "[24]"; 
: "GND"; 
: "[36]"; 

:physical NAME = INST2; 
: "GND" ; 
: " [36] " ; 
: "Vdd" ; 
: "Vdd" ; 
: " [36] " ; 
: "n" ; 
: "ql " ; 
: "GND" ; 

[:613 "[37]"; 

INSTANCE "BASIC_BLOCK":physical NAME = INST3 
"A0" : "GND"; 
"AI" : "[37]"; 
"SA" : "Vdd"; 
"B0" : "GND"; 
"BI" : "GND"; 
"SB" : "Vdd"; 
"SO" : "d"; 
"SI" : "GND"; 
"out" : "[26]"; 

******=> out = D' [37] 

INSTANCE "BASIC_BLOCK":physical NAME = INST4 
"A0" : "[24]"; 
"AI" : "Vdd"; 
"SA" : "d"; 
"B0" : "[26]"; 
"BI" : "Vdd"; 
"SB" : "[24]"; 
"SO" : "q0"; 
"SI" : "GND"; 
"out . . . . .  [38]"; 

******=> out = [24] + D q0' + [26]q0 

INSTANCE "BASIC_BLOCK":physical NAME = INST5 
"A0" : "Vdd"; 
"AI" : "GND"; 
"SA" : "d"; 
"B0" : "GND"; 
"BI" : "GND"; 
"SB" : "Vdd"; 
"$0" : "ql"; 
"SI" : "GND"; 
"out" : "[39]"; 

******=> out = ql' D' 

INSTANCE "BASIC_BLOCK":physical NAME = INST6, 
"A0" : "GND"; 
"AI" : "[38]"; 
"SA" : "Vdd"; 
"B0" : "[39]"; 
"BI" : "Vdd"; 
"SB" : "[24]"; 
"SO" : "n"; 
"SI" : "GND"; 
"out" : "[28]"; 

******=> out = [38]' N' + [24]N + [39]N 

ENDMODEL; 

Fig. 17. Actel netlist for vending machine design. 
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6.3. Technology mapping for LUT-based FPGAs 

A K-input LUT is a digital memory that can implement any Boolean function of K variables. 
The K inputs can be thought of as addresses to a 2 K x 1 memory that stores the truth table of the 
Boolean function. We again assume that the overall functions to be implemented have been optimized 
and specified in the form of DAGs. The technology mapping problem can be understood as mapping 
sub-networks of the DAG that can be implemented by the available circuit elements. In our case, 
we will restrict ourselves to K-input LUTs. Consequently, the only restriction on any sub-network is 
that it has no more than K inputs. Two optimization goals for LUT synthesis can be identified: (i) 
minimization of the total number of LUTs, and (ii) minimizing the number of levels of LUTs. The 
former helps reduce the total area while the latter addresses the performance of the circuit in terms 
of programmable routing and logic block delays along the longest path. These two goals are often in 
conflict and hence algorithms primarily focus on one and modify the intermediate or final solution to 
account for the other as well. 

6.4. Discussion 

The key to all approaches in LUT-synthesis is the ability of the K-LUT to implement all functions 
of up to K variables. Because of this completeness property, it is no longer necessary to go through 
a costly library matching procedure; it is sufficient to count the number of inputs to a sub-network 
and verify that the number of inputs do not exceed the constraint K. 

The first step is to make the given DAG K-feasible. By this we mean that each node which has 
greater than K inputs is recursively decomposed into sub-functions that use fewer inputs until all 
resulting nodes are feasible. This phase is also referred to as decomposition. Note that decomposition 
can be carried out for feasible nodes as well which can in practice lead to superior circuits. Figure 18 
illustrates this by considering the implementation of an arbitrary 9 input function expressed in AND- 
OR form (with K = 5). Note, how decomposing the OR gate at the output into two OR gates enables 
one to pack the same function into only 2 LUTS resulting in a saving of 50%. In principle, we can 
even reduce the given Boolean network to a two-input network, the reason being that if we view the 
mapping process as one of packing gates into K-LUTs, then the smaller the gates, the more easy it 
is to pack them with less wasted space in each K-LUT. 

The next step is known as covering and it helps to identify sub-networks that can be assigned to 
the same LUT. While efficient algorithms exist when the DAG to be synthesized is fanout-free, the 
problem is more complex in the presence of reconvergent paths and fanout nodes. 

6.5. Decomposition techniques for infeasible nodes 

Four methods have been proposed for the decomposition of infeasible nodes, i.e. those having 
greater than K inputs into a set of feasible nodes implementing the same function: (i) disjoint 
decomposition, (ii) algebraic decomposition, (iii) AND-OR decomposition and (iv) Shannon cofac- 
toring. 
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(a) Without decomposition, 4 LUTs {b) After decomposition, 2 LUTs 

Fig. 18. Decompos ing  feasible nodes can reduce LUT count  as well. 

6.5.1. Disjoint decomposition 
This is based on a partition of the inputs into two disjoint sets referred to as the bound and the 

free set. Each of these sets, by definition, have fewer variables than the original. This is similar to the 
functional decomposition techniques mentioned for PLD synthesis. Here, we review one well known 
method based on residues. For any given partition, a residue function is obtained by replacing the 
variables in the free set by constant values. If the set of all possible residue functions for a given 
partition consists of the constants 0 or 1, or a single function h of the bound variables or its inverse 
h', then the partition is a disjoint decomposition with one extracted function. One has to be careful 
using this method for the search for feasible partitions can become exponential in nature. Moreover, 
it is insufficient in many cases such as for the majority function s = ab + bc + ca that is part of a 
full-adder circuit. 

6.5.2. Algebraic decomposition 
This resembles some of the same methods used for multi-level synthesis. The idea is to identify 

algebraic factors in the expression of the given function that can be factored out thereby reducing the 
number of inputs needed at the cost of more LUTs. 

