
E L S E V I E R INTEGRATION, the VLSI journal 17 (1994) 191-240

/l lllllltllllll !
the VLSI journal

INTEGRATION Report

A survey of DA techniques for PLD and FPGA based systems
R. Venkateswaran, P. Mazumder*

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, USA

Received 10 January 1994

Abstract

Programmable logic devices (PLDs) are gaining in acceptance, of late, for designing systems of all complex-
ities ranging from glue logic to special purpose parallel machines. Higher densities and integration levels are
made possible by the new breed of complex PLDs and FPGAs. The added complexities of these devices make
automatic computer aided tools indispensable for achieving good performance and a high usable gate-count. In
this article, we attempt to present in an unified manner, the different tools and their underlying algorithms using
an example of a vending machine controller as an illustrative example. Topics covered include logic synthesis
for PLDs and FPGAs along with an in-depth survey of important technology mapping, partitioning and place
and route algorithms for different FPGA architectures.

Key words: Programmable logic devices, FPGAs, Logic synthesis, State assignment, Technology mapping, Routing

Contents:

1 Introduction 192
2 Review of PLD architectures 194

2.1 Architectural variations for simple PLDs 195
2.1.1 Multi-level structures 195
2.1.2 Macrocells 196
2.1.3 More complex PLDs 197

2.2 FPGAs 198
3 The design process 200

3.1 Description of the main steps 200
3.2 Example 204

4 Logic synthesis algorithms 205
4.1 Two-level synthesis techniques 205

4.1.1 Logic minimization 205
4.1.2 State-assignment methods 206

4.2 Multi-level logic synthesis 208
4.2.1 Multi-level logic minimization 208
4.2.2 State assignment for multi-level designs 209

5 Partitioning methods 210
5.1 Partitioning techniques for simple PLDs 210
5.2 Partitioning for FPGAs 211
5.3 Pin assignment 212

6 Technology mapping problem 213
6.1 Generic library mapping methods 213
6.2 Technology mapping for multiplexer-based

FPGAs 214
6.2.1 Binary decision diagrams 214
6.2.2 Matching algorithm 215

6.3 Technology mapping for LUT-based FPGAs 219

* Corresponding author.

0167-9260/94/$26.00 (~) 1994 Elsevier Science B.V. All rights reserved
SSDI 0167-9260(94)0001 1-5

192 R. Venkateswaran, P Mazumder/INTEGRATION, the VLSljournal 17 (1994) 191-240

6.4 Discussion 219
6.5 Decomposition techniques for infeasible

nodes 219
6.5.1 Disjoint decomposition 220
6.5.2 Algebraic decomposition 220
6.5.3 AND-OR decomposition 220
6.5.4 Shannon cofactoring 220
6.5.5 Other schemes 221

6.6 Bin-packing method for function covering 221
6.6.1 Covering in the presence of fanout 221

6.7 Network-flow approach to LUT synthesis 223
6.7.1 Labeling phase 223
6.7.2 Mapping phase 224

7 Routing algorithms for FPGA designs 224
7.1 Row-based FPGA model 224

7.1.1 The Actel FPGA architecture 224
7.1.2 Algorithms 226
7.1.3 1-segment channel routing 226
7.1.4 K-segment channel routing 226

7.2 MPGA style architectures 229
7.2.1 Wiring resources 229
7.2.2 Algorithms 231

7.3 Sea of gate FPGAs 233
7.3.1 Routing algorithms 233

7.4 Theoretical modeling for FPGA routing 234
7.4.1 Assumptions 234
7.4.2 Modeling the events 235
7.4.3 Parameter estimation 237

8 Final remarks 238
References 239

1. Introduction

The original goal of programmable logic devices was to allow the designer to implement more
complex logic and state machines with dramatically fewer components than is possible with discrete
f ixed- funct ion logic such as the 7400-series; simultaneously retaining all the advantages of the latter
such as short design cycles, low development costs and less reliance on specialized skills. Despite
the numerous competing alternatives, most of the earlier PLDs are based on an AND-OR plane
architecture. The inputs to the A N D / O R planes are driven directly by dedicated input pins of the
device and some user-selectable input /output pins or feedback paths. The outputs are driven directly
from sum-of-product logic outputs or from flip-flops. This general arrangement leads to efficient
realizations of sum-of-product Boolean equations. For every input variable in the Boolean equations,
there is an input signal to the AND array and for every output there exists a signal emanating from
the OR array. Depending on the flexibility of the A N D / O R arrays, these simple PLDs have been
classified as either programmable read-only memories (PROMs) , programmable array logic (PAL)
or programmable logic array (PLA) devices, see Table 1.

The primary limitation of the above architecture is the restricted nature of the A N D / O R plane and
the dedicated nature of the interconnections. Gate utilization seldom exceeds 15% and a practical
limit on the number of usable gates is in the low hundreds. Performance is also fixed for each level

Table 1

Class AND array OR array
PROMs Fixed Programmable
PAL's Programmable Fixed

PLA's Programmable Programmable

Best suited for
Dense functions e.g. code converters
Sparse functions with little or no common prod-
uct terms. Small and fast.
Sparse high-fanin functions with potentially lots
of shareable common product terms. Compact
and quite general.

R. Venkateswaran, P. Mazumder/ INTEGRA TION, the VLSl journal 17 (1994) 191-240 193

DESIGN SPECIFICATION
State machine entry
Schematics
Truth Tables
Equations

(sec 3)

LOGIC SYNTHESIS
State assignment
Logic minimization

Two Multi (sec 4) level level

] PAR~IONING (sec 5)

TECHNOLOGY MAPPING
PLDs
Mux based FPGAs
LUT based FPGAs (sec 6)

Segmented channels
Switch array
Sea-of-gate style (sec 7)

[DEVICE CONFIGURATION I (-)

[DESIGNV~RIFICATION] (-)

Fig. 1. Major steps in design of PLDs.

of logic. Each path through the AND/OR plane takes about 25-45 ns. Typically, these devices are
used for realization of two-level logic such as glue logic, interface logic, decoders and so on.

However, with advances in integration levels, a new breed of PLDs have emerged. These are
of two main types (i) Complex PLDs incorporating multiple two-level PLDs on a single device
with some sort of either hardwired or programmable switching matrix interconnecting them. (ii)
FPGAs (field programmable gate arrays) which are devices whose cores are populated with an
array of logic structures of varying granularity and programmable interconnect provided to connect
them in a variety of different ways. For instance, the logic blocks can be SRAM-based look-up
tables or even multiplexers with or without registers while special purpose routing switchboxes or
segmented channels can constitute the programmable interconnect. The main advantages of FPGAs
are their high densities (approaching 10000 usable gates per device), lower quantity production
costs, faster turnaround design time, design security, and multiple usage possibilities for the same
device in field through reprogramming. Consequently, they have started making serious inroads into
the higher-density semi-custom ASIC markets which is currently dominated by mask-programmed
gate arrays. Unlike simple PLDS, FPGA design requires the availability of powerful logic synthesis
software capable of supporting multi-level synthesis; mapping algorithms to configure the logic blocks
appropriately; and good place and route software to make the interconnections efficiently both in terms
of wiring length as well as timing considerations.

The purpose of this paper is to review some of the major concepts in system design using
programmable devices, roughly reflecting the state of the art in the early 1990's. More importantly,

194 R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

we identify in an unified manner the pertinent issues of this design process, the tools available, the
nature of the algorithms and their application. A roadmap of the organization of the rest of the
paper is shown in Fig. 1 where the numbers besides the boxes indicate the section numbers where
that topic is discussed in this paper. Our self-imposed focus throughout this paper will be on the
design issues and algorithms. Consequently, we cover technological details only to the extent that
they affect the algorithms. Recent books on programmable devices [1-4] provide more information
on implementation details of specific devices. We also do not cover architectural studies of FPGAs
in this paper (see [5,6]). Also, we will not be covering design verification issues.

2. Review of PLD architectures

Before we take a look at the algorithms themselves, it will be useful to make a brief review of
the PLD architectures. The architectures of different PLDs (and there are more than 300 of these

Dedicated [

O R

Inputs I array
Outputs

(a) ROM model with programmable OR
array

AND

~ array
Inputs

Dedicated ~ ~
OR plane

[- Buried
feedback]

f i n

Macrocells

--D
Outputs

(b) PAL model with dedicated OR
plane. Each OR gate typically has between
six and eight inputs.

Inputs

AND

array

OR
array

Buried
feedback

=[D-

Macrocells

--D
Outputs

r .

_ Local,Global
: OP/OP] enabl~
,
I I

ORfinputs

~omb. fbk I[] mux
f " I C g . I O K]

I
t_

(d) Sample macrocell organization showing
(c) PLA model with programmable AND and OR combinational as well as registered outputs and

arrays, feedback, outputs in true or complemented form,
output enable etc.

Fig. 2. PLD classification.

R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240 195

in existence) can directly affect their suitability for a particular application. The basic distinguishing
feature is the size which is a function of the number of input and output pins, the number of product
terms and so on. However, other features of the PLDs can also affect the complexity considerably.
Figure 2 depicts the various types of basic PLD structures that were elided to in the introduction.

Historically speaking, the first PLDs were TTL-based PALs such as the 16L8 from MMI (now part
of AMD). These provided only combinational outputs. Later registered outputs, the ability to control
the output polarity, feedback structures, etc were added. Yet, a particular pin was restricted to playing
a single role. The next type of PLDs, referred to as Generic PALs, typified by the 22V10 device
from AMD and the GAL (generic array logic) from Lattice attempted to eliminate this hardwired
asymmetricity that existed between combinational and registered outputs by placing a common logic
block, made up of small standard cells such as flipflops, buffers, XOR gates, etc., between the
I /O pins and the AND/OR array. This structure, called a macrocell could be programmed by the
user to equip a particular pin with the appropriate functionality. The next advancement was in the
availability of reprogrammable PLDs beginning with the PEEL devices. These employed Fowler-
Nordheim tunneling techniques to trap charges onto a floating gate through a thin oxide insulator.
The charges remain trapped even after power is removed allowing non-volatility of programmed data,
but could be removed by electrically erasing the device. Once fully erased, the device could then be
reprogrammed into a new configuration. This was followed by the advent of CMOS technology such
as the CPL devices from Samsung. The advantages of CMOS include low power requirements, low
propagation delay, greater noise margins, and also greater integration possibilities. Most CMOS PLAs
use a NAND/NAND array instead of the traditional AND/OR array since NAND gates place the
faster n-channel devices in series whereas the NOR form would result in having the slower p-channel
devices in series. From Boolean theory, it is easy to see that a two level AND-OR design is the
same as a two-level NAND-NAND structure. Hence in CMOS PLAs, the Boolean equations are first
converted to their equivalent NAND forms. Recently, some PLDs based on GaAs are also emerging
which are targeted towards faster clock rates.

2.1. Architectural variations for simple PLDs

2.1.1. Multi-level structures
AND/OR logic is good for two-level designs. Sometimes for high fanins, it may be required to

decompose a function into a multi-level form. Since, any external feedback uses precious pads, a
different type of device architecture called PML (Programmable Macro Logic) was introduced by
Signetics. PML devices are unique in that they contain only a single-level of NAND gates. The output
of every NAND term feeds back into the inputs of the NAND array. Therefore, every NAND array
is connected to the outputs of all other NAND terms through programmable elements. The core of
PML can thus be looked upon as a programmable interconnect which is a NAND array that has a
large number of NAND terms. Figure 3 shows an SR latch and the programmable NAND array. The
main advantages of this architecture are

• It allows for product terms to be shared.
• It overcomes the limitations of traditional PALs to preassign a macrocell to a particular OR gate.

Instead, the PML structure is much more efficient in terms of utilizing the resources provided
within the macros.

196 R. Venkateswaran, P. Mazumder/ INTEGRATION, the VLSl journal 17 (1994) 191-240

IS

IR m

/S

/R

Q

/Q

I I Q00
An S - R Latch

/PO

SO /Pn

D
~ so
• gm

D
Sm

Sum of Product expression

Fig. 3. Folded NAND arrays as exemplified by the PML devices of Signetics.

• It allows single-level logic functions to be realized efficiently.
• The feedback provide by the NANDs enable the user to implement complex multi-level functions

without using valuable I /O pins or macro-cell circuitry.

2.1.2. Macrocells
The macrocell structures vary widely among different devices. Some of the major functions per-

formed by macrocells are the ability to
• generate complemented outputs. This can provide a savings in the number of product terms if

the number of 1 s in a function is much more or less than the number of 0s.
• register outputs by including flip/flops at the output pins. These are useful to implement state

machines such as sequencers. The type of flip/flops also can can vary and this can affect
the number of product terms needed as well. For example, registers are best realized with D
flip-flops, while counters are more efficiently realized using either T or J-K flipflops.

• feedback some outputs (both combinational and registered) internally as additional inputs to
generate other product terms. This feature makes it possible to implement multilevel logic,
sequential logic, amongst others.

• to preset all flipflops so as to be able to bring the system up in a known state.
• selectively enable output pins based on either local or global control. These are important in

implementing multilevel PLD networks.
• output polarity that can be used to generate positive or negative logic signals.

R. Venkateswaran, P. Mazumder / INTEGRATION, the VLSl journal 17 (1994) 191-240 197

Fig. 4. Product term steering through reallocation.

• product steering in PALs: The macrocells in some complex PALs often provide product-steering
features, i.e, special ways of assigning product terms to a block. This enables the PLD to be
used for implementing larger fan-in circuits. Three main techniques for doing so are called
allocation, joining and expander logic.
(1) In allocation, a particular macrocell can have more product term inputs by taking logic

from an adjacent macrocell. This helps for instance in generating wider OR gates than are
directly possible. In the Intel device shown in Fig. 4, each output normally can generate an
OR of upto 4 terms. But for larger fan-in requirements, the product terms of neighboring
macrocells can also be used up to a maximum of 16 inputs.

(2) Joining refers to the ability to share inputs to a macrocell between its combinational and
sequential parts as required. It can be done without incurring any timing penalty.

(3) Finally, expander logic techniques provide additional product terms that can be assigned to
any macrocell needing it. Thus expander logic can be viewed as providing PLA product
term sharing functionality in a PAL device at the cost of an extra level of delay. Figure 5
shows the expander logic implemented in the Altera macrocell.

2.1.3. More complex PLDs
A generic block diagram of a complex PLD, typifying the MAX (multiple array matrix) family

from Altera [7] is shown in Fig. 6. Other commercial offerings of such complex PLD devices
with gate-counts of between 1500 and 10000 include devices from AMD Mach and Plus Logic.
For instance, the EPM5128 device from Altera has eight dedicated inputs including the clock, 64

198 R. Venkateswaran, P. Mazumder / INTEGRA TION, the VLSl journal 17 (1994) 191-240

II t

r L / i
i
i
i
i

t_

registered feedback

D
t - - \ output
I_._j , I pol~arity

~ i " I P R E S E T

t--5 RESET
~ C L O C K

.

