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Abstract 

A set of natural numbers is called d.r.e. (difference recursively enumerable) if it may ob- 

tained from some recursively enumerable set by deleting the numbers belonging to another 

recursively enumerable set. Sacks showed that for each non-recursive recursively enumer- 

able set A there are disjoint recursively enumerable sets B, C which cover A such that A 

is recursive in neither A n B nor A n C. The thesis constructs a counterexample which 

shows that Sacks's theorem is not in general true when A is d.r.e. rather than recursively 

enumerable. 
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Chapter 1 

Introduction 

All sets in this thesis are subsets of W ,  the set of all natural numbers. Following the usual 

conventions of recursive function theory we identify sets with their characteristic functions. 

A (partial) function is called (partial) recursive if it is computable by an algorithm. A subset 

of the natural numbers A is mcursively enumerable (r.e.) if there is an algorithm which 

will list the elements of A. One set A is Turing computable from another set B, written 

A <T B, if there is an algorithm for computing the characteristic functions of A given an 

'oracle' for B. Two sets are T~r ing  equivalent, written A T B, if A IT B and B IT A. 

The (Turing) degree of a set A is deg(A) =def {B : B GT A}. A degree a is less than or 

equal a degree b (written a 5 b) if there is a set A E a and a set B E b with A 5~ B. A 

set A is n-r.e. if there is a recursive function f such that for all X, lim, f(x,s) = A(%), 

f(x,O)= 0 and I{s: f ( x , s + l )  # f(x,s)}l < n. In particular, aset  Ais Re. if and onlyif 

A is l-r.e., and A is the difference of two r.e. sets (d.r.e.) if and only if A is 2-r.e.. A degree 

is called r.e. (d.r.e., n-r-e.) if it is the degree of an r.e. (d.r.e., n-r.e.) set. A d.r.e. (n-r.e.) 

degree is called properly d.r.e. (n-r.e.) if it is not r.e. ((n-l)-r.e.). An r.e. set A is complete 

if for every r.e. set B, B <T A. An r.e. degree is complete if it includes a complete r.e. 

set. The degree of the halting problem, O', is complete. For each n < U,  the n-r.e. degrees 

D, are partially ordered by <. Let (R, 5 )  denote (D1, 5). The partial order (D,, <) has 

a least degree 0 (the degree of the computable sets) and a greatest degree 0' (the degree 

of the halting problem). Every pair of degrees has a least upper bound. For each pair of 

degrees in D,, their least upper bound also in D,. But a pair of degree may fail to have 
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a greatest lower bound. The partial order (D,, 5 )  is thus an upper semi-lattice. For more 

notation and background terminology see [12]. 

All early examples of nonrecursive r.e. sets were complete. This led Post to ask the 

natural question: is there a nonrecursive r.e. set which is not complete? F'riedberg and 

Muchnik independently solved this problem by exhibiting a pair of 51.-incomparable r.e. 

sets. The technical they used became known as the priority method. The easier applications 

of this method, including the proof of the Friedberg-Muchnik theorem, are characterized as 

"finite injury" arguments. A construction is made in o stages to meet certain goals, usually 

called "requirements". In a finite injury construction each requirement is injured at most a 

finite number of times and so need be addressed at at most a finite number of stages. 

The priority method has become the central technique in the study of recursion theory. 

The finite injury priority method was first extended by Shoenfield and later by Sacks to 

prove further theorems and this technique is now known as the infinite injury priority 

method. Lachlan [g] further refined the infinite injury priority method to prove the famous 

Nonsplitting Theorem. This was the first example of a 0'"-priority argument. 

We now sketch the history of the study of the n-r.e. sets and degrees. For the r.e. case, 

there are two most fundamental results which were all by Sacks. 

Sacks Density Theorem. The partial order of r.e. degrees is dense. 

Sacks Splitting Theorem for r.e. sets. For each non-recursive recursively enumerable 

set A there are disjoint recursively enumerable sets B, C which cover A such that A is 

recursive in neither A n B nor A n C. 

These two theorems can be found in Soare's monograph [12], see VIII.4.1 and VII.3.2. 

As a corollary of the latter result one can get: 

Sacks Splitting Theorem for r.e. degrees. For each nonrecursive r.e. degree a there 

exist r.e. degrees %, a1 such that V a1 = a and q < a for i = 0, l .  

The question of whether the d.r.e. degrees are also dense is answered negatively by a 

number of authors in [6]: 

Nondensity Theorem for n-r.e. degrees. The d.r.e. degrees are not dense. 

The splitting conjecture for d.r.e. degrees is confirmed by Cooper [2]: 
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Splitting Theorem for n-r.e. degrees. For each nonrecursive n-r.e. degree a there exist 

n-r.e. degrees W ,  a1 such that m V a1 = a and a; < a for i = 0 , l .  

Cooper, Lempp and Watson [7], verifying a claim of Arslanov [l], proved: 

Theorem. (D2, 5 )  (Va > 0)(3b < Of)[aU b = Of]. 

This was the first example of a first-order sentence true in (Dz, 5 )  and false in (R, S). 

The failure of this particular sentence in (R, 5 )  was shown independently by Cooper and 

Yates [see 101. An unrelated sentence true in (D2, 5 )  but not in (R, 5 )  was found by 

Downey [8]: 

Theorem. (D2, 5 )  + (3a, b < Of)[a U b = Of A a n b = 01. 

Lachlan's nondiamond theorem [12, IX.3.11 says that this sentence is false in (R, 5). 
The goal of this thesis is to  discover how strong an analogue of the Sacks splitting 

theorem for r.e. sets is true for properly d.r.e. sets. What we succeed in doing is to show 

that a strong analogue of Sacks's theorem fails. More precisely we prove: 

Main Theorem. There exists a properly d.r.e. set D such that for all r.e. sets A', A' 

with A0 n A1 = 0, 

One should note that, if the word "properly" is deleted in the statement of the theorem, 

then we can obtain a trivial example by letting D be the completement of a maximal set. 

The proof of our main theorem above is long and fairly complicated. Therefore, before 

giving the formal proof of above theorem, we shall outline some of the basic ideas. In 

Chapter 2 by way of introduction to the complexities of the main theorem we show that the 

negation of the main theorem is not true effectively. This provider the basic module used 

for our main construction. 

The most exciting application of splitting properties of d.r.e. degrees is Cooper's solution 

to  an old question of Kleene and Post by showing that Turing jump operator is definable in 

D (see Cooper [4,5]). Thus splitting theorems are not only important for themselves. There 

are other applications for them, e.g. Slaman and Woodin Ell] showed that the R, is definable 
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in D(< Of), by using the Sacks Splitting Theorem. for r.e. sets (and a general definabgty 

result). Here we prove that the strongest possible analogue of the Sacks splitting theorem 

fox d.r.e. sets fds .  One should note that, if a suitable theorem allowing the splitting of 

d.r.e. sets into low d.r.e. sets could be found, then it could be used in the manner of Slaaaan 

and Woodin [ll] to show that D2 is definable in D(< 0'). 



Chapter 2 

The basic module 

Our immediate aim in this chapter is to show that if a properly d.r.e. set D is presented via 

the indexes of r.e. sets B, C such that D = B - C, then one cannot always effectively find 

A', A' such that B = A0 U A1 and d e g ( ~ i  - C)  <T deg(D) ( i  < 2 ) .  This means that the 

strongest possible analogue of the Sacks splitting theorem for r.e. sets fails for d.r.e. sets. 

The module developed in this chapter will play a crucial role in everything that follows. 

Formdy, we establish: 

2.1 Theorem. Given the indexes of r.e. sets A', A', we can eflectively enumerate B, C 

with C c B such that D = B - C is properly d.r.e. and 

Proof. Let {(We, ae, l e )  : e < U }  be an effective enumeration of all tuples (W, 9, !P), where 

W is an r.e. set and 9, l are p.r. functionals. Let indexes of the r.e. sets AO, A1 be given. 

Our task is to effectively enumerate B, C such that C E B and D = B - C meets the 

following requirements: 

Re  : D # l e (We)  V we # ge(D); 

S : B = A0 U A' [D <T A0 - C V D A' - C]. 

Remark. In describing a construction, notations such as A', D, ipe, and le are used to  

denote the current approximations to these objects. The notations A:, D,, 9:, and l: 
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denote the approximations which exist immediately before stage S. Occasionally, if the 

notation A0 would be ambiguous, we use A: to make it clear that we are referring to the 

value of A0 at the end of the construction. The use function for a p.r. functional, which is 

the length of the initial segment of the 'oracle' used in this computation, is denoted by the 

corresponding lower case letter. 

Before describing the construction of B, C we discuss how to meet a single requirement 

of the same kind as Re. R can be met by proceeding as follows: 

1. Choose a number, k say, not yet in B. Our intention is to make D and P(W) disagree 

at k. 

2. Wait until q(W;L) = 0, and @(D) is defined and agrees with W upto $(W,k). At 

this stage, s say, enumerate L in B and restrain all numbers < cp(D, $(W, L)) (= T say) from 

C. 

3. If a number < $(W, k) is enumerated in W, then enumerate in C all numbers 5 r 

which entered B at  a stage 2 S. Restrain al l  numbers 5 r from B and C. 

By exploiting this basic module we obtain a finite-injury construction of r.e. sets B, C 

such that D = B - C is properly d.r.e. We call this strategy as I. 

In using this simple idea to solve the problem at hand we can make use of two simplifi- 

cations: 

i) We can assume that a number is enumerated in A0 U A1 only if it has already been 

enumerated in B, that A0 n A1 = 0, and that a number enumerated in B is immediately 

enumerated in either A0 or Al. 

ii) At any point in the construction, given k, we can "request" that some number > k be 

enumerated in A0 without any more numbers 5 k being used. 

We achieve i) and ii) as follows. 

For i) we ensure that A', A1 c B and that A0 n A1 = 0 by not enumerating in A~ a 

number which has already been enumerated in A'-~ or which has not yet been enumerated 

in B. Also, whenever b is enumerated in B, we reset and restart the strategy I using only 
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numbers which are large compared with those used so far. As soon as b is enumerated in 

one of AO, A1 we terminate this copy of the strategy I enumerating in C all numbers it 

has enumerated in B. At the same time we return to the construction described below. Of 

course, if b is never enumerated in either of A0 or A', then the construction succeeds in a 

trivial way. So we ignore this possibility in describing the construction below. 

For ii) the procedure is similar. When a number > k is requested in A', we reset and 

restart the strategy I using only numbers which are both > k and > any number yet used 

in the construction. We pursue the strategy I, restraining numbers 5 k from B and C 

until some a > k, which has been enumerated in B but not yet in C, is enumerated in AO. 

If no such a is ever found, either B is not covered by A0 U A' or D is almost a subset of 

Al. In either case the construction again succeeds in a trivial way. So again we ignore the 

possibility in describing the construction below. When a is found, we terminate this copy 

of I enumerating in C all numbers it has enumerated in B except for a. 

The activity just described to ensure i) and ii) will be called the invisible strategy. Apart 

from supplying the numbers requested in A', its net effect is to generate pauses in the 

construction (pauses which are ignored in the description given below), and to enumerate 

certain numbers in B and then in C, numbers which are large enough to be irrelevant to the 

visible strategy. The latter point means that we must be careful to ensure that the visible 

strategy has enough numbers to  work with. During the construction a number will be said 

to have been used if it is, or has been, the value of one of the parameters Le, ae, re, kevi, aevi, 

revi mentioned below or has been enumerated in B (and then in C) by the invisible strategy. 

Now we describe the basic module for a single requirement 

Our main strategy M is aimed to satisfying R while at the same time building a Turing 

reduction of D to A0 - C to satisfy S. To attack R we choose a target number k, not 

yet used, at which we would like to make D and @(W) differ. We also choose a number 

a E A0 - C, such that k < a. The purpose of a is to serve as the use, for numbers > k and 

5 a, of the reduction of D to  A0 - C being constructed. 
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In the interval (k, a) we are playing an auxiliary strategy S which assumes that all 

numbers which are enumerated in B by S are enumerated in A1 rather than A'. 

Now we describe stage S of the basic module under the simplifications assumed above. 

No action is taken unless 

Note that D(k) = 0 by choice of k. If eventually (2.1) never holds, then R is satisfied and 

S is not injured. 

When (2.1) is satisfied we begin by executing one step of the strategy S, being played 

in the interval (k, a) .  There are two possibilities: 

Case 1. If a number is enumerated in B by S at this step, then that number is in A'. In 

this case we enumerate a in C and we reset a to a new larger value in A0 - C. 

Case 2. Otherwise. Some number b, k < b < a, is enumerated in B by S at this step and b is 

enumerated in AO. (So the assumption underlying S has been violated.) This event is seen 

as permission to execute one step of the strategy M. We enumerate k in B and restrain all 

number < cp(D, $(W, k)) (= r say) from B and C. 

At this point we have: 

D(k) = 1 # 0 = @(W; k). 

The functional being constructed to reduce D to A0 - C has not been injured since A0 - C 

has changed at b. So unless some number 5 $,(W,, k) is enumerated in W at a stage 2 S ,  

R has been satisfied and no further action is required except for an appropriate restraint 

on B and C. On the other hand, if some number 5 +,(W,, L), say X, is enumerated in W 

at a stage 2 S, then we enumerate k and b in C. Then @(D) and W differ at X,  since 

and this disagreement is preserved forever. The functional being constructed to reduce D 

to A0 - C has not been injured since A0 - C has changed at b again. 

We conclude that, if Case 2 ever occurs, then the basic module is successful and imposes 

only a finite restraint. Suppose Case 2 never occurs. Now the strategy S comes to the fore 
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because it is reset only a finite number of times and infinitely many steps are executed. 

Since all numbers enumerated by S in B are in A1, the strategy S need not be concerned 

with the requirement S. Thus the basic module is successful in this case too, as same as 

the basic module to constructe a properly d.r.e. set. 

Organization of the construction. As well as enumerating the r.e. sets B, C we shall 

be implicitly constructing a Turing reduction of D to A0 - C. The main strategy M aims 

to satisfy all the Re's as well as ensuring there is such a reduction. However, if it has to 

act infinitely often on behalf of Re,  then M fails. Thus, for each e, we have an auxiliary 

strategy Se. If e is least such that R e  requires attention infinitely often from M, then D 

will be recursive in A1 - C, by default as it were, and the strategy Se will ensure that the 

requirements ~j ( j  < w )  are all met. 

There are a number of parameters associated with the M's attempt to satisfy Re: 

i) ke is the argument of attack, i.e., the argument at which we aim to make Qe(We) 

different from D. 

ii) ae is an element of A0 - C which is > ke, which can be regarded as the 'use' at ke of 

the functional which we hope will reduce D to A0 - C. The auxiliary strategy Se will 

be pursued in the interval (ke, ae). 

iii) re is the restraint intended to protect the M's attack on Re. 

iv) ce is a counter which records how far M's attack on Re has proceeded. 

Similarly, with the Se's attempt to satisfy Rj we associate: 

i) keyj, the argument of attack. 

ii) ~ j 7 ~ ,  a counter which records how far Se's attack on Re has proceeded. 

Re  requires attention from M if one of following holds: 
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ii) ke J, A ce = 0 A cpe(D, $Je(We, k e ) )  L A 

lPe(We; k e )  = 0 A (Vx < $Je(We, ke))[Qe(D; X )  = W e ( x ) ]  

iii) ke  J, A ce = 1 A ( 3 x  5 $:(W;, ke ) ) [ x  E We - W:], 

where t is the last stage in which ce was set equal 1. 

R' requires attention from S e  if one of following holds: 

ii) k e i  J, A ceii = 0 A c p i ( ~ ,  #(wi, kevi)) 4 A cpi(D, $'(wi, ke*')) < aeA 

!Pi(wi; k e j )  = 0 A (Vx < #(W', ke f ) ) [@'(D;  X )  = w i ( x ) ]  

iii) ke?' J, A cevi = 1 A ( 3 x  < +:(W:, keyi))[x E W' - W:], 

where t is the most recent stage in which ceyi was set equal 1. 

The construction is now given by: 

Stage S. Let e be least such that Re requires attention from M. (In discussing the construc- 

tion we shall say that Re receives attention from M at stage S . )  Cancel the values if any of 

k j ,  a j ,  r j ,  c j ,  kjyi, rjyi, and cj,i for. all j > e and all i. For the rest there are three cases: 

Case 1. c" . Let b be the least number which exceeds every number used so far in the 

construction. Request a new number a E A0 - C such that a > 2b. Note that the numbers 

in [b, 2b] are all unused. Set ke = b, re = ae = a, and ce = 0. 

Case 2. ce = 0. From the definition of requiring attention we know that 

Let i be the least number such that R' requires attention from Se.  (In discussing the 

construction we shall say that R' receives attention from Se  at stage S.) Cancel the values 

if any of keyj, ~ ~ j ,  and ce*j for all j > i.  For the rest there are three subcases. 

Case 2.1. cefi 1. Set keli equal to the least X if any such that X < a" and X is greater than 

any number < ae which has been used by the visible strategy. If keyi becomes defined, set 

ceti = 0. Otherwise, leave celi undefined. Whether such X exists or not, enumerate ae E C. 
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Request a new number a E A0 - C such that a > 2b, where b is the least number exceeding 

all those used in the construction so far. Set ae = a. (This process beginning with the 

enumeration of ae in C is called resetting ae.) Set re = ae. 

Case 2.2. ~ ~ 9 %  = 0. From the definition of requiring attention: 

and 

!#;(Wi; keii) = 0 A (Vx 5 @(Wi, k e 3 " ) [ @ " ~ ;  X )  = w i ( x ) ] .  

Set re,; = 1 +  pi(^, @(Wi ,  Ice*;)) .  Enumerate Leti in B. Again the case splits: 

Case 2.2.1. k e j  is enumerated in AO. Cancel the values if any of keQ, re,j, and ce,j for all j.  

Enumerate ke E B. Set re = l + (pe(D, v ( W e ,  ke ) )  and ce = 1. 

(Note that a" is neither reset nor enumerated in C.) 

Case 2.2.2. kefi is enumerated in A'. Reset ae as in Case 2.1. Set re = ae, revi = 1 + 
 pi(^, @(Wi, ke,;))), and eeli = 1. 

Case 2.3. ce,' = 1. Fkom the definition of requiring attention: 

where t is the most recent stage in which ce*; was set equal 1. Enumerate ke7; E C ,  set 

Ce,2 = 2. Reset ae. Set re = ae. 

Case 3. ce = 1. from the definition of requiring attention: 

where t is the most recent stage in which ce was set equal to 1. Cancel the values if any of 

ke,j, r e j ,  and ce*j for all j.  Enumerate in C the two numbers which were enumerated in B 

at stage t. Set ce = 2. 

(Note that r:+' = l + &(Dt, $:(W:, ke) )  from stage t. Since re is constant, between stages 

t and S no number 5 is enumerated in B U C .  Thus the effect of the action at this stage 

is to  ensure that D,+' r = Dt r.  Since W e  has gained a member X I $:(W:, Le)) at a 

stage 2 t and < S ,  W e  and a e ( D )  now disagree at  X .  Further, r:+l = T;+' is large enough 

to preserve the disagreement.) 
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To conclude stage s we enumerate one number in one of the sets ~j ( j  < U) and one 

axiom in one of the p.r. functionals @j, IPj ( j  < U). 

Verification. We will show that for all e, Re is satisfied, and D is recursive in A0 - C or 

A1 - C. 

Suppose that, for all i < e, Ri requires attention from M at at most a finite number of 

stages. Let so be the least number such that no Ri (i < e) requires attention from M at 

any stage 2 so. 

At stage so, ke is defined and ce is set equal to 0. Notice that ke is neither cancelled nor 

reset at any stage > so. There are now three cases. 

Case 1. There exists s > so such that ce is set equal 1 at stage S. Let sl denote the least 

such S. From the construction we see that Case 2.2.1 obtains at stage sl. Let il be the 

unique i such that Ri receives attention from the Se at  stage sl. There are two subcases. 

Case 1.1. There is a stage s > sl at which Re  receives attention from M. Let s 2  be the least 

such S. It is clear that at the stages > sl and < s 2  only with i > e receive attention 

from M. Thus ae, T ~ ,  and ke do not change between stages sl and s2.  For brevity, let a, T, 

k denote the values of ae, T ~ ,  and ke at the end of stage sl. Any number enumerated in B 

or C at a stage > sl and < s 2  is either a value of ki or kilj established after stage sl or is 

enumerated by the invisible strategy. It follows that any number enumerated in B or C at 

a stage > sl and < s g  is > max(a, T) by Cases 1 and 2.1 of the description of stage S. Case 

3 obtains at stage s g .  Notice that the t for Case 3 is sl. From the description of Case 3, in 

stage s 2  there exists X such that 

From Case 2 at stage sl we have 

In stage s 2 ,  the numbers k and k$ which were enumerated in B in stage sl, are enumerated 

in C. This means that 

%+l t T = D a  t T. 
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From Case 2.2.1 at stage sl, 

Moreover, at stage s 2 ,  ce is set equal 2 and so at no subsequent stage does any Ri with i 5 e 

receive attention. It follows that no number 5 T is enumerated in B or C at a stage > s2.  

Hence, at the end of the construction, <pe(D) and W e  disagree at X. So in this case Re is 

satisfied and receives attention from M at at most finitely many stages. 

Case 1.2. Otherwise. At no stage > sl does Re require attention from M. Let t denote sl, 

and T, k the values of re, ke at the end of stage t. By induction on stages, T~ = T, ke = k, 

and ce = 1 at all stages > t. Since Re never requires attention from M at a stage > t 
through Case 3, we have 

By the same token, ke, which is enumerated in B in stage t, is never enumerated in C. Thus 

at the end of the construction 

So in this case Re is satisfied and receives attention from M at at most finitely many stages. 

Case 2. Not Case 1 and Re requires attention from M at only a finite number of stages. 

Let k denote By induction on stages ke = k and ce = 0 at all stages > so,  and k is 

never enumerated in B. Since eventually Re never requires attention from M,  by Case 2 

we see that at all sufficiently large stages 

Thus Re is satisfied. 

Case 3. Otherwise. Then there are an infinite number of stages at which Re requires 

attention from the M-strategy. Let these stages which are > s o  be numbered sl, s 2 ,  . . .in 
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order of magnitude. At each stage s k  with k > 0 Case 2 holds but Case 2.2.1 does not. 

Thus ae is reset at  each of these stages and so increases to CO as the construction unfolds. 

At the stages s k  with k > 0 the S"-strategy is pursued on the interval (ke, a"). The restraint 

re ensures that after stage so the Se-strategy is never injured. 

If k > 0, celi f ,  and receives attention from Se at stage s k ,  then there exists a suitable 

value for ke,i in stage s k  because, when ae is set or reset in stage sk-1 ,  then a whole block 

of numbers (b, 2b] is left unused, where ke < b < 2b < ae = T" at the end of stage sk-1. 

Further, at stages > sk-1 and < s k  no number < re is used. Since there is a copy of I 

operating in the interval (ke, ae) at  the stages sl, s g ,  . . . , it is easy to  see that, for each i, 

receives attention at  stage s k  for only finitely many k and is satisfied. 

Any number enumerated in B or C at a stage s > sk-1, s 6 (sk : k > 0), is > ae = 

(a:,-l). Any number enumerated in B in a stage s k  is also enumerated in A'. Hence 

D <T A1 - C. 

From the discussion above we conclude that there are two possibilities: 

i) For some e, Re receives attention infinitely often from M, DsTA1 - C, and all the 

requirements Ri (i < W )  are satisfied by Se. 

ii) For every e, Re  receives attention at  at most a finite number of stages and is satisfied. 

The requirement S is satisfied in the former case because D 5~ A1 - C. It only remains 

to show that S is also satisfied in the latter case. So from now on assume that each e, Re  

receives attention from M at at most a finite number of stages. For each e ,  as S -t CO, kz has 

a limit kz, and a; has a limit a:. Further, a: E A0 - C. Assume that an (A: - C,)-oracle 

is given. Then for every e we can compute s(e) such that 

To prove the claim we argue as follows. If there are no stages 2 s(e) in which D changes 

5 a:(e), then the conclusion is clear. So let SO, sl,. . ., S, be the stages > s(e), listed in 
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increasing order, in which D changes 5 a:(,). For each i 5 p let ei denote the number such 

that %Le' receives attention from M at stage S;. If e < e', then, at any stage 2 s(e), either 

ke' f or ke' 2 a:(,). Thus no number 5 a:(,) is enumerated in either B or C at a, stage 

2 s(e) in which some %Le', e < e', receives attention. Thus each ei is 5 e. Further, we see 

that 

e > e o > e l  2 . . .2  e, 

because as soon as %Le' receives attention at a stage 2 s(e) from M al l  the parameters 

whose (first) superscript is > e' are cancelled. Any subsequent values of these parameters 

are > a:(e). By the same token kEi = k:ie). It follows that a:: = a:ie) 5 a:(.). Otherwise aei 

is reset at some stage 2 s(e) and < si, and a?,) is enumerated in C contradicting (2.2). 

At stage so, since D is changed and aeO is not enumerated in C,  either Case 2.2.1 or 

Case 3 holds. If Case 3 holds, let to be the greatest stage < so in which ceO is set equal 

1. Then in stage to Case 2.2.1 holds, keO (= and a number X of the form keO*' are 

enumerated in B, the latter being enumerated in AO. By definition of so, to < s(e). At stage 

so, X is enumerated in C. This contradicts (2.2). Hence Case 2.2.1 holds at stage so. Thus 

in stage so, keO (= keO ) and a number X of the form ke07; are enumerated in B, the latter 4 4  
being enumerated in AO. Since (2.2) holds it must be the case that el = eo and that Case 3 

holds at stage s l ;  otherwise X stays in A0 - C forever. So the two numbers 5 which 

were enumerated in B in stage so,  are enumerated in C in stage sl. Now we can apply the 

argument which we made for s o  to s2 .  We see that two numbers 5 a:(,) are enumerated in 

B at stage s2 and enumerated in C in stage ss. And so on. After the last of the the stages 

S;, D is the same for arguments 5 as it was just before stage s(e). This completes the 

proof of the claim. 

F!rom the claim it is clear that D is recursive in A0 - C, which completes the proof of 

the theorem. 
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The modules 

Recall that our final goal in this thesis is to prove: 

3.1 Theorem. There exists a properly d.r.e. set D such that for all r.e. sets AO, A1 with 

A0 n A1 = 0 ,  
D ~ A O U A ~ ~ [ D < ~ A O ~ D V D < ~ A ~ ~ D ] .  

In present chapter we will move closer to achieving this end by describing the modules 

for the construction which is described in detail in the next chapter. 

Our task is to effectively enumerate B,  C such that C C B and D = B - C meets for 

all e,  the following requirements: 

Re : D # !Pe(We) V W e  # @e(D);  

S" : B = A ~ Y O  U AeJ =$ [D <T Ae*O - C V D IT AeJ - C ] ,  

where {(Ae•÷', Ae7l)),<, is an effective enumeration of all pairs of r.e. sets. 

The priority ranking of the requirement S is So, R', S1, R', S2 ,  R2 ,  . We already know 

how to attack R0 while maintaining our strategy for So. The next thing to understand is 

how to attack Ri for i > 0 while according priority to the requirements So, S1 ,  S ,  Si.  
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3.1 The 'R-requirements below two S-requirements: So, S' 

The question addressed here is how a.requirement: 

should be attacked while priority is being given to two S-requirements: So, S'. 

We choose a target number k, which is unused, at which we would like to make D and 

Q(W) differ. We assume at  any point, cp(D, +(W, k)) J. implies 

q(W; k) = 0 A (Vx 5 +(W, k))[@(D; X) = W(x)]. 

Choose markers qj (j 5 4) such that 

In the interval (k, qo) we are playing the main strategy of the basic module (described 

below) which assumes that both AO10 U AOvl and All0 U A1yl cover B and that arbitrarily 

large elements of AivO - C (i = 0 , l )  are available on demand. In the interval (qo, ql) we are 

playing a strategy Q. which assumes that eventually all numbers enumerated in B enter 

Aof1. In the interval (ql, q2) we are playing a strategy Q1 which assumes eventually all 

numbers enumerated in B enter All1. For i = 0,1, a strategy Q2+; is played in the interval 

(q2+it q3+i) which assumes that the last number to enter B via one of Qo, Q1 or the main 

strategy will never be enumerated in ~~y~ U Ai*l. 

The main strategy tries to define markers a0 and a1 such that 

and ai E - C. It proceeds as follows. If the marker a0 is not defined, then look for X E 

(qo, ql) n (Ao9' - C) and set a0 equal to  the greatest such X. Reset al l  the qi7s so that aO < qo. 

If no such X exists, then play one move of Q. and reset ql, S ,  q4. Suppose a0 is defined. 

Then play a move of the strategy Q1. Once a0 is defined look for X E (ql, q2) n (A1vO - C) 

and set a1 equal to the greatest such X. Reset all the qi's so that a1 < qo. If no such X 

exists, then play one move of Q1 and reset q2, q3,q4. 
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The role of Q2 and Q3 is as follows. When some number X is enumerated in B by either 

the main strategy or one of Qo, Q1, then Q2 is reset and is played on the interval (q2, 43) 

until X has been enumerated in AOlOU AOll. While Q2 is being played, qo, q1, q2 are fixed but 

q3 moves steadily to the right. Once X has been enumerated in AOyO U Aoll, q3 also becomes 

fixed. If the main strategy enumerates X in B without prior permission from A0l0 and X 

turns up in AO?O U Aoll, we make another move in the main strategy. (In fact, if X E AOyO, 

then a number will be enumerated in B and otherwise a1 is destroyed.) Then Q3 is reset 

and played on (43, q4) with q4 moving steadily to the right until X enters A1*O U All1. 

So the strategies Qi (i 5 3) are only significant if at some stage, the main strategy is 

unable to find the markers aO, a' it wants for k or if one of the numbers enumerated in B 

fails to turn up in (A0*' U A's1) n (AI*' U A','). If, for particular i 5 3, infinitely many moves 

of Qi are played without Qi being reset, then the basic module is successful because each 

Qi enjoys a substantial advantage. For instance, Q1 may ignore S'. Thus below we may 

assume that the main strategy always finds a0 and a1 eventually and that B C_ A'*' U 

(i 5 1). 

We now describe the main strategy in detail. In the interval (k, a') we are playing a 

strategy So which assumes that all numbers enumerated in B by So are enumerated in Aoyl 

rather than A0?O. In the interval (a0, a') we are playing a strategy S1 which assumes that 

if a number enters B by S1 without prior permission from AOyO, and enters AOyO, then that 

number is in All1. Under the assumption of strategy S', we are playing a list of substrategies 

siti. slli assumes either we get a reduction of D to AOyl - C or the functionals reducing D 

to AOvO - C and Al.' - C are preserved and R i  is satisfied. For each i, slyi has a substrategy 

S1yi?O which assumes that each number which is enumerated in B by ~ ~ l ~ * ~  enters AO?l. 

We now describe stage S of the basic module. No action is taken unless cp(D, $(W, k)) 1. 
If eventually cp(D, $(W, L)) J never holds, then R is satisfied and none of So, S1 is injured. 

When q(D, +(W, k)) is satisfied we begin by executing one step of the strategy S1. 

We think of (a0, al) as the universe on which S1 operates. Whenever we play a move of S1 

which does not enumerate a number in B, we may enumerate a1 in C. Then a1 is reset by 

the main strategy thus extending the universe of S1. Let the current aim of S1 be to satisfy 

Ri. Executing one step of S1 means executing one step of S1li. S1li will proceed as follows. 
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Choose a target number ki for Ri, which is unused, at which we would like to make D and 

!Pi( Wi) differ. The strategy S1li also tries to define numbers a6, bi such that 

a; E AOyO - C, b i  E ~ ~ 3 '  - C and kkreater  than all parameters used for Rj for all j < i, 
(here ki, a&, and bi  are parameters for z i ) .  The search for a; and b i  proceeds as follows. 

Choose markers qj ( j  = 0,1,2) such that 

In the interval (q& qi) we are playing a strategy Q; which assumes that all numbers enu- 

merated in B enter A071. In the interval (qi, qi) we are playing a strategy Q: which assumes 

that all numbers enumerated in B enter Alto. If the marker a; is not defined, then we look 

for X E (qh, qi) n (A0?O - C)  and we set a; equal to the greatest such X. We reset all the 

qj's so that a; < q& If no such X exists, then we play one move of Q; and reset qi, qi and 

al, and put a1 into C. Suppose a; becomes defined. Then we play a move of the strategy 

Qf. If the marker bi is not defined, then we look for X E ($, qi) n (All1 - C) and we set 

bi equal to the greatest such X. If no such X exists, then we play one move of Q; and reset 

a' and put a' into C .  We need not enquire into the nature of the strategies Q: ( j  < 2). 

It is sufficient to notice that, if, for particular j 5 1, infinitely many moves of Q: are played 

without Q$ being reset, then a substantial advantage has been gained because one of So, S' 

may be dismissed from consideration. The module is successful by the last section. 

To focus attention on what is essential we assume that the assumptions for Q; and Q: 

both fail. Thus we succeed in finding a;, bi, such that 

and a; E A0l0 - C, bf E AIJ - C. 

No action is taken unless cpi(D, e ( w i ,  ki)) J.< al. If eventually cp i (~ ,  @(wi, ki)) I< a1 

never holds, then is satisfied and none of So, S1 is injured. When pi(D, @(wi, ki)) I< a1 

is satisfied we begin by executing one step of the strategy S1li?O, being played in the interval 

(ki, a;). There are two possibilities: 
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Case l'. If a number is enumerated in B by S 1 y i * o  at this step, then that number is in A'?'. 

In this case we enumerate a;, bf and a' in C and we reset them to new larger values. (Note 

that k, a0 and ki are all unchanged.) 

Case 2'. Some number pl, ki < < a;, is enumerated in B by S'>i*o at this step and p' is 

enumerated in A0?O. Enumerate ki into B and set ci = 1. Now there are two subcases. 

Subcase 2l.1. p' is enumerated in A's0. (The assumption underlying S1 is violated.) This 

event is seen as permission to execute one step of the strategy So being played in the interval 

(L, aO). 

Subcase 2' .2. p' is enumerated in (The assumption underlying S1li is confirmed.) In 

this case we enumerate a' in C and we reset it to a new larger value. (Note that k, aO, ki, a; 

and bi  are all unchanged.) 

For the strategy So, again there are two possibilities. 

Case 1'. If a number is enumerated in B by So at this step, then that number is in AOvl. In 

this case we enumerate a0 in C. We reset aO, a;, bf, a1 in that order and reset the strategy 

S'. 

case 2'. Some number pO, k < p0 < aO, is enumerated in B by So at this step and p0 is 

enumerated in A','. We enumerate k into B and set c = 1. 

At this point we have: 

D(k) = 1 # 0 = P(W; k). 

The functionals being constructed to reduce D to Ail0 - C (i = 0 , l )  have not been injured 

since Ai70 - C has changed at pi for each i 2 1. So unless some number 2 $,(Ws, k) is 

enumerated in W at a stage 2 S, R has been satisfied and no further action is required except 

for an appropriate restraint on B and C. On the other hand, if some number 5 &(Ws, k), 

say X, is enumerated in W at a stage 2 S, then we enumerate k, ki and pt (t = 0 , l )  in C. 

Then P(D) and W differ at X, since 

and this disagreement is preserved forever. 
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The possible of outcomes 

First, assume the main strategy is executed at only finitely many stages. Let i be least 

such that Q; acts infinitely many stages. Here the strategy Q; comes to the fore because 

it is reset only a finitely number of times and infinitely many steps are executed. Since Qi 

may ignore either So or S1 according as i is even or odd, it is an easy matter within Q; to 

satisfy the other S-requirement and all the R-requirements. 

For the rest suppose the main strategy is executed at infinitely many stages. In each 

case we assume that none of the previous cases holds. There are several cases. 

Case 1. Case 2' eventually occurs. R is satisfied, the only cost being a finite restraint which 

is eventually fixed. The functionals which are implicitly being constructed to reduce D to 

A ~ V O  - C (i = 0 , l )  are not injured. 

Case 2. Case l0 holds infinitely often. Now the strategy So comes to the fore because it 

is reset only a finite number of times and infinitely many steps are executed. Since Case 

1 never holds all numbers enumerated by So in B are in Aoll. Thus the strategy So need 

not be concerned with the requirement So. The module is successful in this case too, even 

though R has not been satisfied, because one of the S-requirements of higher priority has 

been eliminated. 

Case 3. Otherwise. Eventually So is never pursued. Thus eventually every move played in 

the main strategy is a move in the strategy S1. Recall that S1 consists of the substrategies 

Case 3.1. There exists i such that slvi is addressed at infinitely many stages. Fix i to 

be the least such number. These are two subcases. 

Case 3.1.1 The strategy S17i70 is pursued at infinitely many stages. In this case eventually 

all numbers enumerated in (a0, ab) enter Aoll, a0 is fixed, and a; increases to oo. Thus So 

can be ignored and there will be no difficulty in satisfying the other requirements. 

Case 3.1.2. Otherwise. One of Q;, Q: is pursued infinitely often. Let 1 be the least such 

that Qf is active infinitely often. Then eventually in the interval ($, every number 

enumerated in B is enumerated in AOll if E = 0, and in A1*O if l = 1. Moreover, qj is fixed 

while qf+l increases to  W. So we have a similar situation to that of the previous case. 
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Case 3.2. For each i, S1vi is active at most finitely often. In this case the assumption 

of S1, that all numbers enumerated in B from (a0, al), without Ao~o-permission, enter AO10 

and then A19l, is eventually not violated. For each i, eventually 'Ri is satisfied at  the cost 

of a finite restraint. At the same time we obtain reductions of D to AO10 - C and All1 - C. 

3.2 The general module 

In general, an R-requirement will have to be satisfied while priority is being given a finite 

number of the S-requirements say So, - - S ,  Sn. To focus attention on what is essential we 

shall assume that for each i < n 

and that arbitrarily large elements of Ailj - C (i < n, j < 1) are available on demand. We 

will first describe the basic module under these simplifications. 

We choose a target number k, which is unused, at which we would like to make D and 

q(W) differ. We also choose numbers ai, i < n, such that 

and a% Ail0 - C. We think of ai as the use at k of a functional which is implicitly being 

constructed to  reduce D to AitO - C. We set the counter c = 0. 

We now proceed as follows. For 0 < i < n in the interval (ai-l, ai) we are playing a 

strategy Si which assumes that any number X enumerated in B, without prior permission 

from any Aj?O - C with j < i, satisfies 

In the interval (k, aO) we are playing a strategy So which assumes that all numbers enumer- 

ated in B are enumerated in A'*' rather than AOjO. 

For i < n, becomes active when there exists t less than the current stage and 

X,, - - , xi+l E B - Bt such that 
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XI is designated by S', a'-l < 3 1  < a', and X I  E njLlAj?O for all l, i + 1 5 1 < n. 

The witnesses X' (i + 1 5 l < n) only activates Si for one stage, except that, if in the first 

stage of activation si enumerates y E B,  then becomes active for m more stages, where 

m = max{k < i :  ( V j  < k)[y E Aj'O])+ 1. 

When si (0 5 i 5 n) enumerates a number in B it may designate it. The strategy si 
has the right to assume that only a finite number of designated number are enumerated 

in nj<iAjlO. - When designates a number X at stage t the main strategy is set until X is 

cleared or some ~j with j > i is reset. Si may not enumerate any number in C which was 

already in B at stage t and so may not ask for ai to  be reset. Apart from this restriction 

si may request that ai be reset and main strategy will comply. Si (i > 0) is responsible for 

producing a Turing reduction to A ~ V O  - C for each j < i of the restriction of D to (ai-', ail. 

We now describe stage S of the basic module under the simplXcations made above. No 

action is taken unless cp(D, +(W, k)) 4. Note that D(k) = 0 by choice of k. If eventually 

'p(D, +(W, k)) 4 never holds, then 32 is satisfied and none of So, . . , Sn is injured. When 

q ( D ,  +(W, k)) 4 is satisfied we begin by executing one step of the strategy Sn, being played 

in the interval (an-l , an). There are two possibilities: 

Case In. The assumption underlying Sn is not violated. In this case we enumerate an in 

C and we reset an to a new larger value in An'' - C. (Note that k, aO, , an-l are all 

unchanged .) 

Case 2n. Otherwise. Some designated number jn, an-l < jn < an, is enumerated in B by 

Sn at this step and jn is enumerated in njlnAj*O. (So the assumption underlying Sn has 

been violated.) This event is seen as permission to execute one step of the strategy Sn-l 

being played in the interval (an-2, an-l). 

Again there are two possibilities: 

Case In-'. The assumption underlying Sn-l is not been violated. In this case we enumerate 

an-' and an in C. We reset an-' and then an. We reset the strategy Sn since it has been 

violated. 
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Case 2n-1. Otherwise. A designated number jn-l, an-2 < jn-l < an-l, is enumerated in 

B by Sn-l at this step and jn-l E n j < n - l ~ j ~ O .  - (So the assumption underlying Sn-l has 

been violated.) This event is seen as permission to execute one step of the strategy 

being played in (an-3, an-2). 

The pattern of cases should now be clear. For i > 0, Case 2i splits into Case li-l and 

Case 2i-1. It remains to describe Case 2'. 

Case 2O. For each i 5 n, we have 9 which was enumerated in B by strategy Si such that 

ai-l < ji < ai and such that ji has just been enumerated in njli~i10 and is not yet in C. 

We enumerate k in D and set c = 1. 

At this point we have: 

D(k) = 1 f. 0 = Q(W; k). 

The functionals being constructed to reduce D to Ai90-c (i 5 n) have not been injured since 

A ~ * O  - C has changed at ji for each i 5 n. So unless some number 5 $,(Ws, k) is enumerated 

in W at a stage 2 S, 'R has been satisfied and no further action is required except for an 

appropriate restraint on B and C. On the other hand, if some number 5 &(W,, L), say X, 

is enumerated in W at a stage 2 S, then we enumerate k and ji (i 5 n)  in C. Then g(D) 

and W differ at X, since 

and this disagreement is preserved forever. 

We conclude that, if Case 2O ever occurs, then the basic module is successful and imposes 

only a finite restraint. Suppose Case 2' never occurs. There is a least i, say i = j, such 

that Case li occurs infinitely often. In this case aO, - - , aj-l are eventually fixed. Now the 

strategy Sj comes to the fore because it is reset only a finite number of times and infinitely 

many steps are executed. Sj enjoys a small but significant advantage: after some point any 

number X enumerated in B, without prior permission from any Ai90 - C with i < j, satisfies 

The main difficulty of the construction which follows is to exploit the small advantage we 

have exhibited by nesting similar strategies one within the other to achieve the desired goal. 
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As we have noted above, in the actual construction we cannot assume that AivOuAiJ > B 

and that elements of Ai,j (j 5 l)(not yet in C) are always available when we need them. 

This necessitates the introduction of additional nodes into the tree of strategies which is 

the "priority tree" described in the next section. For example, when attacking lRO while 

giving priority to So, apart from the main strategy (which is constructing a reduction of 

D to A0?O - C) and the back-up strategy (which assumes that eventually "all" numbers 

enumerated in B fall into AOJ-~), we need 

a strategy based on the assumption that the last number to enter B will never enter 

A09O U AoJ, and 

a strategy based on the assumption that the element of A O ~  not yet in C currently 

being sought for the main strategy will never be found. 

Further down the priority tree analogous strategies must be introduced to allow for the 

possibility that Ail0 U A ~ J  may not cover B or that suitable elements of ~~~j not yet in C 

may not present themselves. 

These aspects of the construction, although they introduce new complications, do not 

really cause any serious difficulty. It might be added that, although it was not nade explicit, 

the module described in 3.1 already takes into account the fact that some of the pairs 

(A;*O, AiJ) may not cover B. If it is known that AGO U A;,' 2 B for all i, then the level of 

the complexity of the problem is reduced dramatically. 



Chapter 4 

Construction 

In this chapter we describe the construction. Before giving the construction we should de- 

scribe the priority tree T which we shall picture as growing downwards. This tree provides 

a convenient way of organizing the various substrategies which make up the whole construc- 

tion. The nodes of the tree are finite strings of pairs (n, j),  where n < 6 and j < W .  Such 

strings will be denoted by lower case Greek letters. With each node a there is associated 

a natural number i(a) and a strategy for satisfying 7Zi(&). If at the end of the construc- 

tion the true path contains a, then all the requirements Ri with i < i (a)  are satisfied by 

strategies associated with nodes p C a. (For readers not familiar with the concept we shall 

explain the concept of the true path later in next section.) With a node a there may also 

associated a strategy for satisfying si(0) by implicitly constructing a Turing reduction of D 

to A ~ ( ~ ) , ~  - C. We say "may" because the outcomes of a strategy at some node above a 

may already have guaranteed that D Ai(&)?l - C in which case there is no need for us 

to be concerned with sita) at node a. A number j < i(a) is called active at a if none of 

the "outcomes" of the nodes above a! guarantees that D <T ~ j ? '  - C. Thus j is active at a 

if j < i(a) and we must still be concerned with building a reduction of D to A ~ Y O  - C. 

At node a the attack on Ri(0) will proceed in the way described for the basic module 

of the last section. Now plays the role of R and the requirements Sj, j < i(a) and 

j active, play the role taken by So, - S ,  Sn in the last section. The outcomes at node a 

corresponding to the outcomes of the module described in last section are: 
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(2, i(a)): the a-attack on R i ( ~ )  is successful trividy 

(3, i(a)): the a-attack on 7Zi(") is successful non-trivially 

(0, j): the a-attack on Ri(") is not successful and j is the least number active at a such 

that ~ j ,~ -~e rmi s s ion  is given only a finite number of times. 

To take account of the possibility that either 

or that suit able elements in Aj,; - C, j 5 i(a) and i 5 1, are not always available eventually, 

we allow three further kinds of outcome: 

(6, i(a)): Ai(ff)?O U Ai(ff)*l 2 B 

(5, j): at  some point in the construction we wait forever for a sufficiently large element of 

- c 

(4, j): at  some point in the construction we wait forever for a sufficiently large element of 

c* 

We also find it convenient to include in our design certain pseudo-outcomes: 

(l, j): correcting the functional which reduces D to Ajyl - C. 

The additional nodes arising from these pseudo-outcomes help us keep track of tasks 

that need to be performed during the construction. 

We now give some definitions which will be needed for the description of the priority 

tree T. Let X denote ( ( 2 ,  -1)). Then X E T. Suppose a E T is given, let i(a) denote the 

least i such that (n, i) does not occur in a for n E {2,3}. j is called active at a if j 5 ;(a), 

none of (4, j), (5, j),  (6, j )  occurs on a and for every n such that a(n) = (0, j )  there exist 

m > n and l < j such that a(m) E ((0, l), (4, l), (5, l)}. j is called pseudo-active at a if 

j < i(a), none of (4, j ) ,  (5, j), (6 ,  j) occurs on a, j is not active at a, and there exists i < j 
such that i is active at a. For n 5 6, a is called an n-node if a(l(a) - 1) = (n, j )  for 

some j. Sometime we also call that a an (n, j)-node. For each node a # X, a- denotes the 
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immediate predecessor of a, i.e. a- = a r (Z(a) - 1). When a is a 0-node, let j(a) denote 

the unique number j such that a = a-"((0, j ) ) .  

Remark. For each 0-node a, j(a) _< i(a-). 

We have already stipulated that X E T ;  X is the root of the tree. We complete the 

definition of T by specifying what the outcomes of a are for each a E T. The immediate 

successors of a in T are just the strings of the form aA((m, j ) ) ,  with (m, j )  an outcome of 

a. We note that "outcomes" of the form (1, i )  are not really outcomes of the strategy at 

a but serve to include nodes on the tree which are useful for book-keeping purposes. If a 

is a l-node, then a has no immediate successor. If a is an n-node for n E {2,3)  then the 

outcomes of a are: 

( ( 0 ,  j ) ,  (1,  i ) ,  (2, i(a)) ,  (3,  i (a)) ,  (4, j ) ,  (5, i ) ,  (6 ,  i (a))  : j is active at a, i  is pseudo-active at a}. 

For the rest the outcomes of a! are: 

( (0 ,  j ) ,  (1, i ) ,  (2 ,  i(a)), (3, i(a)), (4 ,  j ) ,  (5 ,  i )  : j is active at a, i  is pseudo-active at a). 

This completes the description of T. Let A = { ( j ,  i )  : j 5 6 ,  i  < W ) ,  be the set of symbols 

for the possible outcomes. Define a linear ordering < A  on A as follows. Let n = (no, nl) 

and m = (mo, ml) be two outcomes of a. If no, m0 6 { l ,  51, then n <a m if and only if 

no < mo, or no = m0 and nl < ml; if m0 = 1, then n < A  m if and only if no 5 1 and 

nl < ml; if m0 = 5, then n < A  m if and only if no < 4, or no E {4,5)  and nl < ml. As 

described in Soare [12], two orderings < L ,  5 are defined as follows: 

4.1 Definition. Let a, p E T.  

i) a is to the left of p (a  < L  p )  if 

(3a, b E A)& E T)[yA(a) C a A yA(b) G A a <A b]. 

iii) a! < p if a 5 p and a # p. 
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4.2 Definition. i) P is an active extension of a if ,L3 has the form aA((O, j)).  ,L3 is 

a pseudo-active extension of a if p has the form aA(( l ,  j)). We introduce the 

notations: A(a) for the set of active extensions of a, and B(a) for the set of active 

or pseudo-active extensions of a. 

ii) Let mo, S ,  mk E o and /3 E a be nodes in T. (mo, S ,  mk) occurs on a below P, if 
there exist numbers no < . < nk such that no 2 1/31 and for each i with 0 5 i 5 k, 

a(ni) = (0, mi) . 

For each a E T, there are a number of parameters associated with the a-strategy's 

attempt to satisfy %Li("): 

i) k" is the point of attack, i.e., the argument at which we aim to make qi(")(wi(")) 

different from D. 

ii) aP for p E B(a). If p = aA((i,  j)), then UP, if defined, is an element of ~ j 7 ~  - C which 

is > km, can be regarded as the 'use' at k" of the functional which we hope will reduce 

D to Ajvi - C. 

iii) f for /3 an active extension of a. If = aA((O, j)), then $, if defined, is a number 

which has been enumerated in A ~ ? O  and which can be regarded as j-permission (i.e., 

permission from the intended reduction of D to A ~ * O  - C) for k" to be enumerated in 

B. 

iv) c" is a counter which records how far the a-strategy's attack on %Li(") has proceeded. 

v) r" is the restraint intended to protect the a-strategy's attack on %Li("). 

Each parameter belongs to a node. k", c", ra, aa,po belong to a. Partition w effectively 

into infinite sets N,  ( a  E T). The members of N ,  are called a-numbers. Now we describe 

what actions should be taken at the various nodes of T. If X is enumerated in B during 

the construction then X = kP for some p. When X = ko enters B, then we set a(x) = P.  
For a E T,  at  any particular stage we say that a is ready if #")(D, @(a) (~ i ( " ) ,  k")) 1, 
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and for all i 5 1 and for all i-nodes S such that S C cr or crA((2, i(cr))) <L S, either a6 t, or 

a6 J, and 

#")(D, +"(Q(~'(ff) ,  ka)) < a6. 

Two key notions for the construction described below are: 

4.3 Definition. Let P be a 0-node and j o  < < j, = j(P) be an enumeration of all 

i 5 j(p) which are active at P-. At a particular instant in stage S,  X is a designated 

number for p if the following conditions hold: 

i) a: .L for each 7 E B(,&), rP- J,, a(x) J, , and cr(x) > p. 

ii) X entered B after rP- attains its cuurent value 

iii) (j,, S ,  jo) occurs on a(%) below P-. 

iv) Let (Sjm7 Sjm-, , - , Sj, ) be the unique (m + l)-tuple in T such that P = Sjm C C 

Sjo C cr(x) and Sji is a (0, ji)-node (i 5 m). When X enters B, the following hold: 

r63' J, for all j E {jo,.--,jm}. 

J, for all 5 such that 5 E A(S7) for some j E {jo, - - - , j,} with Sj <L 5. 

It is worth noting that for some of the j and 5 just mentioned, r63' and $ may be defined 

earlier in the same stage at which X enters B. 

4.4 Definition. Let 6 C P be 0-nodes. Let jo < < j, be an enumeration of aJl j < j(5) 

which are active at 5-. 6 is preferred to P if one of the following cases holds: 

ii) There exists B _> max{S : S E A(P-) A S <L P}, (j,, -, jo) occurs on B below 5-. 

Remarks. 1. If 5 is preferred to  P, then there exists a 0-node 8 such that B is preferred to 

P, 5 5 8 C P and j(8) < j(p) is active at 5-. 
2. The intuition for the notion "preferred to" is: Suppose 5 is preferred to P and 

P = (w)[-y E A@-)]. If kP- is enumerated in B, then kP- may be designated for 5. 
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Suppose f is preferred to P and 8 1 max(S : 6 E A(@-) A S <L P )  is such that (j,, . . ., jo) 

occurs on 8 below (-. If ke is enumerated in B, then ke may be designated for (. 
3. ( is  r referred to" p in the sense that before we define f l  we wish to complete the 

(--attack to the point at  which r(- is defined and is defined for all 8 E A((-), 9 > C. 
This is appropriate because some 0-node 7 with j(q) < j(@) lies in C q C P. 