6.5.3. AND-OR decomposition 
Since both the AND and OR operators are associative and commutative, each such node can be 

divided into smaller nodes of the same type using any partition of the inputs. The approach works for 
any gate that represents a commutative and associative operator and is mainly used to reduce larger 
infeasible nodes to smaller infeasible nodes that are more practical for exhaustive search methods. 
The problem with this method is that it may use up a lot more LUTs than really required because of 
the manner of partitioning. 

6.5.4. Shannon cofactoring 
This method is based on the identity 

f ( x j  . . . x j . . . x n )  = x j f ( x l  . . . 1 . . . x n )  + x~.f(xl . . . O . . . x , ) .  

Thus, after cofactoring the function f depends on only 3 inputs, viz., xj and the two cofactors. The 
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latter depend on at most n - 1 variables and so the process can be recursively applied on them till 
all functions are feasible. 

6.5.5. Other schemes 
Some other schemes exist such as the Roth-Karp decomposition strategy or the Huffman-coding 

tree method to reduce each multiple input simple gate into a tree of two-input simple gates. 

6.6. Bin-packing method for function covering 

This method has been implemented in the Chortle-crf technology mapper [23]. It combines the 
AND-OR decomposition strategy with a covering algorithm similar to the library-based approach. The 
original network is assumed to be K-feasible and to consist of AND and OR nodes and is traversed 
from primary inputs to the primary outputs. A circuit implementing each node is constructed from 
the circuit implementing its immediate fanin nodes as follows: 

• The first step is to try and combine as many fanin LUTs into a single one as possible. To 
determine if a group of fanin LUTs can be packed into one LUT, it is sufficient to count the 
total number of LUTs that are used by this group. Thus, the minimization of the LUTs can 
be viewed upon as a bin-packing problem. Here the boxes are the fanin LUTS, the number of 
inputs to that LUT denoting its size; and the bins are the new LUTs into which they are to be 
packed. The size of each bin is of course the feasibility constraint K. The First Fit Decreasing 
(FFD) algorithm is known to be optimal for boxes and bins with integer sizes less than or equal 
to 6. Hence, for smaller LUT implementations, this is the algorithm of choice. It begins with an 
empty list of bins and a sorted list of boxes, beginning with the largest box. Each box in the list 
is then placed in the first available bin into which it fits. If no such bin is available then a new 
bin is created and added to the end of the bin-list and the box is placed into the newly created 
bin. Packing boxes into the same bin implies the decomposition of the node being covered. 

• The next step is to connect the LUTs defined by the packed bins. One method is to sort the 
bins by filled capacity and then connect the output of one bin to an unused input of one of 
the following bins. If no such bin exists a new LUT is created and is added to the root of  the 
circuit. An advantage of this technique is that it minimizes the number of inputs used by the 
root LUT of the circuit. Since, this LUT becomes the box for the following node, a smaller 
size can result in fewer bins being needed for the bin-packing step of that node leading to an 
overall superior circuit. 

This method, though simple to understand, has the following drawbacks: 
• It gives optimal results only for LUTs of size _< 6 (due to the FFD algorithm). 
• It works only for fanout-free circuits. More general networks are handled by partitioning the 

network at fanout nodes into a forest of trees each of which is separately handled as above. 
• The LUT connection scheme can often lead to taller trees which has an adverse effect on 

performance. 

6.6.1. Covering in the presence of  fanout 
The mapping algorithm above can be improved in the presence of fanout by augmenting it with an 

edge-visibility technique. This was first implemented in the VISMAP technology mapper [24]. The 
method is as follows. Given a subnetwork, assign a label to each edge in the subnetwork. Labels can 
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either mark an edge as visible in which case it is to be driven as the output of an LUT or invisible 
in which case the edge is to be realized entirely within a LUT. The actual label-assignment phase 
can be optimized using a pruning scheme. Certain combinations of edge-labels can be eliminated if 
it can be ascertained that they correspond to infeasible nodes. 

Figure 19 shows a circuit and the LUT representation denoted by two different edge-labellings. In 
case (a), the logic for the fanout node w is not replicated and this requires 3 LUTs. In case (b),  
however, the edge-labellings are such that only 2 LUTs are needed. In this case the logic for the 
fanout node is replicated. However, note that if this logic needs more inputs, then replicating logic 
becomes less attractive. In practice, therefore, it is not possible to state whether replication or covering 
reconvergent paths together result in fewer LUTs in all cases. Hence, one needs to exhaustively check 
all edge-labellings and retain the one that leads to a circuit needing the fewest LUTs. 

f g  

f g  

a b  @ c d  e 

w 

m~ 

(a) Logic for fanout node is not replicated. 3-LUT solution. 
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(b) Logic for fanout node is replicated. 2-LUT solution. 

Fig. 19. Mapping of fanout nodes using edge-visibility techniques. Dotted edges are invisible while other edges are visible. 
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6. 7. Network-flow approach to LUT synthesis 

One of the problems mentioned in the bin-packing scheme is the fact that it may lead to taller trees. 
An alternative scheme which uses network-flow techniques has also been suggested which directly 
tries to compute a minimum-height K-feasible solution to the problem. The first part of the algorithm 
proceeds from the inputs towards the outputs in a topological order, and assigns a label to each node 
in the DAG. In the final representation each label represents the depth of the optimal K-LUT mapping 
solution for that node. Thus, the goal of the labeling phase is to minimize the maximum label number 
used while maintaining feasibility requirements. The second step then works from the primary outputs 
upward towards the primary inputs generating a network of K-LUTs which is logically equivalent to 
the original network. 

6. 7.1. Labeling phase 
Initially all primary inputs are assigned a level l = 0. The algorithm labels each node in a topological 

fashion, i.e. when a node v is considered, all its predecessor nodes, denoted as Nv will already have 
been assigned labels. Recall that the label given to a node indicates the height of a minimum LUT-tree 
realizing that node's function. Also note that in the labeling phase, the authors consider each node 
in isolation, i.e. it does not matter if the LUT-scheme for one node conflicts with the one used for 
labeling another node. This is accounted for in the mapping phase. 

Suppose p is the maximum label assigned to any node in Nv. Then, it is clear that the label of 
node v cannot be less than p, since otherwise we could use the same scheme to generate a LUT-tree 
of height less than p for that node. In fact, it can be shown that v will either receive a label p or a 
label p + 1. The latter follows from the fact that the original network is K-feasible and the fact that 
all inputs to v can be realized using LUT-trees of height less than or equal to p. The only question 
that remains is to determine if a p-deep LUT tree exists that can implement v. 

This is where the network-flow techniques are useful. From the given network, the authors first 
create an alternative network by collapsing all nodes in the original network, say N~, with label _> p 
into a single node. Then they replace each node w by a pair Wl, w2 and add a directed edge w~ ~ w2 
with unit capacity. Each edge in N1 connecting nodes m and n is replaced by a directed edge from 
m2 to nl with infinite capacity. A dummy source ( target )  node can be added and connected to all 
primary inputs (output) again with an edge of infinite cost. Let the resulting network be called N2. 

Now let F be the maximum feasible flow in N2. This can be determined in polynomial time using 
the method of augmenting paths. If F > K, then it implies by the max-flow min-cut theorem and 
the above transformation that the minimum cut X~, X~ separating the source from the target includes 
more than K nodes on the source side in N~ that are connected to the target side. Hence, it is not 
possible to realize the target node v using only K-LUTs without increasing the height by 1. Thus, the 
labeling rule can be stated succinctly as follows: "If the maximum flow in the transformed network 
is less than or equal to K, then label the node as p; else label it as p ÷ 1, where p is the maximum 
label assigned to any predecessor node". 

It can be noted that in general the minimum-height K-feasible cut is not unique. Intuitively one 
wants as large an X' (nodes on the target side of the cut) as possible. This is because in the mapping 
phase all these nodes get assigned to the same LUT. 
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6.7.2. Mapping phase 
Let L denote the set containing all outputs to be implemented using K-LUTs. Initially L contains 

all the primary output nodes. For each node v in L, let Xv, X[, denote the minimum-height K-feasible 
cut that had been generated for v during the labeling phase. We then introduce a K-LUT for v using 
as inputs those crossing the cut. Note that this process subsumes all other nodes in X' v. This can 
be likened to the covering of reconvergent paths within the same LUT as was done before using 
visibility methods. The process is then repeated by replacing L with the set L - { v }  +input(v)  where 
input(v) refers to the set of nodes that correspond to the input signals of the cut. Again, it may be 
possible that the same node occurs in X~, and X' u for two (or more) nodes in L in which case it gets 
replicated automatically. 

7. Routing algorithms for FPGA designs 

7.1. Row-based FPGA model 

Such models are exemplified by the Actel family of FPGAs[9,10].  We review the basic architecture 
of the array and then discuss the routing issues. Finally a segmented channel router is presented. 

7.1.1. The Actel FPGA architecture 
Wiring resources Unlike traditional gate arrays, the routing channels are not empty areas where 
customized metallization can be performed. Instead, they contain predefined wiring segments of 
various lengths. These wiring segments are interconnected using a two terminal programmable element 
called antifuse. 2 The antifuse plays the role of a via in this FPGA. 

Two categories of antifuses can be identified depending on where they occur: 
• A horizontal fuse or hfuse links two adjacent horizontal segments within a channel. This enables 

longer segments to be realized. 
• A cross fuse links a horizontal segment with an intersecting vertical segment. 

Each of the cell outputs and inputs are connected to a dedicated vertical segment which is used 
to connect them to a horizontal track in an adjacent channel. A vertical segment typically spans 
only 1 row of cells for inputs and about 4-5 rows for outputs; horizontal segments span two or 
more modules within a row. Thus inputs can only be connected within the channel directly above 
or below the cell. Furthermore, for some nets, it may not be possible to allocate cells such that all 
its terminals lie within the span of the vertical output segment. To accommodate such nets, certain 
long vertical segments are also provided in the array, The horizontal routing for such nets should 
preferably avoid concatenated wire segments so as to avoid increasing delay. Special wiring exists 
for clock distribution to each module. 

Routing model Traditional channel routing cannot be directly applied since it does not take into 
account the restricted nature of the wiring resources. A modified channel routing problem known as 

2 The antifuse represents a one-time programmable element comprising of a diffusion layer placed over polysilicon with 
a dielectric between them. When a voltage exceeding 18 V is applied between the two terminals the dielectric irreversibly 
breaks down and starts conducting. 
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segmented channel routing is therefore needed for such FPGAs. The name derives from the fact that 
each channel comprises of many tracks which are divided into segments of non-uniform lengths. If 
all segments have the same size, then the problem is called an uniform SR problem; otherwise it is a 
non-uniform problem. The segmented channel routing problem can be formally stated as "assigning 
segments to nets so as to make all connections within the given routing resources (tracks and fuses)"' 
The objectives are foremost to achieve 100% connections, secondly to minimize the number of fuses 
traversed by each net so as to optimize the timing characteristics. The following points differentiate 
SR problems from traditional channel routers: 

• Channel density: This refers to the minimum number of wiring tracks that are required to 
make all connections. For channel routing, two nets can be assigned the same track if their 
horizontal spans do not overlap; consequently the density is given by the maximum number of 
nets crossing any column within the channel. In case of SR, each net has to be assigned to a 
different segment. Corresponding to the channel density, a segment density can be defined for 
the uniform model, after extending each net to the nearest adjacent segment switch. For the 
non-uniform model, there is no such apriori measure as the density depends on the particular 
segment length distribution. 