, expander terms
i
J
i

D

Fig. 5. Product term steering us ing expander terms.

[1/O BLOCK I

l vo BLOCK I

151

Fig. 6. A block diagram of a typical complex PLD

programmable I /O pins, eight logic blocks (LBs), 16 macrocells and 32 product term expanders per
LB. Each expander term (see Fig. 5) makes it possible to implement a function with upto 35 product
terms inside a single macrocell which can be contrasted to only eight terms per function for most
PAL families. The dedicated input pins come in along the top and are distributed to each of the eight
LBs. The PIM (programmable interconnect matrix) routes global signals. All on-chip signals also
have a path to the PIM if so needed.

2.2. FPGAs

Instead of programmable AND or OR arrays, FPGAs have an array of programmable logic cells
interconnected by a programmable wiring matrix. These logic cells have limited fanin and fanout and
so placement and routing of the logic cells can have a significant impact on the timing performance
of a device. FPGAs place the most demand on design tools that are fully automated and time efficient
and so we shall review algorithms pertaining to FPGA design in greater detail in this paper. In a
sense, FPGAs can be viewed as an extension of PLDs that account for the need to incorporate more
flip-flops and random logic along with fast local interconnections.

R. Venkateswaran, P. Mazumder / INTEGRA TIO N, the VLSl journal 17 (1994) 191-240 199

E3
m ¸

ARRAY STYLE
(eg Xilinx series)

LB: Lookup table based; complex;
larger fanin (9 for the 4000 series)

Routing resources: Horizontal/vertical
wiring channels. Programmable switchboxes
at channel intersection and for connecting
cell inputs/outputs to adjacent channels.

I BIL IL I IL IL+I

[~ [] [] [] [] []

ROW STYLE

(eg Actel series)

LB: Mux based; simple;
smaller fanin; non-registered

Routing resources: Segmented channels
between cell rows. Programming through
antifuses- hence faster

L B . 8 + .B + .B

LB LB LB LB LB LB

[~ LIt +B LB +B LB .B

~ ILB LB,LB LB L~ L~ I~
,1~ .B LB ~B LB +B

LB LB LB LB LB LB Id~

SEA-of-GATE STYLE

(eg Labyrinth series)

LB : Simple; can be configured either as a
logic block or as a routing unit.

Routing resources: Very
limited special purpose routing resources
are provided,

lOB refers to programmable Input/Output Block.
They enable configuring pins as input,joutput or
bidiretional ports.

Fig. 7. FPGA architectural styles.

FPGA architectures can be characterized based on:
• Array style: FPGAs from Xilinx [8] and Actel[9,10] use a channelled architecture with distinct

logic blocks separated by routing channels. The Xilinx model resembles the traditional island-
style of gate-array architecture with logic blocks separated by channels in both directions; while
the Actel resembles the standard-cell format with logic blocks in rows separated by routing
channels. There are even sea-of-gate array offerings with mainly local interconnections such as
Algotronix, Concurrent Logic and GEC-Plassey. These are shown in Fig. 7.

• Logic block: Arrays differ in the logic block functionality as well. Xilinx uses a fairly large
logic block with table-lookup functionality and two D flip-flops. Actel logic blocks, on the other
hand are very small and are multiplexer based. Altera logic blocks directly support multi-level
combinational logic (AND-OR-EXOR).

200 R. Venkateswaran, P. Mazumder / INTEGRA TIO N, the VLSl journal 17 (1994) 191-240

Routing resources: Xilinx arrays provide specialized routing blocks to enable interconnection of
a subset of input pins to one another. Actel arrays are based on the use of segmented channels
with antifuses. Algotronix and CAL reuse some of the logic cells themselves to act as routing
resources. This will be elaborated in the routing subsections since they play a key role in
the algorithms. In most implementations, some long-range global busses are also provided to
improve the routability of the design. Special clock schemes are also directly provided which
minimizes the clock skew problem that can otherwise occur.
Programmability: Programming of a PLD or FPGA is accomplished by enabling or disabling
interconnections in the device's programmable array so as to obtain a certain logic function. This
process is referred to as array personalization. There are two types of programmable FPGAs:

• One-time programmable: The best example are the Act series of devices from Actel which
antifuse as the programming elements. If a high current is passed through the antifuse, it
shorts and forma a low-resistance connection. One-time programmable arrays tend to be
faster and hence are preferable when speed is important. Also, since an antifuse is relatively
small, many more of them can be incorporated within the same silicon area.

• Many time programmable: The best example here are the LCA family of devices from Xil-
inx which uses pass transistors controlled by SRAM cells to implement the programmable
points. The advantage is the same hardware can be reprogrammed and reused several times.
The disadvantage is that the on-resistance is usually 2-3 times more than that of the anti-
fuse technology and hence leads to more switching delays. All the memory cells are linked
into one huge shift register. Reprogramming the device can thus be achieved by raising
the voltage on a certain programming pin on the device and shifting in the appropriate
configuration data.

3. The design process

3.1. Description of the main steps

The main steps in the design process, as outlined in Fig. 1, are
(1) Design entry: using software such as ABEL from Data I/O, CUPL, AMAZE, PLAN to name

a few. These programs are much more flexible and offer the user a range of options such as
high-level logic equations, truth tables, state diagrams or structurally, in the form of schematics,
as compared to initial offerings such as PALASM from MMI (now part of AMD). The latter
were extremely restricted in the sense that the circuit had to be specified in terms of Boolean
equations only. Having a range of options is helpful because different types of circuits are most
easily described in different ways. Counters and multiplexers are best expressed as Boolean
equations; display drivers and code converters in the form of truth tables; state machines as
state diagrams; circuits that are mainly datapaths such as memory or arithmetic slices are easier
to express in structural terms. In fact, the forms can often be mixed and this adds to the ease
of the software.

As an illustration, we shall consider the design of a simple controller for a coin-operated
vending machine that is supposed to deliver a package of gum after it has received 15 cents in
either dimes or nickels, one coin at a time. A mechanical sensor is assumed to indicate to the

R. Venkateswaran, P. Mazumder / INTEGRA TION, the VLSl journal 17 (1994) 191-240 201

(2)

R e s e t %

o)°
Present State Inputs Next State Output

Q1 Q0 D N D1 D0 Z (open
U U UU U U U

01 0 1 0
i0 1 0 0
ii x x x

U 1 0U U 1 O
0 1 I 0 0
10 i i 0
Ii x x x

I U U U ± U U
0 1 1 1 0
i0 i i 0
i i x x x

I ± u u ± ~ I
0 1 i i 1
i0 i i 1
ii x x x

State Transition Table

State diagram

Fig. 8. Specification of the vending machine controller.

control which coin has been inserted by asserting either the N (nickel) signal or the D (dime)
input. The controller's output, denoted Z, has to be asserted once the required amount has been
deposited, to dispense a packet of gum. Note, we shall assume that an external reset signal is
activated each time by the dispensing mechanism and also that the machine does not give any
change. So a customer who pays two dimes is out five cents. Figure 8 shows the state-diagram
and state-table representation for this problem based on a simple state-encoding.

The same description can be also entered in a hardware language such as ABEL. The
advantages of using ABEL is that it understands many low-level details of different PLDs
including polarities and macrocell configurations. Also it can accept both state-tables as well as
logic equations. However, the designer still has to be aware of some of the low-level details such
as the number of pins, or size of the product terms and so on. If the logic has to be partitioned
to fit a particular device, then it has to be done by the user. ABEL cannot handle this. Figure 9
gives an ABEL input specification for the controller. Line 3 specifies the particular device which
in this case happens to be the P22V10 PAL which has 12 inputs, 10 outputs, and embedded
flip-flops associated with the outputs. Line 5 specifies the output macrocell associated with pin
21 is to be registered with positive polarity. Line 7 is an example of entry using equations while
line 8 is a word description of the state diagram. ABEL also allows the designer to specify test
vectors.
Logic optimization: Once an initial set of equations and state transitions have been specified for
a given design, they should next be optimized for the most cost-effective implementation. Two
steps are typically involved:

• Logic reduction algorithms which minimize the size of the circuit by determining and
retaining only essential terms depending on the type of circuit desired (viz. either using two-
levels of logic or multiple levels). In the traditional minimization model, two optimization

202 R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

i. module VendMachineController

2. title 'Controller to dispense gum for a vending machine
Created by Venky Ramachandran'

3. ul device 'p22v10';"Device specified as a P22VI0 PAL

4. "Input Pins
Clk, Reset, N, D pin 1,2,3,4;

5. "Output Pins
Z pin 21;
Z istype 'pos,reg';

6. "State registers with simple-encoding
SREG = [SI, SO];
ZERO = [0, 0]; "nothing deposited yet
FIVE = [0, i]; "five cents
TEN = [i, 0]; "ten cents
FIFT = [i, i] ; "give him the gum

7. equations
[Sl.ar, S0.ar] = Reset; "Reset to state ZERO
Z = S1 & SO;

8. state_diagram SREG
state ZERO: if Reset then ZERO

else if N then FIVE
else if D then TEN
else ZERO

state FIVE: if Reset then ZERO
else if N then TEN
else if D then FIFT
else FIVE

state TEN: if Reset then ZERO
else if (N # D) then FIFT
else TEN

state FIFT: if Reset then ZERO
else FIFT

9. test_vectors

i0. end VendMachineController

Fig. 9. ABEL input file for vending machine controller.

criteria have been used: minterm or product term minimization and literal minimization. In
PLA design, the first factor is important in reducing the size of the PLA while the second
is usually irrelevant as each input is available to all product terms anyway. The reverse is
true for FPGAs where literal minimization is often more important. The main reason is
that the latter leads to smaller fanin circuits and places less strain on the routing fabric
available.

• State assignment and encoding which is especially important for finite state machine (FSM)
designs such as the vending machine controller. A good assignment can considerably
simplify the complexity of the next state and output equations. This step traditionally
consists of the following four steps:

(a) State identification: Determine an appropriate set of states that capture the required design
and generate a state transition table.

(b) State reduction: Identify and merge states which have identical transition and output
functions on the same inputs. State minimization techniques, however, have limited use in
large designs. This is because for a flip-flop to be saved, up to half the existing number
of states may have to be eliminated.

R. Venkateswaran, P. Mazumder / INTEGRA TIO N, the VLSl journal 17 (1994) 191-240 203

(c) Register synthesis: Identify the proper types of flip-flops to be incorporated which will
lead to a minimal design. Proper register synthesis can lead to a considerable saving in
the number of product terms needed to generate the excitations of the state registers. For
example, counters are usually designed using JK or T flipflops instead of D flipflops.
This is because a transition term is always needed for a D flip-flop whenever it has to
be set 1 irrespective of whether the flip-flop is currently holding a 1 or not. For JK and
T flip-flops, such hold states do not need any connection; hence a product term can be
saved. For simple pad-restricted PLAs with no internal feedback, D or T flip-flops may
be preferred since they require only one pad.

(d) State assignment: Assign codes to the various states and derive the required excitation
functions.

Logic synthesis tools are discussed in Section 4.
(3) Partitioning: Partitioning can be defined as the process of breaking a design into pieces for

some purpose. A circuit may be partitioned in order to assign parts of it to different chips, to
reduce the running time of a placement or routing algorithm, or for other reasons. Partitioning
for PLDs is usually done using function decomposition methods whereas those for FPGAs
use more sophisticated algorithms that have been successfully applied to custom VLSI design.
Pin assignment is also performed based on the partition generated. Partitioning methods are
discussed in Section 5.

(4) Technology mapping: Technology mapping can be defined as the problem of transforming a set
of logic equations into an interconnection of parts that are instances of available elements in
a given library. In case of PLDs, the problem of mapping the equations to the array (product
terms) can be achieved in a straightforward fashion except for the more complex devices. In
case of FPGAs, the problem is much more complex for two reasons: (i) Complexity of the basic
circuit elements (lookup-tables or multiplexers in lieu of product terms) which can implement
a variety of logic functions other than simple NAND/NOR like functions, (ii) Generality of
the interconnection scheme which can easily support multi-level logic implementations. Good
schemes are available, that are fast and efficient, and are covered in Section 6.

(5) Place and route: This is of consequence only for FPGAs. Placement algorithms such as the
min-cut approach or standard-cell placement techniques are used to generate an initial placement
so as to maximize the chances of the router. The routing problem differs from routing in custom
design styles because the wiring segments that are available for routing are preplaced and can
be connected together in only specific patterns. The router has to also resolve conflicts arising
due to assignment of wiring segments to different nets. Some timing features are also needed
to minimize the number of programmable elements within the path so as to minimize the total
delay. Earlier, we had classified FPGAs into row-based, matrix-based or plane-based (sea-of-
gate) style architectures. The routing algorithms differ for each of them as it is directly related
to the underlying resources available.

(6) Device fitting: Device fitting for most PLDs [11] deals only with pin assignment, node as-
signment, macrocell configuration and control term configuration. Pin assignment refers to the
assignment of an output to a particular pin, similarly node assignment refers to the selection
of the appropriate node or internal point. These are non-trivial problems if, for example, there
exist different types of macrocells. Macrocell configuration takes into account the programmable
resources in a device's macrocell in transforming the minimized equations onto the device. The

204 R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

various handles that can be used include choice of feedback, output polarity and so on. Control
configuration involves choosing between options for register preset, output enable and so forth.
These are highly architecture dependent and general techniques have not been developed. Usu-
ally the fitter will have some device specific code that will accommodate the unique features of
that device. The final output is typically a JEDEC-style fuse map or, in the case of FPGAs, a
configuration bitmap that has been derived from the routed netlist. These are then used to pro-
gram the device using a piece of custom hardware called a device programmer that is attached
to a host computer containing the configuration data. In some cases, the same hardware can be
repeatedly personalized and this feature becomes extremely useful in correcting design errors
or in accommodating changes in the initial design specifications.

3.2. Example

We illustrate the above steps by way of the custom XACT design software [12] for use with the
Xilinx LCA (logic cell array) family of FPGA devices.
(1) Entry: The design is first specified, say using ABEL, and translated into an external netlist

format (XNF) file. The XNF format is primarily provided to provide a uniform interface to the
various design-entry tools. One or more XNF files can be created per design. These files have
a one-to-one correspondence to the design but are not LCA-specific.

(2) Optimization and partitioning: The XNF files are manipulated in several ways to create an
optimized circuit targeted specifically to a particular LCA. Multiple XNF files can be merged
together into a single circuit and the Xilinx circuit optimizer (XNFOPT) program can be
invoked to better fit the circuit to the particular LCA's constrained structure. For example, if the
circuit uses very wide gates, then it can be decomposed into a set of four or five input gates that
are amenable to single CLB implementations. In practice, XNF files are first converted to an
intermediate form called a MAP file, which represents a partitioned circuit. Each of the circuit
partitions in the map file corresponds to one CLB or IOB in the target device. After the MAP
files have been generated, they are then converted to an LCA design file using the program
Map2LCA. The LCA file is actually a command script that controls the XACT software during
the placement and routing portion of the implementation phase. The entire design can be merged
and converted into a single LCA design file or the various design segments can be maintained
as separate LCA files and merged later. This decision depends on the size and complexity of
the circuit being implemented.

(3) Implementation: The LCA file created above is then fed to the automatic place and route
(APR) program which results in the generation of a new LCA design file that includes the
calculated logic block placements and signal routings. These can also be manually inspected
using the XACT design editor and modified if so desired. Once an acceptable solution is
achieved, then the final step is to convert it to a binary bit pattern using a program called
Makebits. For prototyping, the bit pattem can be downloaded from the host computer using a
special download cable. However, this method is vulnerable to power failures. A more permanent
solution is to store the bit-pattern in a PROM that is installed on the board along with the LCA
with provisions to boot the LCA from the PROM on power-up.

R. Venkateswaran, P. Mazumder/ INTEGRATION, the VLSl journal 17 (1994) 191-240 205

4. Logic synthesis algorithms

4.1. Two-level synthesis techniques

As discussed in the previous section, when applied to PLAs, the primary goal is to minimize the
total number of product terms.

4.1.1. Logic minimization
For the two-level minimization problem, the following steps are typically performed for each

function:
(1) Exhaustively generate a set of prime implicants from the sum of products expressions.
(2) Choose a minimum set of the prime implicants generated so that all the minterms of the function

are covered. Each of these implicants represent a product term when mapped onto the PLD.

Exact methods: For small problems, Step 1 can be done using Karnaugh maps or a standard algorithm
such as the Quine-McCluskey tabular method, while a minimum cover can be obtained using Petrick's
method. Typically, several rules regarding essential rows and columns, dominated rows and dominating
columns can be applied to simplify the prime implicant table prior to applying Petrick's algorithm.
While this procedure is sufficient for PALs, it may not yield optimal results for PLAs. This is because
in PLAs, product terms can be shared between different functions (product-term sharing) leading to a
substantial decrease in the overall number of product terms needed. For PLAs, therefore, the multiple-
output variant of QM method is used wherein we try to optimize the total number of implicants for
a group of functions taken together. These are the so-called multiple-output prime implicants which
in fact do not need to be prime in the individual functions.

Heuristic approaches: Unfortunately, these methods are NP-complete because the number of minterms
for a function with n variables can be as high as 2 n-1 (parity function) and the number of implicants
can be as high as 3 n. So, an exhaustive generation method such as QM is not practical for large
circuits. Consequently, several heuristic algorithms such as Mini, Espresso [13], etc. have been
designed. The idea is to derive a minimum cover with high probability without first generating all
prime implicants. Efficient computational techniques based on unate functions have been developed
for Espresso and fairly good solutions are typically produced. Typically, Espresso performs three steps
iteratively:
(1) The first step is called expansion wherein each implicant is expanded as much as possible; cov-

ered implicants are dropped from further consideration while essential implicants are converted
to don't-cares.

(2) The next step is reduction wherein the primes generated in expansion are trimmed to the smallest
size without losing any minterm coverage.

(3) The final step is sometimes referred to as reshaping wherein the best irredundant cover is
generated.

Figure 10 shows the input and output PLA personalization files produced by Espresso using the
state assignment shown in Fig. 8. The first two lines show the number of inputs and outputs while
the next two associate symbolic names to them. This is followed by the PLA personalization matrix
with standard notations (a 1 or a 0 in the AND plane denotes a variable in true or complemented
form while a - indicates a don't-care. Similarly a 1 in the OR plane denotes a product term that is to

206 R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

.i 4

.o3
• ilb ql q0 d n
.ob dl dO z
.p ii
0000 000
0001 010
0010 i00
0100 010
0101 i00
0110 ii0
1000 I00
i001 ii0
i010 ii0
ii-- iii
--ii ---
.e

Espresso input file

.i 4

.03

.ilb ql q0 d n
• ob dl dO z
.p7
-0-i 010
-i-i i00
-i-0 010
i-i- 010
ii-- 011
--I- i00
i--- i00
.e

Espresso output file

Fig. 10. Espresso files for vending machine design.

be included in the SOP expression for the corresponding output). Thus, from this particular matrix,
we have

d l = q l + D + qO. N,

dO=qO'. N + qO. N' + ql • D + q l • qO, (1)

Z =q l • q0.

Architecture-based minimizations: Another minimization technique that can be useful for PLA designs
is that of input reduction. This involves the detection and elimination of logically redundant inputs
and can be achieved using a tabular approach similar to the implicant covering procedure. Yet
another optimization technique is made possible in some PLAs (e.g. the Signetics series) using a
complementary array connection. This is simply an OR term which can have connections to all
product terms; the complement of this OR is then made available as a new input to the AND array.
This feature can be made use to generate default conditions (for example, in a BCD counter, this
can be used to detect if the input is a non-BCD number and take appropriate action). It can be also
profitably used in sequencer designs to test for illegal states and make the transition to a valid state.
Often the alternative approach of specifying the default conditions in terms of Boolean equations can
lead to many more product terms and is more complex.

4.1.2. State-assignment methods
A crude estimate of an upper bound on the total number of product terms needed is given by the

sum of the number of distinct destination states for each input in the state transition table. However,
with a good assignment this number can be significantly reduced. Choosing the best assignment is
NP-hard since the maximum number of distinct state assignments for N states using q variables is
2 q - - 1 ! / 2 q - - Nlq!. Further constraints are imposed on state assignment due to static and dynamic
hazard considerations. For example, to avoid a static hazard, adjacent states should vary by just l
bit position. The same holds when state variables are used as outputs as in Moore machines. One
of the CAD tools available for state encoding is called nova [14] from the University of Berkeley.
Intuitively, nova clusters states that are mapped into the same next state by some input and those that
assert the same output into separate groups. In the terminology of state assignment, these are called
input constraints. Nova attempts to assign adjacent encodings within the smallest Boolean cube to

R. Venkateswaran, P. Mazumder/ INTEGRATION, the VLSl journal 17 (1994) 191-240 207

states in the same group. A related concept is output constraints. States that are next states of a
common predecessor state are given adjacent assignments.

Nova implements a wide range of state-encoding strategies any of which can be selected while
running the program. Some of these strategies are as follows:
(1) Greedy: prioritizes satisfying input constraints and only looks at new state assignments that

show a strict improvement over those already examined.
(2) Hybrid: also prioritizes satisfying input constraints but also considers some state assignments

that are worse-off in the short run but can potentially lead to better results. This minimizes the
possibility of getting trapped in a local optimum.

(3) Annealing: same as hybrid but uses a more sophisticated annealing schedule for improving state
assignment.

(4) I /0 hybrid: same as hybrid except it also tries to satisfy output constraints at the same time.
(5) One-hot: uses a one-hot encoding which rarely minimizes the number of product terms but can

significantly reduce the number of literals. Hence, this technique is more useful for FPGAs than
it is for PLAs.

(6) Random: As the name indicates, assignments are tried out randomly and the best found reported.
(7) Exact: obtains the best encoding satisfying input constraints. Still may not be the best overall

due to output constraints.

Example 4.1. For the vending machine example, the various encoding algorithms
following assignments:

Number of Number of
ZERO FIVE TEN FIFF product terms literals

Greedy
Annealing
Hybrid
IO hybrid
Random
One-hot

PLA
area

The input file to nova is shown in Fig. 11. Each line has the following syntax:

I n p u t s P r e s e n t - NextState - StateOutputs

Some of the resulting PLA personalization files generated using Espresso on these state assign-
ments are also shown. Not in each case the order of the inputs and outputs are D, N, ql , q0 and
d l , dO, Z respectively. For the vending machine example the IO-hybrid strategy does poorly but the
rest excepting the one-hot method give more or less the same area. The PLA area is computed to a
first approximation by the formula Area = (2i + o)p where i, o, p are the number of input variables,
output variables and product terms used. The equations for the best case (annealing) which has 6
distinct product terms is given below:

dl = N I - D / • ql + N- ql I • q01 + ql I • D + ql • q0,

d 0 = q 0 ' • N + q0. N' + q l ' • D + ql • q0,

Z = q l • q0.

of nova yield the

01 10 00 11 6 21 66
10 01 00 11 6 20 66
10 01 00 11 6 20 66
00 11 10 01 8 23 88
01 10 11 00 6 23 66
1000 0100 0010 0001 9 21 153

208 R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

00 ZERO ZERO 0
01 ZERO FIVE 0
i0 ZERO TEN 0
00 FIVE FIVE 0
01 FIVE TEN 0
i0 FIVE FIFT 0
00 TEN TEN 0
01 TEN FIFT 0
i0 TEN FIFT 0
-- FIFT FIFT 1
ii - -

N o v a input file

. i 6

. 0 5

.p9
.i 4 .i 4 i-i--- 00100
.o 3 .o 3 -ii--- 01000
.p 6 .p 6 -i-i-- 00100
00-1 010 001- 100 -i--i- 00010
-i00 ii0 -I00 i00 001--- i0000
-01- 100 -i-0 010 00-i-- 01000
-i-i 100 -0-1 010 00--i- 00100
--ii 011 i-0- ii0 1 00011
i--0 Ii0 --ii iii i-0--- 00010
.e .e .e

Greedy Annealing One-hot

Espresso outputs generated based on nova state-assignments

Fig. 11. Nova files ~r vending machine design.

In contrast the equations for the one-hot encoding style are

d3 = N I • D' • q3, d2 = N . q3 + qT • D ~ • N I,
d l = D . q 3 + N . q 2 + D ~ .N ~.q l , d 0 = q l . N + q 0 + q 3 / - D .

Z =q0,

The one-hot encoding needs the most product terms; however an inspection of the next-state and
output equations reveals that only 21 literais and 11 gates with fanin of 3 or less (5 2-input ANDs,
3 3-input ANDs, 1 2-input OR and 3 3-input ORs) are required. Smaller fanin gates are one reason
why this technique is popular for FPGA designs that are heavily fanin constrained.

4.2. Multi-level logic synthesis

Unlike simple PLDs, the multi-level logic synthesis [15] is the logic minimization type of choice
for FPGAs. This is because the logic blocks in FPGA have very limited fanin and fanout capabilities.
The more powerful routing structures also support the multi-level implementations. Note that the use
of expander terms in complex PLDs is also an instance of a multi-level logic structure and so much
of the following discussion is also applicable for them.

4.2.1. Multi-level logic minimization
The primary goal of multi-level logic minimization is to minimize the total number of literals in a

Boolean equation. This generally leads to fewer resource requirements but also often leads to more
logic levels and hence increased delay in logic paths. Such delays, if found unacceptable, can lead
to further constraints. The main idea is to compute the factors and subfactors of a design's Boolean
equations; these determine the number of logic levels possible. Each factor or subfactor can be treated
as an internal input that can be fanned out to multiple outputs or other logic levels. A popular tool
for multi-level synthesis is the misH [16] program developed at the University of Berkeley.

To begin with the Boolean expressions are placed in a "tree-structure" or are manipulated alge-
braically. The former usually is a directed acyclic graph (DAG). Each node in the DAG defines a
function represented by a variable associated with the node. The root node defines the entire Boolean
function. The following type of operations are then performed on this data structure.
(1) Decomposition: This step takes a single Boolean expression and replaces it by a collection of

new expressions.

R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240 209

(2) Factoring: This step takes an expression in two-level form and re-expresses it as a multi-level
function. For example the function F = AD ÷ BCD ÷ E can be factored as

F = G D + E , G = A + B C .

(3) Extraction: This operates on multiple, possibly factored, functions and identifies common subex-
pressions amongst them. It is by far the most complex of the operations to implement. The
general strategy is to rewrite the expression for each function, say F, in a polynomial form in
terms of subexpressions P, Q and R which represent the divisor, quotient and remainder respec-
tively. The divisors represent the required set of possible common factors. Finding divisors is
hard because of the complications resulting from application of the rules of Boolean algebra.
For example, under algebraic laws the function H = A + B does not divide F. However, using
the distributive rule, viz. X ÷ Y. Z = (X ÷ Y) (X ÷ Z) we can rewrite F as

F = (A + BC)D + E = (A + B) (A + C)D ÷ E.

Clearly, with this representation it is easy to see that (A + B) is indeed a divisor with (A + C) D
as the product and E as a remainder.

(4) Substitution: Substituting a function G into a function F reexpresses F in terms of G. For
example, substituting H in the above example leads to F being expressed as F = H (A + C) D + E .

(5) Collapsing: This is the reverse of substitution and is done to reduce the number of levels so as
to meet a timing constraint.

4.2.2. State assignment for multi-level designs
The goal of state assignment here is to minimize the number of literals that are required for

the next-state and output functions. Two tools, mustang [17] and jedi [18] developed at Berkeley
do state assignments for multi-level designs. Like nova, mustang uses several alternative strategies
for state assignment such as random, sequential, one-hot, fan-in and fan-out. Fan-in and fan-out
strategies work by creating partitions among states based on input and output constraints, and the
state assignment that maximizes common subexpressions among partitions is chosen. Jedi is very
similar to mustang except it can find encodings for outputs as well as the states. It uses other solution
strategies such as input dominant, output dominant, modified output dominant and input/output
combination algorithms. Once, these encodings are made, the resulting state-table or expressions can
be input to mislI for obtaining an optimized set of logic equations.

Example 4.2. The state assignments made by mustang for the same vending machine controller are
shown below.

Number of Number of
ZERO FIVE TEN FIFT productterms literals
10 00 01 11 8 24
01 10 11 00 8 24
11 10 00 01 7 18
10 00 01 11 7 20

Random
Sequential
Fanin
Fanout

The number of product terms and literals in the resulting expressions fed to mislI is also reported. It
can be noted that the fanin heuristic yields the least number of literals; but the random and sequential

210 R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

#state assignment based on fanin heuristic of mustang
.i4
.03
.ilb d n ql qO
.ob dl dO z
.p Ii
0011 ii0
0111 100
i011 000
0010 i00
0110 000
i010 010
0000 000
0100 010
1000 010
--01 011
ii
.e

%misII -f lib/script -t pla fin.mustang
.model fin.mustang
.inputs d n ql qO
.outputs dl dO z
.names ql qO z
Ol 1
.names d n ql qO z dl
001-- 1
0--i0 1
.names d n ql qO z dl dO
.... i- 1
010--- 1
i0-0-- 1
-0-i-ii
.end

Fig. 12. mislI output based on ~nout-based state encoding of mustang

versions do poorly and are even worse than those got from nova. The misII output script based on
the state encodings with the fanin heuristic are shown in Fig. 12. Each of the names section gives the
PLA matrix for the variable appearing last on the associated name list. For instance, the multi-level
(here 3-level) equations computed are:

z = q l ' . q0,

d l = D ' . N ' - q l + D ' - q 0 . z ', (2)
dO=z + D' . N . q l ' + D . N ' . q O + N ' . q O . d l .