4.5 Lemma. i) Let C, q, 8, P be O-mdes such that 8 = (@)[S E d(q-) A q <L S] and 

5 c 77 C p. If E is preferred to P, then 5 is preferred to 8. 

ii) Let n, a, C be 0-nodes such that C a C C, n is preferred to and there is no 

(n, j)-node p with a E p c C and j < j(C). Then n is preferred to a. 

proof. The first part is clear from Definition 4.4. Let n, a, C be 0-nodes such that n C a C C, 
n is preferred to C and there is no (n,j)-node P with a C p c ( and j < j(<). Let jo < . . . < 
j, be an enumeration of all j 5 j(n) which are active at R - .  Suppose C = (@)[S E A([-)]. 

Then (j,, S ,  jo) occurs on C- below n-. Let (~j,, S ,  ~ j , )  be the unique (m + l)-tuple on 

C- such that Tj is a (0, j)-node. Then jo < j ( i )  and so Tjo C a. Hence n is preferred to 

a. Suppose # (PS)[& E d(C-)I. Let E = max{d : S E d(C-) A S <L C]. Then there exists 

8 > E such that (j,, S ,  jo) occurs on 8. Let (.rj,, . - , Tj0) be the unique (m + l)-tuple on 

8 such that rj is a (0, j)-node. Let i be the least j such that Tj C C-. By Remark 1 above, 

i < j(C). Hence ri C a. Also, for all j < i, j is active at C- if and only if j is active at a-. 

Thus n is preferred to a. I 

Before we describe the construction, we define a class C of 0-nodes as follows. At any 

point in stage S, ( E C if the following conditions hold: 

ii) there exists some X E B which is designated for 6, 

iii) for each (n, j)-node a! such that 

c a A j  < j ( 0 ,  . there exists a number Y with Q(Y) I> a! which entered B after rt- attained its 

current value, 
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there exists a 0-node 7.1 such that [ C 7 C a ,  j (7 )  5 j ,  and 7.1 E C. 

Remarks. 1. It will turn out that, if [ E C.+1, then a$ J= 

2. The reader should note that the truth-value of [ E C is defined by recursion on [[l. 
Since rt- l for only a finitely number of I E T, the induction is sound. 

3. E C means that the attack on X?(<-) which is associated with [- need not be reset 

because of activity at nodes extending [. 

CONSTRUCTION 

At stage s of the construction we begin at node X and carry out certain instructions 

passing down the tree. We now give the instructions for node a .  When at node a we first 

carry out the action prescribed for the first of the following cases which holds, with one 

exception which is mentioned below, and then the instructions for ending a stage. 

Case 1. c" 4 and there exist i ,  X such that i < i ( a )  and, either 

X E B - C A X  # A : O U A A ~ , , ~ A  

[(i(a-) < i A a ( x )  <L aA((6 ,  i ) ) )  V (i((r-) 2 i A ( a ( x )  <L a V a ( x )  3 a))]}  

there exists a 0-node P such that j(P) = i, a ( x )  _> P T> a ,  X is a designated 

number for p,  py for each 0-node y such that either y c ,G' or P >L y E A(@-), 

re for each node 8 with 0A((2,  i (8) ) )  C P ,  and either 

i )  X E A:', and there is no &designated number for each 0-node 8 such that 

a C 8 C P and j(9) < j(P),  or 

ii) X E AiO and for each 0-node C P which is preferred to P,  the following 

hold: 

0 rt- is defined, 

' for each node C E A ( [ - )  such that [ <L c, pc is currently defined. 

Choose the least such i and then the least X .  It will turn out that, if aA((6 ,  i ))  # T ,  

then a: E A$' U A:'. If X # U Ail1, pass to (rA((6, i)). Otherwise, choose the <-least P. 
There are two cases: 
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Case 1.1. X E Ail1. Destroy cT and rT for r >L a. Destroy a?, rY- for each 0-node y 

such that y C ,L3 or P <L y. Let C[s] be the class C at this point. Also, destroy a7 and rr- 

for each 0-node y such that y > P and there is y with a(y) > y which entered B after a7 

was set unless either there exists a 0-node ( such that ( C_ y and E E C[s] or there exists n 

such that p c n C nA((2, i(n))) C y and r" is defined. 

Case 1.2. X E Ai?O. Then pass to P and go directly to Case 3 at P. We call this jumping 

from a to p. 

Case 2. a is an i-node for i < 1, a" T, and a6 1, where S is the maximal 0-node such that 

S C a if any. Let a = a-"((i, j ) ) .  Set a" equal to the greatest X in (kff-, a6) n ( ~ j , ~  - C) 

such that a(x) > S, and for all t 5 S and all ,f3 

and if v is the last stage at which a" was defined, then X exceeds every values taken by a 

parameter at a stage < v. Destroy a6 for each 0-node S such that either S C a or a <L S. 

Read X for S and oo for a6 when S is undefined. Destroy cT and rT for T >L a. 

(The construction will only pass to a if a suitable X exists.) 

Case 3. a = a-" ((0, j)), p" T, and there exists X E Aj?O - C, such that X is a designated 

number for a. Fix the least such X. (In fact, it will turn out that there is at most one 

possibility for X.) Set pff equal to X. Further, let S E A(a-) be the maximal node if any 

such that S < a. There are two subcases: 

Case 3.1. S does not exist. Enumerate L"- in B, and set c"- = 1. Destroy cT and 

rT for T >L a unless p" is defined for n C r with n- = r n a. Let C[s] be the class 

C at this point. For each 0-node y such that either 7 C a- or a-"((2, i(a-))) <L y, 

destroy aY and rY- unless either there exists a 0-node ( such that C y and 

( E C[s] or there exists n such that nA((2, i(n))) C y and r" is defined. 
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0 Case 3.2. S exists. Pass to S. 

Case 4. c" f, cP J., ay J., where ,B denotes a- and y is the maximal 0-node E a if any. 

Let X be the least unused a-number in (kp, ay) if any such that for all t 5 S, 

and if v is the last stage at which c" was defined, then X exceeds every values taken by a 

parameter at a stage 5 v. In this definition read -1 for kp when cr = X and oo for a7 when 

y is undefined. If X exists, set kP = X and c" = 0. In any case, destroy a6 for each 0-node S 

such that either S C a or a < S. Destroy c7 and r' for T >L a. 

Case 5. c" = 0, a: 1 for the maximal 0-node S E a if any, and there exists p E B(a) such 

that aP f. Let y = crA((i, j ))  be the <-least such p. If there exists X in (kP, a6) n ( ~ j - ~  - C) 

such that a(x) 3 S, and for all t < s and all ,B, 

aA((6, i(a))) E 2' e- X # {a: : a: J. AcrA((6, i(cr))) C E ) ,  

and if v is the last stage at which ay was defined, then X exceeds every values taken by a 

parameter at a stage 5 v, then pass to  y. Otherwise pass to  aA((4 + i, j)). Read X for 6 

and oo for a6 when S is undefined. 

Case 6. c" = 0, and a is not ready. Pass to aA((2, i(a))). 

Case 7. c" = 0, T" f, and a is ready. Define 
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Perform the actions prescribed by the first of Cases 8-9 which holds. 

Case 8. A(a) = 0. Enumerate La in B, and set C" = 1. Destroy cT and r' for T >L a 

unless pff is defined for n C T with n- = T n a. Destroy cP and rP for all P 3 a such that 

aA((2, i(a))) 5 p. Let C[s] be the class C at this point. For each 0-node y such that either 

y c a or a <L y, destroy a' and TT- unless either there exists a 0-node 5 such that 5 G 7 

and 5 E C[s] or there exists n such that nA((2, i(n))) C y and r" is defined. 

Case 9. A(a) # 8. Pass to the maximal node in A(a). 

Case 10. c," = 1 and no number 5 y $ " ) ( ~ $ ~ ) ,  k") has entered W'(") since the stage t, in 

which rn  attained its present value. Pass to aA((3, i(a))). 

Case 11. c," = 1 and a number 5 $~(")(w~("), k") has entered W'(") since stage t, where 

t is the stage in which r" attained its present value. Enumerate ka into C. Put into C 

every y such that a(y) _> p for some E A(a) and y was enumerated in B since r" was set. 

Set c" = 2. Destroy a6 for each 0-node S such that either S C a or a <L S. Destroy cT and 

rT for T >L a. 

Case 12. c" = 2. Pass to aA((3, (a))). 

Case 13. None of above Cases holds at a. Destroy c' and r7 for 7 >L a ;  a' for y E a or 

7 >L a- 

Ending a stage 

Let a be the last node which is visited; a is said to receive attention at this stage. After 

completing the instructions for the particular cases which hold at  the various nodes, to end 

the stage we carry out the following: 

(El)  if S <L y and a6 is destroyed in the main part of the stage, then a7 and c7 are 

destroyed. 

(E2) if a6 has been destroyed in the stage, then a6 is to be enumerated into C. 

(E3) if a6 has been destroyed and S E A(S-), then p6 is destroyed if defined. 

(E4) if p%as been destroyed, then 8, if defined, is destroyed for all P _> S. 
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(E5) rs is destroyed if either UP has been destroyed for some /3 E B(6) or c6 has been 

destroyed. 

Remarks. 1. In the construction, if k" becomes defined, then it retains its value until reset 

to a new value. 

2. For a 0-node a, P-, p" may become defined in a stage and be destroyed before the 

end of the stage. 

3. When the construction jumps to ,B, the instructions of the construction ignore the 

Cases 1 and 2 at p. The conditions for jumping ensure that Case 3 holds at P hence # 
becomes defined. 

4. If a 0-node is visited at a stage, then the construction passes to that node by one of 

the following cases: 

i) Case 1.2, i.e. by jumping. 

ii) Case 3.2. 

iii) Case 5. 

iv) Case 9. 

5. Let y be a 0-node such that rz- 4. The first node in A(?-) which is visited in stage 

S, if any, is reached by jumping. 

6. If a is a l-node, then a" can only be destroyed at the end of a stage through (El). 

7. Because the class is just referred at a point in some stage in the construction, in stage 

s we just define C,, and C[s] if one of the Cases 1.1, 3.1 and 8 holds at stage S. 

In the construction the class C plays an important role although no analogue of it 

occurred in Chapter 3. Roughly speaking, ( E C means that we wish to protect a(. As 

mentioned above with each 0-node ( is associated a strategy SS which either reduces D 

to Aj(€)*l - C or gets ~j(t)y~-~errnission for the (--attack to enumerate kt- into B. Let 

J( be the set of al l  j < j(() which are active at (-. Then the assumption of S( is that 

every &designated number which enters fl(Aj>O : j JE}, enters ~j(()-l. It will turn out 

that in any particular instant, there is at  most one &designated number. So, if there is 

no (-designated number, the assumption for the strategy S( is not violated and we can 
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think that SE still active. In this case we also can destroy at if we need to. If there is a 

&designated number, the module for the (--attack requires that at not be destroyed unless 

and until the &designated number enters ~ j ~ l  for some j E J t  U {j(()}. Now the class C 

allows at to  be destroyed more often than would otherwise be the case. 5 # C and there is 

a J-designated number means that, at the particular instant, the strategy SE appears to be 

invalidated because there is a strategy at ,G' > 6 of higher priority which is currently active. 

Let a witness J # C. Suppose either a is not a 0-node or there is no a-designated number. 

In this case we can take = a. Suppose a is a 0-node and an a-designated number exists. 

Note that a 4 C. By the induction hypothesis, there is a strategy at ,f? 3 a currently active 

which has higher priority than SQ. The strategy at ,f? also has higher priority than S€ which 

intuitively just keeping [ out of C. 



Chapter 5 

Verification, Part I 

We need to verify that the above construction satisfies both the 'Re and the S" requirements. 

In present chapter we investigate the properties of the construction. We say that the a- 

attack has been started at stage s if r" becomes defined at stage s and that the a-attack is 

destroyed if rP is destroyed. The a-attack is completed if c" is set equal 1. We start with 

lemmas about the parameters of the construction: 

5.1 Lemma. i) ku is defined whenever cP is defined, and c:, a t  are defined for each 

p E B(a) and for all S such that r" is defined at some point in stage S .  

ii) Let cP 5. Then cu is monotonic non-decreasing 5 2 unless destroyed through one of 

the following circumstances: 

(a) a node <L a receives attention and i f  either Case 3.1 or Case 8 occurs at P ,  
then there is no ?r such that 

(b) a node p receives attention, Case 8 holds at P ,  C a, and PA((2, @ ) ) )  5 a; 

(c) p7 is destroyed for some y c a; 

(d) ay is destroyed for some y <L a. 

iii) Let S C a. If c6 is destroyed, then so is ca. 
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iv) Let r" 1. Then r" retains the same value unless destroyed simultaneously with c", or 

unless a0 is destroyed, for some p E B(a). 

v) Let p be a 0-node and a t  1. If is visited at stage v,  then rP- is defined at some 

point during stage v before P is visited. 

vi) Let cr C p. Then 

(a) p is visited at stage s implies c: I. 

(b) cf 1 implies C: L. 

vii) A number which is enumerated in B at a stage s in which a receives attention has 

the form kf, where p = a if A(P) = 0,  and /3 = a- otherwise. In the latter case, 

p" becomes defined at stage S .  If kf is enumerated in B in  stage S ,  then c$? = 0 and 

c!+, = 1. 

viii) Let cr E B(a-) and a: 1. If a" is destroyed in stage S ,  then one of the following holds: 

(a) ay is destroyed for some y < L  a; 

(b) a node receives attention such that either a C P or P < L  a, and one of Case 

3.1, Case 8, and Case 11 holds for P; 

(c) a node p receives attention such that either a C p or /3 < L  a, and Case 2 holds 

for P; 

(d) a node p receives attention such that a p or P < a, and one of Case 1.1 or 

Case 4 holds for P;  

(e) a node ,G' receives attention such that a 2 p or P < L  a, and no case in  the 

construction holds. 

ix) Let a: L. Then in stage S ,  a: is destroyed i f  and only i f  it is enumerated in C .  

X )  If S E C,+,, or C[s] exists and S E C[s],  then a: L= a$, 1. 

xi) Let p" 1. Then p" retains the same value unless destroyed simultaneously with a". 

xii) Let a" 1 and cr E B(a-) - A(a-). Then a" retains the same value unless destroyed 

simultaneously with a@, for some P E A(a-) and P < L  a. 
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xiii) Let a, p and S satisfy a: 1, a t  J, and either a > p or a < L  p. If a" is destroyed at 

stage S ,  so is U P .  

xiv) If a ,  /3 E B(a- )  and a < L  p, then a0 is defined implies aQ is defined. 

xv) r Let a be a 0-node, and some node 2 a be visited in stage S. Then p: T. 

Let a be a 0-node, and some node > a be visited in stage S. Then p" T throughout 

stage S .  

I f  rp is defined at some point in stage S ,  then there no node _> PA((2, i (P ) ) )  is 

visited at stage S .  

xvi) If a node _> a" ( (3 ,  i ( a ) ) )  is visited at stage S ,  then c: 2 1. 

xvii) If ,B- = C-,  P < L  C ,  and C is an i-node with i 5 3 and C is visited in stage S ,  then 

4 J,. 

xviii) Let a,  p satisfy a < L  P ,  a-  C P ,  and ( a  n P)" ( (3 ,  i(a n P ) ) )  f L P.  Then at any stage, 

aP J, implies a" J,. 

six) Let 6, p be 0-nodes such that 6 < L  P ,  6- = P- and both are visited at stage S .  Let a 

be the maximal node in A(@-) such that a < L  P. Then $ becomes defined in stage 

S ,  a is visited at stage s after f l  is defined, a = 6, and p" cannot becomes defined in 

stage S .  

xx) If a is visited at stage S ,  then for each node ,B c a ,  either ,B is visited at stage S or 

there exists a jump from some node C p to some node S > such that S = a or 

S- C a ,  S = (pB)[B E d(S-) A a < L  61. Moreover, i f  we jump to 6 at stage S ,  then p6 

becomes defined at stage S .  

xxi) Let a: 4. If some node 2 S receives attention at stage S ,  then at stage s one of the 

following holds: 

r a: is destroyed. 

r k6- enters B and p6 becomes defined. 

some y enters B with a ( y )  > S.  
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xxii) Let a: and r" be defined at some point in  stage s for some a with aA((2 ,  i ( n ) ) )  C S .  

Then a: is not destroyed unless and until r" is destroyed. 

xxiii) Let E ,  S ,  p ,  U satisty: 

(a) 5 c S ,  S is a 0-node, 

(b) a5, 4 ,  a: L ,  
(c) p receives attention at stage U ,  

(d) E C P = O < L S V S C P ,  

(e) If C[U] exists, then there is no a such that C a C S and a E C[u], 

(f) There is no a such that [ C aA((2,  i ( a ) ) )  C S and ru 5 in stage U ,  

(g) There is no a such that [ C a C S and pu is defined at stage U ,  and p6 4 implies 

6- # P-, 
(h) at is destroyed at stage U .  

Then a6 is destroyed at stage U. 

xxiv,) (a) Let y be a 0-node and v be a stage such that r:il 1, and y E C, - Then 

there exist a and a such that a _> a E A(y-) ,  a 5 y,  and a receives attention in 

stage v .  

(b) Let y be a 0-node and v be a stage such that C[v] exists, y E C, - C[v], and rr- 1 
when we define C[v]. Then there exist a and T such that a _> a E A ( y - ) ,  a < y ,  

and a receives attention in stage v. 

xxv) Let one of the Cases 1.1, 8.1 and 8 hold at stage v.  Let y be a 0-node such that r:il 4 .  
Then y E C[v] if and only if y E C,+1. 

Proof. W e  just verify v )  - vii) ,  X ) ,  xi i i) ,  xv )  - x ix) ,  xx i )  - xxv) ,  the rest are obvious. 

v )  I f  ,f? is visited in stage v ,  then either ,P is also visited and Case 9 holds at ,L?- or the 

construction jumps t o  a node S such that p- = S-. In the former case rP- 1 is required for 

Case 9. In the latter case there is a number designated for S which means that r6- 1. 
v i )  I t  is sufficient t o  show firstly that,  i f  P is visited, then cP- is defined, and secondly 

that cP- is defined whenever cP is defined. By iii), whenever cP- becomes undefined, so 
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does cp. Suppose ,D is visited at a particular stage. Every case which allows the construction 

to pass from ,D- to ,G' requires that CB- L. Thus, if ,B- is also visited, then CB- J. Otherwise, 

there is a jump to 6 with S- = p- and r6- I. So again cP- J by i). Since c@ becomes 

defined only if p is visted this enough. 

vii) A number can enter B only through Case 3.1 or Case 8 at the node which receives 

attention in the given stage. Examining those cases we see that we need only verify that, if 

Ict enters B in stage S, then c? = 0. This is clear if A(p) = 0. Otherwise, Case 3.1 occurs 

and there exists X designated for a. So p" becomes defined at stage s and TP is defined at 

some point in stage S. By i), c! J. Towards a contradiction assume that c! > 1. Let U < s 

be the last stage at which CB was set equal to 1. At stage U ,  p" became defined. Hence at 

a stage v, U 5 v < S, p" becomes undefined. Then a" and TB are destroyed at stage v. But 

when rP becomes defined, cP = 0. This is a contradiction. 

X )  When r6- becomes defined, a q s  already defined. When a6 becomes undefined, so 

does r6-. This is sufficient since either 6 E C,+1 or S E C[s] requires r6- 1 at some point in 

stage S. 

xiii) Let a: be destroyed at stage S .  Suppose C a. By xii) we may suppose that a! 

is a 0-node. By the construction a t  is also destroyed at stage s if defined. Now suppose 

a <L P. By (El), a t  is also destroyed at stage s if defined. 

xv) Suppose a! is not visited at stage S. Then there is a jump to some node > a, and by 

Case 1, p: T. Suppose a is visited at stage s.Then the construction passes to a by one of 

Cases 1.1, 3.2, 5, and 9. p: T if there is a jump to a. Suppose a is visited by Case 3.2. Let 

n be the maximal node in A(a-) which is visited at stage S. Since Case 3.2 holds at the 

0-node S which is visited immediately before a!, by Case 3 some number z E B is designated 

for S at stage s and so T"- = r6- is defined at some point in stage S. Since z E B when the 

construction passes to S, z E B,. It follows that r,6- I. By i), a t  J. for all E B(SW). So, if 

in stage s the construction passes to S-, then r6- and ap (p E B(S-)) are all defined, and 

Case 1.2 must hold. It follows that there is a jump to n and then the construction passes 

to a by repetition of Case 3.2. Clearly, a <L n. By the conditions for Case 1, p" f . 
Suppose a is visited by Case 5. a: T. But when p" becomes defined, a" I, and p" is 

destroyed only by (E3). Hence p" J. implies a" 4. Thus p: f if a: t . Suppose a is visited 
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by Case 9. Then a is the maximal 0-node in A(a-). Towards a contradiction assume that 

p: 1. Let pa have been set equal to p,Q at stage v < S. Hence rp- 3. Note that at stage S, 

ra- becomes defined. Hence ra- became undefined between stages t and S, say at stage W. 

Suppose one of a?, y E A(a-), was destroyed at stage W. By xii), we can choose y E A(a-). 

Then y 5 a. Hence aa and then p" were destroyed at stage W, contradicts the choice oft .  

Suppose ca- was destroyed at stage W. Then c"- becomes defined between stages W and S, 

and at the same time a" and then p" are destroyed, a contradiction. 

The second part of xv) is immediately from the first part unless pa becomes defined in 

stage S. Suppose pa becomes defined at stage S. By Case 3, there is no node > a is visited 

in stage S. This is enough. The third part of xv) is clear. 

xvi) We prove xvi) by induction on stages. Suppose some node _> aA((3, i(a))) is visited 

at stage S. Note that aA((3, i(a))) is visited at  stage s only if c: 2 1. So xvi) is clear unless 

there is a jump from some node _> a to some node p 2 aA((3, i(a))). Note that c!- 1 and 

,B- -> aA((3,i(a))). Let t be the last stage before s in which c@- became defined. By the 

induction hypothesis, C? 2 1. Then c: 2 1 unless ca is destroyed between stages t and S. 

However, if ca is destroyed, then c@- is also destroyed by iii) which contradicts the choice 

oft .  

xvii) Suppose C E B(/?-). If the construction passes to C other than by Case 5, then a6 1 
and so a t  1 by xiii). Also, if the construction passes to c by Case 5, then a t  1. Suppose C 
is an n node for n E {2,3). By the construction, C cannot be visited unless Case 5 does not 

hold at  P-. Hence a t  1. This is sufficient. 

xviii) Fix a. We proceed xviii) by induction on l ( @ ) .  Suppose a" is destroyed. By (El), 

a0 is destroyed. Let C be the least node such that a n C C C P. Then c is an n-node for 

n E (0, 1,2,3). Suppose @ = C. Then E B(a-). By xiv), when a0 becomes defined, a" is 

already defined, and if a" is destroyed a@ is destroyed simultaneously. Suppose P # C. Let 

a@ become defined at stage v. Suppose that some 0-node ,$ with C S ,$ C P is visited and 

a$ 1. By the induction hypothesis, a t  1. Suppose there is no such g. Then C- and C are 

visited at stage v. Let S S a- be the maximal 0-node if any. Suppose S exists. Then S is 

visited since c- (= a-)  is visited. Towards a contradiction assume a: f. Then S cannot be 

visited unless Case 5 holds at S- at stage v. Note that at stage v, if Case 1 holds at S, then 



CHAPTER 5. VERIFICATION, PART I 44 

Case 1 holds at S-. Then Case 1 cannot hold at S at stage v. Hence Case 2 holds when S 

is visited at stage v and then S receives attention, a contradiction. Now by Case 5, a; 1. 
Otherwise c cannot be visited at  stage v. This is sufficient. 

xix) From the construction the only possible 8 is visited after P is visited is $ becomes 

defined at  stage S, and Case 3.2 holds at P. By Case 3.2, a is visited. Towards a contradiction 

assume a # 8. Clearly, 8 <L a. Then 8 is not visited at stage S unlees pn becomes defined. 

Therefore pn is also defined at stage S. Let p* be set equal to X at stage S. Let X enter B 
- 

at stage U. Then U < S and r::, L= r: 1 because X is d esignated for o at stage S. By the 

same token $ was defined at some point in stage U. Observe that d+, I= pbr 1. Otherwise, 

let f l  become undefined at stage v, U < v < S. Then aP becomes undefined at stage v and 

so does rP-, contradiction. Hence f l  cannot become defined at stage S because & L. 
xxi) Let a receive attention at stage S. Clearly as is destroyed at stage S unless Case 3 

or Case 8 holds. Suppose one of Case 3 and Case 8 holds at a. In either case some y enters 

B at stage S. If a(y) 2 S, it is enough. Suppose a(y) 2 S. Hence a- = a(y), o = S, Case 3 

holds at a and becomes defined at stage S. This is sufficient for xxi). 

xxii) Towards a contradiction consider the least S, n and then S which witness that 

xxii) fails. Then r:+, and as is destroyed at stage S. Let P receive attention at stage S. 

By xv), P 2 7rA((2, i(n))). By viii), at stage S, one of the following holds: 

a) ay is destroyed for some y <L nA((2, i(7r))). 

b) ,G' <L nA((2, i(n))) and one of Case 2, Case 3.1, Case 8 and Case 11 holds. 

C) P <L 7rA((2, i(n))) and no case in the construction hold. 

d) p < 7rA((2, i(n))) and one of Case 1.1, Case 4 holds for P. 

Suppose a) holds. Then y <L n or y _> r for some r E B(n). If y <L n. c" is destroyed 

at stage S by (El). If y > r for some r E B(n). Then a7 is destroyed at stage s by xiii). 

Hence in either case r" is destroyed at stage S by (E5), contradiction. Suppose one of b)  - d )  

holds. Let P <L 7r. BY construction, c" is destroyed at stage S unless one of Case 3.1, and 

Case 8 holds. However, in these two cases, a6 cannot become undefined because r" is not 

destroyed. Suppose ,f3 C R. Then one of Case 1.1 and Case 4 holds. By i), c: J. since r:+, L. 
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By vi), c! since c: 1. Hence Case 4 cannot hold. Suppose Case 1.1 holds. Then a6 cannot 

become undefined because r" is not destroyed. Suppose P 2 r for some r E B(n). Then by 

xxi), one of the following holds: 

i) aT is destroyed. 

ii) k" enters B and pT becomes defined at stage S. 

iii) some y enters B with a(y) 2 r. 

Since r" is not destroyed, i) cannot hold. Suppose ii) holds. By Case 3.1, as is not 

destroyed at stage S. Suppose iii) holds. By Case 3.1 and Case 8, a6 cannot become 

undefined because is not destroyed at stage S. This is sufficient. 

xxiii) By viii), it is clear that at is destroyed at stage U unless at stage U one of the 

following four cases holds: 

A) p 2 5 or P <L 5, and one of the Cases 3.1, 8, and Case 11 holds at P;  

B) p > 6 or P <L 5, and Case 2 holds at P;  

C) 5 c P or P < 5, and one of Cases 1.1,4 holds at  P;  

D) 5 C P or P <L 5, and no case in the construction holds. 

Suppose Case 4 holds at P at stage U with C G ,4? or P < 5. By (d), in either case, 6 C_ P 
or ,G' < S. By Case 4 of the construction, a6 is destroyed at stage U. 

Suppose Case 1.1 holds at stage U. By (d) we see that there are three possibilities: P C t ,  
p <L S, and S C p. Let ,f3 c C. Since at is destroyed at stage U, by xiii) for each ()-node 

n C 5, if a: L, then a" becomes undefined at stage U. From this fact and by (e) there is no 

r E S such that r E C[u]. By (f), there is no y such that 5 E y C yA((2,i(y))) C S and rr 

is defined at stage U. Hence by Case 1.1, a6 is destroyed at stage U. Let ,f3 <L S. It is clear 

by Case 1.1 that there exists a 0-node n > P,  a: 1 and a" is destroyed at stage U. By xii), 

a"s destroyed at stage U. Let S C P .  Clearly a6 is destroyed by Case 1.1. 

Suppose Case 2 holds at stage U. Let P <L 5. Clearly a6 is destroyed at stage U. Let 

P 2 C. By (d), p <L 6 or S C p. By Case 2, in either case a6 is destroyed at stage U. 
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Similarly, if Case 11 holds or no case holds at /3 at stage U ,  we see that as is destroyed at 

stage U.  

Suppose Case 3.1 holds at stage U .  Since at is destroyed, either /3 T> 5 or ,PA((2,  i (P- ) ) )  <L 

s. Let /3-/\((2, ( P - ) ) )  <L 5. Then P-"((2,i(P-))) <L S. By ( e ) ,  (f) and Case 3.1, a6 is 

destroyed at stage U .  Let 3 5. By (d ) ,  either P > S or P <L S. Also, if at is destroyed at 

stage U ,  by Case 3.1 aT is also destroyed at stage U for each 0-node T C 5 with a; 4. By (e ) ,  

there is no T 2 S with r E C[u]. By ( f ) ,  there is no y such that C yA((2, i ( y ) ) )  C S and 

TT is defined at stage U. Hence a6 is destroyed at stage u if /3 > S or P-"((2,i(P-))) 5 S. 

Suppose S _> 8 for some 8 E A@-)  with P <L 8. By Case 3, there is a designated number 

for ,B at stage U .  Then pe is defined at stage U ,  which contradicts (g).  For Case 8 the 

argument is similar to  that for Case 3.1 but simpler; we leave it to the reader. 

xxiv)  Without loss of generality it suffices to consider y with lyl maximal such that 

Since y E C,, r2- L ,  and t-7- is not destroyed in stage v ,  the first two conditions in the 

definition of for y hold. Because y # C,+1, there exists an (n, j)-node P such that 

there exists y  E Bv+1 with a ( y )  _> p which entered B after ry- attained its value at 

stage v ,  

for each 0-node q such that y  C q 2 P and j (q )  I j, 77 # Cv+i. 

I f  y  enters B at stage v ,  then desired conclusion is immediate. Suppose y E B,. Because 

y E CV,  there exists a (least) 0-node q such that 7 C q C P ,  j (q )  5 j and q E C,. Suppose 

r" is not destroyed at stage v. Note that q 4 C,+1. This contradicts the maximality of 171. 

Therefore TT-  is destroyed at stage v. By i v )  and xi i) ,  at stage v either cq- is destroyed or 

a" is destroyed for some R E A(q-).  Towards a contradiction assume that a" is destroyed 

at stage v for some T E A(q-).  By xiii)  and i v ) ,  a? and then r^l- are destroyed at stage v ,  

a contradiction. Hence c7- is destroyed at stage v. By ii), the destruction of CV- at stage 

v is caused by one of the following: 
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A) a node a < L  q- receives attention; 

B) C' is set equal to 1 for some E with ~" ( (2 ,  i(E))) 5 q-; 

C) p' is destroyed for some E 2 q-; 

D) a y s  destroyed for some E <L q-. 

Consider stage v. Suppose A) holds. There are two cases: 

Case 1. a <L y-. Since cY- is not destroyed at stage v one of Cases 3.1, 8 holds and 

p" is defined for the unique n such that n C y and n- = a n y. But in this case, c" also 

cannot become undefined by Case 3.1 and Case 8. 

Case 2. Otherwise. Then a 2 R for some n such that n E B(y-) and n 5 y, which is 

the desired conclusion. 

Suppose B) holds. By the construction we know that at stage v, L' enters B. Let a 

receive attention at stage v. Clearly, E E a. If 7 E a, we are done. The only other case 

is a < y. Then cA((2, i(c))) 5 y and so eA((2,i(c))) < y-. In this case, c7- and TT- are 

destroyed at stage v, contradiction. 

Suppose C) holds. Then either E C y- or y C E. Let E 2 y-. When p' becomes 

undefined, c7- becomes undefined by (E4), a contradiction. Let y G E. Since p' is destroyed, 

a' must have been destroyed in stage v. Hence ay is destroyed at stage v by xiii), which 

means that TT- is also destroyed, contradiction. 

Suppose D) holds. Clearly, E < L  q. So when a' is destroyed at stage v, a? and then ay 

are destroyed by xiii). This yields the destruction of TT- at stage v, contradiction. This 

completes the proof of (a). The argument for ( b )  is similar. We leave it to the reader. 

xxv) Towards a contradiction consider a 0-node y with IyI maximal such that 

As in the proof of xxiv) there is a 0-node q 3 y such that q E C[v] and q 4 By the 

choice of y we know that TV- is destroyed in stage v after C[v] is defined. By iv) either c?- 

or one of a" (R E A(q-)) is destroyed in stage v. But the destruction of a" for (R E A(q-)) 
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implies the destruction of a? by xiii) .  By i v ) ,  rr- is also destroyed, a contradiction. Hence 

CV- is destroyed after C[v] is defined. By Cases 1.1,3.1, and 8, no c's can become undefined 

after C[v] is defined in the main part of the construction. Therefore CV- is destroyed after 

the main part of the construction, i.e., it is destroyed by one of ( E l )  and (E4) .  Suppose 

c"- is destroyed by ( E l )  because a6 has been destroyed in the main part of the construction 

for some S <L q-. Whether S <L 7- or not, rr- is destroyed, a contradiction. Suppose CV- 

is destroyed by ( E 4 )  because p6 has been destroyed for some S C q-. Note that a6 is also 

destroyed since p's can only be destroyed by (E3) .  Whether S C 7- or not, T?- is destroyed 

in stage v ,  a contradiction. 

Towards a contradiction consider a 0-node with 171 maximal such that 7 E and 

y 6 C[v]. Note that r:;, 1 since y E C,+1. As in the proof of xxiv)  there is a 0-node 7 > y 

such that 7 E and 7 C[v]. This contradicts the maximality of 171. This completes 

the proof of xxv) .  M 

5.2 Lemma. Let t 5 S .  The following are true whenever the parameters mentioned are 

defined provided that c: is also defined for each pair ( J ,  v) such that k: is mentioned: 

ii) S <L a V a C 6 + a: < a:. 

iv) S <L a a a: < k:. 

vii) Let E be a 0-node and p be an i-node for i 5 1. Then E C a(pC) ,  P <L P-"((3, i (P)) )  <L 

a(aP), and a(aP) > S where S is the maximal 0-node C P i f  any. 

viii) a: < < a t  for all p, 7 such that 7- = p- and y <L p. 

ix) Let a: < a t  and a f f  be destroyed at stage S .  Then a@ is destroyed at stage S .  
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Proof. i) Suppose S <L a. When c6 becomes defined at a stage v, S receives attention and C" 

becomes undefined by Case 4. Whether c; is destroyed or not, if k" is defined subsequently, 

then by Case 4 we have k,6 < ka.  So kf < k," whenever c;, c," are both defined. Now suppose 

S C a. Whenever a is visited c6 is defined by 5.1 vi). So by Case 4, when C" becomes 

defined, we have k6 < k f f .  But, if c6 is destroyed, so is c" by 5.1 iii). Also, kf 5 k,6. This is 

sufficient. 

ii) When a6 becomes defined at stage v, aa becomes undefined by Case 2.  Now if a" 

becomes defined at a stage > v, then by Case 2 we have at+l < a". This is sufficient. 

iii) When c" becomes defined at stage v, aP becomes undefined. I f  aP becomes defined 

subsequently, k G l  < UP. This is enough. 

iv) Let S <L a. When a"ecomes defined at stage v, ca becomes undefined. If c" is 

defined subsequently, then by Case 4 we have a t  < k" whether or not a t  has been destroyed. 

So a$ < k,Q whenever a:, k,Q are both defined. 

v) Let r" be set equal to rp  at stage v. Note that whenever a node <L ,L? receives 

attention c0 is destroyed unless p" is defined for some ?r c P. There are two cases. 

Case 1. a <L p. If c@ is destroyed at stage v, then whenever c0 becomes defined at stage 

> v, kP is given a vlaue > = rp .  Otherwise, we have ?r C P such that pT is defined 

when a is visited in stage v. Either p? 1, or p" is destroyed at some stage 2 v and < t. In 

the latter case cP is destroyed in the same stage by (E3) and so we again have the desired 

conclusion. 

Case 2. a C P. Case 7 holds at a in stage v. If Case 8 also holds at a, then c0 is 

destroyed since aA((2, i(a))) 5 P, and we finish as in Case 1. Otherwise, Case 9 holds and 

a node <L receives attention. Again we finish as in Case 1. This completes the proof of 

4. 
vi) To see kp < r:, notice that, whenever a is visited at a stage v, t 5 v 5 S, and Case 

7 holds, then c,Q is defined. So by Case 7, when T" becomes defined, we have k," < T:. But 

destruction of c: implies the simultaneous destruction of T," by (E5). Also, k? 5 kg. This 

is sufficient. 

vii) E c a(pe) is clear from Case 3. Also it is obvious that P <L ,PA((3, i(P))) if 

P E W - ) .  
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Let a@ J,. Towards a contradiction assume that PWA((3, Q ) ) )  f L a(aD). Let 7 denote 

a(aP), and n be the current value of aP. Note that y is not a l-node. Let t be the stage at 

which L7 was set equal n and S be the stage at which a@ was set equal n. Then t < s since 

n enters B after stage t and aP can be set equal n only if n is already in B. We examine 

four cases: 

Case 1. y 5 p-. By i), n = k: 5 kf-, and by iii), n = af > kf-, a contradiction. 

Case 2. y > p- and y < L  p. By iii), n = k; < af = n, a contradiction. 

Case 3. y 3 p. Let S be the greatest 0-node such that S c y. If k7 becomes defined at 

stage t ,  a t  is defined. Since ,!3 C S 5 y, by Case 4 of the construction, n = k;+l < a:. But 

a: < a t  = n by ii), which contradicts n < a:. 

Case 4. Otherwise. Then y > and ,l? <L C, where either C E A@-) or C = ,PA((n, i(P))) 

where n E {2,3). Let v < S be the greatest number, if any, such that a t  1. By Case 2 of 

the construction, a!+, > kz for w 5 v. Hence v < t < S, and at stage t ,  C is not visited by 

5.1 xvii). Since C is not visited and +y is visited, at stage t there is a jump to some 0-node 7, 

C C 7. By the condition for a jump, a: 1. By 5.1 xviii), af 1. This contradicts the choice 

of v. This completes the proof of P-A ((3, Q ) ) )  <L cr(aP). 

Let S be the maximal 0-node C ,L3 if any. From Case 2 it is clear that S C a(aP). This 

completes the proof of vii). 

viii) Suppose that n is the greatest stage < s at which $ becomes defined. Then a! 1 
and $ is set equal k i  for some S 1 p by Case 3. Let v < n be the stage in which k6 is set 

equal to K:. Let E be the greatest 0-node 5 S, which exists since S > /? and /? is a 0-node. 

By Case 4, a: 1. By ii), a: < a:. So & = k; < a: 5 a! by iii). 

Let y- = p- and y < L  p. By vii), a($) 3 P. Notice that $ = kff(pP). With the above 

notation, if a; J= a:, then by Case 4, kt+l > a;. Towards a contradiction assume a; # a:. 
When ay gets the value a:, a@ and c6, if defined, are both destroyed which means that kt 

must already have entered B. This makes it impossible for $ to be set equal kt since a! is 

set after k: enters B. This is sufficient. 

ix) By ii), a < L  P or P C a. By 5.1 xii), it is clear. I 

Before we show the next lemma, a class V of 0-nodes is defined which is related to the 

class C: A 0-node 6 E V at  some point in stage S if it the following conditions: 
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i )  as -1, 

ii) there exists X E B with cr(x) [ which entered B since at was set, 

Remark. If [ E V at some point in stage S ,  then a$ 1. 

5.3 Lemma. i )  Let ,B be a 0-node which is visited at stage t and a: 4. Then for each y 

such that y = p or y is preferred to ,B, at some point during stage t before P is visited, 

the following hold: 

(a) TT- is defined. 

(b) is defined for each [ E A ( y - )  with y <L [. 

ii) There are no nodes T, n and stages t ( w ) ,  S ,  s (n )  and number z ( n )  such that 

(a) 7- <L n ,  

(b) < S < $ ( X ) ,  

(c) r receives attention at stage S ,  

(d) p= is set to z ( n )  at stage S ( R )  and z ( z )  entered B at stage t(n). 

iii) Let a ,  i and s satisfy: i 5 i(cr), crA((6,i)) 6 T and (6,  i )  does not occur in  cr. If cr 

is visited, but there is no jump to a at stage S ,  and y E B, - C with cr(y) <L cr or 

~ ( y )  3 a, then y E A:' U A:'. 

iv) Let p be the maximal 0-node 5 cr. If cr is visited at stage S ,  then a t  -1 or P = a and 

aP becomes defined at stage S .  

U) Suppose that at some point in  a stage, g, cr satisfy 

. [ c c r  

. [ € C  

there is no 0-node E such that g C E G cr and E E C 

0 there exists a number y with a ( y )  _> cr which entered B since rs- was set. 
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If is an (n,  j)-node, then j ( c )  I j .  

vi) Let 6 be a 0-node and a: 1. 

(a) Let U ,  S E V,+, and 5 satisfying 

~ c ~ E V , + ~ , U < ~ ;  

c is the maximal node C S such that c E C,+,; 

c$- 1, c:;, 1, a$ = a$; 

there ezists y E BUcl with a ( y )  > 6 which entered B since r&, was set; 

at is destroyed at S .  

Then a6 is destroyed at stage S .  

(b) m p: JAC:-  1*6ECs. 

[a6, c6-, p6 all defined when C[s] is defined ] 6 E C[s]. 

(c) Let p' be defined at some point in stage s and (3n  E A(6-))[a <L S ] .  Then p6 is 

destroyed at stage s implies that a" is destroyed for some n E A(S-) with n <L S .  

(d) Suppose there exists y E B,  with a ( y )  > S which entered B since a6 was set equal 

a:, and some node _> 6 is visited at stage S.  Let cr be the first node > S which 

is visited in stage S .  Then pa becomes defined in stage S ,  and a # S implies 

j (a> < j(S).  

(e) Let z be designated for S at some point in  stage S .  Then z is the first number to 

enter B since a: was set. 

( f )  Suppose that in  stage s cr _> S receives attention, one of Cases 3.1 and 8 holds, 

and 6 E C[s]. Then rt;, 1. 

vii) There are no stage W and node 6 such that 

viii) At each stage S ,  one of the Cases 1-12 holds at the node which receives attention at 

stage S .  

ix) If $ 12 1, rf 1 and rf+, f ,  then f .  
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X )  Let 6, p and S satisfy that a: 1, S > p, S <L PA((2, i ( P ) ) ) ,  r; .1 and c: 12 1. If a:+l 7, 
then a:+, for each E A@).  

zi) Let 6 > PA((2, i ( P ) ) ) .  If as is destroyed in stage s and ro 1 at some point in stage S ,  

P then rs+l 7. 

xii) Let X be enumerated in C at stage S and a receive attention. Then X = a: or X = k:. 

Further, if X = k,6 and is not of the form a: for any y ,  then Case 11 holds at a! and 

either S = cr or S > /l for some P E A ( a ) .  

0 If a: 1, then a: 4 CS. 

Proof. i )  Suppose y is visited at stage t. 

Case 1. rr- becomes defined in stage t. Then Case 9 holds at y- and y = maxA(y-) .  

Case 2. rT- 1. I f  we jump to  S E A ( y - ) ,  then p%ecomes defined and either this is the 

end of the stage or the construction passes 6 = max{n E A ( y - )  : n <L S). By 5.1 xix) ,  p' 

does not become defined and so no further node in A(y - )  is visited. So y is either S or E. 

Since becomes defined there exists X which is designated for S.  From the definition of 

designation, pT 1 for all R > S ,  R E A(y- ) .  

Suppose y is not visited at stage t .  Let 8 be the first node > 7 which is visited at stage 

t. 8 exists since y C p and p is visited at stage t. Note that at  stage t we jump to 8. Note 

that we have 8 = p or p 2 max(6 : 6 E A(@-) A S <L 8). By Lemma 4.5, y is preferred to 

8 if p # 8. Hence in either case, y is preferred to 8. By Case 1 in the construction, a) and 

b )  hold when the construction jumps to 8. 

ii) Towards a contradiction assume i i )  fails. Let r, R ,  t ( ~ ) ,  S ,  $ ( R )  be chosen to satisfy 

( a )  - (d) and to minimize first 17 n nl and then S. Let 6, 8 be the least nodes respectively 

such that T n R C 8 C r and r n R C 6 C n. 

Claim 1. 

b)  8 is not visited at stage S. 



CHAPTER 5. VERIFICATION, PART I 

Proof of the Claim 1: a)  Towards a contradiction assume that a) fails. Then r <L R-. 

At stage S ,  T receives attention, so cT- is destroyed unless pc is defined at stage S by 5.1 

ii(a)).  Suppose pc is defined at stage S.  At stage s(n) ,  n is visited. By 5.1 m), pc is 

destroyed between stages S and s(w) and c"- is destroyed at the same time. But by 5.1 vi) ,  

C:(:) 1. SO at some stage U ,  s < u < s ( r ) ,  c"- becomes defined and at the same stage a" 

becomes undefined by Case 4. At stage s(n) ,  pT is set equal to z(n). But by Case 3, z (n)  is 

designated for n at stage s(?r) which means that a:(,) and a:,) are both defined and equal. 

This contradicts a" being destroyed at stage U .  This is enough. 

b) Towards a contradiction assume that b) fails. By a) ,  n- = T n n.  Because in stage S ,  

8 is visited. By i) ,  pz is defined at some point in stage S before 8 is visited. So p" becomes 

undefined at some stage U ,  S < U < s(n) ,  and at the same stage a" becomes undefined 

since pT only becomes undefined through (E3). This contradicts a" remaining unchanged 

between stages t ( n )  and s(R). This completes the proof of the Claim 1. 

Let E be the first node _> 8 which is visited at stage S .  By Claim 1 b) ,  E # 8 and there 

is a jump from some node c T n ?r to E ,  and then p' becomes defined when E is visited at 

stage S.  Let p' be set equal to z(c) at stage s which entered B at stage t ( ~ )  < S .  By the 

minimality of S ,  t ( ~ )  5 t (n ) .  Clearly t ( ~ )  # t(?r). 

Let v be the least stage such that v > t ( ~ )  and at which some node _> a is visited for 

some a E A([ - )  and C 5 a. Note that v exists and 5 t ( ~ ) .  Fix such node a. 

Claim 2. At stage v ,  there is no jump from a node C T n n to a node 3 T n n.  

Proof of the Claim 2: Towards a contradiction assume that at stage v there is a jump from 

some node C r n ?r to some node > T n R. Let q be the first node 3 T n R which is visited at 

stage v. Then q is a 0-node and p" becomes defined at stage v. Note that a < q otherwise 

nodes 1 a cannot be visited at stage v. Let the number which is set equal to pq at stage 

v have entered B at  stage t ( q )  < v. Clearly t (q)  # t ( ~ ) .  But t (q)  < t ( ~ )  contradicts the 

minimality of S since t ( q )  < t ( ~ )  < v (= s(q)).  t ( ~ )  < t(7) contradicts the minimality of v. 

This completes the proof of the Claim 2. 

Now let t be the maximal stage < t ( n )  at which there is no jump from a node 5 T n n 

to a node 3 r n n and some node a is visited at stage t with a S E A(T n n )  and n 5 a 

for some S. 
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Claim 3. No node _> 8 is visited at a stage W such that t < W < S .  

Proof of the Claim 3: Towards a contradiction assume that there exist a stage W and a 

(least) node P such that t < W < S ,  r f l  n C P ,  P <L n and ,B is visited at stage W. By the 

minimality of S ,  W < t (n) .  Clearly W # t (n ) .  Let U be the least stage > W at which some 

(first) node q is visited with T n n C q and R 5 q. Note that U exists and t  < W < U < t (n) .  

Then by the choice of t ,  at stage U ,  there is a jump to 7. Let pq be set equal to z(q) at 

stage U which entered B at stage t (q )  < U. By the choice of U ,  t (q )  5 W. Clearly t (q)  # W. 
Hence t ( q )  < W < U (= ~ ( q ) ) ,  contradicts the minimality of s  and yields the conclusion of 

the Claim 3. 

Below we show that Case 1 in the construction holds at r n n at stage t. To see that 

Case 1 holds at stage t at r n n reading j(E) for i,  Z ( E )  for X, and E for P we need to show 

that for each 0-node y  which is preferred to E ,  the following hold: 

A) TT- is defined at some point in stage t when r n n is visited, 

B) p" is defined at some point in stage t when r n n is visited for each node a E A(y-)  

such that y  <L U.  

By Claim 3, for each 0-node y  such that r f l  n C y  C E and y  is preferred to E ,  the 

following hold: 

p: 1 for each node o E A(?-) such that y <L a. 

Fix a 0-node y C r n 7r which is preferred to E. If y  is visited at stage t ,  then A )  and B) 

hold by i). Suppose y  is not visited at stage t ,  then because r n n and S are visited at stage 

t there exists a 0-node q such that y  C q, q- C r n n ,  7 = (p@)[@ E A(q-) A T n n <L P],  
and we jump from some node C y  to q. By Lemma 4.5, y  is preferred to q, thus A),  B )  hold 

by i). 

Since S is not a 6-node, it is not visited at stage t ,  contradicts the choice of t. This 

completes the proof of ii). 

iii) Towards a contradiction assume there are i and y  which witness that iii) fails, Let y 

enter B at  stage U .  Let E receive at tention at  stage U .  Note that E exists, and either E = a( y )  
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or E- = a(y). Let y be the (n, i - l)-node G a for n E {2,3). Note that y # a. Since (6, i) 

does not occur on a, a <L ~ " ( ( 6 ,  i)). Then there exists a jump from some node c y to  some 

node T > L  a and n 3 y at stage S, because a is visited at stage S. Note that a(y) <L n. 

Let v be the least stage > U at which some node >L a(y) and > y is visited. Then v 2 s 

and there exists a jump from some node C y to T such that 7 C T and a(y) <L T. Hence 

pT set equal to Z(T) at stage v. Let Z(T) enter B at stage t(r). Then by the choice of v, 

t ( r )  < U. Taking n = T, t(n) = t(r), S(T) = v, T = E and s = U we have a contradiction 

with ii). 

iv) First we show that, if a = p and a t  f ,  then aP becomes defined at stage S. Suppose 

a: f .  Then by the construction the only possibility of visiting P at stage s is that Case 

5 holds for P- and we pass to  P. Towards a contradiction assume that Case 1 in the 

construction holds at P at stage S.  Choose the least i and then the X such that they witness 

that Case 1 holds at at stage S. By iii), X E A:' U A:' since P is a 0-node. Suppose X is 

a S-designated number for some S 2 ,f3 with i = j(6). Then Case 1 holds on P- at stage S. 

However, a jump from p- to p is impossible since af f .  This is a contradiction. By Case 2, 

a@ becomes defined. 

Let ,f3 c a. Consider stage S. Suppose P is visited. Then a: J, is defined by the previous 

case. Now suppose ,G' is not visited. There is a jump from some node C P to q 5) P. Since 

a is visited either q = a or a <L 7. In either case there is a 0-node 7 such that ,G' C 7 C a, 

a contradiction. 

v) Towards a contradiction assume that j < j(5). Because at some point in a stage [ E C 

and there exists a number y with a(y) _> a which entered B after TS- was set, there exists 

an q such that 5 C q 5 and q E C at  this moment, a contradiction with the choice of 5. 
Hence j(5) 5 j. 

vi) The proof is by induction first on s and then on 161 and finally on 151. 
For a) we apply xxiii) of 5.1. So our task is to verify that the hypotheses (a) - (h )  

of xxiii) are all satisfied. Let ,G' receive attention at stage S. Now (a) - (c) and (h)  are 

immediate from our present hypotheses. 

Note that j([) 5 j for each (n,  j)-node with [ C a G S by v). 
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Claim 1. Let t be the last stage < U at which some y entered B with a ( y )  _> S. Then for 

all v, t < v < S, if r is visited at a stage v, it is impossible that t C r and either r C S or 

Proof of Claim 1: We proceed by induction on v. 

Consider the first node r visited at stage v such that 6 C r and either r E S or S <L r. 

Suppose [ is visited at  stage v. By (d) of the induction hypothesis, p€ becomes defined at 

stage v. In stage v, the construction either stops at or passes from [ to a node c <L 9. 
Hence r is not visited, contradiction. So [ is not visited at stage v. Thus there is a jump 

to  r and p7 becomes defined at stage v. Suppose S <L T .  Let p7 be set equal to z ( r )  at 

stage v. Then z ( r )  entered B at a stage t(r) < v. Clearly, t (r)  # t. If t (r)  > t ,  then 

the hypothesis of induction on v  implies that in stage t (r)  no node _> T is visited. This 

contradicts a ( z ( r ) )  _> r. Therefore t (r)  < t .  Now i i )  yields a contradiction. We take T for 

X, t (r)  for t ( ~ ) ,  z ( r )  for z ( n ) ,  t for S, the node _> q receives attention in stage t for T, and 

v  for s(n) .  We conclude that S <L r is impossible. 