For example, Fig. 20 shows the routing for a 2-segmented uniform model with 3 tracks per 
channel. Note that in a traditional model, the same routing could have been done using only 2 
tracks by assigning nets 1 and 3 the same track. However this is not possible in the segmented 
model because the segment assigned to net 1 overlaps the starting terminal of net 3. For our 
example, this gives a segment density of 3 and so the routing is optimal. 

• Single-entry logic cell: In gate arrays, the inputs can be assumed to be available simultaneously 
in both the adjacent channels. For FPGAs, this may not be true. The input is accessible from 
either the channel above or below but not both. Thus, there are no vertical constraints because 
of the fact that at most one terminal can enter the channel at any given column. 

• No doglegs: This is because programming two fuses on the same column may lead to other 
unwanted fuses to get programmed as well. This also degrades signal performance as each fuse 
in the path of the signal adds to the resistance of the net. 

• RC constraints: The nets are now RC trees and in order to maintain timing integrity, it is 
preferable that they traverse as few antifuses as possible. Typically each net needs only three 
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Fig. 20. Segmented channel routing model for FPGAs. 
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A three track segment~ed channel routing problem. Track I has two hfuses and so can be split into 
three discrete segments while the other two tracks can be divided into two segments. Note vertical 
connections can be brought into any track by closing the appropriate cross fuse while longer horizontal 
segments can be realized by programming the segment switch. 

Fig. 21. A segmented channel routing problem and a 1-segment solution to it. 
antifuses: two cross fuses to connect the dedicated vertical segments to the horizontal track and 
one horizontal fuse to connect adjacent horizontal segments. 

7.1.2. Algorithms 
In this section, we review a new type of detailed routing algorithm geared towards segmented 

channels. For larger FPGAs, a global router may first be invoked. The process entails splitting each 
multi-pin net into a set of connections and then assigning each connection to a specific channel. 
The global router can use the vertical feed-through segments for nets that span multiple channels. 
However, the issues involved are similar to regular custom and semi-custom designs [25]. 

Let us define a K-segment routing problem as one of connecting all nets such that no net occupies 
more than K segments. If the total lengths of the segments are also targeted for minimization, it is 
called a K-segment solution with delay optimization. 

7.1.3. 1-segment channel routing 
The 1-segment problem wherein each net occupies only one segment can be optimally solved by 

the following greedy algorithm which is essentially a modification of the left-edge algorithm. Assign 
the connections in the order of increasing left ends. For each connection, find a set of tracks which 
are free at that column and in which the connection would occupy one segment only. From these, 
choose the segment whose right-end is farthest to the left. Intuitively, this maximizes the number of 
free segments for later columns. Since, it is necessary to check each track for each connection, the 
run time of the algorithm would be O(NT) where N and T denote the number of nets (connections) 
and number of tracks respectively. Figure 21 shows a solution for a three net three track example. 

7.1.4. K-segment channel routing 
Here, we allow a net to occupy as many as K adjacent segments. The motivation for this problem 

stems from the fact that the 1-segment solution is quite inefficient in terms of track usage. Hence, 
for a fixed channel capacity it may not be capable of finding a solution. Not surprisingly, though, 
the general K-segment channel routing problem turns out to be NP-complete for all K greater than I 
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2-segment solution with no delay optimization. The assignment tree is 
shown below. This solution uses two segment switches and has a total  
length in terms of columns spanned by the segments in use of 27. 

2 I 

/ 
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I,evel begin Net I Net 2 Net 3 Net 4 Level end 

Fig .  22.  2 - s e g m e n t e d  c h a n n e l  r ou t i ng  so lu t ion .  

[26]. The reason being that assignment of a track to a net can no longer proceed in a greedy fashion. 
An exponential time branch and bound algorithm which is guaranteed to find an optimal solution 
if one exists has been proposed. The main idea of the algorithm is to construct an assignment tree 
which represents the effect of optionally assigning each connection to each track. 

Each node of the assignment tree is called a frontier. A frontier is simply a T-tuple of the form 
(x[ 1], x[2]  . . . . .  x[T]) where x[j] is the leftmost column in track j in which the segment present 
in that column is not occupied. Clearly the initial frontier is given by an all-ones entry denoted as 
x0 = (1, 1 . . . . .  1). Each assignment of a net to one or more segments causes one of the entries in 
the current frontier to change. 

The assignment tree is built up in stages or levels. Level i corresponds to all possible frontier 
nodes that can result subsequent to assigning tracks to the first i connections C~, C2 . . . . .  Ci. Thus, for 
instance, the first level contains the single node x0 while the last level contains a single frontier node 
XN which denotes the state after all nets have been assigned. Once XN is reached, a valid routing can 
be obtained by retracing a path from XN to X0. Also, if no nodes get added at an intermediate level, 
it means that the given problem has no valid solution possible. 

In order to construct Level i + 1 from Level i, we first enumerate all tracks which are free at 
left(Ci+l), i.e. the leftmost column of the i + 1-st connection. This enumeration is done on the basis 
of the frontier values, x[j], of nodes at level i. Suppose xi[t] < left(Ci+l) and Ci+l would occupy 
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2-segmented channel solution with delay opU~zaf ion.  Note this solution 
uses only 1 segment switch and has a total length of 24. The assignment 
tree is shown below. 

Level begin Net 1 Net 2 Net 3 Net 4 Level end 

Fig. 23. 2 - segmen ted  channe l  rout ing solut ion with delay opt imizat ion.  

less than K segments in track t. Then Ci+ 1 c a n  be assigned to track t and the new frontier xi+l is 
created by advancing the value of xi[t]. An edge is added between xi and xi+l and is labeled by 
t. Note though if xi+~ already exists then we only add the corresponding edge without duplicating 
nodes. Figure 22 shows the assignment tree for a 2-segment solution to the same routing problem 
considered above with one additional connection. The final path found is shown by bold lines and the 
solution it represents is shown separately. Paths marked with a # cannot be expanded because the net 
would occupy more than two segments if assigned to that track. Note that the additional connection, 
C2, is impossible in the 1-segment model since all tracks have an intervening switch between columns 
3 and5.  

Delay optimizations: One disadvantage of the K-segment problem is the fact that each extra segment 
increases the delay experienced by the net owing to the presence of an extra switch in the path. 
Hence, it is desirable that the number of segments per net be minimized. Also larger segments add 
to the capacitance of the net and hence the delay. These factors can however be easily incorporated 
into the above algorithm by adding a weight in addition to the track label to each edge. The weight 
represents some cost function such as the total length in terms of columns spanned of all segments 
assigned to C1 . . . . .  Ci+t for an edge between Levels i and i + 1. When multiple edges fan-in to a 
single node, the edge with minimum cost is chosen. Ties can be broken randomly. Similarly, when 
the backtrace is performed it is only necessary to follow the minimum weight edge from each node in 
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Fig. 24. Wiring resources in a Xilinx FPGA. 

case of choices. The assignment tree with weights added is shown in Fig. 23. Note that this solution 
reduces the overall path length by 3 and also reduces the number of segment fuses that need to be 
programmed by 1. 

7.2. MPGA style architectures 

This architecture corresponds to the familiar channelled gate array architecture. The Xilinx family 
of FPGAs [27,8] falls in this category. The device consists of an array of programmable logic cells 
called Configurable Logic Blocks (CLBs) with wiring surrounded by a ring of configurable I /O 
blocks, see Fig. 24. The latest model in this family of FPGAs is the XC4000 family which consists 
of arrays from 8 x 8 to 30 × 30 blocks with 64 to 240 I /O pads. 

7.2.1. Wiring resources 
Wiring resources comprise of horizontal and vertical channels with switchboxes at each intersection. 

Within the switchbox, pass transistors are provided to switch an incoming wire to one of the three 
alternate directions. Longer busses are also provided to minimize the number of switches in each net 
path. Switches are provided for these longer nets at every other row and column intersection. Special 
wiring for clock and some dedicated wiring for carry calculations are also provided. In addition, 
all function inputs are connected directly to all single length wire segments; while the outputs are 
connected to a subset of both vertical and horizontal segments. 

A more general view of the overall routing architecture [28] is shown in Fig. 25. The L boxes 
refer to the logic cells (i.e. the CLBs); the C (connection) blocks are rectangular switch boxes that 
connect the CLB pins to the routing channels via programmable switches; while the S(switch) blocks 
connect the wiring segments in one channel to those in another. The configuration of the C and 
S blocks largely determine the ease of routability of an FPGA and thus help differentiate between 
different members of this class. Clearly, the more the wiring segments that can be switched, the easier 
it is to route. The goal of routing is to configure all the CIPs (configurable interconnection points) 
within the capabilities of the switchboxes so as to obtain conflict free routes for all the nets. A sample 
C block structure is shown in Fig. 25(b).  Each dark dot indicates a CIP which can be programmed 
to either make or break the connection. 
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Fig. 25. ( a )  General  F P G A  routing model;  ( b )  A sample C block. 
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Fig. 26. Potential  F P G A  routing conflicts.  

The features of the FPGA which are especially important from a routing standpoint are as follows: 
• The number of wiring segments is predetermined. It is entirely possible that the successful 

routing of some net may rely on the assignment of a specific wiring segment to that net. If 
a sequential style of routing such as a maze router is used, then care has to be taken [ 29] 
to ensure that such essential segments are assigned appropriately. Figure 26 shows an instance 
wherein the wrong assignment of a segment to net A will lead to a failed connection for either 
net B or net C. 

• If the CLB is implemented in the form of a table-lookup using SRAM [30], then the inputs to 
the function table are interchangeable. The router takes a request to route to a input as a request 
to route to any unassigned input. Thus for a maze router, the necessary modification is to start 
the expansion from all the unassigned input terminals simultaneously. 

• CIPs can be of two types: cross where the CIP comprises of a bidirectional pass gate and 
an SRAM cell; and muxcip which represents a member of a mutually exclusive group and is 
controlled by decoding one or more SRAM cells in parallel. The implication for the router is 
that a single path cannot use more than one member of a decoded CIP group. 

• Unlike gate-arrays there can be no doglegs in channels in an FPGA since the metallization 
pattern is fixed. Thus routing within a channel can use a simple left-edge kind of algorithm. 

• Proper allocation of nets to busses of appropriate length is needed for maintaining tighter delay 
bounds on nets. 

• Allocation of nets must also take into account the switchbox resources. 



R. Venkateswaran, P. Mazumder / INTEGRA TION, the VLSI journal 17 (1994) 191-240 231 

7.2.2. Algorithms 
Though, in principle, we can use any MPGA routing algorithm, the restricted nature of the routing 

segments and of the switching fabric mandates better algorithms. Otherwise, we may find several 
instances of routing conflicts that lead to failed connections. In this section, we review an FPGA 
router for matrix-based architectures [29]. This router consists of two phase: 

• Global routing wherein each net is assigned a path in the grid graph by assigning it a sequence 
of channel segments. Its main purpose is to distribute the channel densities among the channels 
so as to facilitate the detailed routing phase. This step does not require any specific knowledge 
of FPGA architectures and so a regular MPGA algorithm is used. 

• Detailed Coarse Graph Expansion (CGE) router: The goal of this router is to assign specific 
wiring segments to each net so as to generate the global route determined in the previous step. 

The basic idea is as follows: 
Global graph expansion: Given a global route for each net, find all possible wire segments that can 

be used to extend the path from one channel of its global route to the next until either the target is 
met or no more paths remain to be expanded. The expansion depends on the switching capability 
of the C and S blocks and the connections used up by the previously routed nets. An example 
of this process is illustrated in Fig. 27 for a net connecting pin 5 of logic block at coordinates 
< 1, 1 > to pin 2 of logic block at coordinates < 3, 3 >. The global route is shown on the left 
and the detailed expansion yields three paths. Paths marked with a # lead to blockages. 

Path  sorting: All the paths found in the graph expansion process are placed in a single path list and 
are ordered in the increasing order of costs. Costs for each path can be based on two factors: (a) 
demand on the wiring segments by other nets, (b) timing issues that can be modeled by counting 
the number of switches used in the path. For example, if a certain segment is required by many 
nets, then its cost is higher so as to discourage its use as far as possible. On the other hand, if 
there is only one choice, then it is given a low cost so as to include it in the current expansion. 

Update: The net corresponding to the lowest cost path is selected and its route is used to update the 
costs for the channel segments to be used in the routing of the other nets. This can change the 
order of the paths in the path-list. 

Pruning the search tree: The overheads to maintain all possible paths is v~ry high. Consequently, it 
is better to maintain a certain limited number of paths. In [29], the authors use two pruning factors 
limiting the fanout from the root and from intermediate nodes in the coarse grid graph. This method 
does not mean that the other paths are removed from consideration for all times. If a route cannot 
be found for a certain net, then the pruning factors are gradually increased till we are successful. A 
rip-up and reroute strategy is done only when complete expansion of the coarse graph fails to yield 
a connection. 

However, if the switch boxes are fairly simple and provide limited options, then the exponential 
increase in paths does not happen and consequently the elaborate pruning features may not be really 
needed. 3 

3 The latest version of Xilinx FPGAs, the XC4000, for instance, have increased the number of tracks but simplified the 
S-block structure. Each wiring segment that enters the S-block can only connect to three others, which is half the number 
found in the XC3000. 
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Fig. 27. Coarse grid graph router for matrix-based FPGAs. 

Cost function: In the path ordering phase, each of  the paths P is assigned a cost c ( P )  = ~-~eEP [ Cf ( e ) +  
wt • he]. c i (e )  represents a cost for the edge e based on the demand for the edge in paths for other 

nets. For an edge e that has j other occurrences el,  e2 . . . . .  ej, the cost c f (e)  is given by c / (e )  = 
~ j  1/al t(ej)  where alt(ej) is the number  of  edges in parallel with ej. For instance, in Fig. 27, the 
edge connect ing C(1 ,2 )  and S(3 ,2)  has three alternative track assignments possible  and hence the 

alt value for  it is 3. 
Because of  the summing  process in c / (e ) ,  the more  graphs e occurs in, the higher will be the cost. 

This reflects that edge e is in high demand and should be avoided if possible. Also if  alt(e)  happens 
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to be zero, then the edge is essential as there are no alternatives. When the cost computation reveals 
an essential path, the router attempts to schedule it for routing first. The second cost component 
determines the timing cost of the net in terms of the number of S and L blocks it has traversed so 
far. If a certain net is deemed timing-critical, then the latter cost can be given a larger weight in 
determining the next path to be expanded. Note, that many FPGAs also provide long-range connections 
which skip some S boxes along the way. This might need adjusting the expression for the timing cost 
appropriately. 

The next segment determination and the update steps in the expansion is achieved using a black-box 
technique. This makes the CGE somewhat independent of the exact architectural features of the S 
and L blocks in different FPGA implementations. 

7.3. Sea of gate FPGAs 

The FPGA architectures that have so far been considered have a clear separation between logic cells 
and interconnection resources. Recent sea-of-gate offerings differ in the sense that they provide more 
but simpler cells. Also there is no separate routing structure provided. The routes have to be done 
by the programming of the basic cells themselves. Thus, the architecture resembles a sea-of-gates 
style. Some offerings which fall in this category include the Labyrinth array (Apple Computer and 
Concurrent Logic Inc.), the CFA family by Concurrent Logic and the CAL family from Algotronix. 

A sample Labyrinth cell can be configured in 4 possible ways: 
• As a NAND/XOR pair (a half-adder with inverted carry). 
• A s  a D flip-flop. 
• As an AABB routing cell where the A inputs are transferred to the A outputs and the B inputs 

are transferred to the B outputs. 
• As an ABBA routing cell where the A inputs are transferred to the B outputs and the B inputs 

are transferred to the A outputs. 
For the Xilinx and Actel style of FPGA architectures, it is appropriate to perform the placement 

first using estimated routability and then do the routing separately. However, for sea-of-gate structures 
with fine-grained components, it is better to treat placement and routing simultaneously. Consequently, 
the layout problem consists of an initial place and route of cells followed by iterative improvement. 
During this process cells can get re-placed or re-oriented. Routing typically uses the penalty-driven 
iterative improvement approach or some other form of rip-up and reroute method. 

7.3.1. Routing algorithms 
Since input pins are often interchangeable, the router should consider all unassigned pins on the 

target cell as potential targets. Pfister [ 31 ] employs a modified version of the Mighty router to make 
connections. The work of Beetem [32] is an interesting extension to the penalty driven iterative 
algorithm of Linsker [33] in that the targets themselves can also be mobile. The main steps of the 
algorithm are as follows: 
( l )  While improvement exists do 
(2) For  each net do 
(3) Generate a costed wavefront expansion. The cost function includes penalties for path lengths, 

overlaps, obstacle neighborhoods, and force costs. 
(a) The path length is the fixed cost to expand to an adjacent cell and penalizes long routes. 
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(b) The overlap costs penalizes illegal overlaps. This cost is small in the beginning but becomes 
larger in later passes. This is similar to the temperature schedule in simulated annealing 
and allows more freedom initially for good solutions. 

(c) The obstacle neighborhood costs tries to prevent nets from being routed in congested areas 
and tries to obtain uniform spread of nets. 

(d) The force cost component simulates a spring potential function and pulls mobile targets 
near logically adjacent components. This is an adaptation of the Force-directed placement 
strategy. 

(4) Continue the expansion till no more cells remain to be expanded or the least cost cell in the 
current frontier is more costly than the cheapest path to the target. Note that since overlaps are 
permitted, a path to the target is assured for all nets irrespective of the net order used. 

(5) Backtrace the path found and mark all such cells fixed for this iteration. 
end for 

(6) Make all cells mobile again; update the overlap and neighborhood costs and repeat. 
Some additional features of the algorithm including encouraging the matching of AA and a BB 

half cell during routing by assigning it a small overlap credit. Certain nets are driven by a logical '1' 
instead of a cell output. For such cases it is immaterial where the source '1' is located. Hence, for 
such nets the role of the source and the target are reversed and the source '1' is treated as a mobile 
target. 

7.4. Theoretical modeling for FPGA routing 

The last topic of discussion is a theoretical model, based on probabilistic analysis, intended to 
provide better insight for FPGA routing. It is a synopsis of the work that appears in [ 34]. The model 
is applicable to symmetrical FPGAs, such as Xilinx devices, with tracks that consist of short segments 
spanning the size of one logic block. The output of the analysis will be a theoretical estimate of the 
probability of successfully routing a connection. 

7.4.1. Assumptions 
The actual process of FPGA routing is highly dependent on the particular FPGA architecture, 

problem instance, etc. and so any theoretical model can only hope to approach it to a sufficient 
degree of satisfaction to be acceptable. The advantage is to derive a more cost-effective way, than 
actual experiments, for making architectural studies and deriving better routing algorithms. Several 
simplifying assumptions have been made and have to be understood in order to extend the model for 
other routing architectures. 
(1) It is assumed that the routing will consist of a global and a detailed phase. Only the detailed 

phase is subjected to the stochastic modeling. Thus, we assume that nets will be routed in 
sequence and furthermore the global route for each net has been determined, in advance, based 
on overall factors such as wirelength, channel congestion, etc. 

(2) We assume that the circuit has a total of CT two-point connections and is to be routed in an 
FPGA with N × N logic blocks. The length of each connection is drawn from a probability 
distribution, PL. It is further assumed that PL is geometric with mean length R which has the 
physical interpretation that at each C block along the path of a connection, the connection will_ 
terminate with probability 1/R and will continue to the next C block with probability 1 - 1/R. 
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(3) It is further assumed that the number of connections per cell can be drawn independently from 
a Poisson distribution with parameter A, where a is defined as the ratio of the total number of 
connections in a circuit to the total number of cells in the array. 

(4) Tracks are assumed to consist of short segments that span only one logic block. 
While Assumption 1 is acceptable for most FPGAs, that made in Assumption 4 is not for the 

simple reason that most FPGAs provide longer segments spanning several logic blocks for realizing 
the longer or global nets. The reason for making this assumption is to make use of an interesting 
result due to E1 Gamal developed for Master Slice circuits. It was shown that under Assumptions 
2,3, and 4, the densities of the channel segments will also be Poisson distributed, with the average 
value given by /lg = / iR /2 .  The result has also been borne out in practice for a number of circuits 
implemented using FPGAs [34]. However, the result is not an accurate approximation when longer 
segments are used. 

7.4.2. Modeling the events 
The key to the stochastic modeling of FPGA routing is the calculation of the probabilities for the 

events Rc,, Rc2 . . . .  where Rc, is the event that the ith connection is successfully routed. Furthermore, 
if we define routability as the average probability of completing a connection, we get the following 
formula: 

1 i=Cr 

Routability = -~T Z P ( RC, ) ' 
i=1 

where P (Rc,) is the probability of successfully routing connection Ci. 
The event Rc,, itself can be split into 3 events which are indicated in Fig. 28: 

(1) Event XI: Connection of source pin to the channel C-block, 
(2) Events Sl, $2 . . . . .  Sn: Event Si refers to the traversal of the ith S-block, 
(3) Event X2: Connection of the net to the final pin of the target logic block. 

Clearly, for the event Rc, to be successful, all the above events have to be successful in order. 
Thus, for a path of length Ln we have the following relation: 

P(  Rc,[L~) = P ( x , ) P  ( S ] i X ~ ) P (  & I X ,  S , )  . . . P (  G I X ,  S] . . . G _ , ) P (  X2]X,S ,  . . . G ) .  (3) 

Knowing all the probabilities on the right hand side, we can come up with a general formula for 
routing net i as 

l=lmax 

P(  Rc,) = ~ P(L , )  • P(Rc, ILt) 
l=O 

l=lmax 

= ~ p q t - l .  P(Rc, ILI) 
l=O 

(4) 

where p = 1/R and q = 1 - p  can be obtained based on the fact that P ( L )  is a geometric distribution. 
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a free track 
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Fig. 28. Events occurring in forming a connection. 

Evaluating P (X1): X1 is successful if at least one of the Fc tracks to which the output pin is 
connected is free at the time this net is scheduled for routing. If we let the random variable X denote 
the number of free tracks among these Fc connections that are free, then we have 

i=F~ 

P(XI)  = ~-~ P ( X  = i). 
i=1 

Since the channel densities are assumed to be Poisson distributed, it is possible to consider only 
the Fc tracks rather than all the W tracks in the calculation of the probabilities. The scaled Poisson 
process will have a mean AgFc/W. 

Consequently, we have 

i=F~ 

P(X, )  = Zp(AgFc/W, i )  
i= I 

where p(A, x) = e-a/lX/x! is the Poisson probability function. 

(5) 

Evaluating P (Sil X1S~... Si_ 1): To simplify notation, we denote the above conditional probability by 
P (s/IY) where Y is used to denote the event that X1 and all prior switchboxes have been successfully 
routed. 

Assume that at the ith S-block, there are a possible incoming tracks and k possible outgoing tracks 
that are free. Since, the net can either go straight through (event E1 ) or turn at the S-block (event 
E2), we have two possible mutually exclusive events here. Consider the case when there is no turn. 
Let us assume symmetrical S-blocks, i.e. each track is connected to the same number of tracks, say 
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al ,  on the opposite side, and a2 on the two other sides. Again by considering a scaled down Poisson 
process, we can compute this probability as 

t/=amax 
o~la P(silY) = P ( E 1 )  ~ P ( X =  alX)p(Ag--~-,ala - k) 

a=l 

a=amax 

+P(E2) ~ P(X  = alX)p(a~-~-,a2a - k). (6) 
a=l 

Here, X refers to the random variable denoting the number of incoming tracks that can be assigned 
to the net. amax takes on the value Fc for $1 and W for for all other cases because of the nature of 
the routing blocks. 

Now, from Bayes rule we have P ( X  = alX) = P ( X  = a ) / ~ i a ~  P ( X  = i) and furthermore from 
computation of P(XI)  we know that P ( X  = a) = p(agamax/W,i). The values P(EI)  and P(E2) 
have to be determined experimentally. 

Evaluating P (Xz): Here the problem is to evaluate the probability of the event that given one or 
more tracks were available at the outgoing side of the last S block, what is the probability that one 
or more of these tracks connects to the appropriate logic block pin. Again let us assume that a tracks 
are available for potential connection. The number of ways of choosing Fc of the W total tracks such 
that none of the a marked tracks belong to this set is clearly the ratio ~W_Fc)Ca/wCa where wCa is the 
number of combinations of W things taken a at a time. Consequently, the probability for the event 
X2 is given by 

~=w P ( X  = a) (w-r~)C~ 
P(X21X1S~'"S") = I -  ~-'~Ei=I W( P-(-X=i) wC~ 

a= |  

(7) 

7.4.3. Parameter estimation 
The parameters that are required to fit the above equations are as follows: 

( 1 ) N, W, lmax which can be accurately known from a given FPGA specification, 
(2) Cr, R which can be generated from a given routing instance, 
(3) P (E1), P (E2) which have to be empirically derived from perhaps a lot of similar actual FPGA 

solutions, 
(4) Fc, Fs, a l ,  a2 which again are fixed for a given C and S block topology. 

In [34], the authors compare the results to theoretical prediction versus actual values from applying 
their FPGA router to actual circuits. Their conclusion is that the two display a surprisingly close match 
with the theoretical estimate of routability on the average being around 5 percentage points below 
(s.d. is also around 5) the experimental values. The difference is higher for low values of F¢ due to the 
inaccuracies of the model in describing good C-block topologies. From experimentation, the authors 
conclude that routability is low for low values of Fc and only approaches 100% as Fc approaches one- 
half of W. Improving S-block connectivity also improves routability but again for 100% routability 
must be accompanied by Fc greater than or equal to W/2. Another interesting observation was that 
connections pass through S-blocks straight through more than 70% of the time. Consequently, values 
of Fs that correspond to higher ce~ values produce markedly greater returns in terms of routability. 
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8. Final remarks 

In this paper, we have reviewed some of the major issues and algorithms pertaining to the design 
of systems using FPGAs and other PLDs. The choice of an appropriate device for implementing a 
certain function can be based on two main factors: 

• Size: The number of inputs, product terms, outputs provided for. The size of the OR terms is also 
relevant for PAL design. For very large problems, an FPGA may be more suitable for a compact 
implementation. FPGAs and complex PLDs address the case of multi-level random logic and 
in devising larger systems. FPGA architectures with large-grained logic block structures favor 
more register-intensive designs; while small logic blocks with segmented routing is better to 
efficiently implement large fan-in combinational circuits. 

• Application: PROMs are useful for table-look up operations such as in code conversion or 
when the logic function needs too many product terms (arithmetic functions) or as a function 
generator. In the latter context, a PROM can be looked upon as a programmable logic element 
(PLE). 

PLAs and PALs are more suited for sparser functions. In case of random or unstructured 
logic such as in sequencers, PLAs are more desirable since there is significant product term 
sharing possibility. On the other hand, for logic comprising of an array of similar elements PAL- 
devices are preferred since there is no product sharing between array elements. Such structures 
often arise in datapath elements such as registers and counters. Complex PLDs and FPGAs can 
provide opportunities to implement entire systems and also provide more on-chip memory and 
logic. 

FPGAs serve three niche markets: 
• Rapid prototyping: The FPGA enables the transfer of a new design onto silicon in a matter 

of hours as opposed to weeks and even months for other types of ASICs. This may be 
important as an architectural evaluation tool wherein the same hardware can be used to 
implement and evaluate several options for a particular design. In this reprogrammable 
mode, the FPGA can also serve as a valuable instructional tool for classroom projects. 

• Hardware emulation: Here, the FPGA is used as some sort of silicon breadboarding of the 
design [ 35]. Especially, in applications where logic simulation is not possible owing to 
real-time events, the FPGA can be used as an in-circuit working prototype. Since, speed of 
the design is critical, programming using metal links or anti-fuses may be desirable. 

• Functional accelerator: The FPGA can provide hardware assistance to parallel algorithm 
development by supporting reconfigurability in which the same hardware can be used to 
behave differently at different times so as to best match the communication requirements 
among the parallel processors [36]. 

Whereas two-level logic synthesis is more relevant for AND/OR type of PLDs, FPGAs are better 
served by multi-level logic synthesis tools. Good technology mapping and place and route algorithms 
are also very important for efficient implementations. Though routing for FPGAs are currently ex- 
tensions of existing gate-array algorithms, there is a need for more specialized routers that take into 
account the additional constraints caused by the fixed wiring resources. 
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