5. Partitioning methods

5.1. Partitioning techniques for simple PLDs

Sometimes, a single PLD is insufficient to realize a given set of functions. This could be for
lack of either sufficient product terms, input pins or output pins. One simple method to alleviate
the product term crunch is to employ a technique called product-term sharing. The approach is to
choose a variable to segment the given PLA table; one table comprises the rows of the original table
wherein the variable appears in either 0 or don't-care form while the other comprises of the rows
with the variable in 1 or don't care form. Since, don't care entries are repeated, one heuristic is
to choose variables having fewer don't care entries for segmentation purposes. The two tables can

R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240 211

then be independently optimized by the standard techniques. The final output can then be formed by
ORing the corresponding outputs of the two PLDs.

Input and output encoding schemes have also been proposed when the number of inputs and outputs
of a given PLD are at a premium. Input encoding works by identifying a subset, m, of variables that
cause the output to be 1 in only say c combinations of these variables. For this technique to be
effective, we must have c << 2 m. Thus we can use another PLD which will identify these c patterns
and encode it into c' = Flog (c)] bits which can be then fed into a second PLD. Thus the input
requirements for the two PLDs are now m and n - (m - c') respectively. Output encoding techniques
can be similarly devised by identifying sets of outputs which are active only in a limited number of
combinations. Thus these outputs can be encoded using fewer bits and then fed into a subsequent
PLD decoder to generate the original outputs.

A whole theory of function decomposition is also available in the literature which generalizes
the above simple strategies. Input encoding is an instance of what is known as simple disjunctive
decomposition. Other forms such as multiple, iterative and complex disjunctive decompositions have
also been studied. It should also be noted that such techniques can also be applied for complex PLDS
with multiple partitions.

5.2. Partitioning for FPGAs

More sophisticated algorithms are used to partition the larger systems designed using FPGAs.
These are influenced by several aspects of the design such as:

• The delay introduced into the circuit path is related not only to the length of the signal but also
to the number of chip and board crossings. Interchip delays for Xilinx parts can range from 8
to 24 ns.

• Congestion in interchip routing. Since the number of device pins are limited, it is necessary to
partition in such a way that all the resulting chip-crossings can be accommodated.

• Physical limits on the logic on each chip. The Xilinx chips, for instance, can accommodate
from 2000 to about 10 000 gates theoretically. However, the inefficiency of logic utilization, due
to the general purpose design tools, can significantly degrade the usable gate count. Thus the
partitioning program has also to ensure that none of the partitions is severely overloaded.

• Complexity of intra-chip routing affects the logic utilization and can cause greater delays.
There have been a number of techniques used for partitioning circuits and graphs such as (a) gradi-

ent descent, (b) graph partitioning methods such as Kemighan-Lin (K-L) and Fiduccia-Matheyses,
and (c) force-directed methods. Such algorithms have been extensively studied in the literature, for
instance, in Chapters 3 and 4 of [19]. It is the intent of this section to only comment upon how
these methods can be useful for PLD partitioning problems. We assume the following steps will be
performed in order:

(1) Read in the input specification and hardware description of both the logic blocks as well as the
routing structure.

(2) Do a critical-path analysis step.
(3) Perform an intial partitioning and pin-assignment step.
(4) Evaluate the solution and generate module moves/swaps.
(5) Repeat steps 3 and 4 till an acceptable solution is produced.

212 R. Venkateswaran, R Mazumder/INTEGRA TION, the VLSI journal 17 (1994) 191-240

In the original K-L model, the partitioning problem is formulated as a simple graph-problem of
dividing a set of nodes connected by a set of edges into two or more subsets so that the number of
edges between any two subsets (or bins) is minimized. Furthermore, the problem can be generalized
by assigning a cost to each edge and minimizing the sum of the weights of the edges crossing the
bins instead. The K-L model considers swaps between pairs of bins at a time. When there are more
than two bins, the K-L algorithm can be augmented with the F-M approach which considers only
single-module moves at a time.

The force directed approach models a network in terms of springs and spring forces between
modules and tries to minimize the total force exerted on the system. When applied to FPGAs, care
has to be made to prevent individual devices from overflowing. This can be done using an additional
repulsion cost that tends to push modules into different devices. The new force cost becomes F =
K x + R N where R is the repulsion coefficient and N is the number of logic blocks that are already
occupied in the same device as the one for which the force is being calculated. Typically, the model
has to be accompanied by some sort of gradient-descent approach that can transform the system from
one state to another. For example in the Generalized Force Directed Relaxation method suggested
by Goto, first single-module moves are attempted. If no such move yields an improved result, then
the best move is used and the process repeated, with the proviso that the module must come from
the same PLD as the one to which the last module was moved to. If a move at the second level is
accepted, it actually corresponds to a module swap via two single-module moves. The approach can
be extended to as many higher levels as desired without having to pay the full price of an exhaustive
search.

5.3. Pin ass ignment

In addition to assigning modules to the different devices, it is also necessary to address the problem
of assigning pins to all the connections that need to go between the devices. Typical pin assignment
algorithms work by attempting to minimize weighted net lengths, where the length of a potential
network can be defined as the number of chip boundary traversals that it makes. The weight of the
network can be taken as

(1) A constant, in which case the effect is to minimize the total network length, or
(2) An exponential function such as K × e -(path slack), where the path slack is the difference between

the actual delay and the required delay and K is any large constant. The idea is to increase
the weights for time-critical nets so that they get assigned shorter routes. This step can also be
viewed as a slack-minimization method. Since, this calls for path analysis to obtain the slack
delay values, it is much slower than using the network oriented constant cost function

Armed with the data on net weights and location of modules and the FPGA interconnectivity, the
pin assignment algorithm tries to find a feasible assignment that minimizes the objective. Note that
if the partitioning algorithm had not taken congestion into account, such an assignment may not be
feasible because there are fewer pins than are needed to make all interchip connections. In that case,
we can use the KL-FM or other algorithms to redo the partition paying special emphasis on the
offending modules and go over the entire process again.

R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240 213

6. Technology mapping problem

In this section, we look into the algorithms pertaining to the technology mapping problem for
FPGAs. We shall assume that the given network is purely combinational. Networks containing memory
elements can also be handled, but it would first be broken into a set of combinational functions at
flip-flop boundaries. The network will also be assumed to be represented as a DAG similar to the
one used for multi-level optimization programs where the intermediate nodes represented factors of
the function. For FPGA implementations, each intermediate node is assumed to be capable of being
implemented using a single logic module. The logic modules for most FPGAs come in two flavors:

• Look-up tables (LUTs): These are primarily static RAMs. A LUT with k inputs can support
any Boolean function of upto k variables. The Xilinx family of FPGAs is LUT based.

• Multiplexers: The Actel Actl and Act2 series of FPGAs use multiplexers as the basic logic
blocks.

6.1. Generic library mapping methods

The pioneering work in technology mapping algorithms is based on the formalization proposed in
the dagon [20] and mis [16] systems. The overall task can be split into three components:

• Partitioning: The given network is partitioned into a collection of multiple-input single-output
combinational sub-networks.

• Decomposition: Each sub-network is then decomposed into two-input functions, to increase the
network granularity, and

• Covering: Each decomposed sub-network is then covered by available circuit elements of a
library so that either area or time is optimized.

Each decomposed sub-network is defined by an appropriate DAG. The DAG is then converted into
a tree by creating a unique instance of every input node for each of its multiple fanout edges. The
optimal circuit implementing each tree is then constructed using a dynamic programming method
that proceeds from the leaf nodes to the root node. For every node in the tree the optimal circuit
implementing the subtree extending from the node to the leaf nodes is constructed. This circuit
consists of a library element that implements the function specified by the node and the previously
constructed circuits implementing its inputs. The cost function can incorporate two measures: (i) an
area measure which is simply the sum of the areas of the modules used to construct the DAG, and
(ii) a delay measure which is the maximum delay for any leaf node where the delay of a leaf node
is defined as the sum of the delays of all modules lying on its path to the root.

To find the lowest cost circuit, typically all library elements that can serve as candidates for
implementing the subfunction at any node are considered and the cheapest retained. The set of
candidate elements are found using a version of a tree-matching algorithm. There are two main
drawbacks associated with these techniques:

• Requirement for explicit library enumeration: In programs such as mislI and Ceres, the library
of cells that can be derived from the uncommitted modules needs to be captured explicitly.
Such an enumeration can be very large for most functions. 1 Consequently, any practical

i Remember there are 22k possible k-input functions.

214 R. Venkateswaran, P. Mazumde r /1NTEGRA TIO N, the VLS l journal 17 (1994) 191-240

BDD for the EXOR function

xy'+x'y

0

0 I

BDD for the function

v'yz + vw' + vx

Fig. 13. E x a m p l e m o d u l e - B D D s .

implementation can hope to explore only a subset of all possible combinations which comes at
the expense of quality.
Retargettability: As a way of getting around the combinatorial problems associated with a very
large library, programs such as mis-pga have chosen to target very specific architectures such as
the Act-1 series. As a result, the entire library can be modeled using a few primitive building
blocks. The resulting programs are fast and yield good solutions; but the drawback is that they
cannot be readily extended to other implementations.

6.2. Technology mapping for multiplexer-based FPGAs

Next, we describe a matching algorithm [21] for multiplexer based systems such as the Act-1
family. This algorithm has been implemented as part of the Proserpine system and avoids the pitfalls
of the generic method. The main idea behind the matching algorithm is to model the personalization
of the multiplexers as stuck-at-O, stuck-at-1 and bridging faults on a Binary Decision Diagram (BDD)
data structure representing the given function.

6.2.1. Binary decision diagrams
A BDD is a two-terminal leveled DAG with a single root node. The terminal nodes represent the

values 0 and 1 respectively. Each level of the BDD is associated with a variable. Every intermediate
node is also associated with a function and has two outgoing edges that are labeled 0 and 1. The root
is associated with the Boolean function that the BDD represents, while an internal node is associated
with the sum of cofactors with respect to the variables on the paths to the root.

For instance, Fig. 13(a) shows the BDD for the exclusive OR function that could possibly arise
as part of a parity circuit or for the SUM function of a half-adder. Figure 13(b) shows the BDD for
a more complex function. We will refer to BDDs representing circuit functions to be implemented as
"function" BDDs. This is to differentiate them from the "logic-block" BDDs that represent the function
that a given logic block represents. For instance, Fig. 14 pertains to the Actel series multiplexer based

R. Venkateswaran, P. Mazumder/ INTEGRATION, the VLSl journal 17 (1994) 191-240 215

d I i ~ . . _ a ' (b 'c+bd)+a(e ' f+eg)

' I I a g

The Actel A c t - I multiplexer based logic block

0 l
0 I

0 b 1 1

0 1
0 1

0 I

0

Input order: (a b c d e f g) Input order: (a f e g d b c)

Two BDDs for the Act 1 block

Fig. 14. Act-1 logic block and two of its BDD representations.

logic block. The figure also is useful in noting the fact that a function need not have a unique
BDD. In fact, the structure depends on the order of the variables used to levelize the graph. This
fact is important from the point of view of the matching algorithm to be described shortly. A lot of
unnecessary search can be avoided based on the fact that for an input ordering, the reduced BDD
(i.e. a BDD such that no two sub-BDDs are isomorphic) is a canonical form. Hence, it is possible
to construct a more general structure, also called a Global Binary Decision Diagram, that represents
the logic block structure for all possible input orderings. The main advantage of the GBDD is that it
contains no subgraphs that are isomorphic to each other.

6.2.2. Matching algorithm
One part of the algorithm is fairly obvious by now. The goal is to detect a subgraph within the

logic-block BDD that is isomorphic to the function BDD. A few observations are in order. First, it is
sufficient to search for subgraphs of the same height as the function BDD. Secondly, it is necessary

0

R. Venkateswaran, P. Mazurnder/INTEGRATION, the VLSl journal 17 (1994) 191-240

o 1

Logic block BDD After bridge faul t a=b
Ca)

216

0 1
0

0

f

Collapsing of BDD with bridge fault a=e. Note that for the 1-branch, the
edge can be made to point to node d since it has the same cofactors.

(b)

Fig. 15. Effect of bridging on BDD structure.

to consider all possible input orderings in the process. However, the number of such searches can
be reduced by only considering non-isomorphic cases. The GBDD structure is quite useful for this
purpose.

The second part of the algorithm is executed if a match is found and pertains to "personalizing"
the logic block by connecting input variables or constants 0 or 1 to each of the inputs of the logic
block. This is done as follows:

• The variables on the path leading from the root node of the module BDD to the root of the
matched subgraph will be assigned constant 0 or 1 values depending on the corresponding edge
labels. These variables can be thought of as stuck-at faults.

• The mapping between the nodes in the matched subgraph and the circuit BDD specifies the
input assignment to be made.

Even when the matching algorithm fails to find a set of stuck-at faults that personalizes the logic
block to the cluster function, it may still be possible to do so by bridging together certain inputs. The
idea is as follows: Suppose in an input ordering variables a and b are adjacent to one another. Now
if they were to be bridged, i.e. have the same logic value, then it is clear that of the four possible
cofactors Fa,b,, Fa,b, Fab,, Fab, the only two still possible are F~,b, and Fab. What this implies in term

R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

stuck-at-O o
match (~cl "~ l

o 1 ~ I t ck-at-1

/ < ' ' '"
i~ll ~° l 0

~.',,1_:_1 ~ ',,,,-

match

0 I

0 1

0 1

BDD for the function

v'yz + vw' + vx

217

Input order: (a f c b d e g)
Bridge fault: a = f

Fig. 16. Matching illustration using 1-bridge.

of the logic BDD is that the subgraphs corresponding to the other two cofactors, viz., Fa, b and Fab,
can be deleted. Also the node corresponding to the variable b can be dropped. Figure 15(a) shows
the general case of bridging; while Fig. 15(b) shows the effect of bridging variables a and e for
the Act-1 logic block under the first input ordering of Fig. 14. Often times, the resulting BDD is
structurally different from the ones constructed purely on the basis of input orderings. Hence, the
matching process can be continued on the new BDDs. Note that bridging can in principle be carried
out for any number of variables. However, even for the simplest case of a 1-bridge fault, wherein
only two variables are considered, the possibilities are astronomical. Clearly for each of the input
orderings, a different pair of input variables can be considered.

In practice, though, the one-bridge algorithm considers each of the function variables in order and
constructs a function BDD with that variable as the first one in the BDD 6rdering. For each of the
function BDDs, all possible input orderings are considered for the logic-block BDD. It then searches
for subgraphs within this BDD where bridging the first two variables of the subgraph (say a and b)
to the first variable of the function BDD (say x) results in a match being found. In actual practice,
this determination can be done in place rather than create a new BDD as suggested by Fig. 15(b).
The key point is to note that the effect is the same as checking for match between the subgraph of
the function BDD specified by the stuck-at-fault x = 0 and that in the logic-block BDD specified by
the pair of faults a = 0 and b = 0. Similarly, a match is checked between the subgraph of the function
BDD specified by the stuck-at-fault x -- 1 and that in the logic-block BDD specified by the pair of
faults a = 1 and b = 1.

Figure 16 shows the logic-block BDD based on the input ordering (a f c b d e g). We consider
the 1-bridge of the first two variables a and f and check for isomorphic subgraphs based on the
stuck-at notion developed above. The two subgraphs for the logic-block BDD corresponding to the
appropriate stuck-at BDDs of the function module are also marked in the figure. From this it can be
determined that the required personalization is a = v, b = y, c = 0, d = z, e = w, f = v, g = x. Note

218 R. Venkateswaran, P Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

how the input variable v is simultaneously applied to both inputs a and f which represent the bridge
set in this case.

Example 6.1. Figure 17 shows the implementation of the vending machine design using Eq. (2) and
the Actel mux-based architecture shown in Fig. 14 with b, c, d, e, f , g replaced by SA, A1, AO, SB, B1,
B0 and signal a formed by the OR of S1 and SO. As can be seen, this is a three-level implementation
and needs only 7 basic blocks and so is quite compact. The lines beginning with an asterisk have
been added by us to clarify the function being implemented by that logic block. On the other hand,
a two-level implementation would require upto 16 basic blocks.

MODEL "act.in";

TECHNOLOGY scmos;
VIEWTYPE SYMBOLIC;
EDITSTYLE SYMBOLIC;

INPUT "d" : "d";
INPUT "n" : "n";
INPUT "ql" : "ql";
INPUT "q0" : "q0";

OUTPUT "dl" : "[26]";
OUTPUT "dO" : "[28]";
OUTPUT "z" : "[24]";

INSTANCE "BASIC_BLOCK":physical NAME = INST0
"A0"
"AI"
"SA"
"B0"
"BI"
"SB"
"SO"
"SI"
"out"

******=> out = ql'q0

INSTANCE "BASIC_BLOCK"
"A0"
"AI"
"SA"
"B0"
"BI"
"SB"
"SO"
"SI"
"out "

******=> out = [24]'q0

INSTANCE "BASIC_BLOCK"
"A0"
"AI"
"SA"
"B0"
"BI"
"SB"
"S0"
"SI"
"out"

******=> out = ql N' +

: "GND";
: "q0";
: "vdd";
: "GND";
: "GND";
: "Vdd";
: "ql";
: "GND";
: "[24]";

:physical NAME = INST1
: "GND";
: "q0";
: "Vdd";
: "GND";
: "GND";
: "Vdd";
: "[24]";
: "GND";
: "[36]";

:physical NAME = INST2;
: "GND" ;
: " [36] " ;
: "Vdd" ;
: "Vdd" ;
: " [36] " ;
: "n" ;
: "ql " ;
: "GND" ;

[:613 "[37]";

INSTANCE "BASIC_BLOCK":physical NAME = INST3
"A0" : "GND";
"AI" : "[37]";
"SA" : "Vdd";
"B0" : "GND";
"BI" : "GND";
"SB" : "Vdd";
"SO" : "d";
"SI" : "GND";
"out" : "[26]";

******=> out = D' [37]

INSTANCE "BASIC_BLOCK":physical NAME = INST4
"A0" : "[24]";
"AI" : "Vdd";
"SA" : "d";
"B0" : "[26]";
"BI" : "Vdd";
"SB" : "[24]";
"SO" : "q0";
"SI" : "GND";
"out [38]";

******=> out = [24] + D q0' + [26]q0

INSTANCE "BASIC_BLOCK":physical NAME = INST5
"A0" : "Vdd";
"AI" : "GND";
"SA" : "d";
"B0" : "GND";
"BI" : "GND";
"SB" : "Vdd";
"$0" : "ql";
"SI" : "GND";
"out" : "[39]";

******=> out = ql' D'

INSTANCE "BASIC_BLOCK":physical NAME = INST6,
"A0" : "GND";
"AI" : "[38]";
"SA" : "Vdd";
"B0" : "[39]";
"BI" : "Vdd";
"SB" : "[24]";
"SO" : "n";
"SI" : "GND";
"out" : "[28]";

******=> out = [38]' N' + [24]N + [39]N

ENDMODEL;

Fig. 17. Actel netlist for vending machine design.

R. Venkateswaran, P. Mazumder / INTEGRATION, the VLSl journal 17 (1994) 191-240 219

6.3. Technology mapping for LUT-based FPGAs

A K-input LUT is a digital memory that can implement any Boolean function of K variables.
The K inputs can be thought of as addresses to a 2 K x 1 memory that stores the truth table of the
Boolean function. We again assume that the overall functions to be implemented have been optimized
and specified in the form of DAGs. The technology mapping problem can be understood as mapping
sub-networks of the DAG that can be implemented by the available circuit elements. In our case,
we will restrict ourselves to K-input LUTs. Consequently, the only restriction on any sub-network is
that it has no more than K inputs. Two optimization goals for LUT synthesis can be identified: (i)
minimization of the total number of LUTs, and (ii) minimizing the number of levels of LUTs. The
former helps reduce the total area while the latter addresses the performance of the circuit in terms
of programmable routing and logic block delays along the longest path. These two goals are often in
conflict and hence algorithms primarily focus on one and modify the intermediate or final solution to
account for the other as well.

6.4. Discussion

The key to all approaches in LUT-synthesis is the ability of the K-LUT to implement all functions
of up to K variables. Because of this completeness property, it is no longer necessary to go through
a costly library matching procedure; it is sufficient to count the number of inputs to a sub-network
and verify that the number of inputs do not exceed the constraint K.

The first step is to make the given DAG K-feasible. By this we mean that each node which has
greater than K inputs is recursively decomposed into sub-functions that use fewer inputs until all
resulting nodes are feasible. This phase is also referred to as decomposition. Note that decomposition
can be carried out for feasible nodes as well which can in practice lead to superior circuits. Figure 18
illustrates this by considering the implementation of an arbitrary 9 input function expressed in AND-
OR form (with K = 5). Note, how decomposing the OR gate at the output into two OR gates enables
one to pack the same function into only 2 LUTS resulting in a saving of 50%. In principle, we can
even reduce the given Boolean network to a two-input network, the reason being that if we view the
mapping process as one of packing gates into K-LUTs, then the smaller the gates, the more easy it
is to pack them with less wasted space in each K-LUT.

The next step is known as covering and it helps to identify sub-networks that can be assigned to
the same LUT. While efficient algorithms exist when the DAG to be synthesized is fanout-free, the
problem is more complex in the presence of reconvergent paths and fanout nodes.

6.5. Decomposition techniques for infeasible nodes

Four methods have been proposed for the decomposition of infeasible nodes, i.e. those having
greater than K inputs into a set of feasible nodes implementing the same function: (i) disjoint
decomposition, (ii) algebraic decomposition, (iii) AND-OR decomposition and (iv) Shannon cofac-
toring.

220 R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

(a) Without decomposition, 4 LUTs {b) After decomposition, 2 LUTs

Fig. 18. Decompos ing feasible nodes can reduce LUT count as well.

6.5.1. Disjoint decomposition
This is based on a partition of the inputs into two disjoint sets referred to as the bound and the

free set. Each of these sets, by definition, have fewer variables than the original. This is similar to the
functional decomposition techniques mentioned for PLD synthesis. Here, we review one well known
method based on residues. For any given partition, a residue function is obtained by replacing the
variables in the free set by constant values. If the set of all possible residue functions for a given
partition consists of the constants 0 or 1, or a single function h of the bound variables or its inverse
h', then the partition is a disjoint decomposition with one extracted function. One has to be careful
using this method for the search for feasible partitions can become exponential in nature. Moreover,
it is insufficient in many cases such as for the majority function s = ab + bc + ca that is part of a
full-adder circuit.

6.5.2. Algebraic decomposition
This resembles some of the same methods used for multi-level synthesis. The idea is to identify

algebraic factors in the expression of the given function that can be factored out thereby reducing the
number of inputs needed at the cost of more LUTs.

6.5.3. AND-OR decomposition
Since both the AND and OR operators are associative and commutative, each such node can be

divided into smaller nodes of the same type using any partition of the inputs. The approach works for
any gate that represents a commutative and associative operator and is mainly used to reduce larger
infeasible nodes to smaller infeasible nodes that are more practical for exhaustive search methods.
The problem with this method is that it may use up a lot more LUTs than really required because of
the manner of partitioning.

6.5.4. Shannon cofactoring
This method is based on the identity

f (x j . . . x j . . . x n) = x j f (x l . . . 1 . . . x n) + x~.f(xl . . . O . . . x ,) .

Thus, after cofactoring the function f depends on only 3 inputs, viz., xj and the two cofactors. The

R. Venkateswaran, P. Mazumder/ INTEGRATION, the VLSl journal 17 (1994) 191-240 221

latter depend on at most n - 1 variables and so the process can be recursively applied on them till
all functions are feasible.

6.5.5. Other schemes
Some other schemes exist such as the Roth-Karp decomposition strategy or the Huffman-coding

tree method to reduce each multiple input simple gate into a tree of two-input simple gates.

6.6. Bin-packing method for function covering

This method has been implemented in the Chortle-crf technology mapper [23]. It combines the
AND-OR decomposition strategy with a covering algorithm similar to the library-based approach. The
original network is assumed to be K-feasible and to consist of AND and OR nodes and is traversed
from primary inputs to the primary outputs. A circuit implementing each node is constructed from
the circuit implementing its immediate fanin nodes as follows:

• The first step is to try and combine as many fanin LUTs into a single one as possible. To
determine if a group of fanin LUTs can be packed into one LUT, it is sufficient to count the
total number of LUTs that are used by this group. Thus, the minimization of the LUTs can
be viewed upon as a bin-packing problem. Here the boxes are the fanin LUTS, the number of
inputs to that LUT denoting its size; and the bins are the new LUTs into which they are to be
packed. The size of each bin is of course the feasibility constraint K. The First Fit Decreasing
(FFD) algorithm is known to be optimal for boxes and bins with integer sizes less than or equal
to 6. Hence, for smaller LUT implementations, this is the algorithm of choice. It begins with an
empty list of bins and a sorted list of boxes, beginning with the largest box. Each box in the list
is then placed in the first available bin into which it fits. If no such bin is available then a new
bin is created and added to the end of the bin-list and the box is placed into the newly created
bin. Packing boxes into the same bin implies the decomposition of the node being covered.

• The next step is to connect the LUTs defined by the packed bins. One method is to sort the
bins by filled capacity and then connect the output of one bin to an unused input of one of
the following bins. If no such bin exists a new LUT is created and is added to the root of the
circuit. An advantage of this technique is that it minimizes the number of inputs used by the
root LUT of the circuit. Since, this LUT becomes the box for the following node, a smaller
size can result in fewer bins being needed for the bin-packing step of that node leading to an
overall superior circuit.

This method, though simple to understand, has the following drawbacks:
• It gives optimal results only for LUTs of size _< 6 (due to the FFD algorithm).
• It works only for fanout-free circuits. More general networks are handled by partitioning the

network at fanout nodes into a forest of trees each of which is separately handled as above.
• The LUT connection scheme can often lead to taller trees which has an adverse effect on

performance.

6.6.1. Covering in the presence of fanout
The mapping algorithm above can be improved in the presence of fanout by augmenting it with an

edge-visibility technique. This was first implemented in the VISMAP technology mapper [24]. The
method is as follows. Given a subnetwork, assign a label to each edge in the subnetwork. Labels can

222 R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

either mark an edge as visible in which case it is to be driven as the output of an LUT or invisible
in which case the edge is to be realized entirely within a LUT. The actual label-assignment phase
can be optimized using a pruning scheme. Certain combinations of edge-labels can be eliminated if
it can be ascertained that they correspond to infeasible nodes.

Figure 19 shows a circuit and the LUT representation denoted by two different edge-labellings. In
case (a), the logic for the fanout node w is not replicated and this requires 3 LUTs. In case (b),
however, the edge-labellings are such that only 2 LUTs are needed. In this case the logic for the
fanout node is replicated. However, note that if this logic needs more inputs, then replicating logic
becomes less attractive. In practice, therefore, it is not possible to state whether replication or covering
reconvergent paths together result in fewer LUTs in all cases. Hence, one needs to exhaustively check
all edge-labellings and retain the one that leads to a circuit needing the fewest LUTs.

f g

f g

a b @ c d e

w

m~

(a) Logic for fanout node is not replicated. 3-LUT solution.

iiiii "

f g
I I

a b [~ c d e

ml w ~ n

f g

©

(b) Logic for fanout node is replicated. 2-LUT solution.

Fig. 19. Mapping of fanout nodes using edge-visibility techniques. Dotted edges are invisible while other edges are visible.

R. Venkateswaran, P. Mazumder / INTEGRATION, the VLSl journal 17 (1994) 191-240 223

6. 7. Network-flow approach to LUT synthesis

One of the problems mentioned in the bin-packing scheme is the fact that it may lead to taller trees.
An alternative scheme which uses network-flow techniques has also been suggested which directly
tries to compute a minimum-height K-feasible solution to the problem. The first part of the algorithm
proceeds from the inputs towards the outputs in a topological order, and assigns a label to each node
in the DAG. In the final representation each label represents the depth of the optimal K-LUT mapping
solution for that node. Thus, the goal of the labeling phase is to minimize the maximum label number
used while maintaining feasibility requirements. The second step then works from the primary outputs
upward towards the primary inputs generating a network of K-LUTs which is logically equivalent to
the original network.

6. 7.1. Labeling phase
Initially all primary inputs are assigned a level l = 0. The algorithm labels each node in a topological

fashion, i.e. when a node v is considered, all its predecessor nodes, denoted as Nv will already have
been assigned labels. Recall that the label given to a node indicates the height of a minimum LUT-tree
realizing that node's function. Also note that in the labeling phase, the authors consider each node
in isolation, i.e. it does not matter if the LUT-scheme for one node conflicts with the one used for
labeling another node. This is accounted for in the mapping phase.

Suppose p is the maximum label assigned to any node in Nv. Then, it is clear that the label of
node v cannot be less than p, since otherwise we could use the same scheme to generate a LUT-tree
of height less than p for that node. In fact, it can be shown that v will either receive a label p or a
label p + 1. The latter follows from the fact that the original network is K-feasible and the fact that
all inputs to v can be realized using LUT-trees of height less than or equal to p. The only question
that remains is to determine if a p-deep LUT tree exists that can implement v.

This is where the network-flow techniques are useful. From the given network, the authors first
create an alternative network by collapsing all nodes in the original network, say N~, with label _> p
into a single node. Then they replace each node w by a pair Wl, w2 and add a directed edge w~ ~ w2
with unit capacity. Each edge in N1 connecting nodes m and n is replaced by a directed edge from
m2 to nl with infinite capacity. A dummy source (target) node can be added and connected to all
primary inputs (output) again with an edge of infinite cost. Let the resulting network be called N2.

Now let F be the maximum feasible flow in N2. This can be determined in polynomial time using
the method of augmenting paths. If F > K, then it implies by the max-flow min-cut theorem and
the above transformation that the minimum cut X~, X~ separating the source from the target includes
more than K nodes on the source side in N~ that are connected to the target side. Hence, it is not
possible to realize the target node v using only K-LUTs without increasing the height by 1. Thus, the
labeling rule can be stated succinctly as follows: "If the maximum flow in the transformed network
is less than or equal to K, then label the node as p; else label it as p ÷ 1, where p is the maximum
label assigned to any predecessor node".

It can be noted that in general the minimum-height K-feasible cut is not unique. Intuitively one
wants as large an X' (nodes on the target side of the cut) as possible. This is because in the mapping
phase all these nodes get assigned to the same LUT.

224 R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

6.7.2. Mapping phase
Let L denote the set containing all outputs to be implemented using K-LUTs. Initially L contains

all the primary output nodes. For each node v in L, let Xv, X[, denote the minimum-height K-feasible
cut that had been generated for v during the labeling phase. We then introduce a K-LUT for v using
as inputs those crossing the cut. Note that this process subsumes all other nodes in X' v. This can
be likened to the covering of reconvergent paths within the same LUT as was done before using
visibility methods. The process is then repeated by replacing L with the set L - { v } +input(v) where
input(v) refers to the set of nodes that correspond to the input signals of the cut. Again, it may be
possible that the same node occurs in X~, and X' u for two (or more) nodes in L in which case it gets
replicated automatically.

7. Routing algorithms for FPGA designs

7.1. Row-based FPGA model

Such models are exemplified by the Actel family of FPGAs[9,10]. We review the basic architecture
of the array and then discuss the routing issues. Finally a segmented channel router is presented.

7.1.1. The Actel FPGA architecture
Wiring resources Unlike traditional gate arrays, the routing channels are not empty areas where
customized metallization can be performed. Instead, they contain predefined wiring segments of
various lengths. These wiring segments are interconnected using a two terminal programmable element
called antifuse. 2 The antifuse plays the role of a via in this FPGA.

Two categories of antifuses can be identified depending on where they occur:
• A horizontal fuse or hfuse links two adjacent horizontal segments within a channel. This enables

longer segments to be realized.
• A cross fuse links a horizontal segment with an intersecting vertical segment.

Each of the cell outputs and inputs are connected to a dedicated vertical segment which is used
to connect them to a horizontal track in an adjacent channel. A vertical segment typically spans
only 1 row of cells for inputs and about 4-5 rows for outputs; horizontal segments span two or
more modules within a row. Thus inputs can only be connected within the channel directly above
or below the cell. Furthermore, for some nets, it may not be possible to allocate cells such that all
its terminals lie within the span of the vertical output segment. To accommodate such nets, certain
long vertical segments are also provided in the array, The horizontal routing for such nets should
preferably avoid concatenated wire segments so as to avoid increasing delay. Special wiring exists
for clock distribution to each module.

Routing model Traditional channel routing cannot be directly applied since it does not take into
account the restricted nature of the wiring resources. A modified channel routing problem known as

2 The antifuse represents a one-time programmable element comprising of a diffusion layer placed over polysilicon with
a dielectric between them. When a voltage exceeding 18 V is applied between the two terminals the dielectric irreversibly
breaks down and starts conducting.

R. Venkateswaran, P. Mazumder/ INTEGRATION, the VLSl journal 17 (1994) 191-240 225

segmented channel routing is therefore needed for such FPGAs. The name derives from the fact that
each channel comprises of many tracks which are divided into segments of non-uniform lengths. If
all segments have the same size, then the problem is called an uniform SR problem; otherwise it is a
non-uniform problem. The segmented channel routing problem can be formally stated as "assigning
segments to nets so as to make all connections within the given routing resources (tracks and fuses)"'
The objectives are foremost to achieve 100% connections, secondly to minimize the number of fuses
traversed by each net so as to optimize the timing characteristics. The following points differentiate
SR problems from traditional channel routers:

• Channel density: This refers to the minimum number of wiring tracks that are required to
make all connections. For channel routing, two nets can be assigned the same track if their
horizontal spans do not overlap; consequently the density is given by the maximum number of
nets crossing any column within the channel. In case of SR, each net has to be assigned to a
different segment. Corresponding to the channel density, a segment density can be defined for
the uniform model, after extending each net to the nearest adjacent segment switch. For the
non-uniform model, there is no such apriori measure as the density depends on the particular
segment length distribution.

For example, Fig. 20 shows the routing for a 2-segmented uniform model with 3 tracks per
channel. Note that in a traditional model, the same routing could have been done using only 2
tracks by assigning nets 1 and 3 the same track. However this is not possible in the segmented
model because the segment assigned to net 1 overlaps the starting terminal of net 3. For our
example, this gives a segment density of 3 and so the routing is optimal.

• Single-entry logic cell: In gate arrays, the inputs can be assumed to be available simultaneously
in both the adjacent channels. For FPGAs, this may not be true. The input is accessible from
either the channel above or below but not both. Thus, there are no vertical constraints because
of the fact that at most one terminal can enter the channel at any given column.

• No doglegs: This is because programming two fuses on the same column may lead to other
unwanted fuses to get programmed as well. This also degrades signal performance as each fuse
in the path of the signal adds to the resistance of the net.

• RC constraints: The nets are now RC trees and in order to maintain timing integrity, it is
preferable that they traverse as few antifuses as possible. Typically each net needs only three

I

l 1

Tracks

m

v ,

|m

i!
l! |

"-"----- Segment switch

Logic module

0 Open switch

• Closed switch

Fig. 20. Segmented channel routing model for FPGAs.

226 R. Venkateswaran, P. Mazumder/1NTEGRATION, the VLSl journa117 (1994) 191-240

1 2 3 4 ~ ~ (5 6~eglent swltches)9 10

Cross fuse

.~ C3 t~-
C4

A three track segment~ed channel routing problem. Track I has two hfuses and so can be split into
three discrete segments while the other two tracks can be divided into two segments. Note vertical
connections can be brought into any track by closing the appropriate cross fuse while longer horizontal
segments can be realized by programming the segment switch.

Fig. 21. A segmented channel routing problem and a 1-segment solution to it.
antifuses: two cross fuses to connect the dedicated vertical segments to the horizontal track and
one horizontal fuse to connect adjacent horizontal segments.

7.1.2. Algorithms
In this section, we review a new type of detailed routing algorithm geared towards segmented

channels. For larger FPGAs, a global router may first be invoked. The process entails splitting each
multi-pin net into a set of connections and then assigning each connection to a specific channel.
The global router can use the vertical feed-through segments for nets that span multiple channels.
However, the issues involved are similar to regular custom and semi-custom designs [25].

Let us define a K-segment routing problem as one of connecting all nets such that no net occupies
more than K segments. If the total lengths of the segments are also targeted for minimization, it is
called a K-segment solution with delay optimization.

7.1.3. 1-segment channel routing
The 1-segment problem wherein each net occupies only one segment can be optimally solved by

the following greedy algorithm which is essentially a modification of the left-edge algorithm. Assign
the connections in the order of increasing left ends. For each connection, find a set of tracks which
are free at that column and in which the connection would occupy one segment only. From these,
choose the segment whose right-end is farthest to the left. Intuitively, this maximizes the number of
free segments for later columns. Since, it is necessary to check each track for each connection, the
run time of the algorithm would be O(NT) where N and T denote the number of nets (connections)
and number of tracks respectively. Figure 21 shows a solution for a three net three track example.

7.1.4. K-segment channel routing
Here, we allow a net to occupy as many as K adjacent segments. The motivation for this problem

stems from the fact that the 1-segment solution is quite inefficient in terms of track usage. Hence,
for a fixed channel capacity it may not be capable of finding a solution. Not surprisingly, though,
the general K-segment channel routing problem turns out to be NP-complete for all K greater than I

R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240 227

1 2 3 4 5 6 7 8 9 10

.~ C2 ~.
C3

C4

2-segment solution with no delay optimization. The assignment tree is
shown below. This solution uses two segment switches and has a total
length in terms of columns spanned by the segments in use of 27.

2 I

/

- /

I,evel begin Net I Net 2 Net 3 Net 4 Level end

Fig . 22. 2 - s e g m e n t e d c h a n n e l r ou t i ng so lu t ion .

[26]. The reason being that assignment of a track to a net can no longer proceed in a greedy fashion.
An exponential time branch and bound algorithm which is guaranteed to find an optimal solution
if one exists has been proposed. The main idea of the algorithm is to construct an assignment tree
which represents the effect of optionally assigning each connection to each track.

Each node of the assignment tree is called a frontier. A frontier is simply a T-tuple of the form
(x[1], x[2] x[T]) where x[j] is the leftmost column in track j in which the segment present
in that column is not occupied. Clearly the initial frontier is given by an all-ones entry denoted as
x0 = (1, 1 1). Each assignment of a net to one or more segments causes one of the entries in
the current frontier to change.

The assignment tree is built up in stages or levels. Level i corresponds to all possible frontier
nodes that can result subsequent to assigning tracks to the first i connections C~, C2 Ci. Thus, for
instance, the first level contains the single node x0 while the last level contains a single frontier node
XN which denotes the state after all nets have been assigned. Once XN is reached, a valid routing can
be obtained by retracing a path from XN to X0. Also, if no nodes get added at an intermediate level,
it means that the given problem has no valid solution possible.

In order to construct Level i + 1 from Level i, we first enumerate all tracks which are free at
left(Ci+l), i.e. the leftmost column of the i + 1-st connection. This enumeration is done on the basis
of the frontier values, x[j], of nodes at level i. Suppose xi[t] < left(Ci+l) and Ci+l would occupy

228 R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

1 2 3 4 5 6 7 8 9 10

< C2 >
C3

174

2-segmented channel solution with delay opU~zaf ion. Note this solution
uses only 1 segment switch and has a total length of 24. The assignment
tree is shown below.

Level begin Net 1 Net 2 Net 3 Net 4 Level end

Fig. 23. 2 - segmen ted channe l rout ing solut ion with delay opt imizat ion.

less than K segments in track t. Then Ci+ 1 c a n be assigned to track t and the new frontier xi+l is
created by advancing the value of xi[t]. An edge is added between xi and xi+l and is labeled by
t. Note though if xi+~ already exists then we only add the corresponding edge without duplicating
nodes. Figure 22 shows the assignment tree for a 2-segment solution to the same routing problem
considered above with one additional connection. The final path found is shown by bold lines and the
solution it represents is shown separately. Paths marked with a # cannot be expanded because the net
would occupy more than two segments if assigned to that track. Note that the additional connection,
C2, is impossible in the 1-segment model since all tracks have an intervening switch between columns
3 and5.

Delay optimizations: One disadvantage of the K-segment problem is the fact that each extra segment
increases the delay experienced by the net owing to the presence of an extra switch in the path.
Hence, it is desirable that the number of segments per net be minimized. Also larger segments add
to the capacitance of the net and hence the delay. These factors can however be easily incorporated
into the above algorithm by adding a weight in addition to the track label to each edge. The weight
represents some cost function such as the total length in terms of columns spanned of all segments
assigned to C1 Ci+t for an edge between Levels i and i + 1. When multiple edges fan-in to a
single node, the edge with minimum cost is chosen. Ties can be broken randomly. Similarly, when
the backtrace is performed it is only necessary to follow the minimum weight edge from each node in

R. Venkateswaran, P. Mazumder / INTEGRA TION, the VLSl journal 17 (1994) 191-240 229

III III Oener.,*.r.ose II ll l,
Interconnect - - - - - f - ~ f f - -- ~--~-- - - ~

~] i ~I : , i ~ Direct
. . . . f f l ~ - - ~ - - f f l ~ Interconnect

Switching - - ~ 7 - ~] [~ I'~ -- ~ "- -- [~ ~ iT, ~ -
Matrix III - - - ~ Lon Lines

Fig. 24. Wiring resources in a Xilinx FPGA.

case of choices. The assignment tree with weights added is shown in Fig. 23. Note that this solution
reduces the overall path length by 3 and also reduces the number of segment fuses that need to be
programmed by 1.

7.2. MPGA style architectures

This architecture corresponds to the familiar channelled gate array architecture. The Xilinx family
of FPGAs [27,8] falls in this category. The device consists of an array of programmable logic cells
called Configurable Logic Blocks (CLBs) with wiring surrounded by a ring of configurable I /O
blocks, see Fig. 24. The latest model in this family of FPGAs is the XC4000 family which consists
of arrays from 8 x 8 to 30 × 30 blocks with 64 to 240 I /O pads.

7.2.1. Wiring resources
Wiring resources comprise of horizontal and vertical channels with switchboxes at each intersection.

Within the switchbox, pass transistors are provided to switch an incoming wire to one of the three
alternate directions. Longer busses are also provided to minimize the number of switches in each net
path. Switches are provided for these longer nets at every other row and column intersection. Special
wiring for clock and some dedicated wiring for carry calculations are also provided. In addition,
all function inputs are connected directly to all single length wire segments; while the outputs are
connected to a subset of both vertical and horizontal segments.

A more general view of the overall routing architecture [28] is shown in Fig. 25. The L boxes
refer to the logic cells (i.e. the CLBs); the C (connection) blocks are rectangular switch boxes that
connect the CLB pins to the routing channels via programmable switches; while the S(switch) blocks
connect the wiring segments in one channel to those in another. The configuration of the C and
S blocks largely determine the ease of routability of an FPGA and thus help differentiate between
different members of this class. Clearly, the more the wiring segments that can be switched, the easier
it is to route. The goal of routing is to configure all the CIPs (configurable interconnection points)
within the capabilities of the switchboxes so as to obtain conflict free routes for all the nets. A sample
C block structure is shown in Fig. 25(b). Each dark dot indicates a CIP which can be programmed
to either make or break the connection.

230 R. Venkateswaran, P. Mazumder / INTEGRA TION, the VLSl journal 17 (1994) 191-240

.~,""[-~., ""-".~. " ~ ' : . ~ . . --.:~. y " ~

0
1
2

0 1

1

• CIP

~ 0
1
2

A sample C block

(a) (b)

Fig. 25. (a) General F P G A routing model; (b) A sample C block.

~ j~ - ~ 1
'. .~ '. 2

,~ -i .:- ~ 3

: potential connection point

Fig. 26. Potential F P G A routing conflicts.

The features of the FPGA which are especially important from a routing standpoint are as follows:
• The number of wiring segments is predetermined. It is entirely possible that the successful

routing of some net may rely on the assignment of a specific wiring segment to that net. If
a sequential style of routing such as a maze router is used, then care has to be taken [29]
to ensure that such essential segments are assigned appropriately. Figure 26 shows an instance
wherein the wrong assignment of a segment to net A will lead to a failed connection for either
net B or net C.

• If the CLB is implemented in the form of a table-lookup using SRAM [30], then the inputs to
the function table are interchangeable. The router takes a request to route to a input as a request
to route to any unassigned input. Thus for a maze router, the necessary modification is to start
the expansion from all the unassigned input terminals simultaneously.

• CIPs can be of two types: cross where the CIP comprises of a bidirectional pass gate and
an SRAM cell; and muxcip which represents a member of a mutually exclusive group and is
controlled by decoding one or more SRAM cells in parallel. The implication for the router is
that a single path cannot use more than one member of a decoded CIP group.

• Unlike gate-arrays there can be no doglegs in channels in an FPGA since the metallization
pattern is fixed. Thus routing within a channel can use a simple left-edge kind of algorithm.

• Proper allocation of nets to busses of appropriate length is needed for maintaining tighter delay
bounds on nets.

• Allocation of nets must also take into account the switchbox resources.

R. Venkateswaran, P. Mazumder / INTEGRA TION, the VLSI journal 17 (1994) 191-240 231

7.2.2. Algorithms
Though, in principle, we can use any MPGA routing algorithm, the restricted nature of the routing

segments and of the switching fabric mandates better algorithms. Otherwise, we may find several
instances of routing conflicts that lead to failed connections. In this section, we review an FPGA
router for matrix-based architectures [29]. This router consists of two phase:

• Global routing wherein each net is assigned a path in the grid graph by assigning it a sequence
of channel segments. Its main purpose is to distribute the channel densities among the channels
so as to facilitate the detailed routing phase. This step does not require any specific knowledge
of FPGA architectures and so a regular MPGA algorithm is used.

• Detailed Coarse Graph Expansion (CGE) router: The goal of this router is to assign specific
wiring segments to each net so as to generate the global route determined in the previous step.

The basic idea is as follows:
Global graph expansion: Given a global route for each net, find all possible wire segments that can

be used to extend the path from one channel of its global route to the next until either the target is
met or no more paths remain to be expanded. The expansion depends on the switching capability
of the C and S blocks and the connections used up by the previously routed nets. An example
of this process is illustrated in Fig. 27 for a net connecting pin 5 of logic block at coordinates
< 1, 1 > to pin 2 of logic block at coordinates < 3, 3 >. The global route is shown on the left
and the detailed expansion yields three paths. Paths marked with a # lead to blockages.

Path sorting: All the paths found in the graph expansion process are placed in a single path list and
are ordered in the increasing order of costs. Costs for each path can be based on two factors: (a)
demand on the wiring segments by other nets, (b) timing issues that can be modeled by counting
the number of switches used in the path. For example, if a certain segment is required by many
nets, then its cost is higher so as to discourage its use as far as possible. On the other hand, if
there is only one choice, then it is given a low cost so as to include it in the current expansion.

Update: The net corresponding to the lowest cost path is selected and its route is used to update the
costs for the channel segments to be used in the routing of the other nets. This can change the
order of the paths in the path-list.

Pruning the search tree: The overheads to maintain all possible paths is v~ry high. Consequently, it
is better to maintain a certain limited number of paths. In [29], the authors use two pruning factors
limiting the fanout from the root and from intermediate nodes in the coarse grid graph. This method
does not mean that the other paths are removed from consideration for all times. If a route cannot
be found for a certain net, then the pruning factors are gradually increased till we are successful. A
rip-up and reroute strategy is done only when complete expansion of the coarse graph fails to yield
a connection.

However, if the switch boxes are fairly simple and provide limited options, then the exponential
increase in paths does not happen and consequently the elaborate pruning features may not be really
needed. 3

3 The latest version of Xilinx FPGAs, the XC4000, for instance, have increased the number of tracks but simplified the
S-block structure. Each wiring segment that enters the S-block can only connect to three others, which is half the number
found in the XC3000.

232 R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

1 2 3

i l i i i i
-.,-_..-_- c

C.-t t-:-.~-r ~- ÷---- J_~k-. li i: r. 7- F 7. ~- . i .~--
"J':""-"':'" ~ ' " ~'~ II I.~.: .: .~.; . .J.t: . . , , , : , , , , . . . : ,

- I - ' - ~ - ,~ - .+ - T- - - - ~ - -::=g ,-.~; ,
4: - ' .~ . : . : . . ' - - - - . *1 4t I . : . : . : . : . : . -J I : : ' : k I 51: II i:~::: I
' I : : L : ' . " r [1 Ir r ' . . : - : ' v ~
""11~ "_" ~." ;-~.-.~" "~t"" . . u ~ . ,~ L-d,-.* -~-ak-d,-.~i

: : . - , . - ~ ' , ~ " ~ - , [" ~ '4~ "

~ 7..~.-.7.-~-'~'- i
~. - ' . . ' . . ; . .~ . ~'

:':.+.::i':-:'i"
~..{-- ; . .~. .~.~.1

"---: : d2
i ! ! i i i C

A part o f a s y m m e t r i c a l FPGA with relevant parts of the C/S blocks.

Grid
Ctx3rdinates

1,2 ~) ~ 1 ~

2,2

3,3

3
3

5

)

)

Coarse Grid G r a p h
(global route)

CGE expans ion

(detailed route)

Fig. 27. Coarse grid graph router for matrix-based FPGAs.

Cost function: In the path ordering phase, each of the paths P is assigned a cost c (P) = ~-~eEP [Cf (e) +
wt • he]. c i (e) represents a cost for the edge e based on the demand for the edge in paths for other

nets. For an edge e that has j other occurrences el, e2 ej, the cost c f (e) is given by c / (e) =
~ j 1/al t(ej) where alt(ej) is the number of edges in parallel with ej. For instance, in Fig. 27, the
edge connect ing C(1 ,2) and S(3 ,2) has three alternative track assignments possible and hence the

alt value for it is 3.
Because of the summing process in c / (e) , the more graphs e occurs in, the higher will be the cost.

This reflects that edge e is in high demand and should be avoided if possible. Also if alt(e) happens

R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240 233

to be zero, then the edge is essential as there are no alternatives. When the cost computation reveals
an essential path, the router attempts to schedule it for routing first. The second cost component
determines the timing cost of the net in terms of the number of S and L blocks it has traversed so
far. If a certain net is deemed timing-critical, then the latter cost can be given a larger weight in
determining the next path to be expanded. Note, that many FPGAs also provide long-range connections
which skip some S boxes along the way. This might need adjusting the expression for the timing cost
appropriately.

The next segment determination and the update steps in the expansion is achieved using a black-box
technique. This makes the CGE somewhat independent of the exact architectural features of the S
and L blocks in different FPGA implementations.

7.3. Sea of gate FPGAs

The FPGA architectures that have so far been considered have a clear separation between logic cells
and interconnection resources. Recent sea-of-gate offerings differ in the sense that they provide more
but simpler cells. Also there is no separate routing structure provided. The routes have to be done
by the programming of the basic cells themselves. Thus, the architecture resembles a sea-of-gates
style. Some offerings which fall in this category include the Labyrinth array (Apple Computer and
Concurrent Logic Inc.), the CFA family by Concurrent Logic and the CAL family from Algotronix.

A sample Labyrinth cell can be configured in 4 possible ways:
• As a NAND/XOR pair (a half-adder with inverted carry).
• A s a D flip-flop.
• As an AABB routing cell where the A inputs are transferred to the A outputs and the B inputs

are transferred to the B outputs.
• As an ABBA routing cell where the A inputs are transferred to the B outputs and the B inputs

are transferred to the A outputs.
For the Xilinx and Actel style of FPGA architectures, it is appropriate to perform the placement

first using estimated routability and then do the routing separately. However, for sea-of-gate structures
with fine-grained components, it is better to treat placement and routing simultaneously. Consequently,
the layout problem consists of an initial place and route of cells followed by iterative improvement.
During this process cells can get re-placed or re-oriented. Routing typically uses the penalty-driven
iterative improvement approach or some other form of rip-up and reroute method.

7.3.1. Routing algorithms
Since input pins are often interchangeable, the router should consider all unassigned pins on the

target cell as potential targets. Pfister [31] employs a modified version of the Mighty router to make
connections. The work of Beetem [32] is an interesting extension to the penalty driven iterative
algorithm of Linsker [33] in that the targets themselves can also be mobile. The main steps of the
algorithm are as follows:
(l) While improvement exists do
(2) For each net do
(3) Generate a costed wavefront expansion. The cost function includes penalties for path lengths,

overlaps, obstacle neighborhoods, and force costs.
(a) The path length is the fixed cost to expand to an adjacent cell and penalizes long routes.

234 R. Venkateswaran, P. Mazumder/ INTEGRATION, the VLSl journal 17 (1994) 191-240

(b) The overlap costs penalizes illegal overlaps. This cost is small in the beginning but becomes
larger in later passes. This is similar to the temperature schedule in simulated annealing
and allows more freedom initially for good solutions.

(c) The obstacle neighborhood costs tries to prevent nets from being routed in congested areas
and tries to obtain uniform spread of nets.

(d) The force cost component simulates a spring potential function and pulls mobile targets
near logically adjacent components. This is an adaptation of the Force-directed placement
strategy.

(4) Continue the expansion till no more cells remain to be expanded or the least cost cell in the
current frontier is more costly than the cheapest path to the target. Note that since overlaps are
permitted, a path to the target is assured for all nets irrespective of the net order used.

(5) Backtrace the path found and mark all such cells fixed for this iteration.
end for

(6) Make all cells mobile again; update the overlap and neighborhood costs and repeat.
Some additional features of the algorithm including encouraging the matching of AA and a BB

half cell during routing by assigning it a small overlap credit. Certain nets are driven by a logical '1'
instead of a cell output. For such cases it is immaterial where the source '1' is located. Hence, for
such nets the role of the source and the target are reversed and the source '1' is treated as a mobile
target.

7.4. Theoretical modeling for FPGA routing

The last topic of discussion is a theoretical model, based on probabilistic analysis, intended to
provide better insight for FPGA routing. It is a synopsis of the work that appears in [34]. The model
is applicable to symmetrical FPGAs, such as Xilinx devices, with tracks that consist of short segments
spanning the size of one logic block. The output of the analysis will be a theoretical estimate of the
probability of successfully routing a connection.

7.4.1. Assumptions
The actual process of FPGA routing is highly dependent on the particular FPGA architecture,

problem instance, etc. and so any theoretical model can only hope to approach it to a sufficient
degree of satisfaction to be acceptable. The advantage is to derive a more cost-effective way, than
actual experiments, for making architectural studies and deriving better routing algorithms. Several
simplifying assumptions have been made and have to be understood in order to extend the model for
other routing architectures.
(1) It is assumed that the routing will consist of a global and a detailed phase. Only the detailed

phase is subjected to the stochastic modeling. Thus, we assume that nets will be routed in
sequence and furthermore the global route for each net has been determined, in advance, based
on overall factors such as wirelength, channel congestion, etc.

(2) We assume that the circuit has a total of CT two-point connections and is to be routed in an
FPGA with N × N logic blocks. The length of each connection is drawn from a probability
distribution, PL. It is further assumed that PL is geometric with mean length R which has the
physical interpretation that at each C block along the path of a connection, the connection will_
terminate with probability 1/R and will continue to the next C block with probability 1 - 1/R.

R. Venkateswaran, P. Mazumder/ INTEGRA TIO N, the VLSl journal 17 (1994) 191-240 235

(3) It is further assumed that the number of connections per cell can be drawn independently from
a Poisson distribution with parameter A, where a is defined as the ratio of the total number of
connections in a circuit to the total number of cells in the array.

(4) Tracks are assumed to consist of short segments that span only one logic block.
While Assumption 1 is acceptable for most FPGAs, that made in Assumption 4 is not for the

simple reason that most FPGAs provide longer segments spanning several logic blocks for realizing
the longer or global nets. The reason for making this assumption is to make use of an interesting
result due to E1 Gamal developed for Master Slice circuits. It was shown that under Assumptions
2,3, and 4, the densities of the channel segments will also be Poisson distributed, with the average
value given by /lg = / iR /2 . The result has also been borne out in practice for a number of circuits
implemented using FPGAs [34]. However, the result is not an accurate approximation when longer
segments are used.

7.4.2. Modeling the events
The key to the stochastic modeling of FPGA routing is the calculation of the probabilities for the

events Rc,, Rc2 where Rc, is the event that the ith connection is successfully routed. Furthermore,
if we define routability as the average probability of completing a connection, we get the following
formula:

1 i=Cr

Routability = -~T Z P (RC,) '
i=1

where P (Rc,) is the probability of successfully routing connection Ci.
The event Rc,, itself can be split into 3 events which are indicated in Fig. 28:

(1) Event XI: Connection of source pin to the channel C-block,
(2) Events Sl, $2 Sn: Event Si refers to the traversal of the ith S-block,
(3) Event X2: Connection of the net to the final pin of the target logic block.

Clearly, for the event Rc, to be successful, all the above events have to be successful in order.
Thus, for a path of length Ln we have the following relation:

P(Rc,[L~) = P (x ,) P (S] i X ~) P (& I X , S ,) . . . P (G I X , S] . . . G _ ,) P (X2]X,S , . . . G) . (3)

Knowing all the probabilities on the right hand side, we can come up with a general formula for
routing net i as

l=lmax

P(Rc,) = ~ P(L ,) • P(Rc, ILt)
l=O

l=lmax

= ~ p q t - l . P(Rc, ILI)
l=O

(4)

where p = 1/R and q = 1 - p can be obtained based on the fact that P (L) is a geometric distribution.

236 R. Venkateswaran, P. Mazumder / INTEGRA TION, the VLSl journal 17 (1994) 191-240

/ ,~,,~lLII II ~ts,e,~o ~ S , ~ l ~ l l l JIWltS,.

\ :? ¢

/ \
Event X l Event SI

W=9, F_c=4 a=3, k=2,
D=5 ot 1 = 1

O O 0 0 0

Event X2

Fa=3e=4,W=9 ~ . ,

o o o o o i'::::::::: _;

G'sts t l l l~, , ' ' ~

Note:
. an occupied track

a free track
x switch point

Fig. 28. Events occurring in forming a connection.

Evaluating P (X1): X1 is successful if at least one of the Fc tracks to which the output pin is
connected is free at the time this net is scheduled for routing. If we let the random variable X denote
the number of free tracks among these Fc connections that are free, then we have

i=F~

P(XI) = ~-~ P (X = i).
i=1

Since the channel densities are assumed to be Poisson distributed, it is possible to consider only
the Fc tracks rather than all the W tracks in the calculation of the probabilities. The scaled Poisson
process will have a mean AgFc/W.

Consequently, we have

i=F~

P(X,) = Zp(AgFc/W, i)
i= I

where p(A, x) = e-a/lX/x! is the Poisson probability function.

(5)

Evaluating P (Sil X1S~... Si_ 1): To simplify notation, we denote the above conditional probability by
P (s/IY) where Y is used to denote the event that X1 and all prior switchboxes have been successfully
routed.

Assume that at the ith S-block, there are a possible incoming tracks and k possible outgoing tracks
that are free. Since, the net can either go straight through (event E1) or turn at the S-block (event
E2), we have two possible mutually exclusive events here. Consider the case when there is no turn.
Let us assume symmetrical S-blocks, i.e. each track is connected to the same number of tracks, say

R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240 237

al , on the opposite side, and a2 on the two other sides. Again by considering a scaled down Poisson
process, we can compute this probability as

t/=amax
o~la P(silY) = P (E 1) ~ P (X = alX)p(Ag--~-,ala - k)

a=l

a=amax

+P(E2) ~ P(X = alX)p(a~-~-,a2a - k). (6)
a=l

Here, X refers to the random variable denoting the number of incoming tracks that can be assigned
to the net. amax takes on the value Fc for $1 and W for for all other cases because of the nature of
the routing blocks.

Now, from Bayes rule we have P (X = alX) = P (X = a) / ~ i a ~ P (X = i) and furthermore from
computation of P(XI) we know that P (X = a) = p(agamax/W,i). The values P(EI) and P(E2)
have to be determined experimentally.

Evaluating P (Xz): Here the problem is to evaluate the probability of the event that given one or
more tracks were available at the outgoing side of the last S block, what is the probability that one
or more of these tracks connects to the appropriate logic block pin. Again let us assume that a tracks
are available for potential connection. The number of ways of choosing Fc of the W total tracks such
that none of the a marked tracks belong to this set is clearly the ratio ~W_Fc)Ca/wCa where wCa is the
number of combinations of W things taken a at a time. Consequently, the probability for the event
X2 is given by

~=w P (X = a) (w-r~)C~
P(X21X1S~'"S") = I - ~-'~Ei=I W(P-(-X=i) wC~

a= |

(7)

7.4.3. Parameter estimation
The parameters that are required to fit the above equations are as follows:

(1) N, W, lmax which can be accurately known from a given FPGA specification,
(2) Cr, R which can be generated from a given routing instance,
(3) P (E1), P (E2) which have to be empirically derived from perhaps a lot of similar actual FPGA

solutions,
(4) Fc, Fs, a l , a2 which again are fixed for a given C and S block topology.

In [34], the authors compare the results to theoretical prediction versus actual values from applying
their FPGA router to actual circuits. Their conclusion is that the two display a surprisingly close match
with the theoretical estimate of routability on the average being around 5 percentage points below
(s.d. is also around 5) the experimental values. The difference is higher for low values of F¢ due to the
inaccuracies of the model in describing good C-block topologies. From experimentation, the authors
conclude that routability is low for low values of Fc and only approaches 100% as Fc approaches one-
half of W. Improving S-block connectivity also improves routability but again for 100% routability
must be accompanied by Fc greater than or equal to W/2. Another interesting observation was that
connections pass through S-blocks straight through more than 70% of the time. Consequently, values
of Fs that correspond to higher ce~ values produce markedly greater returns in terms of routability.

238 R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

8. Final remarks

In this paper, we have reviewed some of the major issues and algorithms pertaining to the design
of systems using FPGAs and other PLDs. The choice of an appropriate device for implementing a
certain function can be based on two main factors:

• Size: The number of inputs, product terms, outputs provided for. The size of the OR terms is also
relevant for PAL design. For very large problems, an FPGA may be more suitable for a compact
implementation. FPGAs and complex PLDs address the case of multi-level random logic and
in devising larger systems. FPGA architectures with large-grained logic block structures favor
more register-intensive designs; while small logic blocks with segmented routing is better to
efficiently implement large fan-in combinational circuits.

• Application: PROMs are useful for table-look up operations such as in code conversion or
when the logic function needs too many product terms (arithmetic functions) or as a function
generator. In the latter context, a PROM can be looked upon as a programmable logic element
(PLE).

PLAs and PALs are more suited for sparser functions. In case of random or unstructured
logic such as in sequencers, PLAs are more desirable since there is significant product term
sharing possibility. On the other hand, for logic comprising of an array of similar elements PAL-
devices are preferred since there is no product sharing between array elements. Such structures
often arise in datapath elements such as registers and counters. Complex PLDs and FPGAs can
provide opportunities to implement entire systems and also provide more on-chip memory and
logic.

FPGAs serve three niche markets:
• Rapid prototyping: The FPGA enables the transfer of a new design onto silicon in a matter

of hours as opposed to weeks and even months for other types of ASICs. This may be
important as an architectural evaluation tool wherein the same hardware can be used to
implement and evaluate several options for a particular design. In this reprogrammable
mode, the FPGA can also serve as a valuable instructional tool for classroom projects.

• Hardware emulation: Here, the FPGA is used as some sort of silicon breadboarding of the
design [35]. Especially, in applications where logic simulation is not possible owing to
real-time events, the FPGA can be used as an in-circuit working prototype. Since, speed of
the design is critical, programming using metal links or anti-fuses may be desirable.

• Functional accelerator: The FPGA can provide hardware assistance to parallel algorithm
development by supporting reconfigurability in which the same hardware can be used to
behave differently at different times so as to best match the communication requirements
among the parallel processors [36].

Whereas two-level logic synthesis is more relevant for AND/OR type of PLDs, FPGAs are better
served by multi-level logic synthesis tools. Good technology mapping and place and route algorithms
are also very important for efficient implementations. Though routing for FPGAs are currently ex-
tensions of existing gate-array algorithms, there is a need for more specialized routers that take into
account the additional constraints caused by the fixed wiring resources.

R. Venkateswaran, P. Mazumder/ INTEGRATION, the VLSl journal 17 (1994) 191-240 239

References

[1] G. Bostock, Programmable Logic Devices: Technology and Applications (McGraw-Hill, New York, 1988).
[2] M. Bolton, Digital Systems Design with Programmable Logic, Electronic Systems Engineering Series (Addison-

Wesley, Reading, Mass., 1990).
[3] D. Pellerin and M. Holley, Practical Design Using Programmable Logic (Prentice-Hall, Englewood Cliffs, N.J.,

1991).
[4] P.K. Lala, Digital System Design Using Programmable Logic Devices (Prentice-Hall, Englewood Cliffs, N.J., 1990).
[5] J. Rose, R. Francis et al., Architecture of FPGAs: The effect of logic block functionality on area efficiency, Journal

of Solid State Circuits, Vol. 25, pp. 1217-1225, 1990.
[6] S. Singh, J. Rose et al., The effect of logic block architecture on FPGA performance, Journal of Solid State Circuits,

Vol. 27, pp. 281-287, 1992.
[7] Altera Data Book, 1990 ed., October.
[8] H.C. Hsieh et al., Third generation architecture boosts speed and density of FPGAs, in: Custom Integrated Circuits

Conf., pp. 31.2.1-31.2.7, 1990.
[9] K. E1-Ayat, A. E1-Gamal et al., A CMOS electrically configurable gate array, Journal of Solid State Circuits, Vol. 24,

pp. 752-761, 1989.
[10] A. E1-Gamal, J. Greene et al., An architecture for electrically configurable gate arrays, Journal of Solid State Circuits,

Vol. 24, pp. 394-398, 1989.
[11] T. Clark, Fitting programmable logic, IEEE Spectrum, pp. 36-39, 1992.
[12] XILINX, 2100 Logic Drive, San Jose, California, 95214, The Programmable Gate Array Book, 1991 ed.
[13] R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A. Sangiovanni-Vincentelli, Logic Minimization Algorithms for VLSI

Synthesis (Kluwer Academic, Dordrecht, 1984).
[14] T. Villa and A. Sangiovanni-Vincentelli, NOVA: state assignment of finite state machines for optimal two-level logic

implementations, IEEE Trans. on CAD, Vol. 9, pp. 1326-1334, 1990.
[15] A. Sangiovanni-Vincentelli, A. E1 Gamal, and J. Rose, Synthesis methods for field programmable gate arrays,

Proceedings of the IEEE, pp. 1057-1083, 1993.
[16] E. Detjens et al., Technology mapping in MIS, Proc. ICCAD, pp. 116-119, November 1987.
[17] S. Devadas, B. Ma, R. Newton, and A. Sangiovanni-Vincentelli, MUSTANG: state assignment of finite state machines

targetting multi-level logic implementations, IEEE Trans. on CAD, Vol. 7, December 1990.
[18] W. Lin and A.R. Newton, Synthesis of multiple level logic from symbolic high-level description languages, Proc.

VLSI 89 Conference, Munich, Germany, August 1989.
[19] B. Preas and M. Lorenzetti, Physical Design Automation of VLSI Systems (Benjamin/Cummings, Menlo Park, Calif.,

1988).
[20] K. Keutzer, DAGON: technology binding and local optimization by DAG matching, Proc. 24th DAC, pp. 341-347,

June 1987.
[21] G. de Micheli and E Mailhot, Algorithms for technology mapping based on binary decision diagrams and on boolean

operations, IEEE Trans. on CAD, pp. 599-620, May 1993.
[22] R. Murgai et al., Logic synthesis for programmable gate arrays, Proc. 27th DAC, pp. 620-625, June 1990.
[23] R.J. Francis, J. Rose, and Z. Vranesic, Chortle-crf: Fast technology mapping for lookup-table based FPGAs, Proc.

28th DAC, pp. 227-233, June 1991.
[24] N. Woo, A heuristic method for FPGA technology mapping based on edge visibility, Proc. 28th DAC, 1991.
[25] C. Sechen, Chip-planning, placement, and global routing of macro/custom cell integrated circuits using simulated

annealing, in: Design Automation Conference, pp. 73-80, 1988.
[26] J. Greene, V. Roychowdury, S. Kaptanoglu, and A. El Gamal, Segmented channel routing, Proc. 27th DAC, pp. 567-

572, June 1990.
[27] H.C. Hsieh et al., A 9000-gate user programmable gate array, in: Custom Integrated Circuits Conf., pp. 15.3.1-15.3.7,

1988.
[28] J. Rose and S. Brown, Flexibility of interconnection structures for FPGAs, Journal of Solid State Circuits, Vol. 26,

pp. 277-282, 1991.
[29] S. Brown, J. Rose, and Z. Vranesic, A detailed router for field programmable gate arrays, 1EEE Trans. on CAD,

Vol. 11, pp. 620-628, 1992.

240 R. Venkateswaran, P. Mazumder/INTEGRATION, the VLSl journal 17 (1994) 191-240

[30] D.W. Hill and D. Cassiday, Preliminary description of tabula rasa: an electronically reconfigurable hardware engine,
in: Int. Conference on Computer and Design, 1990.

[31] C. Pfister, The LABRYS project, in: Int. Workshop on Field Programmable Logic and Applications, 1991.
[32] J.E Beetem, Simultaneous placement and routing of the labyrinth reconfigurable logic array, in: Int. Workshop on

Field Programmable Logic and Applications, 1991.
[33] R. Linsker, An iterative improvement penalty-function driven wire routing system, IBM Journal of Research and

Development, Vol. 28, No. 5, pp. 613-624, 1984.
[34] S.D. Brown et aL, Field-Programmable Gate arrays (Kluwer Academic, Dordrecht, 1992).
[35] Quicktum Systems, 325 E. Middlefield Road, Mountain View, CA 94043, RPM Emulation System, 1990.
[36] D. Lopresti, M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, and D. Sweely, Building and using a highly

parallel programmable logic array, Computer, pp. 81-89, January 1991.
[37] D. Hawley, Advanced PLD architectures, in: Int. Workshop on Field Programmable Logic and Applications, 1991.

R. Venkateswaran (S'89) received the B. Tech degree in computer science from the Indian Institute
of Technology, Bombay, in 1988 and the M. S. degree in computer science and engineering in 1992
from the University of Michigan, Ann Arbor where he is now pursuing a Ph.D. degree. From 1991
to 1994, he has received the IBM Graduate Fellowship in Computer Science. His research interests
include optimization problems, VLSI layout algorithms, special-purpose architectures and parallel
algorithms particularly for CAD problems, as well as custom CMOS and FPGA designs.

Pinaki Mazumder received a B.S.E.E. degree from the Indian Institute of Science in 1976, an M.Sc.
degree in Computer Science from the University of Alberta, Canada in 1985, and a Ph.D. degree in
Electrical and Computer Engineering from the University of Illinois at Urbana-Champaign in 1987.
Presently, he is working as an Associate Professor at the Department of Electrical Engineering and
Computer Science of the University of Michigan at Ann Arbor. Prior to this, he worked two years
as a research assistant at the Coordinated Science Laboratory, University of Illinois, and for six
years as a Senior Design Engineer at BEL, India's primem and largest electronics industry, where he
developed several types of analog and digital integrated circuits for consumer electronics products.
During the summers of 1985 and 1986, he worked as a Member of Technical Staff in the Naperville
branch of AT&T Bell Laboratories. He is a recipient of Digital's Incentives for Excellence Award,

National Science Foundation Research Initiation Award, Bell Northern Research Laboratory Faculty Award and BFGoodrich
Collegiate Inventors Award. His research interest includes VLSI memory testing, physical design automation, and ultrafast
digital circuit design. He has written over 85 archival journal and rigorously reviewed conference proceedings papers and
numerous industrial technical reports and memoranda while he worked at BEL and Bell Labs. He has authored a book,
titled Semiconductor Memories: Testing and Reliability (Kluwer Academic Publishers, Dordrecht, 1994), and currently he
is completing a book on the applications of genetic algorithms for VLSI layout systems. In addition to these books, he
coauthored two monographs--one on VLSI routing algorithms and their parallel implementations, and the other on ultra-fast
digital circuits. He was a Guest Editor of the special issues on multimegabit memory design and testing of IEEE Design
and Test of Computers (June 1993) and Journal of Electronic Testing-Theory and Applications (August 1994).
Dr. Mazumder is a member of IEEE, Sigma Xi, Phi Kappa Phi and ACM SIGDA.