Suppose [ C r c S. By ( d )  of the induction hypothesis, j ( r )  < j ( t ) .  By v ) ,  j(5) 5 j ( r ) ,  

a contradiction. This completes the proof of Claim 1. 

In Claim 1 taking v = s  we see that [ C P implies P g S and S PL P. Hence C 

implies P <L S or S C P. If 6 = P, then by the induction hypothesis, taking 6 for S, we 

have from ( d )  that p& becomes defined in stage S. Since at is destroyed in stage S, so is c&, 

contradiction. Hence hypothesis ( d )  of xz i i i )  of 5.1 holds. To check that the hypotheses 

(f) and ( g )  of xxi i i )  hold we argue as follows. 

At stage t ,  a node _> S receives attention. Applying xv)  of 5.1 at stage t we see that rb 

is undefined throughout stage t for each a such that ~ " ( ( 2 ,  i ( a ) ) )  C S. By Claim 1, a is not 

visited at any stage > t and < S.  Hence (f) of xxiii)  of 5.1 holds. Similarly we see that ( g )  

of xz i i i )  of 5.1 holds. 

It only remains to  establish that hypotheses (e) of xxiii)  of 5.1 holds. Towards this goal 

we prove: 

Claim 2. Let t', q, v satisfy: 
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. for each ( n ,  j)-node c with C C c C q, j (C)  5 j 

Then q # CV+l if v < s and 7 # C[v] if C[v] is defined. 

Proof of Claim 2: Towards a contradiction consider the least v and then the maximal lql 

for which the Claim 2 fails, i.e., q E DV n U C[V]).  

Subclaim 1. At stage v ,  there is no T which is visited with 5' C r C q. 

Proof of Subclaim 1: Consider the first node r visited at stage v such that 5' C T c q. 

Suppose 5' is visited at stage v.  Applying the induction hypothesis with 5' for 6, by (d) 

we see that becomes defined at stage v. In stage v ,  the construction either stops at 

5' or passes from 5' to a node < L  5'. Hence r is not visited, contradiction. So 5' is not 

visited at stage v. Let C > Q be the first node visited at stage v. Thus there is a jump to 

C and becomes defined at stage v. Applying the induction hypothesis in the same way 

as before, j(C) < j(5'). Note that either r = c, or T- = C- and T < L  C. In either case 

j ( r )  5 j(C) < j(5') which contradicts the assumption of Claim 2. This completes the proof 

of Subclaim 1. 

Below we reduce a contradiction in the case C[v] exists and q E C[V]. For q E C,+1 

( v  < S )  is similar. We leave it to the reader. Because q E C[v], there exists a Q-designated 

number when C[v] is defined. Now we split into two cases. 

Case 1. A number X designated for q enters B at stage v. In this case we wiU deduce 

a contradiction. Let T be the first node _> 5' which is visited at stage v. Applying the 

induction hypothesis exactly as above we see that pT becomes defined at stage v and that 

r = 5' implies that j ( r )  < j ( g ) .  I f  r = [I, this implies that no node 2 q is visited in stage 

v ,  contradiction. Hence 5' C T and j ( r )  < j(5'). From Subclaim 1, r g q. 

To deduce a contradiction assume that q < L  7. Then T -  C q. Let 8 be the least node 

such that r- C 6 c q. Then 8 is a 0-node and j (6)  < j ( r )  < j(5'). This contradicts the 

choice of E' and q. Hence q C r,  and pT becomes defined at stage v. Let p' be set equal to  

z ( r )  at stage v which entered B at stage t(r).  There are two subcases: 

Subcase 1. There is no (n, k)-node E such that q C E C T and k < j ( r ) .  Clearly j ( r )  is 

active at q-. Whether r = (pa)[a E A(r-)l or not, X cannot be an q-designated number 

because the condition iii) in 4.3 fails. 
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Subcase 2. Otherwise. Let E be an (n, k)-node such that q C E C r and k is least 

possible. Clearly n E (0,4,5) and k < j ( r )  < j(C). Let n = 0. From the choice of E, any 

j < j ( ~ )  which is active at E- is also active at r-. From 4.4 one can easily check that E is 

preferred to r. Since in stage v the construction jumps from a node C 5' to r, 5' C E C r, 

and E is preferred to r we have: 

pc l for each a E A(€-) with E <L a. 

Let W be the least stage such that 

- 
0 T:+I l= T: 

0 p",+, l= p: for each a E A(€-) with c <L U. 

By 5.1 xix), E is visited at stage W. Note that p' cannot become defined at any stage 2 W 

and 5 v. Otherwise r cannot be visited at stage v. Now by 5.1 xxi), either a' is destroyed 

at  stage W or some y enters B at stage W with a(y) 2 n. By choice of W, a' cannot become 

undefined between stages W and v. Thus y enters B at stage W with a(y) _> E. Suppose 

y is an €-designated number at stage W. Then y is an €-designated number at stage v and 

at  stage v, the construction jumps to E rather than r since if 7 is preferred to E ,  then y is 

preferred to r. Therefore y is not €-designated at stage W. Since y enters B either Case 3.1 

or Case 8 occurs at the node which receives attention in stage W. Since a' is not destroyed 

in stage W there is a maximal 0-node C C E such that C E C when p receives attention. By 

v), j(C) 5 j ( ~ ) .  Hence c C 5'. Note that j(c) < j (r) .  By (d) of the induction hypothesis, 

T cannot be visited at stage v unless and until a( is destroyed between stages W and v, say 

at  m. Towards a contradiction assume that one of CL, c&+l is undefined. Then by 5.1 vi), 
S one of CL, c,+l is undefined. Since ~ $ 1 ,  cl becoems defined at a stage z, m 5 z < S. Thus 

by Case 4, at, a%re destroyed at stage z. Whether z < v or v < z, this is a contradiction. 

Hence both CL, c&+l are defined. Now applying (a) of the induction hypothesis by taking 

S = m, u = W, 5 = C and 6 = E, a' is destroyed at stage m, which a contradicts the choice 

of W. This completes the case n = 0. 

Let n E {4,5). Clearly X cannot be an q-designated number because the condition iii) 

in 4.3 fails. 
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Case 2. Otherwise. Just before stage v there exists X E B which is designated for Q. r,"- 1 
because T T -  4 in stage v and Q- is not visited at stage v by Subclaim 1. Because 7 E V, 

and the first two conditions in the definition of C, hold for q, there exists an (m, k)-node y 

such that 

there exists z E B, with a(z) 2 y which entered B after was set equal r,"- 

for each 0-node T such that q C T C .y and j ( ~ )  I k, 7 4 C,. 

Because q E C[v], there exists a (least) 0-node T such that q C r C y, j ( r )  5 k and T E C[v]. 

T E V, because a: 1, T $l C, and z with a(z) 2 y entered B after r r  attained its value at 

stage v - 1 and hence also after aT attained its value at stage v - 1. 

To complete the proof of Claim 2 we will show that r satisfies all the assumptions about 

q. Since q C T and r E C[v], the choice of q is thereby contradicted. 

Subclaim 2. For each (n, j)-node a such that g C a! E r, j ( t f )  5 j. 

Proof of the Subclaim 2: If C' C a C q, then desired conclusion is immediate from the 

hypothesis of Claim 2. Let q C cr C T. By choice of y, there exists a number z with 

a(z) 2 y 3 a > q which entered B after T V -  attained its value at stage v - 1. Note that 

7 E C[v] and by the choice of T, there is no E such that q C E C r and E E C[V]. Hence by v), 

j(7) 5 j. It follows by the hypothesis of Claim 2 that j(tl) 5 j(q) 5 j. 
Next we want to show that j(tl) 5 j (r) .  First we show that: 

Subclaim 3. For each 0-node P and W, if P E V, and P E C[w], then there exists X with 

a(x) 2 P which enters B at  stage W. 

Proof of the Subclaim 3: Fix W we proceed it by reverse induction on ]PI. Suppose a P- 
designated number enters B at stage W. It is enough for Subclaim 3. Otherwise. Let y be a 

P-designated number at stage W. Hence y E B,, and then rc- is equal the value of rP- in 

stage W. Because ,L? E V, and the first two conditions in the definition of C hold for P just 

before stage W, there exists an (n, j)-node a such that 



CHAPTER 5. VERIFICATION, PART I 

there ezists z E B, with a(z) ct which entered B after TO- attained its value at 

stage W - 1 

for each 0-node n such that P C n c ct and j(n) 5 j, n C,. 

Because p E C[w] ,  there exists a 0-node n such that P C n c ct and n E C[w].  Then by 

the induction hypothesis, there exists X with a(x) _> n > P which enters B at stage W .  This 

completes the proof of Subclaim 3. 

Remark. By Subclaim 3, we know that, there is X with a(x) 2 r which enters B at stage 

v. 

Now we return to  the proof of Subclaim 2 and, in particular, to showing that j(St) _< j(r).  

Towards a contradiction assume that j ( r )  < j(tt).  Let t be the stage in which rcl- was set 

equal to  T $ - .  Suppose there exists y E B, - Bt such that a(y) > r. Because S' E C,, there 

exists a 0-node y such that 5' C y c T, j(y) 5 j ( r )  and y E C,. Note that y # r since 

r 4 CV. Since Subclaim 2 has already been proved for a # r, j(y) 5 j ( r )  < j(g') _< j(y), 

a contradiction. Hence no such y exists. Since r E D,, there exists to < v such that at 

stage to a number z enters B with a(z) > T and a& = a6 L. Fix such to and x with to least 

possible. From above to < t .  We will complete the proof of Subclaim 2 by showing rS1- 

cannot become defined in stage t thus contradicting the choice oft.  There are two cases. 

Case 1. T 4 C[to]. Since aT is not destroyed at stage to by whichever of Case 3.1 and Case 8 

enumerates z in B, there exists a maximal a C r such that a E C[to]. Note that by xv) of 

5.1 there is no n such that r" is defined at some point in stage to and nA((2, i(n))) C T. By 

v), j (o)  5 j(6) for each 0-node 6 such that a C 6 E r. In particular, taking 6 = r we have 

j(o) 5 j ( r ) ,  which gives j ( a )  < j(gf). Since j( tf)  5 j ( ~ )  for each 0-node E with [' E C r, 

we have o C ['. By inspection of Cases 3.1 and 8, cu- which is defined since a E C[to] 

remains defined throughout the main part of stage to. Further, at the end of the stage cc- 

is not destroyed by ( E  l )  since no a' is destroyed with E <L a-. Also, by xv) of 5.1, c"- is 

not destroyed by (E4). We conclude that c&1 1. Since a E C[to], T ~ -  and au are defined 

just after z enters B and are not destroyed in the main part of stage to. By inspection of 

( E l )  a" is not destroyed at the end of stage to. Towards a contradiction suppose ru- is 

destroyed in the ending of stage to. This must be by (E5). Hence a' has been destroyed 
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for some E E B(a-). By xii) and xiii) of 5.1 we can choose such E E A(a-) with a <L c. 

Fix the least possible E. Since a E C[to], p' L. By (E3) ,  p:,+, T. By (c) of the induction 

hypothesis, a" is destroyed in stage to for some a E A(a-) with a <L E. By the choice of E, 

a SL a. Finally, by xiii) of 5.1 this implies that a" is destroyed in stage to, contradiction. 

Hence T&., is defined. By xxv) of 5.1, a E Cto+l. 

Suppose a:, = a:. Let a be the first node _> a which is visited in stage t. a exists 

since [l- is visited in stage t. By the induction hypothesis, taking a for S and t for S, we 

have from (d) that pff becomes defined in stage t, and a # a implies j (a)  < j(a). Since 

[l- is visited in stage t, either a [l- or [l < L  a. Suppose a c [I-. By xv) of 5.1, re'- 

cannot become defined in stage t. Suppose Q < L  a. Then there exists a 0-node 8 such that 

a C 8 C [l, 8- = a- and 8 <L a. Then j (a )  5 j(8) < j(a) < j(a),  a contradiction. Hence 

a& # a:. Let h be the least stage such that to < h < t and a" is destroyed in stage h. 

Since aT is not destroyed in stage h, by (a) of the induction hypothesis one of cg, is 
E t undefined. Since a C [l E [, by iii) of 5.1, one of eh, eh+, is undefined. Hence c4 becomes 

defined in a stage k with h S k < S. Note that [ C T. By Case 4 when c< becomes defined, 

a', at  become undefined, if defined. Hence k < v contradicts a& = a;. But v < k implies 

U < k < S which contradicts a$ = a$. 

Case 2. T E C[to]. By the argument in case 1 which shows that a E Ct0+,, we see that 

T E Ct0+,. Let ,8 be the maximal 0-node which is preferred to T. By Remark 1 after 4.4, 

,8 c Q since Subclaim 2 has already been proved for a # T. Note that azo = a; 1. Suppose 

pT becomes defined between stages to and t. Since pT is destroyed implies aT is destroyed 

simultaneously, p; l. Hence by xv) of 5.1, no node _> T is visited in stage v. This contradicts 

Subclaim 3. Hence p: f . 

Subclaim 4. r,7- = rg0k1. 
Proof of Subclaim 4: Towards a contradiction consider the least stage W such that to < W < v 

and rT- is destroyed in stage W. By iv) of 5.1, either cT- is destroyed or a= is destroyed 

at stage W for some a E A(T-). Suppose c;;, # c;,- J,. By Subclaim 3, some X enters B 

at stage v with &(X) 2 T. By vi) and vii) of 5.1, cT- becomes defined in a stage > W and 

< v. But when c7- becomes defined, a' is destroyed. This contradicts a:, = a:. Hence 

c;;, I= c:,- and some a" (n E A(T-)) is destroyed in stage W. Note that T E Ct0+, so 



CHAPTER 5. VERTFICATION, PART I 63 

pi0+, 4 for each E E A(F) with r <L E. Hence by xiii) of 5.1 and (c) of the induction 

hypothesis by taking W for S, a' is destroyed at stage W. This is a contradiction and yields 

the conclusion of Subclaim 4. 

Subclaim 5. Case 1 holds at Q- in stage t. 

Proof of Subclaim 5: Let y be a designated number for T at stage t. y exists since r E Ct0+, 

and r,7- = T&,.  Write a for 5'-. We will show that Case 1 holds at a reading y for X, 

r for p, t for s and j ( r )  for i. First, j ( r )  < j(C) 5 i(5'-) = ;(a). Suppose c: t. By 

vi) of 5.1, c:- r. Hence &- becomes defined at a stage w with t < W < S. But W < v 

contradicts = a; 1, and v 5 W < S contradicts that a$ = a$ 1. Therefore c: 1. Clearly 
j('),O A { ( ~ ) J  a(y) > T 3 a. Since j ( r )  < ;(a-), Case 1 holds at a if y A, 

We now suppose y E U A{(')". Fix a 0-node y such that either y C T or r >L y E 

A(r-). Towards a contradiction assume p7 is defined when a is visited. Suppose y C a. 

By xv) of 5.1, p; t since a! is visited at stage t .  If p7 becomes defined in stage t, then T~ 

cannot become defined in stage t. Suppose 5' S y C r. Recall that for each (m, j)-node E 

such that 6' C - E C r, j ( r )  < j(gr) 5 j. Hence j ( r )  is active at y-, and y-"((0, j(r))) <L y. 

Suppose p: L. By xv) of 5.1, no node 2 r is visited in stage v. This contradicts Subclaim 3. 

Therefore p7 is destroyed at a stage 2 t and < v. Hence by (c) of the induction hypothesis, 

a" is destroyed for some n E A(y-) with n <L y. Note that n < L  r so aT is also destroyed 

at a stage 2 t and < v, a contradiction. Clearly, p7 does not becomes defined in stage t 

before a is visited since cr C 7. For 7 = r, we have already seen that pT t above. Suppose 

y <L r with y- = T-. Fix y to  be the maximal node in A(y-) such that 7 <L r and p: 1. 
Let 8 be the leftmost 0-node in A(y-) with y <L 8. Then p! r. Let p? be set equal to  p: at 

stage W. Since there is a y-designated number at stage W, pe is defined in stage W. Hence 

pe is destroyed at a stage > W and < t. By (c) of the induction hypothesis, a7 and hence 

p7 are destroyed when pe is destroyed, a contradiction. Therefore p: t . 
Now fix a node 8 such that OA((2, i(8))) C r. Towards a contradiction assume re 1. By 

xv) of 5.1,8 a. Also 8 # a since 5' is not a 2-node. Therefore a C 8, and so rf 4. By xv) 

of 5.1 since some node 2 T is visited at  stage v, re is destroyed at a stage W, t 5 W < v. 

Hence either ce is destroyed or some a" (n E A(8)) is destroyed at stage W. Recall that 
- 

r&, = T Z  . By vi) of 5.1, 1. Therefore some a" (n E A(8)) is destroyed at stage W. 



CHAPTER 5. VERIFICATION, PART I 64 

Note that R < L  r since 0A((2, i (8) ) )  C 7. By xiii)  of 5.1, aT is also destroyed in stage W ,  a 

contradiction. Note that there is not 0-node 8 such that 5'- C theta C T and j(8) < j ( r ) .  

Thus Case 1 holds at cr if y E A ~ ( T ) J .  

Suppose y E A ~ ( T ) * O .  For any 0-node y ,  if -y is preferred to T ,  then y c P c [ I - .  We 

want to show that 

TT-  is defined, 

p* is defined for each n E A(F)  with y <L n. 

I f  y is visited at stage t ,  then a: J, by v i )  and the desired conclusion then follows by i). 

Suppose -y is not visited at stage t. Let the construction jump 8 > y from a node C y. By 

4.4, y is preferred to 8. Again the desired conclusion follows by i). 

~ h u s  Case 1 holds at cr reading z for X ,  r for P and j ( r )  for i. ~n any case ~ 5 ' -  cannot 

become defined at stage t. This contradiction completes the proof of Subclaim 2. 

From Subclaim 2, Claim 2 fails with r for q at stage v. But we chose a particular 

counterexample (q , v )  to Claim 2 minimizing v and then maximizing Iql. Further, r 3 q 

and so we have contradicted the choice of (7, v).  This completes the proof of Claim 2. 

Claim 3. For any 0-node a and any stage v such that [ C a E S and U < v 5 S, a # CV 

and a # C[v] if C[v] exists. 

Proof of Claim 3: Fix a 0-node a such that [ C a E S. Suppose a: f .  Then a: f .  Otherwise 

at would be destroyed at a stage 2 u and < v, contradicting the hypothesis of (a).  Hence 

a # C,, and a 4 C[v] if C[v] exists by X )  of 5.1. 

Suppose a: J,. Then a% = a: otherwise at is destroyed at  a stage 2 U and < S ,  

contradiction. 

Subclaim 1. For each v such that U < v 5 S ,  if a #Cv,  then a E D,. 

Proof of Subclaim 1: From the hypothesis of ( a )  some y E with a(y) _> S entered B 

since r t i l  was set. Clearly y entered B after a: was set since at and rt- are destroyed 

when au becomes defined. Hence a E D, because a # C, and a: = a:. This completes the 

proof of Subclaim 1. 

Subclaim 2. There exists a function v H 6, (U  < v 5 s) such that for all v ,  W with 

U <  v ,w 5 S ,  
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atv is not destroyed at a stage 2 v and < S 

for each (m, j)-node E such that &, E E C o, j(&) L: j. 

Proof of Subclaim 2: First note that for each node C 6 ,  c$ L and cc cannot become 

undefined at a stage 2 u and < S .  

For v = U + 1, let = C. Clearly, all conditions hold. Suppose we have 5, for a 

particular v < s which satisfies the above conditions. If CV E we can let = tV. 
t - Suppose E, G Towards a contradiction assume that T;+~ t. Since tv E C,, r 5  1. 

- 
But c?+, = c g  , so aT is destroyed at stage v for some n E A ( c ) .  Let n be the leftmost 

such node. Suppose n 5 tV. By xiii) of 5.1, atv is destroyed at stage v, a contradiction. 

Therefore tV <L n. Since &, E C,, p: 1. p* is destroyed at stage v by (E3)  since a* is 

destroyed at stage v. By (c) of the induction hypothesis, a€ is destroyed at stage v for some 

r E A(t;) with r <L n. This contradicts the choice of r. Therefore r S 1  1. By xxv) of 5.1, 

tV G C[v]. By xxiv) of 5.1, there exist a, n such that cr _> n E A(t;), n < & and a receives 

attention at stage v. Note that a: J. since a? l. By xxi) of 5.1, since atv and hence a" are 

not destroyed in stage v, some z enters B at  stage v. Towards a contradiction assume that 

a(z) = n-. Then a = n. Hence is defined when C[v] is defined. By ( b )  of the induction 

hypothesis, CV E C[V], a contradiction. Therefore a(z) 2 n. 

Since atv is not destroyed at stage v, by Case 3 and Case 8 there is a maximal 0-node 

c C tv such that c E C[v]. Towards a contradiction suppose n E C[v]. Then n # &, from 

above. Also, 1 when C[v] is defined since n <L 5,. From (b), tv C C[v]. This contradiction 

confirms that n C[v]. By v) for each (n, j)-node E with 5. C E 5 n,  j(c) < j. So the same 

is true with E, instead of n. By (f) of the induction hypothesis, 1. By xxv) of 5.1, 

C E C,+I. We claim that there is no 0-node r such that c C r C n and T E Otherwise, 

r E Cv+1 implies r; i l  1 and so T E C[v] by xxv) of 5.1, contradicting the choice of c. By (a) 

of the induction hypothesis with t = (', S = n, U = v, a< is not destroyed at a stage 2 v + 1 
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and < S otherwise a:, a? are also destroyed in the same stage, contradiction. By letting 

[v+1 equal C we have the desired conclusions. This completes the proof of Subclaim 2. 

Now we prove Claim 3. Towards a contradiction consider the least stage v such that 

U < v 5 S and a E C, U C[v]. Suppose a E C,. By the maximality of [ in the hypothesis of 

(a), v > U + 1. Then a # C,-,. By Subclaim 1, a E 'D,-,. Now by Claim 2, reading a for 7) 

and [, for [', we have a # C,, a contradiction. Therefore a # C, which implies a E C[v] .  By 

Subclaim 1, a E D,. Applying Claim 2 again, a # C[v], a contradiction. 

Finally, ( e )  of xxiii) of 5.1 now follows from Claim 3. This completes the proof of (a). 

( b )  Let p6 be defined at some point in stage s and X be the value of p6 in stage s. Let 

X enter B at  stage v < S and p6 be set equal to X at stage t 5 S. Clearly, X is a designated 

number for S at the end of stage v. Towards a contradiction assume that S # C,+,. Note 
6- that T,+, I= rf- otherwise p6 cannot be set equal to X at  stage t. It follows by iv) of 5.1, 

a: = at+l 1. Also a: L= a: because a q s  destroyed implies p6 is destroyed at the same stage 

if p6 is defined. Since a6 cannot become defined in stage v, we have a: = a t  I. By xxv) 

of 5.1, S # C[v]. By Case 3.1 and Case 8, since a6 is not destroyed at stage v, there is a 

maximal 0-node [ such that t E C[v] and [ C S. By v), for each 0-node E with t C E E S, 

j([) < j(r). Towards a contradiction assume a$ L= a;. Let a > [ be the first node visited 

in stage t. Applying (d) with S = t, s = t ,  and y = X, we infer that p* becomes defined in 

stage t and a # [implies j(a)  < j ( t ) .  Since S is visited, a S by xv) of 5.1. If a # S, then 

there exists 8 E A(a-) with t C: 8 C S and 8 <L a. Therefore whether a = S or not, there 

exists 8 such that j ( 8 )  < j([) and C 8 E S which contradicts our finding above. Hence 

at  is destroyed between stages v and t. Towards a contradiction assume c;- for some W 

with v < W < S. Since c:- I by the hypothesis of (b ) ,  cc- becomes defined at some stage 

2 W and < S by vi) of 5.1. But when c(- becomes defined a6 is destroyed, contradiction. 

Therefore J, for each W with v < w 5 S. In particular, c:;, 1. By (f) of the induction 

hypothesis, T:;, 4. Hence [ E C,+, by xxv) of 5.1. Also, for each 0-node a, C C c C 6, 

a # C,+,. Otherwise rZi1 1 and a E C[v] by xxv) of 5.1 which contradicts the maximality 

of [. Note that S E D,,+1 since S # C,+l and a t  l= at+l. Let a t  be destroyed at stage U 

with U least possible such that v < U < t. By (a) with s = U and U = v, a6 is destroyed at 

stage U.  Hence r6- is destroyed at  stage U, contradiction. Therefore S E C,+,. 
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Towards a contradiction assume r,6- # r t r l .  Let m be the least stage > v such that 

r r + l  T. We have m < S. Note that c:- L for all z, v 5 z 5 S, and in particular for z = m+l .  

If not, since c:- L,  c6- becomes defined at some stage 2 v and < S, a6 would be destroyed 

in the same stage, contradiction. Therefore, one of a" (n E A(&)) is destroyed at stage m. 

We choose such n least possible. By xiii)  of 5.1, S <L n otherwise a6 is destroyed at stage 

m, contradiction. Since S E C,+1, L. Then p; L. By (c) of the induction hypothesis, 

ae is destroyed at stage m for some E <L n with E E A(S-). This contradicts the minimality 

of r. Therefore r,6- = r f i l .  

Towards a contradiction assume S # C,. From above a: L =  at and c$ J for v 5 z 5 S. 

Let W < S be the least stage such that W > v and S # Note that W exists and S E C,. 

By xxiv)  of 5.1, there exist a ,  R such that a 2 n E A(&), n 5 S and a! receives attention 

at  stage W. a: L by 5.1 xi i i )  since at 4. Note that a" is not destroyed at  stage W otherwise 

r6- is destroyed at stage W, a contradiction. By xx i )  of 5.1, some y enters B at stage W. 

Hence C[w] is defined. Note that either a ( y )  = a! or a!(y) = a!-. S # C[w] by xxv )  of 

5.1 since rkil J, and S # Towards a contradiction assume that a ( y )  = X-. Then 

a! = n. In stage W, p" becomes defined and p6 is defined when C[w] is defined. Note that 

as and c'- are defined when C[w] is defined. S E C[w] by ( b )  of the induction hypothesis, a 

contradiction. Therefore a ( y )  _> R. Because a6 is not destroyed at stage W and S # C[w], 

by Case 3.1 and Case 8 there exists a maximal 0-node a such that a C 6 and a E C[w]. By 

(f) of the induction hypothesis, rgGl L. Hence a E by xxv)  of 5.1. By v ) ,  j ( a )  5 j ( ~ )  

for each 0-node E with a C E c n. Suppose W < t. Towards a contradiction assume that 

a; = a;. Let r _> a be the first node which is visited at  stage t. Note that r exists because 

S is visited in stage t. By (d) of the induction hypothesis, p7 becomes defined at stage t 

and r # U implies j ( r )  < j (a) .  Hence either r = S or r- C S with S <L r. In either 

case there exists a 0-node E such that a C E c S and j ( ~ )  < j (a ) ,  a contradiction. Hence 

aO, # ay. Let m > W be the least stage at which au is destroyed. Note that m < t. c; L 
and c;+, 1 by v i )  of 5.1 since c: J, and 1. Note that for each 0-node E such that 

a C E C X, t: # Cw+1 otherwise E E C[w], contradiction. Towards a contradiction assume 

n E C[w]. Since S # C[w], n <L S. Also J, when C[w] is defined since n E C[w]. By 

( b )  of the induction hypothesis, S E C[w], contradiction. Hence n # C[w]. By xxv)  of 5.1, 
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n # C,+1. Since J. and y with a(y) 2 R enters B in stage W, R E D,,,+l. By (a) of 

the induction hypothesis with 5 = a, S = R ,  s = m and U = W, a6 is destroyed at stage m. 

Thus as is destroyed at stage m, contradiction. Suppose t 5 W. Note that p6 J. when C[w] 

is defined. By (b) of the induction hypothesis, S E C[w], a contradiction. Therefore S E C,. 

To complete (b) assume C[s] exists and that a6, c6-, p6 are all defined when C[s] is defined. 

Towards a contradiction assume 6 # C[s]. Note that a: 4 and r g  4 since S E C,. Examining 

the instructions of Cases 1.1, 3.1 and 8 we see that r6- cannot become undefined in stage 

s before C[s] is defined. Otherwise either c6- or a6 is destroyed at the same time. Then 

the first two conditions in the definition for S to belong to C[s] hold. Because S # C[s] and 

S E C,, there exists a 0-node q 3 S such that q E C, and q # C[s]. Towards a contradiction 

assume r" when C[s] is defined. Note that rz- 1. Let c receive attention at stage S. By 

xv) of 5.1, C 2 S since p6 is defined when C[s] is defined. Suppose Case 1.1 holds at c. Let 

,f3 be the 0-node from Case 1.1. There are three cases: C <L q-, q C P and P <L q. Since 

S c C and S C q, either c <L S or S G p. Suppose that either S G ,f3 or C <L S-. By Case 

1.1 r6- is destroyed before C[s] is defined, contradiction. Hence S- C c and <L S. Let R 

be the unique node in C(S') such that R E C. By Case 1.1 r6- = rT- is destroyed before 

C[$] is destroyed, contradiction. For Cases 3.1 and 8 the arguments are similar. We leave 

them to the reader. Therefore, rq- 1 when C[s] is defined. By xxiv) of 5.1, there exists 

a 3 S which receives attention in stage S. Since p6 is defined at  some point in stage S, this 

contradicts xv) of 5.1. This completes the proof of (b). 

(c) p6 can be destroyed only by (E3) which requires the destruction of a6. Also, p6 can 

only be defined when a6 is already defined. Thus a6 is defined whenever p6 is. Suppose that 

p%s destroyed at stage S. 

Let E be the maximal node in A(S-) with E <L S. We will show that a' is destroyed in 

stage S. Let ,f3 receive attention at stage S. By viii) of 5.1 since a6 is destroyed one of the 

following conditions holds for stage S: 

A) ay is destroyed for some 7 <L S; 

B) either S E p or P <L S, and one of Case 3.1, Case 8, and Case 11 holds at P; 

C) either S C p or /3 <L S, and Case 2 holds at P; 
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D )  S G ,B or P < S ,  and either Case 1.1 or Case 4 holds at  P;  

E )  S E P or P <L S ,  and Case 13 holds at P. 

Suppose A) holds. Then y <L E or E 5 y. By xiii)  of 5.1, a' is destroyed. In the 

remaining cases we can suppose that a6 is not destroyed in the ending of stage S. Suppose 

B )  holds. Towards a contradiction assume S E ,B. p: J contradicts xv )  of 5.1. Suppose p6 

becomes defined in stage S. Since E exists, S g P, a contradiction. Therefore ,B <L S. Then 

either /3 <L E or E C p. If Case 11 holds, a' is destroyed. Suppose one of Cases 3.1,s holds. 

Let z  enter B at stage S. Note that a6 is defined when C[s] is defined. Suppose c6- f when 

C[s] is defined. 6- a ( z )  by v i )  of 5.1. Also, it is clear that cr(a) # S-. Therefore P <L S'. 

Note that c C[s]  since c6- and r6- are undefined. I f  a ( z )  <L S - ,  then a' is destroyed in 

stage s since a6 is destroyed at stage S. If c+) C S - ,  then a6 is not destroyed by Case 3.1 

and Case 8. Since the cases cr(z) <L S- and a ( z )  C S- are exhaustive, we have the desired 

conclusion if c6- f when C[s] is defined. Suppose c6- 4 when C[s]  is defined. By ( b ) ,  6 E C[s]. 

Hence a6 cannot be destroyed in the main part of the construction in stage S. 

The cases C )  through E) may be treated in similar fashion. We leave them to the reader. 

(d) Suppose the hypothesis holds. We have to  show that pQ becomes defined, and a, # S 

implies j ( a )  < j(S). Let X be the first number to enter B after a6 is set equal to a: such 

that a ( x )  2 S .  Let X enter B at stage t < S. 

Case 1. S E C[ t ] .  Hence r6- .J and pu J for each a E A(S-) with >L 6 when C[ t ]  is 

defined. c6- 1 since r6- 5 when C[t ]  is defined. Since Case 3.1 or Case 8 holds at the node 

which receives attention no a q s  destroyed in stage t before C [ t ]  is defined. By ( b )  of the 

induction hypothesis a E C[ t ]  for each a E A(S-) with S <L a. Hence r6- is not destroyed 

in the main part of stage t. Also r6- cannot become undefined in the ending of stage t 

because a ( x )  2 S.  Therefore r z l  4. Towards a contradiction assume c:- f for some v 

with t < v 5 S. Since cr 2 S is visited at stage S, c6- becomes defined at  a stage 2 v and 

< S by v i )  of 5.1. By Case 4, when c6- becomes defined a6 is destroyed, contradiction. 

Therefore c:- for all v  with t < v 5 S. Towards a contradiction assume that rt-  f for some 

(least) v with t + 1 < v 5 S. By i v )  and xi i)  of 5.1 since c:- 5, a: f for some a E A(6-). 

Choose such a least possible. Suppose a 5 S.  as is destroyed by xiii) of 5.1, contradiction. 
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Therefore S < L  a. pu J, when C[t] is defined since S E C[ t ] .  Hence J, since J,. By 

(c) of the induction hypothesis, a' is destroyed at stage v - 1 with E <L o, contradicting 

the minimality of a. Therefore r,6- I= rK1 .  Since rf- 1 and p: J, for each a E A(S-) with 

S < L  R, S cannot be visited unless there is a jump to S. Suppose a = S.  Then ( d )  is clear. 

Suppose a # S. Then S is not visited at stage s and there is a jump from a node 0 C S to a 

at stage S. So p" becomes defined at stage S. Towards a contradiction assume j (6)  5 j (a) .  

Let p" be set equal to z ( a )  at stage S .  There are two subcases: 

Subcase 1.1. There is no (n, k)-node E such that S C c C a and k < j(6). Then for each 

0-node y C S ,  if y is preferred to 6, then y is preferred to a .  By the argument used in the 

proof of Subclaim 5 of the proof of (a ) ,  we can show that Case 1 holds at  0 in stage S with 

i = j (S)  and ,f3 = S.  This contradicts cr # S .  

Subcase 1.2. Otherwise. There are two subcases again. 

Subcase 1.2.1. There is a 0-node T such that 6 T C a and T is preferred to a.  Fix 

such T with j ( r )  least possible. By the Remark following 4.4, j ( r )  < j(cr). Note that for 

each 0-node ,l? C T ,  if ,l? is preferred to  T ,  then ,l? is preferred to  a .  Since at stage S ,  the 

construction jumps over T ,  by Case 1 we have 

0 p: 3 for each a E A(T-) with T < L  T .  

Let v be the least stage such that 

J,= p: for each n E A(T-)  with T < L  R. 

Note that T is visited at stage v by x ix)  of 5.1. Because aT is not destroyed at stage v ,  

some y enters B at stage v by xx i )  of 5.1. Since rT- is not destroyed at any stage 2 v and 

< S ,  we have a: = a: 1. So, if pT becomes defined in stage v ,  pi is defined. By xv)  of 5.1 

this contradicts a beong visited in stage S. Therefore pT does not become defined in stage v. 

Hence a ( y )  _> T .  Suppose T E C[v]. Recall that every y which is preferred to T is preferred 

to a. Suppose that there is not €-designated number for each 0-node E such that 0 C E C T 

and j ( ~ )  < j ( ~ ) .  By the argument used in the proof of Subclaim 5 of the proof of (a) ,  we 
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can show that Case 1 holds at 0 in stage s with i = j ( r )  and P = T. This contradicts a # r. 
Suppose there is a E-designated number when 8 is visited for some E such that 8 C E C T 

and j ( ~ )  < j(r).  Choose such E with j ( ~ )  least possible. Towards a contradiction assume 

S C E C r. First we show that for each 0-node a such that S C o C T and j (a)  < j (r) ,  there 

is an (n, j)-node 7 with o C 9 C T and j < j(o). Otherwise, o is preferred to a, contradicts 

the rninimality of r. Form this it is clear that r # C[V]. Let U be the stage at which a' is 

set equal to a:. Suppose U < v. Since a' is not destroyed at stage v, there is a maximal 

0-node t C E such that t E C[v]. Note that t C S. By v), there is no 0-node n such that 

6 C n C_ E and j(n) < j([). Towards a contradiction assume a$ = a$. Then by (d) of the 

induction hypothesis, cr cannot be visited in stage S. Therefore a$ # a$. Let h > v be the 
cf least stage such that T. By (f), T 1. By ZXV) of 5.1, [ E Cv+l and r # CV+, for 

each 0-node n such that t C n c E. Therefore, r E calDv+l. By vi) of 5.1 since for all W, 
cf - v W < S, c:- 1, eh 1 and c:;, 1. By (a) of the induction hypothesis, a' is destroyed at 

stage h, contradiction. Suppose v 5 U. Then v < U. By the argument used in the proof of 

Subclaim 5 of the proof of (a), we can show that Case 1 holds at E- in stage U with i = j ( r )  

and p = T. This contradicts that a' becomes defined at stage U. Therefore, E C S. By (d) 

of the induction hypothesis, it is impossible since j ( ~ )  < j (r) ,  j(a). 

Therefore r 4 C[V]. Because a7 is not destroyed at stage v, there is a maximal 0-node 

E C r with C E C[v]. By (f) of the induction hypothesis, rbil 1. Note that T E since 

a:+, 1. Also, for each 0-node C with [ C C r, C # CV+,, otherwise C E C[v] by xxv) of 

5.1, which would contradict the maximality o f t .  By v), for each 0-node 6 with t 5 C r, 

j ( t )  5 j(C). Towards a contradiction assume that t 2 S. Note that j([) < j(r).  Suppose 

there is no (n, k)-node E such that C E C T and k < j([). Then j([) < j ( r )  and 6 is 

preferred to r. Hence [ is preferred to a, contradicting the choice of r. Suppose such E 

exists. Since 5 E C[V] there exists a 0-node a such that t C n C r and n E C[v]. This 

contradicts the maximality of 5. Therefore [ C 6, and so j(e) 5 j(6). 

Towards a contradiction assume a$ = a$. Let P be the first node _> 6 which is visited 

at stage S. By (d) of the induction hypothesis, p@ becomes defined, and P # [ implies 

j(p) < j(t).  Then P g a by xv) of 5.1 since a is visited at stage S.  Recall that there is 

no node > 0 and C a which is visited in stage s by the choice of a. Suppose # a. Then 
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5 C 8. But 6 is visited in stage S. So p- c 6 and 8 <L p. Let C be the unique 0-node such 

that C E A(P-) and ( 2 9. Then 5 C C C r and so j([) 5 j(C) < j(P) < j([), contradiction. 

Suppose ,h' = a. Then j ( r )  < j ( a )  = j(P) < j([) 5 j(r),  contradiction. Therefore a$ # a$. 

Let W be the least stage > v with a;+, f . Note that both c$-, c:;, are defined. Otherwise. 

c(- becomes defined at some stage 2 W and < S by vi)  of 5.1 since a is visited at  stage S. 

But when c(- becomes defined aT is destroyed. This contradicts a: = a: 1 which we found 

above. Now applying (a) of the induction hypothesis with S = r, U = v and s = W, aT is 

destroyed at stage W, contradiction. 

Subcase 1.2.2. Otherwise. Let E be an (n, k)-node such that S C E C a with k least 

possible. E exists, k < j(S), and n E {0,4,5). In fact, n # 0 otherwise E is preferred to a, 

contradicting the hypothesis of the case. Let p" be set equal to z(a) at stage S, and z(a) 

have entered B at  stage v. 

Suppose a$ = a: 1. By the choice o f t  we have t 5 v. Recall that T&, = rf- I. So z (a )  

enters B after r,6- is set. If S E C[v], then there exists a 0-node 77 with S C q G E such that 

j(q) 5 k (and 7 E C[v]). This puts us back in Case 1.2.1. Hence S 4 C[v]. Since a6 is not 

destroyed at stage v there exists a maximal 5 E C[V] with c C S by Cases 3.1 and 8. By (f) 

of the induction hypothesis, T:;, L. By xxv) of 5.1, 5 E and S # CVcl Hence 6 E DV+, 

since a$+, 1. Similarly there is no 0-node r such that [ C r C S and r E CV+,. By v), 

j([) 5 j for each (m, j)-node T such that [ C T C E. h particular, j([) 5 k and j(5) 5 j ( r )  

for each 0-node r such that 4 C r E E. By the minimality of k, k 5 j ( r )  for each 0-node r 

such that E C r C a. Also by hypothesis j(S) 5 j(r). Hence j([) 5 j ( r )  for each 0-node r 

such that [ C T C a. Towards a contradiction assume that a$ = a:. Let (' be the first node 

such that 5 which is visited at stage S. C exists since a is visited at stage S. By (d) of the 

induction hypothesis, p( becomes defined at stage s and [ # (' implies j((') < j([). Clearly, 

( c a otherwise a cannot be visited at stage S. Whether C = a or not, there exists a 0-node 

T such that 5 C T C a and j ( r )  < j(c), contradiction. Hence a$ # a;. Let W be the least 
t stage such that v < W < S and a,+, t. Towards a contradiction assume one of 6, c z ,  is 

undefined. Since a is visited at  stage S > W, c(- becomes defined at a stage 2 W and < S 

by vi) of 5.1. But when c( becomes defined, a6 becomes undefined, a contradiction. Hence 

cf 1 and c:;, L. By (a) of the induction hypothesis with U = v and s = W, a6 is destroyed 



CHAPTER 5. VERIFICATION, PART I 

at stage W, contradiction. 

Suppose a: # at. Then v < t and a6 becomes defined after stage v, say at stage U. Note 

that S- is visited at stage U because S is visited at stage u and a t  1. Since Subcase 1.2.1 

fails any T preferred to  a satisfies T C S. Repeating the argument used to show Subclaim 

5 in the proof of (a), we can show that Case 1 holds at S- in stage u with i = j ( a )  and 

= a. Hence S is not visited at stage U ,  contradiction. This completes the case S E C [ t ] .  

Case 2. S # C [ t ] .  There exists a maximal 0-node < such that g C S and c E C [ t ]  by Cases 

3.1 and 8, since a6 is not destroyed at stage t. j(<) 5 j(C) for each 0-node with g C C C S 

by v). By (f) of the induction hypothesis, r$i1 L. 6 E since a&l L. Also, C # Cr+1 
for each 0-node C with < C C C S. Suppose a$ J,= a$. Let P be the first node 1 < which 

is visited at stage S. Note that exists since a 3 < is visited at stage S. By (d) of the 

induction hypothesis, # becomes defined at stage S, and P # xi implies j(P) < j ( 0 .  By 

xv) of 5.1, P a. Hence either P = a or a <L P. In either case there exists a 0-node y 

such that 6 c y 2 a and j(y) < j ( t ) ,  contradiction. Suppose a$ # af. Let v be the least 
€- stage, t < v < S, such that at  is destroyed at stage v. Note that c$' and C,+~ are both 

defined. By a )  of the induction hypothesis with U = t and s = v, a6 is destroyed at stage v, 

contradiction. This completes the proof of (d). 

e) Let z be designated for S at  stage S and d be the first number to  enters B after a! 

is set. Let d enter B at  stage v 5 S. If v = S, (e) is immediate because in a given stage at 

most one number enters B. So suppose v < S. 

Claim. A number which enters B at a stage > v and < s is not S-designated at stage S. 

Proof of Claim: Let v < u 5 s and X enter B in stage U. It is clear that X is not S- 

designated number unless a(x) _> S. Suppose &(X) _> S. Let a be the first node 2 S which 

is visited at stage U.  By (d) of the induction hypothesis, p" becomes defined at  stage U and 

a # S implies j (a)  < j(S). Towards a contradiction assume a = S. By Case 3, a(x) 2 S. 

Therefore a # S. Towards a contradiction assume that there is no (n, j)-node E such that 

S C E C a and j < j (a) .  Then condition iii) in 4.3 does not hold for a(x) and so X is not a 

designated number for S at stage S. Therefore there is an (n, j)-node E such that S C E C a 

and j < j(a).  Choose such E such that j is least possible. Suppose n # 0. It is clear that X 

is not S-designated at stage S. So n = 0. Note that E is preferred to a. Let p" be set equal 
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to z ( a )  at  stage U, and z ( a )  have entered B at stage t ( a ) .  By the conditions for jumping, 

p: j. for each a E A(€-)  with E <L a.  

Let t  be the least stage such that 

p;+l j.= p: for each a E d ( ~ - )  with E <L U .  

Note that at stage t ,  E is visited. Because a' is not destroyed at stage t ,  by xxi) of 5.1, 

some y  enters B at stage t .  p' cannot become defined at stage t ;  otherwise a is not visited 

at stage U by xv) of 5.1. Hence a ( y )  _> E. 

Suppose E E C[ t ] .  Note that every y which is preferred to E is also preferred to a. Hence 

at stage U, the construction jumps to E rather than a, contradiction. 

Suppose E # C[t] .  Because a 9 s  not destroyed at stage t ,  by Case 3.1 and Case 8 there 

exists a maximal 0-node [ such that E C[t] and [ C E. By v )  we know that j(6) < j ( ~ )  

for each 0-node [ C T c Hence ,$ C 6. Towards a contradiction assume a( J,= a$. Let 

be the first node _> [ which is visited at stage U. By (d) of the induction hypothesis, 

becomes defined and P # [ implies j (P) < j ( [ ) .  Since a is visited at stage U ,  P a 

by xv) of 5.1. Hence either P = a, or a <L P and P-  C S .  Suppose a = P. Then 

j ( p )  < j ( [ )  < j ( ~ )  < j(cu), contradiction. Suppose P # a .  Then there exists a 0-node 8 

such that 8- = p - ,  8  <L P and [ C 8  C S .  But j ( [ )  5 j(8) < j ( p )  < j ( [ ) ,  contradiction. 

Therefore a$ # a:. Let at be destroyed at stage W, t < w < u, with W least possible. From 

v i )  of 5.1, c$- J,. If c$- becomes defined at a stage 2 W and < U, then af is destroyed. But 
- 

since rg+l = ri- J, we have = a: J. which yields a contradiction since t  < W. Also, 

5 4 Ct+1 for each 0-node with [ C 5 C E by xxv) of 5.1, and E E Vt+1 since a:+, -1. By (f) 

of the induction hypothesis, r f i l  I. Hence [ E Ct+1 by xxv) of 5.1. By (a) of the induction 

hypothesis with S = E, U = t  and s = W, a' is destroyed at stage W ,  contradiction. This 

completes the proof of Claim. 

Now ( e )  is immediate by the Claim above. 

(f) Towards a contradiction assume rfT1 t. By iv)  of 5.1 either c'- or a' for some 

E E A(&) becomes undefined in stage S. From Cases 3.1 and 8, we know that c6- is not 
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destroyed in the main part of the stage S. Also, c6- cannot become undefined in the ending 

of stage s (through ( E l )  or (E4)). Hence 1, so a' is destroyed in stage s for some 

E E A(6-). Choose E to be least possible such that a' is destroyed at stage S with E E A(S-). 

Clearly, E PL S. Suppose E = S. a6 cannot become undefined in the main part of the 

construction since S E C[s]. So a< is destroyed by ( E l )  because some a' is destroyed in the 

main part of the construction with T <L 6. This is impossible. Therefore 6 <L E. Note that 

p' L when C[v] is defined. By (c) of the induction hypothesis, aT is destroyed at stage v for 

some T <L E, contradicting the minimality of E. Therefore rf;, 1. This completes the proof 

of (f) and then vi). 

vii) Towards a contradiction consider a pair (W, 6) with least W and then greatest IS1 

such that S E V, and S E U C[w]. a; L by X) of 5.1. Because S E V,, there exists 

a least stage v < W such that a t  l= a; and some X enters B at stage v with a(x) _> S. 

Suppose S E Let y be the number designated for S at stage W + 1. By X) of 5.1, 

a;+, = a;. By (e) of vi), y = X. Therefore rkil = rg;, 1. Since the first two conditions 

for S to belong to C, hold, there exists an (n, j)-node a such that 

there ezists y E B, with a(y) _> a which entered B after r6- attained its value at stage 

W - l  

for each 0-node E with S C E 5 Q and j ( ~ )  5 j, E $! C,. 

Because S E C,+,, there exists a 0-node E such that S C E c a, j ( ~ )  < j and E E 

By X) of 5.1, a:+, = a& 1. Note that y entered B after a' attained the value a: because 

when a' becomes defined, a6 and then r6- are destroyed. Hence E E V,. This contradicts 

the maximality of 6. 

The case in which S E C[w] can be treated similarly. This completes the proof of vii). 

viii) By induction on stages we show that when a is visited, one of Cases 1-12 in the 

construction holds at a. It is obvious that at stage 0, LA becomes defined. Consider stage 

S > 0. The conclusion is clear if c: 1. Suppose a is a 0-node, and a: 1. By iv) of 5.3, a" 

becomes defined at stage S. Suppose a is a l-node, and a: f.  Since a: f ,  the construction 
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can only pass to a through Case 5 at a-, in which Case 2 applies at a and aff becomes 

defined. Suppose a: 1 or a is not an i-node for i < 1. Let c: T. Let y be the maximal 

0-node E: a. If y # a, a2 1 by iv). If a = y, then a2 4 by hypothesis above. By vi) of 5.1, 

c:- L. Hence Case 4 holds at a. It remains to  consider the situation in which c: l= 0 and 

in which a: if a is a 0-node. There are three cases: 

CASE A. r: 1. Then a t  j, for each ,f3 E B(a) by i) of 5.1. Since c,Q = 0, there is a 

maximal S E A(a) such that p: f .  Let t < S be the greatest such that at stage t, rff 

becomes defined or f l  becomes defined for some P E A(a) with S < L  0. For 7 E A(a) the 

parameters p7 become defined in SL-decreasing order, and whenever p7 becomes defined 

the <L-immediate-predecessor of 7 is visited if it exists. Also, if 9 with P E A(a) becomes 

defined, then rff is already defined. When rff becomes defined, then construction passes to  

the node max{p : P E A(a)). So S is visited at stage t. Note that p6 cannot become defined 

at stage t. Otherwise, suppose p6 becomes defined at  stage t, then 1 since a$ = a; 4, 
contradicting to the choice oft. Hence some node 2 S receives attention at stage t. By xxi) 

of 5.1, since a6 is not destroyed at stage t, some X enters B at stage t. Note that a(%) > S 

since p6 T in stage t. Note that a: = a:. 

Claim. S E C[t]. 

Proof of Claim: Towards a contradiction assume 6 # C[t]. Since a6 is not destroyed at stage 

t there exists a maximal 0-node g such that C S and E C[t]. By v), for all 0-node E with 

E C r 5 S, j(g) < j(r). By (f) of vi), r f i l  1. Hence E Ct+l by xxv) of 5.1. By the same 

token, r # Ct+1 for each 0-node E with 6 C E C S. Hence S E Dt+1 since 1. Towards a 

contradiction assume a$ = a:. Let p be the first node C which is visited at stage S. By 

(d) of vi), 9 becomes defined at stage S, and P # g implies j(P) < j(6). By xv) of 5.1, 

,f3 a. Note that a is visited at stage s. Then either ,L? = a, or a <L ,f? and P- C a. In 

either case there exists a 0-node 8 such that g C 8 E: a and j(8) < j(c), contradicting the 

fact we have found above. Therefore af # a$. Let at  be destroyed at a stage v, t < v < S, 

with v least possible. Note that c$- 1 and so both c$- and are defined, otherwise when 

c€- becomes defined a6 is destroyed, contradiction. Now applying (a) of vi), a6 is destroyed 

at stage v, contradiction. Therefore S E C[t]. 
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Let y be the S-designated number at stage t when C[t] is defined. Then y is the S- 

designated number at stage s. By the argument used to prove Subclaim 5 in the proof of 

part (a) of vi), Case 1 holds at a with i = j(6) and /? = 6. This completes the proof of Case 

A. 

CASE B. r: f and (Vp E L?(a))[af 11. Either Case 6 or Case 7 holds if no earlier case holds. 

CASE C. Otherwise. Then for some /? E B(a), a! T. Let S be the maximal 0-node G a. If 

S # a, a: 1 by iv). If a = 6, then a: 1 by hypothesis above. Hence Case 5 holds at a! in 

stage S. This completes the proof of viii). 

ix) Let cf 1. Suppose rP is destroyed at stage S. Then in stage s either cP or one of 

ay (7 E A(/?)) is destroyed by iv) and xii) of 5.1. 

Claim. p: 4 for all y E A(/?). 

Proof of the Claim: We may suppose that A@) # 0. Let t < s be the greatest stage in 

which cP is set equal 1. Then Case 3.1 occurs in stage t and immediately before Case 3.1 all 

the pYs with y E A(/?) are defined. If at some stage U, t 5 U < S, p? is destroyed for some 

y E A(/?), then ay is destroyed in the same stage since p" can only be destroyed by (E3). It 

follows by (E4) that, if one of the pT's is destroyed at stage U, t < u < S, then so is rP. But 

TP must be redefined at a stage v, U < v < S, and c! = 0 since Case 7 holds, contradicting 

the choice of t. This completes the proof of the Claim. 

Now ix) is immediate if c!+, T. Suppose for some y E A(/?), ay is destroyed. By (c) of 

vi), we can choose y to be the least node in A@). Let a receive attention at stage S. By 

xv) of 5.1, a 2 y. Then a <L y or a C y by viii). First suppose a7 is destroyed in the 

main part of the stage s with r <L y. Then r <L P. So c+, 1 by (El). For the rest we 

may assume that ay is not destroyed in the ending of stage S. 

Suppose a C /? = 7-. Then one of Cases 1.1 and 4 holds at a. But c: 4 since c! 1 by 

vi) of 5.1. Therefore Case 1.1 holds at a. Let (' be the 0-node P mentioned in Case 1.1. 

Clearly, y Sf (' since p: 1. Suppose ay is destroyed before C[s] is defined. Then (' <L y , and 

so (' <L P. By (El) ,  cP is destroyed in stage s since a( is destroyed in the main part of 

stage S. Suppose ay is not destroyed in stage s before C[s] is defined. If cP f when C[s] is 

defined, the result is clear. Suppose cP 1 when C[s] is defined. By ( b )  of vi), y E C[s]. Then 
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ay is not destroyed in the rest of stage S ,  contradiction. 

Suppose a < L  y. Then a <L P. cP is destroyed at  stage s unless one of Cases 3.1 and 8 

holds and p" J, when a receives attention for the unique n such that n- = a n P and n c P. 
For the rest we assume that Case 3.1 or Case 8 holds at stage S. a" is destroyed in the main 

part of the construction in stage S since a7 is. Hence p" is destroyed in stage S by ( E 3 ) .  By 

(E4), cP is destroyed in stage S .  This is sufficient and completes the proof of i x ) .  

X )  Let S _> R for some n E B(P) .  a: J, since rf 1. Suppose as is destroyed in stage S .  By 

xi i i )  of 5.1, a" is destroyed at stage S .  By x i i )  we can assume that n E A ( @ ) .  By the last 

Claim above we know that p: J, for ally E A@). By ( E 3 )  and ( c )  of v i ) ,  all ay is destroyed 

for y E A(P) and so for all y E B ( P )  by x i i i )  of 5.1. 

x i )  Suppose S, P satisfy the hypothesis of x i )  with S <L-least possible. Towards a 

contradiction assume 1. Let 7 be the maximal 0-node in A@). Let a receive attention 

at stage S. By x v )  of 5.1, a 2 PA((2 ,  Q))). Then by v i i i )  of 5.1, there are three cases: 

a <L P ,  a @ or cu _> 5 for some 5 E A(P). First suppose aT is destroyed in the main part 

of the stage s  with r <L S. Then r <L y or y 5 r by the minimality of S. a7 is destroyed 

in stage S by x i i i )  of 5.1. By iu)  of 5.1, rf+l r, contradiction. For the rest we may assume 

that a6 is not destroyed in the ending of stage S. 

Suppose a C P .  Then one of Cases 1.1 and 4 holds at stage S. But c: J, since c: J, by i) 

and v i )  of 5.1. Therefore Case 1.1 holds. Let q be the 0-node which plays the part of P in 

Case 1.1. Then q 2 PA((2 ,  i ( P ) ) )  by the choice of q since rP 1. Suppose a6 is destroyed in 

stage s  before C[s]  is defined. Then either q <L S or S G q. Hence a V s  destroyed and either 

q <L y or y C q since q 2 PA((2 ,  Q))). By x i i i )  and i v )  of 5.1, a7 and rP are destroyed in 

stage S ,  contradiction. Suppose a' is defined when C [ s ]  is defined. Note that rP J, when C[$] 

is defined since rf+, and rP cannot become defined after C[s ]  is defined. By Case 1.1, a6 is 

not destroyed in stage S ,  contradiction. 

Suppose a <L P.  Since cP is not destroyed at stage S, one of Cases 3.1 and 8 holds and 

p" J, when a receives attention for the unique n such that n- = a n p and n C p.  Since a6 

is destroyed in the main part of the construction in stage S ,  then p" is destroyed in stage s  

by ( E 3 ) .  Hence cP is destroyed in stage s by ( E 4 ) ,  and so is rP by ( E 5 ) ,  contradiction. 
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Suppose a _> T for some r E A(P). Note that a: 1. By xxi) of 5.1, either a7 is destroyed 
P in stage s or some X enters B at stage S .  Suppose 1. Then T , + ~  1 by iv) of 5.1, 

contradiction. Suppose some X enters B at stage S. By Cases 3.1, and 8, a6 is not destroyed 

in stage s since rP 4 when C[s] is defined. This is sufficient and completes the proof of zi). 

xii) Suppose X # a: for all S. From the construction the only case which can enumerate 

a number in C which is not a: for some S is Case 11 holds. Then either X = k: or ~ ( z )  _> P 
for some ,B E A(a) and X entered B after rP- attained its value at stage S. Note that for 

7 2 P, when CY becomes defined, aP and rP- are destroyed. Hence X = k'J for some y _> P 
if X is not k:. 

xiii) Let a$ 1, a! 1 and S # p. Let aP have been set equal to a? at stage v. Without loss 

we can assume that t < v. From Case 2, clearly a$ # a: if S <L P, S C P, P C S, P- <L S, 

or P-"((6, i(P-))) E T A P-"((6, (P-))) E S. Suppose P <L S. Let E be the unique node 

C S such that E- = ,f3 n S. For the rest we can assume E is an (n, j)-node for n < 5. Let a6 

be set equal to a: at stage U < t. Suppose $ 1 .  By Case 2 at  stage v, a$ < Suppose 

a{ 1. Also we can assume that a2 4 for all 7 E B(@-) with y < L  P. Otherwise, ay must 

become defined at a stage > U and < v. When aT becomes defined, a' is defined is destroyed 

and enumerated in C. Hence in this case aP cannot be set equal to in stage v. Now 

let a6 be set equal to k at stage U and k enter B at stage z < U. Towards a contradiction 

assume aP is set equal to k at stage v. It follows that k # C,. 

Claim. Let z < W 5 U and a node 3 P- and C S be visited in stage W. Then there is a 

jump from a node C_ p- to a node 3 p- at stage W. 

Proof of Claim: Fix such a stage W. Towards a contradiction assume there is no such jump. 

Then Case 1 fails at P- in stage W since E is not 6-node. By iii), k E A',(')" UA$')". Hence 

k E ~ 2 ' ) ~  if P is a ( j ,  j@))-node. By iv), a$ 1 where 7 is the maximal O-node c P- if any. 

Note that aP will be set equal to k at stage v > U and for any 8, if a* is destroyed, ae enters 

C. Hence Case 5 holds at P- in stage W and the construction passes to P, contradiction 
- and completes the proof of Claim. 

By the Claim, there is a jump from a node E P- to a node 8 > P- at stage U.  Since 

a6 becomes defined, S <L 6. Let W be the least stage such that z < W < U, at which there 

is a jump from a node C ,B- to a node r > P- with S <L r, and some node > p- and 
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E S is visited. If a t  I, then the value assigned to  a6 in stage U must exceed all the value 

of parameters at stages 5 W. In particular, this implies that k  < at+l. Hence a t  and so 

r-S-. Let C be the unique 0-node such that c- = 7- and C 6. C exists otherwise no node 

3 P- and C S is visited in stage W. Since a6 is set equal to k  at stage U,  a(k) C. Suppose 

pT 4 when C[z]  is defined. By (c) of vi) of 5.3, a( is destroyed at  a stage 2 z and < W. But 

a& 1. So at a stage h > z and < W, a( becomes defined. But h satisfies the requirements for 

W, contradicting the minimality of W. Therefore pT r when C[z]  is defined. Hence C # C[z] .  

From the argument above we know a( is not destroyed in stage z. By Cases 3.1 and 8, 

there is a maximal t C C such that t E C[z] .  By v), j ( t )  5 j(B) for all 0-node 8 such that 

c B G C. By (f) of vi), r:;, 1. So E C,+1 by xxv) of 5.1. By xxv) of 5.1 again, B # 
for each 0-node B such that C B G C. Hence C E Suppose = a$. By (d) of vi), 

there is a 0-node B such that 6 C 6 G C and j(B) < j ( 0 ,  contradiction. Suppose # a(,. 

Let h be the least stage such that z < h c W and at is destroyed in stage h. Note that ci- J, 

and c$;, by the argument above used to show a( is not destroyed in stage z. By (a) of 

vi), a4 is destroyed in stage h, contradicting the minimality of W by the argument above. 

Therefore, a! # a t .  

Suppose a: 1. Let k  = a:. Towards a contradiction assume k  E C,. Suppose k  enters 

C at stage t. From above we know that k  # af for all p # 6. By xii), k  = k f  for some 

and Case 11 holds in stage t. By vii) of 5.2, 6 < L  P. Let a receive attention at stage 

t. Suppose a = P. Clearly a6 was set equal to Ic before stage t by Case 2. But when 

a6 becomes defined, CB is destroyed and then k f  cannot enter C by Case 11 at a stage in 

which receives attention. Suppose a # P. From Case 11, P _> n E A(a) for some n. Since 

6 <L P, either n C S or S <L n. Also, a6 was set equal to k before stage t. When a6 becomes 

defined, a" and ra are destroyed. So k f  cannot enter C by Case 11. This completes the 

proof of xiii) and then Lemma 5.3. 1 

Define the true path P to  be the subset of all a E T such that a! is visited infinitely often 

and there are at most finitely many stages in which some ,L? <L a is visited. 

In the next lemma when we say that a parameter is eventually fixed we mean the pa- 

rameter is defined only finitely often. If we say that a parameter p, ---+ oo as s + oo we 

mean that there are infinitely many stages in which p becomes defined and that the values 
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assigned to s tend to oo. 

5.4 Lemma. (True Path Lemma) 

For each a E P the following hold: 

i)  For all <L a, eventually U P ,  8, kP, cP and rP are fixed. 

ii) If a is  a 0-node then p" is eventually always undefined and a: -+ ca as S -+ ca. 

iii) P, cf f  are eventually fixed. 

iv) m a is not a l-node; 

0 a is a 2-node + c:- = 0; 

a is a 3-node + c:- 2 1. 

v) There is W E A such that aA(w) E P. 

vi) If a is  a t n o d e  or 3-node then aP is eventually always defined for all /3 E B(a-). 

vii) If no /3 E A(a-) is visited infinitely often, then r f f -  is eventually fixed. 

viii) k", ca are eventually always defined. 

ix) For each n there are at most finitely many s such that (3P)(a <L P A a t  J,  at < n). 

Proof. We will use induction on (T, 5). 
i) Let p <r, a be a 0-node. Once defined, aP retains the same value unless destroyed; 

and similarly for $. aP can become defined only when ,B is visited, and thus only finitely 

often. Further, p@ can become defined only while a0 is defined and U P  is destroyed whenever 

# is. Thus # becomes defined only finitely often. The rest is clear because whenever aP 

(LP or cP or rP) becomes defined P is visited. This is sufficient. 

ii) Consider what happen in the construction once nodes <L a have been visited and 

the parameters belonging to  those nodes have been changed for the last time. There are 

two cases: 

Case 1. (3P E A(a-))[P <L a]. By Case 3, when p" becomes defined, a node <L a is 

visited. Hence pff cannot become defined infinitely often. By x v )  of 5.1, if p: L, a is not 

visited at stage S.  Hence p" is eventually undefined. 
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Case 2. Otherwise. Note that when p" becomes defined, c"- is set equal 1. From vii) of 5.1, 

c:- = 0 if c"- is set equal 1 at stage S. Bu iii) of the induction hypothesis c"- is eventually 

fixed. Hence p" becomes defined only finitely often. But by xv) of 5.1, 

p" 1 when a is visited. Therefore p" is eventually permanently undefined. 

Each time a" is redefined it is given a strictly larger value. By iv) of 5.3, if a is visited 

at stage S and a: r, then aa becomes defined at stage S. Towards a contradiction assume 

a" is destroyed only finitely often. Consider what happens in the construction once a" has 

been destroyed for the last time. Since aa is not destroyed, by xxi) of 5.1 at each stage in 

which cr is visited some y with a(y) 2 a enters B. Further, ka(y) was set equal to y before 

a" was set. So there are only finitely many possible y. When kf f (y )  enters B, ~ " ( 3 ' )  is set 

equal to 1. kC"(y) cannot enter B at a later stage unless c"(?') becomes 0 again which means 

that k"(9) is reset to a larger value. We conclude that a is visited only finitely often. This 

contradiction completes the proof. 

iii) By ii) of 5.1, once defined, c" is monotonic non-decreasing 5 2 unless destroyed 

because one of the following holds: 

0 a node <L a- is visited; 

a) some y with yA((2, i(y))) < a receives attention, and cY is set equal to 1; 

b) pY is destroyed for some y c a ;  

c) ay is destroyed for some y <L a. 

By the induction hypothesis, this yields the desired conclusion for ca. Once defined, L" 

retains the same value until reset to a new value. If k" is reset in a stage, then c" becomes 

defined in the same stage. 

iv) Towards a contradiction assume a is a l-node. When a, is visited, a" becomes defined 

if it is not already defined and retains the same value unless destroyed. Whenever a" is 

destroyed, by Lemma 5.1 xii), a@ is destroyed for some ,B E A(a-) with p <L cr. Notice 

that p <L a. By i), this happens at most finitely often. Eventually a" is defined never to 

be destroyed again. Whenever a" is defined, a! is not visited, a contradiction. 
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Suppose a is a 2-node. By construction, a is visited at stage s only if c:- = 0. This is 

sufficient. Similar for the case a is a 3-node. 

v) First we show that for some immediate successor S of a, there exist infinitely many 

stages at which some node _> S is visited. Towards a contradiction suppose there is no such 

S. Clearly, there are only a finite number of stages in which nodes 3 a are visited. Consider 

what happens in the construction once the nodes <L a and > a have been visited and 

the parameters belonging those nodes have been changed for the last time. Note that a 

parameter belonging to ,B can only be assigned a new value in a stage in which P is visited. 

By the induction hypothesis, ii) and iii) we can also assume that ad parameters k, c and p 

belonging to nodes C a have been changed for the last time. 

Suppose a is a 0-node. Clearly, when a! is visited a" becomes defined if it is not already 

defined and retains the same value unless destroyed. By 5.1 viii), eventually a" is destroyed 

only if a receives attention. 

Now we show that, whether a is a 0-node or not, cff is eventually always defined. Suppose 

not. By the induction hypothesis, choose the least stage t after which, r6 for bA((2, i(6))) < 
a, ay for 7 <L a, and k7 for y < a are all fixed. Let n be a number greater than all 

such parameters. Let S be the last stage if any such that c: L. Choose the least a-number 

m > max(n, k:}. Notice this a-number is unused because any used a-number is one of the 

(previous) values of k". Let y be the maximal 0-node c a. By ii), a; -, oo as v -, oo. 

Choose the least v > t such that a; > m. Let U be the least stage 2 v at which a is visited 

and a: L if a is a 0-node. Such U exists. Towards a contradiction assume one of Cases 1-3 

holds at a in stage U. Note that a receives attention. Case 1.1. cannot hold; otherwise aP is 

destroyed for some 0-node P 3 a, contradiction. Case 2 cannot hold since if a is a 0-node, 

then a: L. Case 3 cannot holds at  a; otherwise c"- is set equal 1, contradiction. Therefore 

none of Cases 1-3 hold at a in stage U. Note that if a # 7, then a2 L by iv) of 5.3. By vi) 

of 5.1, c:- 4. Hence Case 4 holds at  a when a is visited in stage U. ca becomes defined at 

stage U, contradiction. 

Consider a stage s at which a is visited and a: 4. From the argument of the last 

paragraph there is such an s and none of Cases 1-4 holds at a! in stage S. But by inspection 

of the construction in each of these cases either the construction passes below a or one of cff, 
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c"- is increased. This contradicts our findings above. We conclude that for some immediate 

successor 6 of cr there are infinitely many stages in which a node _> 6 is visited. Fix 6 to be 

the least such node. 

We will prove that 6 is visited infinitely often. Towards a contradiction suppose there is 

a stage t after which S is never visited. Consider a stage v > t at which a node > S is visited. 

In stage v there is a jump from a node c a to a node T = T, > S via Case 1.2. We node 

that a: J, and r,'- 1 since Case 1.2 requires that there be a number designated for T. Let 

U = U, < v be the stage at which aT was set equal to a;. Consider the least v, if any, such 

that t < U. Ln stage U, au is destroyed for all a such that either a C T or T <L a. Note that 

rcil f .  Let s be the least stage > s in which rT- becomes defined. Clearly, s < v. Since in 

stage s the construction jumps from a node C cr to T, and then moves left, T <L rs. Clearly, 

aTd becomes defined at a stage > U and < S. This contradicts the choice of v. Hence U, < t 
for all v. 

Consider stages v > W > t such that in both stage v and stage W a node > S is visited. 

In stage W, pTw becomes defined. Either p;w J, or pTw , and hence also aTw , is destroyed at a 

stage 2 W and < v. In the latter case T, = T, would imply U, 2 W > t ,  contradiction. h 

the former case T, # T, because pTW is already defined. Therefore T, # T,. Since there are 

only a finite number of values possible for T,, the proof is completed. 

vi) By i), a@ is fixed for all P E B(a-). Let t be a stage after which a@ is fixed for all 

,B E B(cr-). Towards a contradiction consider y = a-"((i,  j)), the least node in B(a-)  such 

that a;+l f .  Consider a stage S > t at which cr is visited. Since cr is a 2- or bnode, a-  is 

visited at stage S. We want to show such s does not exist. 

Since the construction passes from cr- to cr one of Case 6, 10, and Case 12 occurs at a'. 

Towards a contradiction suppose c:- 2 1 and let v be the greatest stage < s in which ca- 

is set equal to 1. By vii)  of 5.1, r:il 4. Since a: f ,  r:- '1 by i )  of 5.1. Let U be the least 

stage > v such that rtil f .  By is) of 5.3 one of c,*- and is undefined. Since U < S ,  

the choice of v is contradicted. Therefore c:- 2 1. 

By vi)  of 5.1, c:- J, and so c:- = 0. Let 6 be the maximal 0-node G a-. By iv )  of 5.3 

since a- and cr are visited at stage S ,  a: L if S exists. Now Case 5 holds at a- in stage S. 

By Case 5 and the choice of t ,  pass to a-"((4 + i, j)),  and then a is not visited in stage S,  
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contradiction. 

vii) If no p E A(a-) is visited infinitely often, it follows that a-"((2,i(a-))) 5 a. If 

p E B(a-), then a@ is fixed eventually by i). So after a@ is fixed for all P E B(a-), and c"- 

is fixed, T"- changes at most once by iv) of 5.1. This is sufficient. 

viii) After c" is fixed for the last time, there is a stage at which some node > a is visited. 

By vi) of 5.1, c" j.. By i) of 5.1, k" J. whenever c" L. 
ix) Let p >L a and E B(P-). Suppose that a@ becomes defined for the last time in 

P stage t. Consider a stage s > t in which a is visited and such that a? = = at+l 4. Since 

U P  is not destroyed, by inspection of the construction Case 3.1 or Case 8 holds in stage S 

and some y enters B with a(y) <L p or u(y) > p. Since a? = y = k:(') because, when 

ka(y) is reset by Case 4, a@ is destroyed. Hence there are only a finite number of possible 

values of y. From the proof of ii) each y is enumerated in B at most once. Hence there are 

only a finite number of possibility for S.  We conclude that aP never becomes defined for the 

last time. This is sufficient because the value assignated to aP as the construction proceeds 

are strictly increasing. W 

Below, when a E P, we shall use a+ to denote the unique immediate successor of a! in 

P. 



Chapter 6 

Verification, Part I1 

In the present chapter, we verify that all requirements are satisfied. 

6.1 Lemma. For each i  < W ,  7Zi is satisfied. 

Proof. We proceed by induction on i .  Fix i .  The set 

{P  E T : (2 ,  i ) ,  ( 3 ,  i )  do not occur in p) 

is finite. Hence there exists a E P such that i ( a )  = i  and a+ is either a 2- or 3-node. From 

the definition of T, CV is uniquely determined by i .  We will show that the strategy associated 

with a succeeds for 7 Z i .  

By 5.4, fix the least stage t  after which: 

A. S is not visited for S <L a and a6, c6, k6, p6 are fixed for S <L a, 

B. lc6 is fixed for S C a ,  

C .  p6 is fixed for S a ,  

D .  SA((3, i (S) ) )  G a A c: 2 1 =+ (Vs > t ) [c i  12 l ] ,  

E. r6 is fixed for S with SA((2, i (6 ) ) )  5. a .  
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We first show that f. 

Let ,B denote the node which receives attention at stage t. Towards a contradiction sup- 

pose that c" becomes defined in stage t. By Case 4 of the construction the only parameters 

(apart from c") belonging to a node 5 a ,  which change in stage t ,  change through the 

destruction of a6 for 6 G a. By xv) of 5.1, no p6 with S G a is defined at any point in stage 

t .  Examining ( E  l )  - ( E 5 )  we see that A - E all hold for stage t ,  contradicting the choice 

of t .  

Suppose c? L. Suppose A fails in stage t .  A number of cases must be examined. We 

will treat the case in which c6 changes for some S <L a .  The other cases will be left to the 

reader. Suppose c L l  1. Then S is visited and c" is destroyed unless p&, 1, where R a 

and R E A(a n S). But from i i )  of 5.4, pG1 by choice of t .  Therefore c?+, 1. Suppose that 

c6 is destroyed in stage t. From i i )  of 5.1 we have the following cases: 

Case 1. @ <L S. We see that f by repeating the argument above. 

Case 2. a7 is destroyed for some y <L S. By ( E l ) ,  c" is also destroyed. 

Case 3. Case 8 holds at  P, P C S, and PA((2 , i (P)) )  5 6. Either /3 <L a ,  or P C a and 

PA((2, i (P ) ) )  5 a .  We may suppose that the latter holds. Then ca is destroyed in the main 

part of the stage. 

Case 4. p7 is destroyed for some y C 6. Then a7 is destroyed. Either 7 < L  a which 

takes us to Case 2, or y C a. By (E4)  ca is destroyed. 

The cases in which either B or C fails in stages t is quite easy. 

Suppose D fails in stage t. Then c: = 0 and = 1. Either Case 3.1 holds at /3 which 

is the least node in A(S) or Case 8 holds at S = P. If Case 3.1 holds, then P <L a which 

takes us to A. Suppose Case 8 holds. By Case 8,  c" is destroyed. 

Suppose E fails in stage t. Suppose r6 is destroyed in stage t .  By iu) and xii) of 5.1, 

either c6 or a7 is destroyed for some y E A(S). By i i i )  of 5.1 and ( E l )  since y < L  a, in 

either case c" is destroyed. Therefore f .  

Let so > t be least such that c" is defined at stage so. By Case 4, cFo+l J.= 0 and ka 

becomes defined at stage so. Note by i i )  of 5.1, ca is not destroyed after stage so. Hence 

ka is eventually always defined and constant. To see Iti is satisfied, there are two subcaseS. 
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CASE 1. c: = 0. Then eventually for stages at which a+ is visited, c" = 0. By i v )  of 5.4, 

a+ is a 2-node. Note that Bw(kE) = 0. Suppose !@;(W:; kE) f. Then clearly 7Zi is satisfied. 

Similarly if !JL(w:; k:) L# 0. Suppose !@;(W:; k:) L= 0. Let n = $:(W:, k t )  and sl > so 

be such that for all S 2 sl 

Towards a contradiction assume that for all X I n ,  9L(Dw;  X )  = W:(%). Let m = &(D,, n ) .  

Let s2 > s1 be such that for all s > s2 and all X 5 n, 

By ii) of 5.4 let v 2 sa be the least stage in which aA((2 ,  i ) )  is visited and for all j < 1 
and all j-node p such that either p G a or aA((2 ,  i ) )  <L p 

Note that a is visited at stage v and none of Cases 1-5 holds at a; otherwise aA( (2 , i ) )  is 

not visited. But we can see that a is ready at stage v by the choice of n ,  m and v. Then c" 

is set equal to 1 at stage v ,  contradiction. Therefore 

and so 7Zi is satisfied. 

CASE 2. Otherwise. Since c: 2 1, a+ = (rA((3, i)) .  Then there exists s > S,-, such that 

c" is set equal 1 at stage S.  Let sl denote the least such S.  Let z denote the stage 5 $1 in 

which T" attained its value at stage sl . 
CASE 2.1. There is a stage s > sl at  which c" was set equal 2. Let s2 be the least such 

S .  When C" is set equal 1 at  stage s l ,  a-attack is completed. Note that by Cases 3.1 and 

8,  T:+~ 5. By i x )  of 5.3, T" is not destroyed after stage s l ,  and then is not destroyed after 

stage z by the choice of z. 

Claim 1. There is no X I T;+, which enters C at stage v E { S  : S 2 z A s # s2}. 

Proof of Claim 1: Fix v such that v 2 z and # s2. Towards a contradiction assume 

X 5 T;+~ enters C at stage v. By x i i )  of 5.3, X = a$ or X = k t  for some S. 
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Towards a contradiction assume X = at. By the choice o f t  and by xiii) of 5.3, S gtL  a 

and a6 is destroyed in stage v. Suppose crA((2, i)) <L S. Suppose a: 1. Since a! is ready at 

stage z, rZl < at, contradiction. Suppose a: f . Since a$ 1, let as was set equal to a$ at 

a stage u with z 5 u < v. U # z by the choice of z. When UP becomes defined at stage 

u > z, r;+, < aP by Case 2, contradiction. Suppose S C a. Let y be the maximal 0-node 

E cr. By iv) of 5.3, when ra becomes defined at stage a, a? 1. Since cr is ready at stage z, 

< a?. By ii) of 5.2, a? 5 a$ since S E a, contradiction. Suppose S 2 aA((2, i)). By xi) 

of 5.3, if a6 is destroyed at stage v in which r" is defined, then r" is destroyed in the same 

stage, contradiction. Suppose S _> n for some n E B(a). By xiii) and iv) of 5.1, aT and ra 

are destroyed at stage v, contradiction. Therefore X # a$ for some S. 

Suppose X = k$: There are two cases: 

Case 1. S receives attention at stage v. Note that c$ 1, c6 is set equal to 2 in stage v, 

and v # $2. Therefore S # a. S P cr by the choice oft .  Suppose aA((2, i)) 5 S. Then v + z 

and so v > z. By xv) of 5.1, there is no n C S with pc l. By v) of 5.2, r;++, < k;. Suppose 

S 2 n for some n E A(cr). By Case 11, a: is destroyed in stage v. Hence ra is destroyed at 

stage v by iv) of 5.1, contradiction. 

Case 2. Otherwise. By xii) of 5.3, there exists ,f3 C S such that Case 11 holds at P in 

stage v. Note that c! 1. By the argument of Case 1 it is sufficient to show that k t  < k;. 
Suppose c$ 1. By i) of 5.2, k t  < k;. Suppose c$ f. Let W < v be the greatest stage such 

that c; 1. Note that k; entered B before stage W and c; is destroyed at  stage W. cg 1 by 

vi) of 5.1. By i)  of 5.2, L$ < k; = 1;. Towards a contradiction assume that L$ # L!. Then 

at a stage U, W < u < v, CP is destroyed. Hence rfl is destroyed at stage U. By Case 11, 

when Case 11 holds for P at stage v, we just need to enumerate the numbers which entered 

B after rP was set equal to its present value. But kt entered B before stage W and so before 

stage U. Hence k$ does not enter C at  stage v, contradiction. This completes the proof of 

Claim 1. 

Claim 2. If X enters B at a stage v 2 z with X < rTl, then v < sl and either &(X) = a! or 

cr(x) 2 6 for some 6 E A(a!). 

Proof of Claim 2: Fix X, v such that z 5 v and X 5 r,gtl enters B at stage v. Then X = k$ 

for some S by vii) of 5.1. By the same token, c$ I= 0, %+, J,= 1 and 6 receives attention at 
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stage v. For the rest we suppose S # a. S a by the choice of t. Suppose aA((2, i)) < S. 

By choice of z, v # z. By xv) of 5.1, pc t for all 0-node n C 6. By v) of 5.2, r;++, < k$, 

contradiction. Therefore, S _> 8 for some 8 E A(a). Towards a contradiction assume sl < v. 

Recall that r" is not destroyed after stage z. Since pe is defined at some point in stage sl, 

is not destroyed at any stage 2 sl. Otherwise, ae and r" are destroyed, contradiction. 

Then by xv) of 5.1, S cannot be visited at stage v, contradiction. This completes the proof 

of Claim 2. 

Since Case 11 holds at a in stage s 2 ,  there exists X 5 $:(W:, k") such that X E -W,'. 

At stage z we have 

@:(D.; X) = W;(X) = 0 # l = Wj2(x). 

In stage SZ, by Case 11, all numbers X < r,Stl which entered B at a stage 2 z and < s 2  

with a ( x )  > 8 for some 0 E A(a) are enumerated in C. Hence by Claims 1 and 2 

By definition, r;++, > cpf (D,, $:(W:, k")) 2 cpf(Dz, 3). Therefore, 

By Claims 1 and 2, at the end of the construction, @(D) and wi disagree at X. 

CASE 2.2. Otherwise. 

Let r, k the values of ra, k" at the end of stage sl. We know ra = r, k" = k for all stages 

> sl. Since a never requires attention at a stage > sl, we have 

(Vx < $:(W:, k"))[wi(x) = ~ ' ( z ) ] .  

But k" is enumerated in B at stage sl and is never enumerated in C. Thus 

q i (wi ;  k") = V!:(W~; ka) = 0 # 1 = Dsl+l(ka) = D(ka). 

This completes the proof of 6.1. 1 

6.2 Definition. i is called active on P if there exists a E P such that for a l l  p > a, 

p E P, i is active at p. 
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6.3 Lemma. If i is not active on P ,  then there exists a E P such that i is not active at ,B 

for any ,B E P ,  a C p. 

Proof. It is obvious if one of (4 ,  i),  (5, i ) ,  and ( 6 ,  i )  occurs in P. Otherwise, for all a E P ,  there 

exists 2 a, ,B E P ,  such that i is not active at  p. Notice that for all k ,  a ,  p, if k is not active 

at a ,  a C p, and k is active at  p, then there exists j < k such that one of (0 ,  j ) ,  (4 ,  j ) ,  (5 ,  j )  

occurs on p below a .  Also, for any P ,  if there exist n < m such that @(n)  = P(m) = (0 ,  j )  

then there exist k, l  such that n < 1 < m, k < j and P ( [ )  E {(O,k),(4,k),(5,k)).  This is 

sufficient. I 

6.4 Lemma. For each i < U, i f  Ai?O U Ai7' 2 B ,  then 

i )  (4 ,  i )  occurs on P D <T ~ ~ 7 '  n D. 

ii) (5 ,  i )  occurs on P --. D <T Ai7O n D. 

iii) Otherwise, 

(a) i is not active on P --. D 5~ Ai>l n D. 

(b) i is active on P --. D FT AiyO n D. 

Proof. Fix i such that Ago U Ai7' _> B. Note that ( 6 ,  i )  does not occur on P. Let J; be t 

set of all j 5 i which are not active on P. Let I; be the set of all j 5 i with j J;. Let cro 

be the least a E P such that 

i) (Vj)(VP E P ) b  E J; A a G P+ + j is not active at P] ;  

ii) (Vj)(VP E P ) b  E 4 A a P+ j is active at p]; 

iii) (Vj  < i )[(2,  j )  E ran(cu) V (3 ,  j )  E ran(a)] .  

For each j 5 i, let Pj denote the ( k ,  j - l)-node on a0 for k E {2,3). Then for n < m 5 i, 

p, c Pm. Recall that X is the (2,  -l)-node. Let so be the least stage after which 

no 6 < L  a0 is visited 

as and p6 are fixed for all 6 < L  a0 
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k6, c6 and p6 are fized for all S such that S 5 a 0  

r6 is fixed for all S such that SA((2, i(S))) I ao.  

Remarks: 1. If a0 is an (n, j)-node, then j > i and, if j = i, then n E {2,3}. 

2. After stage so, we cannot jump to some node 8 C a o ,  otherwise pe becomes defined 

can can never subsequently be destroyed, contradiction. 

Case 1. (4, i) occurs in P. Let So be the least 6 E P such that (4, i) occurs in S, and 70 be 

the maximal 0-node C So if any. 

Case 1.1. yo undefined. In this case after stage s o  every sufficiently number which enters 

B is enumerated in A~*' U C, hence D IT Ail1 n D. Otherwise, for some sufficiently large X 

which is enumerated in B, X 6 C and X E Ailo. Consider a stage in which z E A ~ * O  and So 

is visited. Since So is a 4-node, 6; is visited that stage and no Cases 1-4 hold. Hence Case 

5 requires to pass S$((O, i)), which is <L So, contradiction. 

Case 1.2. yo exists. There are an infinite number of stages at which some node > 70 is 

visited. We want to show that D <T Ail1 - C. Fix X > so. Choose s to be the least stage 

such that 

So is visited at stage s 

(A$' - C,) 1 (X + 1) = (A:' - C,) I (X + 1) 

Claim. X E D if and only if X E D, - E, where 

E, = {a: : a: 1 A[& <L E V [S;̂  ((6, i(6;))) E T A S&  ̂((6, i(Sg))) C E]]}. 

Proof of Claim: Note that if X E E,, X # D by ix) of 5.4. Towards a contradiction assume 

X E D - D,. Let X enter B at a stage t 2 S. Then X = k,6 for some S with c! J,= 0 and 

c;++, = 1 by vii) of 5.1. By the choice of so we have yo c b or yo <L S. Suppose yo <L S. 

Then a? < k,6 = X by iv) of 5.2, contradiction. Therefore yo E S. Since c6 increases at a 
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stage > so, either S; < L  S or S; C S. Since AifO U ~ ~ 9 '  2 D, let v > t be the least stage 

such that X E A$O U Note that we can assume that for each stage U, AiO U A$I C B,. 

Hence X # A$' U A$l since X # B,. Towards a contradiction assume X E A$O. Let U 2 v be 

the least stage at which So is visited. U exists since So E P. 1 by iv) of 5.3. Note that - 
X # C and X # E,. Then 6; is visited at  stage U, ctO L= 0 and none of Cases 1-4 holds 

6; at 6;; otherwise So cannot be visited at stage U. By 5.2, k 5  = km+, < ki  < a20 1. Since 

X > so, by Case 5, we pass to 6iA((0,i)) which <L SO, contradiction. Therefore X E A;'. 

Thus X E (Ail1 - C)  - (A$l - C,), contradicting the choice of S. Therefore, if X E D, then 

X E D,. 

Towards a contradiction assume X E D, - ( D  U E,). Let X enter C at a stage v 2 S 

and X have entered B at a stage t > so. Note that t < S. Suppose a(%) _> 70. By choice 

of S, X E A",' U A:'. Hence X # A? U A$: since X # B,,. Towards a contradiction assume 

X E A$'. Repeating the argument of the last paragraph with S playing the part of u we 

obtain a contradiction. Therefore z E A$'. Thus X E (A$' - C,) - (A$' - C,), contradicting 
6 the choice of S. Below we suppose that a (z )  2 yo. By xii) of 5.3, X = a, or X = k: for some 

S .  By vii) of 5.2, S 2 yo. By the choice of so, S #L  yo. Suppose X = a$ Since either S C yo 

or yo <L S, X < a:O < a: = X by ii) of 5.2, contradiction. 

Suppose X = k;. Let a receive attention at stage v. Note that c&' > c; l= 1. By the 

choice of so, yo <L a. Then ai0 < kz by iv) of 5.2. For the rest there are two cases: 

Case 1. cu: = S. Then X < a$ < kz  = k,6 = X, contradiction. 

Case 2. Otherwise. By xii) of 5.3, 6 2 R for some R E A(a) and k6 entered B after 

T; was set. Note that c: 1. First we show that k; < k f .  Suppose c: J. By i) of 5.2, 

k; < k:. Suppose c: f. Let W < v be the greatest stage such that c; L. Note that kt 

entered B before stage W and c; is destroyed at stage W. c: l by vi) of 5.1. By i) of 

5.2, kg < k; = k f .  Towards a contradiction assume that kg # k,Q. Then at a stage U, 

W < U < v, ca is destroyed. Hence ra is destroyed at stage U.  By Case 11, when Case 11 

holds for a at stage v ,  we just need to enumerate the numbers which entered B after T" was 

set equal to present value. But kf entered B before stage W and so before stage U. Hence kf 

cannot enter C at stage v, contradiction. Therefore k; = k t .  Hence X < a20 < k; < kf = X, 

contradiction. Therefore, if X E D,, then X E D. This completes the proof of Claim. 
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Now D Ai*l - C is immediate by Claim. 

Case 2. ( 5 ,  i) occurs in P. This is similar to Case 1. 

Case 3. Otherwise. There are two cases: 

Case 3.1. i E Ji. Let y E a0 be the maximal (0, +node. There are two subcases. 

Case 3.1.1. Ii = 0 .  

Claim. If X enters B at some stage > so with a(x) _> y, then X E Aitl. 

Proof of Claim: Let X enter B at stage t > so. Let a receive attention at stage t .  

Subclaim 1. When a is visited in stage t ,  

p" J, for each ?r E A(y-) with y <L K. 

Proof of Subclaim 1: Suppose y is visited in stage t .  Since X enters B at stage t ,  a: J, by 

iv) of 5.3. We have the desired conclusion by i) of 5.3. Suppose y is not visited at stage t. 

Then there is a jump from some node C y to P I) y. Since Ii = 0 ,  y is preferred to P. By 

i) of 5.3, we have the conclusion of Subclaim 1. 

Note that TT- is not destroyed at stage t before C[t]  is defined since y C cr. Hence X is 

y-designated when C[t]  is defined. By (e) of vi) of 5.3, X is the first number after a: was 

set. Hence X is the first number to enter B after the value of TT- in stage t was set. Then 

y E C[t ] .  By (f) of vi) of 5.3, r;il J,. Therefore y E by xxv) of 5.1. By i) of 5.4, a7 

is destroyed infinitely often. Let v > t be the least stage such that f. Let q receive 

attention at  stage v. By viii) of 5.1 and the choice of so, q C y or 7 C q. 

Subclaim 2. There is no node _> y which is visited at a stage > t and _< v. 

Proof of Subclaim 2: Towards a contradiction assume there is a stage u at which some node 

3 y is visited. Let T > y be the first node which is visited in stage U. By (d) of vi) of 5.3, p7 - 

becomes defined at stage U ,  and T # 7 implies j ( ~ )  c j(y). But by i) of 5.4 and the choice 

of so, T # y. Therefore j(r) < j(y). This is a contradiction since Ii = 0.  This completes 

the proof of Subclaim 2. 

Now from Subclaim 2, q 2 y. Therefore q C y. 
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Hence one of Case 1.1 and Case 4 holds at q. Clearly, Case 4 cannot occur at q after 

stage so. Let n be the 0-node P in Case 1.1. 

Subclaim 3. n = y. 

Proof of Subclaim 3: By the choice of so ,  n y. Since a' is destroyed at stage v, either 

R C y or y C_ n. Towards a contradiction assume n C y. Because there is no (n, j)-node 

cr > y with j < i = j(y), y E C if and only if TT- 1 and there is some z E B designated for 

y . If TT- is destroyed at  a stage U > t and < v, then a" is destroyed for some n E A(?-) by 

iv) of 5.1. Consider the least such U and then the least such n. By xiii) of 5.1, y <L n. We 

have p: I. By (C) of vi) of 5.3, au is destroyed in stage U for some a E A(7-) with a <L n, 

contradiction. Hence r;j- = TT: I. Since X remains designated for y until the definition of 

C[v] , y E C[v]. Hence by Case 1.1, a? is not destroyed in the main part of the construction 

of stage v. By the choice of so,  ay is not destroyed in stage v by (El) .  This contradicts the 

choice of v. Therefore y C n. If y C n, then 7) C y C n and at the beginning of stage v, 

X is designated for y. So (i) in Case 1 fails which means that Case 1.1 fails, contradiction. 

Therefore y = n. 

Now by Case 1.1, we have X E Aj(7)v1. This completes the proof of Claim. 

There are an infinite number of stages at which some node > y is visited. We want to 

show that D + ~ ~ 7 '  - C. Fix X > so. Choose s to be the least stage such that 

y is visited at stage s 

(A>l - C,) I. (X + 1) = (A:' - C,) t (X + 1) 

Repeating the argument used for the case (4, i) occurs in P, we can show that X E D if 

and only if X E D,. Hence D <T A ~ J  - C. 

Case 3.1.2. Ii # 0. Let io  < < i, be an enumeration of Ii. Note that for each e 2 i(ao), 

there exists an ae E T such that 
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ae = (ae)-^ ((1, i)) <L ((ae)-)+. 

To see how to find this ae we can let be the least S E P such that i(6) = e + 1, then ae 

can be chosen as 6-"((l, i)). Note that by Lemma 5.4 vi), a:' is defined. 

Define •’ C T as 

{a : a 3 a0 A a(l(a) - 1) = (1, i) A (Vj E Ii)Ej is active at  a-]). 

Note that for each e > i(ao), ae E E.  To show that D 5~ Ail1 - C, fix g, find the least 

(7, S) such that 

a0 is visited at  stage S 

(Ai l -  C,) 1 (a! + 1) = ( ~ 2 ~ -  C,) (a! + 1). 

Clearly, for each e 2 max{n,i(ao)} there exist arbitrarily large S such that (ae,s) 

satisfies the conditions specified for (7,s). Note that a7 is not destroyed at any stage 2 S. 

We will prove that g E D if and only if g E D,. 

Remarks. 1. By viii) of 5.3, a! 4 C,. By Case 2 of the construction a! E A:'. Hence by 

the choice of (7, S), a7 is not destroyed at any stage 2 S. 

2. For each 6 < q. k6 is constant at  stages 2 S. This is because that when k6 is set to a 

new value, Case 4 holds at  6 and a7 is destroyed. 

3. For each 6 <L q. a6 is constant at stages 2 S. This is because that when a6 becomes 

defined a" is destroyed, and when a6 is destroyed so is a7 by ziii) of 5.1. 

Claim 1. Let p, U satisfy 

a o C P < q , s 5 u ,  

a0 is visited in stage U, 

for all j E I;, j is active at p, 
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some y with a(y) _> PA((O, im)) enters B at a stage > so and < U, and after aPA((09im)) 
A 0 ;  )) is set equal to a t  (( ' " . 

Let X be the first number with a(x) _> PA((O, im)) to enter B at a stage > s o  and < U, and 

Then X E A:' and kc  E B,. after aPA((Otim)) is set equal to a, 

Proof of Claim 1: Let X enter B at stage t < U.  Let n, denote PA((O, in)) for n 5 m. Recall 

that y is the greatest (0,i)-node C ao. By vi) of 5.1, c f  I. By the choice oft ,  k: = k f  I. 
Subclaim 1. n, E Ct+1, y E et+', and X is the 7- and n,-designated number when C[t] is 

defined. 

Proof of Subclaim 1: By the choice of 7, n, <L 77. By the choice of t we know that aTm 

is not destroyed at a stage 2 t and < U, and so is not destroyed at a stage _> t. First we 

show that R, E C[t]. Towards a contradiction assume n, C[t]. Since arm is not destroyed 

in stage t, there is a maximal 0-node E C n, such that E C[t]. By v) of 5.3, j([) 5 i,. 

Hence E C a,-, By (f) of vi) of 5.3, rfil I. By xxv) of 5.1, E E and T 6 Ct+l for all T 

with 6 c T G n,. Since a:;., L, a, E Vt+1. By ii) of 5.4, d is destroyed infinitely often. 

Let v > t be the least stage at which at  is destroyed. By the choice of so and viii) of 5.4, 

c$- and are defined. By (a) of vi) of 5.3, aTm is destroyed at stage v, contradiction. 
- 

Therefore R, E C[t]. By (f) of vi) of 5.3, r;+"' 4. By xxv) of 5.1, n, E et+'. By (e) of vi) 

of 5.3, X is designated for n, at the end of stage t. 

To see that 7 E Ct+1, first we show that before X enters B at stage t, 

pT 4 for each n E A(y-) with a < L  n. 

Suppose y is visited at  stage t. Note that a: 3. by iv) of 5.3, since X enters B at stage t. 

By i) of 5.3, we have the desired conclusion. Suppose y is not visited at  stage t .  Let T be 

the first node 2 y which is visited at stage t. Clearly, there is a jump from a node C 7 to r 

at  stage t. y is preferred to  r by xix) of 5.1 since X is am-designated at the end of stage t. 

Hence by i) of 5.3, we have the desired conclusion. Therefore, X is a designated number for 

7 when C[t] is defined. By (e) of vi) of 5.3, X is the first number y with a(y) _> y to enter 



CHAPTER 6. VERIFICATION, PART 11 

B after a7 was set equal a:. Hence y E C[t] since a, E C[t]. By (f)  of vi) of 5.3, r:il L. By 

xxv) of 5.1, y E Ct+1. This completes the proof of Subclaim 1. 

Subclaim 2. Let v > t be any stage such that a; = a: 4, and some node 2 y is visited 

in stage v. Let a be the first node _> y which is visited in stage v. Then a 2 n, for some 

n < m. 

Proof of Subclaim 2: We proceed by induction on v. Suppose a; = a: and some node _> 7 

is visited at stage v. Let a be the first node > 7 which is visited in stage v. Since a: = a:, 

by (d) of vi) of 5.3, p" becomes defined at stage v and a # y implies j (a)  < j(y). By 

the choice of so, a # y. Therefore a Jf P by the choice of ,B. Towards a contradiction 

assume Rm < L  a. Let p" be set equal to z(a), where z(a) entered B at stage t(a) < v. 

By the induction hypothesis, t(a) < t. Now the three stages t(a),  t, v contradict ii) of 5.3. 

Therefore n, f L a. By the same token, if W > t, a; = a; 1, and r _> y is visited in stage 

W, then T g p and n, f L  r. 

Towards a contradiction assume a < L  P. By xxi) of 5.1, since a"m and so a" are not 

destroyed in stage v, some z enters B at stage v. By ii) of 5.4, ay is destroyed infinitely 

often. Let W 2 v be the least stage in which a7 is destroyed. Below we show that arm 

is destroyed in stage W, contradiction. First we want to show that cP, rP are destroyed in 

stage v. By xv) of 5.1,in stage t p" for all n with 7 G n C P, and rC f for all C such that 

y G c C CA((2,i(C))) C p. Suppose a(z) < L  P. Then in stage v, CB and TB are destroyed 

since there is no n E p such that p" j. in stage v. Suppose a(z) C P. Note that Case 3.1 

holds at the node which receives attention in stage v. Let C be the least node such that 

a(z) C C c p. Note that C is not a 0-node, otherwise p< 4 when z enters B at stage v. 

By xv) of 5.1, p$+l and C is not visited at any stage > t and 5 v. Hence CB and rfl are 

destroyed in stage v by Case 3.1. Let E receive attention at stage W. From above, if E _> 7, 

then E < L  R, or E 2 n,. Also since no node > y and C P is visited at any stage > t and 

5 w,pTf fo r  idln withy C R g@,  and r" f fo ra l l  n such that y E n  C nA((2, i (n)) )gp 

in stage W. The remarks above show that cP and rP are destroyed in stage v before C[v] is 

defined. Therefore R, # C[w] if C[w] is defined. Hence if C[w] is defined, n # C[w] for all n 

such that 7 C R E n,. By xxiii) of 5.1, arm is destroyed in stage W, contradiction. This 

completes the proof of Subclaim 2. 
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Let v > t be the least stage in which a7 is destroyed. By the choice of so  and (c) of vi) 

of 5.3, T:- = rZil J,. By Subclaim 2, v < U. Let r receive attention at stage v. By the 

choice of s o  and viii) of 5.1, either T C y or y G T. 

Subclaim 3. Suppose yenters B at stage h < v ,  rz- = rZil, and a(y)  2 y ,  then h 2 t 

and either a(y)  = p or a(y)  > n, for some n 5 m. 

Proof of Subclaim 3: Since y enters B after r7- is set equal r2- ,  y enters B after a7 is set 

equal to a:. By ( e )  of vi) of 5.3, X is the first number z  with a(z)  2 y to enter B after a7 

is set equal to a:. Note that a: = a:. Hence h 2 t .  Let a receive attention at stage h. By 

Subclaim 2,  a  _> n, for some n 5 m. Now the subclaim 3 is clear. 

Subclaim 4. y E C,. 

Proof of the Subclaim 3: Towards a contradiction assume that y $ C,. Let W be the least 

stage > t such that y g! Note that W < v and SO r;i1 1. By xxiv) of 5.1 and the 

choice of so, some a _> y receives attention at 'stage W. By Subclaim 2, a  2 8 for some 

8 E A(@ with 8 5 7,. By xxi) of 5.1, since arm and ae are not destroyed in stage W ,  

some number z  enters B at stage W. Note that either a(z )  = p or a(z)  _> 8. Suppose 

a(z )  = p.  Then, when C[w] is defined rP, 8 ,  and a', p' for all E E A(@), are all defined. 

Hence E E C[w] for all E E A(@) by ( b )  of vi) of 5.3. By subclaim 3, a l l  y # z  with a(y)  7 

which entered B after TZ- was set, a(y)  _> n, for some n 5 m and y entered B at a stage 

> t .  Therefore y E C[w]. By (f) of vi) of 5.3, r;i1 J,. Then y E by xxv) of 5.1, - 

contradiction. Suppose a(z )  _> 8. Towards a contradiction assume 8 C[w]. Since ae is 

not destroyed in stage W, there is a maximal 0-node 6 C 8 such that 6 E C[w]. By v )  of 

5.3, j(O 5 j(8). Hence F C y .  By (f) of vi) of 5.3, rtk1 1. By xxv) of 5.1, E CWcl and 

n Cw+l for each 0-node n such that 5 C n c 8. Hence 8 E D,+1. Let W' > W be the least 

stage at which at is destroyed. By choice of so  and (a )  of vi) of 5.3, ae is destroyed at stage 

W', contradiction. Therefore 8 E C[w]. 

Subsubclaim. Let a(y)  _> y and y enter B at a stage > t and < W. Then there exists 

a E A(@ such that a(y) 2 8 and 8 < a 5 n,. 

Proof of Subsubclaim: Let k be a stage such that t < k < W and some y with a(y)  _> y 

enters B at stage k. By Subclaim 2 there is a unique a E A(P) such that a ( y )  _> a and 
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a _< R,. Towards a contradiction assume that a < B. By xv) of 5.1, T. Hence pe 1. when 

y enters B at stage k since as is not destroyed after stage t. Hence a 4 C[k]. Since au is not 

destroyed in stage k, there is a maximal 0-node t C a such that I$ E C[k]. By the argument 

used in the last paragraph we obtain a contradiction. This yields the Subsubclaim. 

Since B E C[w], when C[w] is defined pu J, for each o E A(@) with B <L a. By Cases 3.1 

and 8, c0 J, and ae when C[w] is defined. Then by ( b )  of vi) of 5.3, a E C[w]. Combining 

this with the result above we have a E C[w] for all a E A(P), B < a 5 R,. We want to 

check that y E C[w]. From above, T Z -  = r:il 1 and so TT- has the value r:il throughout 

stage W. Since y E Ct+1 by Subclaim 1, X is designated for y at the beginning of stage t + 1 

and hence throughout stage W. To check the final condition for y E C[w] we consider an 

(n, j)-node E 2 y such that j < j(y) = i and such that some y with a(y) _> E entered B 

after TT- was set equal TT-. By subclaim 3, subsubclaim and the choice of P, y entered B 

at a stage 2 t and a(y) > a for some a E A(P), 8 5 a 5 R,. By choice of P, a C E. So 

a may taken for q in (iii) of teh definition of C[w]. Note that j (a)  5 j may fail. In this 

case we can apply condition (iii) to a and E to  obtain a' with a C a' C E and j(at) 5 j as 

required. Therefore y E C[w]. Hence y E C,+l by xxv) of 5.1 since r:i1 1, contradiction. 

This completes the proof of Subclaim 4. 

Towards a contradiction assume y C T. By Subclaim 2, T _> n for some n E A(P) with 

R < n,. By xxi) of 5.1, since arm and a" are not destroyed in stage v, some number z 

enters B at stage v. Repeating the argument used for the proof of Subclaim 4, taking B = n 

and W = v, we see that y E C[v] (the only difference is that here we cannot assume r;il 1). 

Then by Cases 3.1 and 8, ay is not destroyed in the main part of the construction in stage 

v. But clearly ay is not destroyed through (El).  Thus ay is not destroyed in stage v at  all, 

contradiction. Therefore T C y . Then either Case 1.1 or Case 4 holds at T in stage v. By 

the choice of so, Case 1.1 holds. Let E be the 0-node ,G' in Case 1.1. 

Subclaim 5. E = y. 

Proof of Subclaim 5: Towards a contradiction assume E # y. Recall that 1.2- = r;il J. and 

TT- 1 when C[v] is defined. By Subclaim 4, y E C,. By xxiv) of 5.1, y E C[v] since T C y. 

Suppose E C y. