BLOWING UP THE POWER OF A SINGULAR CARDINAL

Moti Gitik
School of Mathematics
Raymond and Beverly Sackler
Faculty of Exact Sciences
Tel Aviv University
Tel Aviv 69978 Israel

Introduction

Suppose that κ is a singular cardinal of cofinality ω. We like to blow up its power. Overlapping extenders where used for this purpose in [Git-Mag2]. On the other hand, it is shown in [Git-Mit] that it is necessary to have for every $n<\omega$ unboundedly many α 's in κ with $o(\alpha) \geq \alpha^{+n}$. The aim of the present paper is show that this assumption is also sufficient. Ideas of [Git hid. et] will be extended in order to produce $\kappa^{++} \omega$-sequences. In [Git hid. ext] an ω-sequence corresponding to two different sequences of measures was constructed. Here we would like to construct a lot of ω-sequences corresponding to the same sequence of measures.

The first stage will be to to force with a forcing which produces κ^{++}Prikry sequences but the cost is that κ^{++}and is collapsed. Then a projection of this forcing will be defined such that the resulting forcing will still have κ^{++}Prikry sequences but also satisfy κ^{++}-c.c. and preserve κ strong limit cardinal.

1. Preparation Forcing- the first try

Let us assume GCH. Suppose that $\kappa_{\omega}=\bigcup_{n<\omega} \kappa_{n}$ and $o\left(\kappa_{n}\right)=\kappa_{n}^{+n+2}+1$. We will define a forcing which will combine ideas of [Git-Mag2] and [Git hid. ext]. In contrast to [Git hid. ext] we like to produce lots of Prikry sequences even by the cost of collapsing cardinals. The main future of this forcing will be the Prikry condition. Splitting it above and below $\kappa_{n}(n<\omega)$ we will be able to conclude that the part above κ_{n} does not add new subsets to κ_{n} and the part below does not effect cardinals above κ_{n}. The problematic cardinal will be κ_{ω}^{++}. In order to prevent it from collapsing we construct a projection of the forcing which will satisfy κ_{ω}^{++}-c.c.

For every $n<\omega$. Let us fix a nice system $\mathbb{U}_{n}=\ll \mathcal{U}_{n, \alpha}\left|\alpha<\kappa_{n}^{+n+2}>,<\pi_{n, \alpha, \beta}\right|$ $\alpha, \beta<\kappa_{n}^{+n+2}, \mathcal{U}_{n, \alpha} \triangleleft \mathcal{U}_{n, \beta} \gg$. We refer to [Git-Mag1] for the basic definitions. Actually an extender of the length κ_{n}^{+n+2} will be fine for our purpose as well.

For every $n<\omega$, let us first define a forcing notion $\left\langle Q_{n}, \leq_{n}\right\rangle$ and then use it as the level n in the main forcing.

Fix $n<\omega$. We like to define a forcing $\left\langle Q_{n}, \leq_{n}\right\rangle$. Let us drop the lower index n for a while.
Q will be the union of two sets Q^{0} and Q^{1} defined below.
Definition 1.1. Set Q^{1} to be the product of $\left\{p \mid p\right.$ is a partial function from κ^{+n+2} to κ^{+n+2} such that dom p is an ordinal less than $\left.\kappa^{+n+2}\right\}$ and $\{q \mid q$ is a partial function from κ_{ω}^{++}to κ^{+n+2} of cardinality less than $\left.\kappa_{\omega}^{+}\right\}$.

The ordering on Q^{1} is an inclusion. I.e. Q^{1} is the product of the product of two Cohen forcings: for adding a new subset to κ^{+n+2} and for adding κ_{ω}^{++}new subsets to κ_{ω}^{+}.

Definition 1.2. A set Q^{0} consists of triples $\langle p, a, f\rangle$ where
(1) $p=\left\langle\left\{<\gamma, p^{\gamma}>\mid \gamma<\delta\right\}, g, T\right\rangle$ where
(1a) $g \subseteq \kappa^{+n+2}$ of cardinality $<\kappa$.
(1b) $\delta<\kappa^{+n+2}$
(1c) $o \in g$ and every initial segment of g (including g itself) has the least upper bound in g.
(1d) $\delta>\max (g)$
(1e) for every $\gamma \in g p^{\gamma}$ is the empty sequence
(1f) $T \in \mathcal{U}_{\max (g)}$
(1h) for every $\gamma \in \delta \backslash g p^{\gamma}$ is an ordinal below κ_{ω}^{++}.

Further we shall denote g by $\operatorname{supp}(p)$, the maximal element of g by $m c(p), \delta$ by $\delta(p)$ and T by $T(p)$. Let us refer to ordinals below $\delta(p)$ as coordinates. We will frequently confuse between an ordinal γ and one element sequence $\langle\gamma\rangle$.
(2) a is a partial one to one order preserving function between κ_{ω}^{++}and $\delta(p)$ of cardinality less than κ. Also every $\gamma \in \operatorname{dom} a$ is below $m c(p)$ in sense of the ordering of extender \mathbb{U}.
(3) f is a partial function from κ_{ω}^{++}to κ^{+n+2} of cardinality less than κ_{ω}^{+}and such that $\operatorname{dom} f \cap \operatorname{dom} a=\emptyset$.

Let us give some intuitive motivation for the definition of Q^{0}. Basically we like to add κ_{ω}^{++}. Prikry sequences (actually a one element sequence).

The length of the extender used is only κ^{+n+2}. A typical element of Q^{0} consists of a triple $\langle p, a, f\rangle$. The first part of it p is as a condition of [Git-Mag1] with slight changes need for mainly technical reasons. The idea is to assign ordinals $<\kappa_{\omega}^{++}$to the coordinates of such p 's. a is responsible for this assignment. Basically, if for some $\alpha<\kappa_{\omega}^{++}, \beta<\kappa^{+n+2}$ $a(\alpha)=\beta$, then α-th sequence will be read from the β-th Prikry sequence. Clearly, we do not want to allow this assignment to grow into the one to one correspondence between κ^{+n+2} and κ_{ω}^{++}. The third part f and mainly the definition of the ordering below is designed to prevent such correspondence.

Definition 1.3. $\quad Q=Q^{0} \cup Q^{1}$.
Let us turn to the definition of the order over Q. First we define \leq^{*} the pure extension.
Definition 1.4. Let $t, s \in Q$. Then $t \leq^{*} s$ if either
(1) $t, s \in Q^{1}$ and t is weaker than s in the ordering of Q^{1} or
(2) $t, s \in Q^{0}$ and the following holds:
let $t=\langle p, a, f\rangle, s=\langle q, b, g\rangle(2 \mathrm{a}) p \leq^{*} q$ in sense of [G2t-Mag1] with only addition in (v):
(i) $\delta(p) \leq \delta(q)$
(ii) $\operatorname{supp}(p) \subseteq \operatorname{supp}(q)$
(iii) for every $\gamma<\delta(p) p^{\gamma}=q^{\gamma}$
(iv) $\pi_{m c(q) m c(p)}$ projects $T(q)$ into $T(p)$
(v) for every $\gamma \in \operatorname{supp}(p) \cup \operatorname{dom} a$ and $\nu \in T(q)$

$$
\pi_{m c(q), \gamma}(\nu)=\pi_{m c(p), \gamma}\left(\pi_{m c(q), m c(p)}(\nu)\right)
$$

(2b) $a \subseteq b$
(2c) $f \subseteq g$.

Notice that in contrast to [Git-Mag1], the commutativity in (2a)(v) does not cause a special problem since the number of coordinates $\operatorname{supp}(p) \cup \operatorname{dom} a$ has cardinality $<\kappa$, i.e. below the degree of completeness of ultrafilters in the extender used here.

Definition 1.4.1. Let $s, t \in Q$. We say that s extends t if $t \leq^{*} s$ or $t \in Q^{0}, s \in Q^{1}$ and the conditions below following hold.

Let $t=\langle p, a, f\rangle$ and $s=\langle q, h\rangle$.
(1) $\delta(p) \leq \operatorname{dom} q$ (recall that by 1.1, $\operatorname{dom} q$ is an ordinal $<\kappa^{+n+2}$).
(2) for every $\gamma \in \delta(p) \backslash \operatorname{supp}(p)$ if $p^{\gamma}<\kappa^{+n+2}$ then $p^{\gamma}=q(\gamma)$ otherwise $q(\gamma)=\kappa$.
(3) $q(m c(p)) \in T(p)$
(4) for every $\gamma \in \operatorname{supp}(p) q(\gamma)=\pi_{m c(p), \gamma}(q(m c(p)))$
(5) $h \supseteq f$
(6) $\operatorname{dom} h \supseteq \operatorname{dom} a$
(7) for every $\beta \in \operatorname{dom} a h(\beta)=q(a(\beta))$, if $a(\beta) \in \operatorname{supp}(p)$ or $h(\beta)=\pi_{m c(p), a(\beta)}(q(m c(p)))$, otherwise.

The conditions (1) to (4) are as in [Git-Mag 1] with only change in (2) in case $p^{\gamma} \geq$ κ^{+n+2}. Then it is replaced by κ. The idea behind this is to remove unnecessary information a condition may have in order to prevent collapses of cardinals above κ^{+n+2}. The conditions (5) to (7) are the heard of the matter. Our purpose is to forbid the assignment a from growing into a $1-1$ function from κ_{ω}^{++}to κ^{+n+2} but to still produce κ_{ω}^{++}-sequences. What actually happens in the definition is a switch from Prikry type harmful forcing to a nice Cohen type forcing. The only essential information from a is put into h. The actual place of the sequence $\beta(\beta \in \operatorname{dom} a)$ is hidden after passing from t to s.

Lemma 1.5. Q^{1} is dense in Q.
The proof follows from Definition 1.4.1.
Lemma 1.6. $\langle Q, \leq\rangle$ does not collapse cardinals or blows up their powers.
Follows from 1.5.
Lemma 1.7. $\left\langle Q, \leq, \leq^{*}\right\rangle$ satisfies the Prikry condition.
The proof of the parallel statement of [Git-Mag 1] applies here without essential changes.

Now let us put all Q_{n} 's defined above together.

Definition 1.8. A set of forcing conditions \mathcal{P} consists of all elements p of the form $\left\langle p_{n} \mid n<\omega\right\rangle$ so that
(1) for every $n<\omega p_{n} \in Q_{n}$
(2) there exists $\ell<\omega$ such that for every $n \geq \ell p_{n} \in Q_{n}^{0}$.

Let us denote further the least such ℓ by $\ell(p)$.
Definition 1.9. Let $p=\left\langle p_{n} \mid n<\omega\right\rangle, q=\left\langle q_{n} \mid n<\omega\right\rangle \in \mathcal{P}$. We say that p extends $q(p \geq q)$ if for every $n<\omega p_{n}$ extends q_{n} in the ordering of Q_{n}.

Definition 1.10. Let $p, q \in \mathcal{P}$. We say that p is a direct or pure extension q iff $p \geq q$ and $\ell(p)=\ell(q)$.

Lemma 1.11. $\left\langle\mathcal{P}, \leq, \leq^{*}\right\rangle$ satisfies the Prikry condition.

Sketch of the Proof. Let σ be a statement of the forcing language and $p \in \mathcal{P}$. We are looking for $q \geq^{*} p$ deciding σ. Assume for simplicity that $\ell(p)=0$. As in [Git-Mag 1] we extend p level by level trying to decide σ. Suppose that we passed level 0 and are now on level 1 . We have here basically two new points. The first to our advantage is that the measures on the level 1 are κ_{1}-complete and $\kappa_{1}>\kappa_{0}$. So we can always shrink sets of measure 1 in order to have the same condition in Q_{0}^{0} on the level 0 . The second point is that the cardinality of Q_{0}^{1} is big. However let us then use the completeness of Q_{0}^{1}. Recall that Q_{0}^{1} is κ_{ω}^{+}-closed forcing.

The rest of the proof is parallel to [Git-Mag 1].
Let G be a generic subset of \mathcal{P}. For $\beta<\kappa_{\omega}^{++}$let $G(\beta): \omega \rightarrow \kappa_{\omega}$ be the function defined as follows. $G(\beta)(n)=\nu$ iff there is $\left\langle p_{k} \mid k<\omega\right\rangle \in G$ such that $\beta \in \operatorname{dom} p_{n, 2}$ $p_{n 2}(\beta)=\nu$, where $p_{n, 2}$ is the second coordinate of $p_{n} \in Q_{n}^{1}$.

Notice that we cannot claim $G(\beta)$'s are increasing with β. Actually, lots of them will be old sequences and also they may be equal or reverse the order. But the following is still true.

Lemma 1.12. For every $\gamma<\kappa_{\omega}^{++}$there is $\beta, \gamma<\beta<\kappa_{\omega}^{++}$such that $G(\beta)$ is above every $G\left(\beta^{\prime}\right)$ with $\beta^{\prime}<\beta$.

Proof: Work in V. Let $p \in \mathcal{P}$. Suppose for simplicity that $\ell(p)=0$. Otherwise work above the level $\ell(p)-1$. Let $p=\left\langle p_{n} \mid n<\omega\right\rangle$ and $p_{n}=\left\langle p_{n 0}, p_{n 1}, p_{n 2}\right\rangle(n<\omega)$. Pick some $\beta, \gamma<\beta<\kappa_{\omega}^{++}$which above everything appears in p, i.e. $\beta>\cup\left\{\delta\left(p_{n 0}\right) \cup \sup \left(\operatorname{dom} p_{n 1} \cup\right.\right.$ $\left.\left.\operatorname{dom} p_{n 2}\right) \mid n<\omega\right\}$. Extend p to a condition $q=\left\langle q_{n} \mid n<\omega\right\rangle, q_{n}=\left\langle q_{n 0}, q_{n 1}, q_{n 2}\right\rangle$ such that $q_{n 1}=p_{n 1}, q_{n 2}=p_{n 2}$ and $m c\left(q_{n 0}\right)>m c\left(p_{n 0}\right)$ for every $n<\omega$. Extend now q to $r=\left\langle r_{n} \mid n<\omega\right\rangle, r_{n}=\left\langle r_{n 0}, r_{n 1}, r_{n 2}\right\rangle$ by adding the pair $\left\langle\beta, m c\left(q_{n 0}\right)\right\rangle$ to $q_{n 1}$ for every $n<\omega$.

We claim that

$$
\left.r \|\left(\underset{\sim}{G}(\beta)>\underset{\sim}{G}\left(\beta^{\prime}\right) \quad \text { for every } \quad \beta^{\prime}<\beta\right)\right)
$$

Fix $\beta^{\prime}<\beta$ and let $s \geq r$. W.l. of $g . \ell(s)=\ell(r)=0$. Since otherwise we repeat the same argument above $\ell(s)$. Let $s=\left\langle s_{n} \mid n<\omega\right\rangle$ and $s_{n}=\left\langle s_{n 0}, s_{n 1}, s_{n 2}\right\rangle$ for every $n<\omega$. Denote by A the set of all n 's such that $\beta^{\prime} \in \operatorname{dom} s_{n 1}$. For every $n \in \omega \backslash A$ extend s_{n} by adding there pair $\left\langle\beta^{\prime}, 0\right\rangle$ to $s_{n 2}$. Let us still denote the resulting condition by s. Then the function $G\left(\beta^{\prime}\right) \upharpoonright \omega \backslash A$ will be forced by s to be an old function. Hence $G(\beta) \upharpoonright \omega \backslash A$ is above it.

Now let $n \in A$. Then, since $\beta^{\prime}<\beta, \beta^{\prime}, \beta \in \operatorname{dom} s_{n 1}$ and $s_{n 1}$ is order preserving, the coordinate assigned to β^{\prime} by $s_{n 1}$ is below the one assigned to β. Hence s forces that $\underset{\sim}{G}(\beta) \upharpoonright A$ is above $\underset{\sim}{G}\left(\beta^{\prime}\right) \upharpoonright A$ and we are done.

For $n<\omega$ let us split \mathcal{P} into $\mathcal{P} \upharpoonright n$ and $\mathcal{P} \backslash n$ as follows:

$$
\begin{aligned}
& \mathcal{P} \upharpoonright n=\{p \upharpoonright n \mid p \in \mathcal{P}\} \\
& \mathcal{P} \backslash n=\{p \backslash n \mid p \in \mathcal{P}\} .
\end{aligned}
$$

The following lemma is routine
Lemma 1.13. For every $n<\omega$ the forcing with \mathcal{P} is the same as the forcing with $(\mathcal{P} \backslash n) \times(\mathcal{P} \upharpoonright n)$.

Lemma 1.14. $\langle\mathcal{P}, \leq\rangle$ preserves the cardinals $\leq \kappa_{\omega}^{+}$and $G C H$ holds below κ_{ω} in a generic extension by \mathcal{P}.

Proof: For every $n<\omega \kappa_{n+1}$ is preserved since \mathcal{P} splits as 1.13 into a forcing $\mathcal{P} \backslash n$ and $\mathcal{P} \upharpoonright n$. By analogous of 1.11 for $\mathcal{P} \backslash n, \mathcal{P} \backslash n$ does add new bounded subsets of κ_{n+1}. By 1.6,
$\mathcal{P} \upharpoonright n$ preserves cardinals. Therefore, nothing below κ_{ω} is collapsed. Now if κ_{ω}^{+}is collapsed then $\left|\kappa_{\omega}^{+}\right|=\kappa_{\omega}$ which is impossible by the Weak Covering Lemma [Mit-St-Sch] or just directly using arguments like those of [Git-Mag 1], Lemma 1.11.

Unfortunately, κ_{ω}^{++}is collapsed by \mathcal{P} as it is shown in the next lemma.
Lemma 1.15. In $V[G]\left|\left(\kappa_{\omega}^{++}\right)^{V}\right|=\kappa_{\omega}^{+}$.

Proof: Work in V. The cardinality of the set $\prod_{n<\omega} \kappa_{n}^{+n+2} /$ finite is κ_{ω}^{+}. Fix some enumeration $\left\langle g_{i} \mid i<\kappa_{\omega}^{+}\right\rangle$of it.

Now in $V[G]$, let $p=\left\langle p_{n} \mid n<\omega\right\rangle \in G, p_{n}=\left\langle p_{n 0}, p_{n 1}, p_{n 2}\right\rangle(n<\omega), \beta<\kappa_{\omega}^{++}$and starting with some $n_{0}<\omega \beta \in \operatorname{dom} p_{n 1}$. Find $i<\kappa_{\omega}^{+}$s.t. the function $\left\{\left\langle n, p_{n 1}(\beta)\right\rangle \mid n \geq\right.$ $\left.n_{0}\right\}$ belongs to the equivalence class g_{i}. Set then $i \mapsto \beta$. Using genericity of G it is easy to see that this defines a function from κ_{ω}^{+}unboundedly into κ_{ω}^{++}.

We would like to project the forcing \mathcal{P} to a forcing preserving κ_{ω}^{++}. The idea is to make it impossible to read from the sequence $G(\beta)\left(\beta<\kappa_{\omega}^{++}\right)$the sequence of coordinates (mod finite) which produces $G(\beta)$ in sense of 1.15 . The methods of [Git] will be used for this purpose. But first the forcing \mathcal{P} should be fixed slightly. The point is that we like to have much freedom in moving β 's from the beginning. \mathcal{P} is quite rigid in this sense. Thus, for example, if some $\beta<\kappa_{\omega}^{++}$corresponds to a sequence of coordinates g in $\prod_{n<\omega} \kappa_{n}^{+}$, then using $G(\beta)$ only it is easy to reconstruct g modulo finite.

2. The Preparation Forcing

Suppose that $n<\omega$ is fixed. For every $k \leq n$ we consider a language $\mathcal{L}_{n, k}$ containing a constant c_{α} for every $\alpha<\kappa_{n}^{+k}$ and a structure

$$
\mathfrak{a}_{n, k}=\left\langle H\left(\lambda^{+k}\right), \in, \lambda, 0,1, \ldots, \alpha, \ldots, \mid \alpha<\kappa_{n}^{+k}\right\rangle
$$

in this language, where λ is a regular cardinal big enough. For an ordinal $\xi<\lambda$ (usually ξ will be below κ_{n}^{+n+2}) we denote by $t p_{n, k}(\xi)$ the $\mathcal{L}_{n, k}$-type realized by ξ in $\mathfrak{a}_{n, k}$. Let $\delta<\lambda$. $\mathcal{L}_{n, k, \delta}$ will be the language obtained from $\mathcal{L}_{n, k}$ by adding a new constant $c . \mathfrak{a}_{n, k, \delta}$ will be $\mathcal{L}_{n, k, \delta}$-structure obtained from $\mathfrak{a}_{n, k}$ by interpreting c as δ. The type $t p_{n, k}(\delta, \xi)$ is defined in the obvious fashion. Further we shall freely identify types with ordinals corresponding
to them in some fixed well ordering of the power sets of κ_{n}^{+k} 's. The following is an easy statement proved in [Git].

Lemma 2.0. Suppose that $\alpha_{0}, \alpha_{1}<\kappa_{n}^{+n+2}$ are realizing the same $\mathcal{L}_{n, k, \rho}$-type for some $\rho<\min \left(\alpha_{0}, \alpha_{1}\right)$ and $n \geq k>0$. Then for every $\beta, \alpha_{0} \leq \beta<\kappa_{n}^{+n+2}$ there is $\gamma, \alpha_{1} \leq \gamma<$ κ_{n}^{+n+2} such that the k-1-type realized by β over α_{0} (i.e. $\mathcal{L}_{n, k-1, \alpha_{0}}$-type) is the same as those realized by γ over α_{1}.

Lemma 2.1. Let $\gamma<\kappa_{n}^{+n+2}$. Then there is $\alpha<\kappa_{n}^{+n+2}$ such that for every $\beta \in\left(\alpha, \kappa_{n}^{+n+2}\right)$ the type $t_{n, n}(\gamma, \beta)$ appears (is realized) unboundedly often in κ_{n}^{+n+2}.

Proof: The total number of such types is κ_{n}^{+n+1}. Let $\left\langle t_{i} \mid i<\kappa_{n}^{+n+1}\right\rangle$ be an enumeration of all of them. For each $i<\kappa_{n}^{+n+1}$ set A_{i} to be the subset of κ_{n}^{+n+2} consisting of all the ordinals realizing t_{i}. Define α to be the supremum of $\left\{\cup A_{i} \mid i<\kappa_{n}^{+n+1}\right.$ and A_{i} is bounded in $\left.\kappa_{n}^{+n+2}\right\}$.

Lemma 2.2. Let $\gamma<\kappa_{n}^{+n+2}$. Then there is a club $C \subseteq \kappa_{n}^{+n+2}$ such that for every $\beta \in C$ the type $\operatorname{tp}_{n, n}(\gamma, \beta)$ is realized stationary many times in κ_{n}^{+n+2}.

Proof: Similar to 2.1.

Lemma 2.3. The set $C=\left\{\beta<\kappa_{n}^{+n+2} \mid\right.$ for every $\gamma<\beta \quad \operatorname{tp} p_{n, n}(\gamma, \beta)$ is realized stationary often in $\left.\kappa_{n}^{+n+2}\right\}$ containing a club.

Proof: Suppose otherwise. Let $S=\kappa_{n}^{+n+2} \backslash C$. Then

$$
S=\left\{\beta<\kappa_{n}^{+n+2} \mid \exists \gamma<\beta t p_{n, n}(\gamma, \beta) \quad \text { appears only nonstationary often in } \kappa_{n}^{+n+2}\right\}
$$

and it is stationary. Find $S^{\prime} \subseteq S$ stationary and $\gamma^{\prime}<\kappa_{n}^{+n+2}$ such that for every $\beta \in S^{\prime}$ $t p_{n, n}\left(\gamma^{\prime}, \beta\right)$ appears only nonstationary often in κ_{n}^{+n+2}. But this contradicts 2.2. Contradiction.

For $\ell \leq k \leq n$ and $\mathcal{L}_{n, k}$-type t let us denote by $t \upharpoonright \ell$ the reduction of t to $\mathcal{L}_{n, \ell}$, i.e. the $\mathcal{L}_{n, \ell^{-}}$type obtained from t by removing formulas not in $\mathcal{L}_{n, \ell}$.

Lemma 2.4. Let $0<k, \ell \leq n, \gamma<\beta<\kappa_{n}^{+n+2}$ and t be a $\mathcal{L}_{n, \ell, \gamma}$-type realized above γ. Suppose that $t p_{n, k}(\gamma, \beta)$ is realized unboundedly often in κ_{n}^{+n+2}. Then there is δ, $\gamma<\delta<\beta$ realizing $t \upharpoonright \min (k-1, \ell)$.

Proof: Pick some $\alpha, \gamma<\alpha<\kappa_{n}^{+n+2}$ realizing t. Let $\rho>\max (\beta, \alpha)$ be an ordinal realizing $t p_{n, k}(\gamma, \beta)$. Then ρ satisfies in $H\left(\lambda^{+k}\right)$ the following formula of $\mathcal{L}_{n, k, \gamma}$:
$\exists y(c<y<x) \wedge\left(H\left(\lambda^{+k-1}\right)\right.$ satisfies $\quad \psi(y)$ for every ψ in the set of formulas coded by $\left.c_{t \upharpoonright \min (k-1, \ell)}\right)$.

Hence the same formula is satisfied by β. Therefore, there is $\delta, \gamma<\delta<\beta$ realizing $t \upharpoonright \min (k-1, \ell)$.

The above lemma will be used for proving κ_{ω}^{++}-c.c. of the final forcing via Δ-system argument.

Let us specify now ordinals which will be allowed further to produce Prikry sequences.
Definition 2.5. Let $k \leq n$ and $\beta<\kappa_{n}^{+n+2}$. β is called k-good iff
(1) for every $\gamma<\beta t p_{n, k}(\gamma, \beta)$ is realized unboundedly many times in κ_{n}^{+n+2} and

$$
\begin{equation*}
c f \beta \geq \kappa_{n}^{++} \tag{2}
\end{equation*}
$$

β is called good iff for some $k \leq n \beta$ is k-good.
By Lemma 2.3, there are stationary many n-good ordinals. Also it is obvious that k-goodness implies ℓ-goodness for every $\ell \leq k \leq n$.

Lemma 2.5.1. Suppose that $n \geq k>0$ and β is k-good. Then there are arbitrarily large $k-1$-good ordinals below β.

Proof: Let $\gamma<\beta$. Pick some $\alpha>\beta$ realizing $\operatorname{tp}_{n, k}(\gamma, \beta)$. The fact that $\gamma<\beta<\alpha$ and β is $k-1$-good can be expressed in the language $\mathcal{L}_{n, k, \gamma}$ as in Lemma 2.4. So they are in $t p_{n, k}(\gamma, \beta)$. Hence there is $\delta, \gamma<\delta<\beta$ which is $k-1$-good.

Let us now turn to fixing of the forcings introduced in Section 1. We are going to use on the level n a forcing notion Q_{n}^{*}. It is defined as Q_{n} was with only one addition that each ordinal in the range of assignment functions is good.

Definition 2.6. A set Q_{n}^{*} is the subset of Q_{n} consisting of Q_{n}^{1} and all the triples $\langle p, a, f\rangle$ of Q_{n}^{0} such that every $\alpha \in r n g a$ is good. The ordering of Q_{n}^{*} is just the restriction of the ordering of Q_{n}.

Lemma 1.5, 1.6 and 1.7 hold easily with Q_{n} replaced by Q_{n}^{*}. Let us show few additional properties of Q_{n}^{*} which are slightly more involved.

Lemma 2.7. Suppose $\langle p, a, f\rangle \in Q_{n}^{*}$ and $\kappa_{\omega}^{++}>\beta>\sup (\operatorname{dom} a \cup \operatorname{dom} f)$. Then there is a condition $\langle q, b, f\rangle \geq^{*}\langle p, a, f\rangle$ such that $\beta \in \operatorname{dom} b$ and $b(\beta)$ is n-good.

Proof: Using Lemma 2.3 find some $\xi<\kappa_{n}^{+n+2}$ above $m c(p)$ which is n-good. Now extend p to q such that $\xi \in \operatorname{supp}(q)$. Let $b=a \cup\{\langle\beta, \xi\rangle\}$. Then $\langle q, b, f\rangle$ is as desired. \quad

Lemma 2.8. Suppose that $\langle p, a, f\rangle,\langle q, b, g\rangle \in Q_{n}^{*}, \beta \in \operatorname{dom} a$ it is k-good for $k>1$, $\left\{\gamma_{i} \mid i<\mu\right\} \subseteq(\beta \cap \operatorname{dom} b) \backslash \operatorname{dom} f, \gamma_{0}>\sup (\beta \cap \operatorname{dom} a)$ and $b\left(\gamma_{0}\right)>\sup a^{\prime \prime}(\beta \cap \operatorname{dom} a)$. Then there is $\left\langle p^{*}, a^{*}, f\right\rangle$ a direct extension of $\langle p, a, f\rangle$ such that
(1) $\left\{\gamma_{i} \mid i<\mu\right\} \subseteq \operatorname{dom} a^{*}$.
(2) for every $i<\mu a^{*}\left(\gamma_{i}\right)$ and $b\left(\gamma_{i}\right)$ are realizing the same k - 1-type
(3) for every $i<\mu$, if $b\left(\gamma_{i}\right)$ is ℓ-good $(\ell \leq n)$ then $a^{*}\left(\gamma_{i}\right)$ is $\min (\ell, k-1)$-good.
(4) if t is the n-type over $\sup \left(a^{\prime \prime}(\beta \cap \operatorname{dom} a)\right)$ realized by the ordinal coding $\left\{b\left(\gamma_{i}\right) \mid i<\mu\right\}$, then the code of $\left\{a^{*}\left(\gamma_{i}\right) \mid i<\mu\right\}$ realizes $t\lceil k-1$.

Proof: Denote $\sup \left(a^{\prime \prime}(\beta \cap \operatorname{dom} a)\right)$ by ρ. Let t be the n-type over ρ realized by the ordinal coding $\left\{b\left(\gamma_{i}\right) \mid i<\mu\right\}$. By Lemma 2.4, there is $\delta, \rho<\delta<\beta$ realizing $t \upharpoonright k-1$. Let $\langle\xi i \mid i<\mu\rangle$ be the sequence coded by δ. Define

$$
a^{*}=a \cup\left\{\left\langle\gamma_{i}, \xi_{i}\right\rangle \mid i<\mu\right\}, p^{*}=p
$$

and $f^{*}=f$. Then $\left\langle p^{*}, a^{*}, f^{*}\right\rangle$ is as required.
Lemma 2.8.1. Suppose that $\langle p, a, f\rangle,\langle q, b, g\rangle \in Q_{n}^{*}$ and $\beta \in \operatorname{dom} a, \gamma \in \operatorname{dom} b$ are such that
(1) β is k-good for some $k \geq 2$
(2) $\beta \cap \operatorname{dom} a=\gamma \cap \operatorname{dom} b$ and for every $\delta \in \beta \cap \operatorname{dom} a a(\delta)=b(\delta)$
(3) $\beta>\sup (\operatorname{dom} b)$.

Then there direct extensions $\left\langle p^{*}, a^{*}, f\right\rangle \geq^{*}\langle p, a, f\rangle$ and $\left\langle q^{*}, b^{*}, g\right\rangle \geq^{*}\langle q, b, g\rangle$ such that
(a) $\operatorname{dom} a^{*}=\operatorname{dom} b^{*}=\operatorname{dom} a \cup \operatorname{dom} b$
(b) for every $\delta \in \operatorname{dom} a^{*} a^{*}(\delta)$ and $b^{*}(\delta)$ are realizing the same $k-2$-type over $\rho={ }_{d f}$ $\sup a^{\prime \prime}((\beta \cap \operatorname{dom} a))$
(c) for every $\delta \in \operatorname{dom} b$ if $b(\delta)$ is ℓ-good then $a^{*}(\delta)$ is $\min (\ell, k-2)$-good
(d) for every $\delta \in \operatorname{dom} a$ if $a(\delta)$ is ℓ-good then $b^{*}(\delta)$ is $\min (\ell, k-2)$-good
(e) $m c\left(p^{*}\right)$ and $m c\left(q^{*}\right)$ are realizing the same $k-2$-type over ρ, more over for every $\delta \in \operatorname{dom} a \cup \operatorname{dom} b$ the way $m c\left(p^{*}\right)$ projects to $a^{*}(\delta)$ is the same as $m c\left(q^{*}\right)$ projects to $b^{*}(\delta)$.

Proof: Let s denotes the $k-1$-type realized by $m c(q)$ over $\rho=\sup \left(a^{\prime \prime}(\beta \cap \operatorname{dom} a)\right)$. By Lemma 2.4, there is $\delta, \rho<\delta<\beta$ realizing s. For every $\eta \in \operatorname{dom} b$ let $\widetilde{\eta}$ be the ordinal projecting from δ exactly the same way as $b(\eta)$ projects from $m c(q)$. Notice that for $\eta \in \operatorname{dom} b \cap \operatorname{dom} a \widetilde{\eta}=b(\eta)=a(\eta)<\rho$. Also, $\widetilde{\eta}$ and $b(\eta)$ are realizing the same $k-1$-type over and if $b(\eta)$ is ℓ-good then $\widetilde{\eta}$ is $\min (\ell, k-1)$-good, for every $\eta \in \operatorname{dom} b$.

Pick p^{*} to be a direct extension of p with $m c\left(p^{*}\right)$ above $m c(p), \delta$. Set $a^{*}=a \cup\{\langle\eta, \widetilde{\eta}\rangle \mid$ $\eta \in \operatorname{dom} b\}$. Now we should define the condition $\left\langle q^{*}, b^{*}, g\right\rangle$. Since δ and $m c(q)$ are realizing the same k-1-type, by Lemma 2.0 there exists ν realizing over $m c(q)$ the same $k-2$-type as $m c\left(p^{*}\right)$ is realizing over δ. For $\eta \in \operatorname{dom} a$ define $\widetilde{\eta}$ as above only using $m c\left(p^{*}\right)$ and ν instead of δ and $m c(q)$. Set $b^{*}=b \cup\{\langle\eta, \widetilde{\eta}\rangle \mid \eta \in \operatorname{dom} a\}$. Let q^{*} be the condition obtained from q by adding ν as a new maximal coordinate. Then $\left\langle q^{*}, b^{*}, g\right\rangle$ is as desired.

Let us now define the forcing \mathcal{P}^{*}.
Definition 2.9. A set of forcing conditions \mathcal{P}^{*} consists of all elements $p=\left\langle p_{n}\right| n<$ $\omega\rangle \in \mathcal{P}$ such that for every $n<\omega$
(1) $p_{n} \in Q_{n}^{*}$
(2) if $n \geq \ell(p)$ then $\operatorname{dom} p_{n, 1} \subseteq \operatorname{dom} p_{n+1,1}$ where $p_{n}=\left\langle p_{n 0}, p_{n 1}, p_{n 2}\right\rangle$
(3) if $n \geq \ell(p)$ and $\beta \in \operatorname{dom} p_{n, 1}$ then for some nondecreasing converging to infinity sequence of natural numbers $\left\langle k_{m} \mid \omega>m \geq n\right\rangle$ for every $m \geq n p_{m, 1}(\beta)$ is k_{m}-good. The ordering of \mathcal{P}^{*} is as that of \mathcal{P}.

The intuitive meaning of (3) is that we are trying to make the places assigned to the β-th sequence more and more indistinguishable while climbing to higher and higher levels. The following lemma is crucial for transferring the main properties of \mathcal{P} to \mathcal{P}^{*}.

Lemma 2.10. $\left\langle\mathcal{P}^{*}, \leq^{*}\right\rangle$ is κ_{0}-closed.

Proof: Let $\left\langle p(\alpha) \mid \alpha<\mu<\kappa_{0}\right\rangle$ be a \leq^{*}-increasing sequence of conditions of \mathcal{P}^{*}. Let for each $\alpha<\mu p(\alpha)=\left\langle p(\alpha)_{n} \mid n<\omega\right\rangle$ and for each $n<\omega p(\alpha)_{n}=\left\langle p(\alpha)_{n 0}, p(\alpha)_{n 1}\right.$, $\left.p(\alpha)_{n 2}\right\rangle$. For every $n<\omega$ find $q_{n 0} \in Q_{n}^{0 *}$ such that $q_{n 0} \geq^{*} p(\alpha)_{n 0}$ for every $\alpha<\mu$. Set $q_{n 1}=\bigcup_{\alpha<\mu} p(\alpha)_{n, 1}$ and $q_{n 2}=\bigcup_{\alpha<\mu} p(\alpha)_{n, 2}$ for every $n<\omega$. Set $q_{n}=\left\langle q_{n 0}, q_{n 1}, q_{n 2}\right\rangle(n<\omega)$ and $q=\left\langle q_{n} \mid n<\omega\right\rangle$. Then $q \in \mathcal{P}^{*}$. Let us check the condition (3) of Definition 2.9. Suppose that $\beta \in \operatorname{dom} q_{n, 1}$ for some $n<\omega$. Then there is $\alpha<\mu$ such that $\beta \in \operatorname{dom} p(\alpha)_{n, 1}$. But now the sequence $\left\langle k_{m} \mid \omega>m \geq n\right\rangle$ witnessing (3) for $p(\alpha)$ will be fine also for q.

Analogous of Lemmas $1.11,1.13$ and 1.14 hold for \mathcal{P}^{*}. We define $\mathcal{P}^{*} \upharpoonright n$ and $] \mathcal{P}^{*} \backslash n$ from \mathcal{P}^{*} exactly as $\mathcal{P} \upharpoonright n$ and $\mathcal{P} \backslash n$ were defined from \mathcal{P}.

Lemma 2.11. $\left\langle\mathcal{P}^{*}, \leq, \leq^{*}\right\rangle$ satisfies the Prikry condition.

Lemma 2.12. For every $n<\omega$ the forcing with \mathcal{P}^{*} is the same as the forcing with $\left(\mathcal{P}^{*} \backslash n\right) \times\left(\mathcal{P}^{*} \upharpoonright n\right)$.

Lemma 2.13. $\left\langle\mathcal{P}^{*}, \leq\right\rangle$ preserves the cardinals below κ_{ω} and $G C H$ below κ_{ω} still holds in a generic extension by \mathcal{P}^{*}.

Let us show that \mathcal{P}^{*} adds lot of Prikry sequence. Let G be a generic subset of \mathcal{P}. For $\beta<\kappa_{\omega}^{++}$we define $G(\beta): \omega \rightarrow \kappa_{\omega}$ as in Section 1, i.e. $G(\beta)(n)=\nu$ iff there is $\left\langle p_{k}\right| k<\omega>\in G$ such that $\beta \in \operatorname{dom} p_{n, 2}$ and $p_{n, 2}(\beta)=\nu$ where $p_{n}=\left\langle p_{n 1}, p_{n 2}\right\rangle \in Q_{n}^{1 *}$.

We claim that for unboundedly many β 's $G(\beta)$ will be a Prikry sequence and $G(\beta)$ will be bigger (modulo finite) than $G\left(\beta^{\prime}\right)$ for every $\beta^{\prime}<\beta$. The next lemma proves even slightly more.

Lemma 2.14. Suppose $p=\left\langle p_{k} \mid k<\omega\right\rangle \in \mathcal{P}^{*}, p_{k}=\left\langle p_{k 0}, p_{k 1}, p_{k 2}\right\rangle$ for $k \geq \ell(p), \beta<\kappa_{\omega}^{++}$ and $\beta \notin \bigcup_{\ell(p) \leq k<\omega}\left(\operatorname{dom} p_{k 1} \bigcup \operatorname{dom} p_{k 2}\right)$. Then there is a direct extension q of p such that $\beta \in \bigcup_{k \geq \ell(q)} \operatorname{dom} q_{k, 1}$, where $q=\left\langle q_{k} \mid k<\omega\right\rangle$ and $q_{k}=\left\langle q_{k 0}, q_{k 1}, q_{k 2}\right\rangle$ for every $k \geq \ell(q)$.

Proof: Let us assume for simplicity that $\ell(p)=0$. Set $a=\bigcup_{k<\omega} \operatorname{dom} p_{k 1}$.
Case 1. $\beta \geq \bigcup a$.
Then for every $n<\omega$, pick some $\xi_{n} \delta\left(p_{n}\right)<\xi_{n}<\kappa_{n}^{+n+2}$ which is n-good. It exists by Lemma 2.3. Extend $p_{n 0}$ to a condition $q_{n 0}$ obtained by adding ξ_{n} and some ξ which is above ξ_{n} and $m c\left(p_{n}\right)$ to $\operatorname{supp}\left(p_{n 0}\right)$. Set $q_{n 1}=p_{n 1} \cup\left\{\left\langle\beta, \xi_{n}\right\rangle\right\}, q_{n 2}=p_{n 2}$ and $q_{n}=\left\langle q_{n 0}, q_{n 1}, q_{n 2}\right\rangle$. Then $q=\left\langle q_{n} \mid n<\omega\right\rangle$ will be as desired.

Case 2. $\beta<\cup a$.
Then pick the least $\alpha \in a \alpha>\beta$. By the definition of \mathcal{P}^{*}, namely (2) of $2.9, \alpha \in \operatorname{dom} p_{n 1}$ starting with some $n^{*}<\omega$. by $2.9(3)$ there is a nondecreasing converging to infinity sequence of natural numbers $\left\langle k_{m} \mid \omega>m \geq n^{*}\right\rangle$ such that for every $m \geq n^{*} p_{m, 1}(\alpha)$ is k_{m}-good. Let $n^{* *} \geq n^{*}$ be such that $k_{n^{* *}}>0$. For every $n \geq n^{* *}$ we like to extend p_{n} in order to include β into the extension. So, let $n \geq n^{* *}$. Set $\gamma=\cup\left\{p_{n 2}(\delta) \mid \delta<\alpha\right\}$. Since $p_{n 1}(\alpha)$ is good. $\operatorname{cfp} p_{n 1}(\alpha)>\kappa_{n}^{++}$and hence $\gamma<p_{n 1}(\alpha)$. by Lemma 2.5.1, there $k_{n}-1$-good $\delta, \gamma<\delta<p_{n 1}(\alpha)$. Extend $p_{n 0}$ to some $q_{n 0}$ having δ in support. Set $q_{n 1}=p_{n 1} \cup\{\langle\beta, \delta\rangle\}$, $q_{n 2}=p_{n 2}$ and $q_{n}=\left\langle q_{n 0}, q_{n 1}, q_{n 2}\right\rangle$.

Now for every $n \geq n^{* *} q_{n 1}(\beta)$ will be $k_{n}-1$-good. Clearly, $\left\langle k_{n}-1 \mid n \geq n^{* *}\right\rangle$ is nondecreasing sequence converging to infinity. So $q=\left\langle q_{n} \mid n<\omega\right\rangle$ is a condition in \mathcal{P}^{*} as desired.
\mathcal{P}^{*} still collapses κ_{ω}^{++}to κ_{ω}^{+}. The reason of this as those of Lemma 1.15.
Lemma 2.16. In $V[G]\left|\left(\kappa_{\omega}^{++}\right)^{\vee}\right|=\kappa_{\omega}^{+}$.

The following lemma will be the key lemma for defining the projection of \mathcal{P}^{*} satisfying κ_{ω}^{++}-c.c. in the next section.

But first a definition.
Definition 2.17. Let $p=\left\langle p_{n} \mid n<\omega\right\rangle, q=\left\langle q_{n} \mid n<\omega\right\rangle$ be two conditions in \mathcal{P}^{*}. They are called similar iff
(1) $\ell(p)=\ell(q)$
(2) for every $n<\ell(p)$ the following holds
(2a) $p_{n 0}=q_{n 0}$
(2b) $\min \left(\operatorname{dom} q_{n 1} \backslash\left(\operatorname{dom} q_{n 1} \cap \operatorname{dom} p_{n 1}\right)\right)>\bigcup_{n<\omega} \sup \left(\operatorname{dom} p_{n 1}\right)$
(2c) for every $\beta \in \operatorname{dom} p_{n 1} \cap \operatorname{dom} q_{n 1} p_{n 1}(\beta)=q_{n 1}(\beta)$
(2d) $\left|p_{n 1}\right|=\left|q_{n 1}\right|$ where $p_{n}=\left\langle p_{n 0}, p_{n 1}\right\rangle, q_{n}=\left\langle q_{n 0}, q_{n 1}\right\rangle$
(3) for every $n \geq \ell(p)$ the following holds
(3a) $p_{n 0}=q_{n 0}$
for every $j \in\{1,2\}$
(3b) $\min \left(\operatorname{dom} q_{n j} \backslash\left(\operatorname{dom} q_{n j} \cap \operatorname{dom} p_{n j}\right)\right)>\bigcup_{n<\omega} \sup \left(\operatorname{dom} p_{n j}\right)$
(3c) for every $\beta \in \operatorname{dom} p_{n j} \cap \operatorname{dom} q_{n j} p_{n j}(\beta)=q_{n j}(\beta)$
(3d) $\left|p_{n j}\right|=\left|q_{n j}\right|$ where $p_{n}=\left\langle p_{n 0}, p_{n 1}, p_{n 2}\right\rangle$ and $q_{n}=\left\langle q_{n 0}, q_{n 1}, q_{n 2}\right\rangle$.
Lemma 2.18. Suppose p and q are similar conditions. Then there are $s \geq p$ and $t \geq q$ such that
(1) $\ell(s)=\ell(t)$ and $s \upharpoonright \ell(s)=t \upharpoonright \ell(t)$
(2) for every $n \geq \ell(s)$ the following holds
(2a) $\operatorname{dom} s_{n 1}=\operatorname{dom} t_{n 1}=\operatorname{dom} p_{n 1} \cup \operatorname{dom} q_{n 1}$
(2b) $s_{n 2}=t_{n 2}=p_{n 2} \cup q_{n 2}$
(2c) for every $\beta \in \operatorname{dom} s_{n 1}=\operatorname{dom} t_{n 1} m c\left(s_{n 0}\right)$ projects to $s_{n 1}(\beta)$ exactly in the same way as $m c\left(t_{n 0}\right)$ projects to $t_{n 1}(\beta)$
(3) there exists a nondecreasing converging to infinity sequence of natural numbers $\left\langle k_{n}\right|$ $n \geq \ell(s)\rangle$ with $k_{\ell(s)} \geq 2$ such for every $n \geq \ell(s)$ the $\mathcal{L}_{n, k_{n}, \rho_{n}}$-type realized by $m c\left(s_{n}\right)$ and $m c\left(t_{n}\right)$ are identical, where ρ_{n} the least upper bound of or the code of $p_{n 1}^{\prime \prime}\left(\operatorname{dom} p_{n 1} \cap \operatorname{dom} q_{n 1}\right)$.

Moreover, if in addition $\min \left(\bigcup_{\ell(q) \leq n<\omega} \operatorname{dom} q_{n 1}\right) \backslash \bigcup_{\ell(q) \leq n<\omega}\left(\operatorname{dom} p_{n 1} \cap \operatorname{dom} q_{n 1}\right)$ is in $\operatorname{dom} q_{\ell(q), 1}$, then $s \geq^{*} p, t \geq^{*} q$.
Proof: Let β be the least element of $\left(\bigcup_{\ell(q) \leq n<\omega} \operatorname{dom} q_{n 1}\right) \backslash \bigcup_{\ell(q) \leq n<\omega}\left(\operatorname{dom} p_{n 1} \cap \operatorname{dom} q_{n 1}\right)$. Pick some $n^{*}, \omega>n^{*} \geq \ell(q)$ such that $\beta \in \operatorname{dom} q_{n^{*}, 1}$ and for every $n \geq n^{*} q_{n, 1}(\beta)$ is at least 5 -good. In order to obtain s and t we first extend p, q to p^{\prime}, q^{\prime} by adding Prikry sequence up to level $n^{*}-1$ such that $\ell\left(p^{\prime}\right)=\ell\left(q^{\prime}\right)=n^{*}, p^{\prime} \upharpoonright n^{*}=q^{\prime} \upharpoonright n^{*}$ and $p^{\prime} \backslash n^{*}=p \backslash n^{*}$, $q^{\prime} \backslash n^{*}=q \backslash n^{*}$. Then we apply Lemma 2.8.1. for every $n, \omega>n \geq n^{*}$ to β, q_{n}^{\prime} and p_{n}^{\prime} to produce t_{n} and s_{n}. Finally, $t=p^{\prime} \upharpoonright n^{* \cap}\left\langle t_{n} \mid \omega>n \geq n^{*}\right\rangle$ and $s=p^{\prime} \upharpoonright n^{* \cap}\left\langle s_{n} \mid \omega>n \geq n^{*}\right\rangle$
will be as required.
The standard Δ-system argument gives the following
Lemma 2.19. Among any κ_{ω}^{++}-conditions in \mathcal{P}^{*} there are κ_{ω}^{++}which are alike.

3. The Projection

Our aim will be to project \mathcal{P}^{*} to a forcing notion satisfying κ_{ω}^{++}-c.c. but still producing κ_{ω}^{++}-Prikry sequences.

Definition 3.0. Let $n<\omega$ and suppose $\langle p, f\rangle,\langle q, g\rangle \in Q_{n}^{*}$ are such that $f=g$ then we call them k-equivalent for every $k \leq n$ and denote this by $\longleftrightarrow_{n, k}$.

Definition 3.1. Let $2 \leq k \leq n<\omega$. Suppose $\langle p, a, f\rangle,\langle q, b, g\rangle \in Q_{n}^{*}$. We call $\langle p, a, f\rangle$ and $\langle q, b, g\rangle k$-equivalent and denote this by $\longleftrightarrow_{n, k}$ iff
(0) $f=g$
(1) $\operatorname{dom} a=\operatorname{dom} b$
(2) $m c(p)$ and $m c(q)$ are realizing the same k-type
(3) $T(p)=T(q)$, i.e. the sets of measure 1 are the same
(4) for every $\delta \in \operatorname{dom} a=\operatorname{dom} b a(\delta)$ and $b(\delta)$ are realizing the same k-type
(5) for every $\delta \in \operatorname{dom} a=\operatorname{dom} b$ and $\ell \leq k a(\delta)$ is ℓ-good iff $b(\delta)$ is ℓ-good
(6) for every $\delta \in \operatorname{dom} a=\operatorname{dom} b m c(p)$ projects to $a(\delta)$ the same way as $m c(q)$ projects to $b(\delta)$.

Definition 3.2. Let $p=\left\langle p_{n} \mid n<\omega\right\rangle, q=\left\langle q_{n} \mid n<\omega\right\rangle \in \mathcal{P}^{*}$. We call p and q equivalent and denote this by \longleftrightarrow iff
(1) $\ell(p)=\ell(q)$
(2) for every $n<\ell(p) p_{n} \longleftrightarrow{ }_{n, n} q_{n}$, i.e. $p_{n 1}=q_{n 1}$, where $p_{n}=\left\langle p_{n 0}, p_{n 1}\right\rangle$ and $q_{n}=$ $\left\langle q_{n 0}, q_{n 1}\right\rangle$.
Notice that we require only the parts producing the function from κ_{ω}^{++}to be equal. So, actually the finite portions of the Prikry type forcing become unessential.
(3) there is a nondecreasing sequence $\left\langle k_{n} \mid \ell(p) \leq n<\omega\right\rangle, \lim _{n \rightarrow \infty} k_{n}=\infty, k_{0} \geq 2$ such that for every $n, \ell(p) \leq n<\omega p_{n}$ and q_{n} are k_{n}-equivalent.

It is easy to check that \longleftrightarrow is an equivalence relation.
Now paraphrasing Lemma 2.18 we obtain the following
Lemma 3.3. Suppose that p and q are similar. Then there are equivalent s and t such that $s \geq p$ and $t \geq q$.

Note that for every $n \geq \ell(s)=\ell(t) m c\left(s_{n 0}\right), m c\left(t_{n 0}\right)$ are realizing the same $\mathcal{L}_{n, k_{n}}$ type for $k_{n} \geq 2$, where s, t are produced by Lemma 2.18. There are at most κ_{n}^{++}different measures over κ_{n}. So, the measures corresponding $m c\left(s_{n 0}\right)$ and $m c\left(t_{n 0}\right)$ are the same. Now we can shrink sets of measure one $T\left(s_{n 0}\right)$ and $T\left(t_{n 0}\right)$ to the same set in order to satisfy the condition (3) of Definition 3.1.

Definition 3.4. Let $p, q \in \mathcal{P}^{*}$. Then $p \longrightarrow q$ iff there is a sequence of conditions $\left\langle r_{k} \mid k<m<\omega\right\rangle$ so that
(1) $r_{0}=p$
(2) $r_{m-1}=q$
(3) for every $k<m-1$

$$
r_{k} \leq r_{k+1} \quad \text { or } \quad r_{k} \longleftrightarrow r_{k+1}
$$

See diagram:

Obviously, \longrightarrow is reflexive and transitive.
Lemma 3.5. Suppose $p, q, s \in \mathcal{P}^{*} p \longleftrightarrow q$ and $s \geq p$. Then there are $s^{\prime} \geq s$ and $t \geq q$ such that $s^{\prime} \longleftrightarrow t$.

Proof: Pick a nondecreasing sequence $\left\langle k_{n} \mid \ell(p)=\ell(q) \leq n<\omega\right\rangle, \lim _{n \rightarrow \infty} k_{n}=\infty$ such that $p_{n} \longleftrightarrow{ }_{n, k_{n}} q_{n}$ for every $n \geq \ell(p)$. For each n, $\ell(p) \leq n<\ell(s)$ we extend $q_{n}=\left\langle q_{n 0}, q_{n 1}, q_{n 2}\right\rangle$ to $t_{n}=\left\langle t_{n 0}, t_{n 1}\right\rangle$ by putting $s_{n 0}^{m c\left(p_{n 0}\right)}$ over $m c\left(q_{n 0}\right)$ projecting it over the
rest of the coordinates in $\operatorname{supp} q_{n 0}$ and $r n g q_{n 1}$ and setting $t_{n 1}=s_{n 1}$, where $s_{n}=\left\langle s_{n 0}, s_{n 1}\right\rangle$, $p_{n}=\left\langle p_{n 0}, p_{n 1}, p_{n 2}\right\rangle$ and $s_{n 0}^{m c\left(p_{n 0}\right)}$ is the one element sequence standing over the maximal coordinate of $p_{n 0}$. Notice that this is possible since $T\left(p_{n 0}\right)=T\left(q_{n 0}\right)$ and $s_{n 0}^{m\left(p_{n 0}\right)} \in T\left(p_{n 0}\right)$. Then s_{n} and t_{n} will be n-equivalent. Set $s_{n}^{\prime}=s_{n}$.

Suppose now that $n \geq \ell(s)$. Let $s_{n}=\left\langle s_{n 0}, s_{n 1}, s_{n 2}\right\rangle, p_{n}=\left\langle p_{n 0}, p_{n 1} p_{n 2}\right\rangle$ and $q_{n}=$ $\left\langle q_{n 0}, q_{n 1}, q_{n 2}\right\rangle$.

Case 1. $k_{n}>2$.
By Lemma 2.0, there is δ realizing the same k_{n} - 1 -type over $m c\left(q_{n 0}\right)$ as $m c\left(s_{n 0}\right)$ does over $m c\left(p_{n 0}\right)$. Now pick $t_{n}=\left\langle t_{n 0}, t_{n 1}, t_{n 2}\right\rangle$ to be a condition with $m c\left(t_{n 0}\right)=\delta k_{n}-1$-equivalent to s_{n}. Set $s_{n}^{\prime}=s_{n}$.

Case 2. $\quad k_{n} \leq 2$.
We first extend s_{n} to a stronger condition $s_{n}^{\prime}=\left\langle s_{n 0}^{\prime}, s_{n 1}^{\prime}\right\rangle$. Then we proceed as in the case $\ell(p) \leq n<\ell(s)$.

By the construction $s^{\prime}=\left\langle s_{n}^{\prime} \mid n<\omega\right\rangle$ and $t=\left\langle t_{n} \mid n<\omega\right\rangle$ will be stronger than s and q respectively. Also $\ell\left(s^{\prime}\right)=\ell(t)$ and for every $n<\ell(s) s_{n}^{\prime} \longleftrightarrow_{n, n} t_{n}$. The sequence $\left\langle k_{n}-1 \mid \ell\left(s^{\prime}\right) \leq n<\omega\right\rangle$ will witness the condition (2) of Definition 3.2.

Now let us define the projection.

Definition 3.5. Set

$$
\mathcal{P}^{* *}=\mathcal{P} / \longleftrightarrow .
$$

For $x, y \in \mathcal{P}^{* *}$ let $x \preceq y$ iff there are $p \in x$ and $q \in y$ such that $p \longrightarrow q$.

Lemma 3.7. A function $\pi: \mathcal{P}^{*} \rightarrow \mathcal{P}^{* *}$ defined by $\pi(p)=p / \longleftrightarrow$ projects $\left\langle\mathcal{P}^{*}, \leq\right\rangle$ nicely onto $\left\langle\mathcal{P}^{* *}, \preceq\right\rangle$.

Proof: It is enough to show that for every $p, q \in \mathcal{P}^{*}$ if $p \rightarrow q$ then there is $s \geq p$ such that $q \rightarrow s$. Suppose for simplicity that we have the following diagram witnessing $p \rightarrow q$.

In a general case the same argument should be applied inductively.

Using Lemma 3.5 we find equivalent $f^{\prime} \geq f$ and $h^{\prime} \geq h$. Then applying it to d, c, f^{\prime} find equivalent $f^{\prime \prime} \geq f^{\prime}$ and $c^{\prime \prime} \geq c$. Finally, using Lemma 3.5 for $c^{\prime \prime}, b, a$ we find equivalent $a^{\prime \prime \prime} \geq a$ and $c^{\prime \prime \prime} \geq c^{\prime \prime}$. In the diagram it looks like:

$$
\begin{aligned}
& q \longleftrightarrow \begin{array}{c}
\\
\\
\\
\\
\\
\\
\\
\\
h \\
\\
\\
\mathrm{~V} \mid
\end{array} \\
& f^{\prime \prime} \geq f^{\prime} \geq \underset{\vee}{f} \longleftrightarrow g \\
& \begin{aligned}
& d \longleftrightarrow \\
& c \leq c^{\prime \prime} \leq c^{\prime \prime \prime} \\
& a^{\prime \prime \prime} \geq \begin{array}{l}
\\
a \\
V \mid \\
p
\end{array}
\end{aligned}
\end{aligned}
$$

We claim that $a^{\prime \prime \prime}$ is as required, i.e. $a^{\prime \prime \prime} \geq p$ and $q \longrightarrow a^{\prime \prime \prime}$. Clearly, $a^{\prime \prime \prime} \geq p$. In order to prove $q \longrightarrow a^{\prime \prime \prime}$ we consider the following diagram:

So the sequence $\left\langle q, h, h^{\prime}, f^{\prime}, f^{\prime \prime}, c^{\prime \prime}, c^{\prime \prime \prime}, a^{\prime \prime \prime}\right\rangle$ witnessing $q \longrightarrow a^{\prime \prime \prime}$.
The next lemma follows from Lemma 3.3.
Lemma 3.8. $\mathcal{P}^{* *}$ satisfies κ_{ω}^{++}-c.c.
Let $G \subseteq \mathcal{P}^{*}$ be generic. We like to show that for every $\beta<\kappa_{\omega}^{++} G(\beta) \in V\left[\pi^{\prime \prime}(G)\right]$. The following will be sufficient.

Lemma 3.9. Let $p \longleftrightarrow q, \beta<\kappa_{\omega}^{++}$. Suppose that for some $n<\ell(p) \beta \in \operatorname{dom} p_{n 1}$ then $\beta \in \operatorname{dom} q_{n 1}$ and $p_{n 1}(\beta)=q_{n 1}(\beta)$. Where $p_{n}=\left\langle p_{n 0}, p_{n 1}\right\rangle$ and $q_{n}=\left\langle q_{n 0}, q_{n 1}\right\rangle$.

Proof: By the definition of equivalence $q_{n 1}=p_{n 1}$.
So using Lemma 2.14 we obtain the following
Theorem 3.10. Let G be a generic subset of \mathcal{P}^{*}. Then $V\left[\pi^{\prime \prime}(G)\right]$ is a cardinal preserving extension of V such that $G C H$ holds below κ_{ω} and $2^{\kappa_{\omega}}=\kappa_{\omega}^{++}$.

4. Down to \aleph_{ω}

In this section we sketch an additional construction needed for moving κ_{ω} to \aleph_{ω}. The construction will be similar to those of [Git-Mag1].

Let G be a generic subset of the forcing $\mathcal{P}^{* *}$ of the previous section. Denote by $\left\langle\rho_{n} \mid n<\omega\right\rangle$ a Prikry sequence corresponding to normal measures over κ_{n} 's. Then $c f\left(\prod_{n<\omega} \rho_{n}^{+n+2} /\right.$ finite $)=\kappa_{\omega}^{++}$. Just $G(\beta)$'s $\left(\beta<\kappa_{\omega}^{++}\right)$which are Prikry sequences are witnessing this. The idea will be to collapse ρ_{n+1} to κ_{n}^{+n+2} and all the cardinals between ρ_{n+1}^{+n+4} and κ_{n+1} to ρ_{n+1}^{+n+4}. In order to perform this avoiding collapse of κ_{ω}^{++}, we need modify \mathcal{P}^{*}. For collapsing cardinals between ρ_{n+1}^{+n+4} and κ_{n+1} the method used in [GitMag 1] applies directly since the length of the extender used over κ_{n+1} is only $\kappa_{n+1}^{+(n+1)+2}$. Hence let us describe only the way ρ_{n+1} will be collapsed to κ_{n}^{+n+2}.

Let us deal with a fixed $n<\omega$ and drop the lower index n for a while. Fix a nonstationary set $A \subseteq \kappa^{+n+2}$. In Definition 1.2 we require in addition that $r n g \cap A=\emptyset$ and $\operatorname{supp} p \cap A=\emptyset$. In the definition of the order on Q, Definition 1.4 (2) for $\gamma \in A$ we replace p^{γ} by κ only if $p^{\gamma} \geq \kappa_{n+1}$. Now, the definition of \mathcal{P}, Definition 1.8 is changed as follows:

Definition 4.1. A set of forcing conditions \mathcal{P} consists of all elements p of the form $\left\langle p_{n} \mid n<\omega\right\rangle$ so that
(1) for every $n<\omega p_{n} \in Q_{n}$
(2) there exists $\ell<\omega$ such that for every $n \geq \ell p_{n} \in Q_{n}^{0}$
(3) if $0<n<\ell(p)$, then for every $\gamma \in A_{n-1} \cap \delta\left(p_{n-1,0}\right) p_{n-1,0}^{\gamma}<p_{n, 0}^{0}$, where $p_{n}=$ $\left\langle p_{n 0}, p_{n 1}\right\rangle$ and $p_{n-1}=\left\langle p_{n-1,0}, p_{n-1,1}\right\rangle$.

The meaning of the new condition (3) is that $p_{n 0}^{0}$ which is ρ_{n} is always above all the sequences mentioned in $p_{n-1,0}$. This will actually produce a cofinal function from A_{n} into ρ_{n}.

Finally, in order to keep it while going to the projection $\mathcal{P}^{* *}$, we strengthen the notion of similarity. Thus, in Definition 2.17 we require in addition that for every $\gamma \in$ $a_{n} \cap \delta\left(p_{n 0}\right) p_{n 0}^{\gamma}=q_{n 0}^{\gamma}$. I.e. the values of the cofinal function $A_{n} \mapsto \rho_{n}$ are never changed.

There is no problem in showing the Prikry condition, (i.e. Lemma 1.11) since passing from level $n-1$ to level n we will have a regressive function on a set of measure one for a normal measure over κ_{n}.

5. Loose Ends

We do not know if it is possible under the same initial assumption to make a gap between κ_{ω} and $2^{\kappa_{\omega}}$ wider. Our conjecture is that it is possible. Namely, it is possible to obtain countable gaps. Also we think that uncountable gaps are impossible.

References

[Git] M. Gitik, On Hidden Extenders
[Git-Mit] M. Gitik and W. Mitchell, Indiscernible Sequences for Extenders and the Singular Cardinal Hypothesis.
[Git-Mag1] M. Gitik and M. Magidor, The Singular Cardinal Hypothesis Revisited, in MSRI Conf. Proc., 1991, 243-279.
[Git-Mag2] M. Gitik and M. Magidor, Extender Based Forcing Notions, to appear in JSL.
[Mit-St-Sch] W. Mitchell, J. Steel and E. Schimmerling.

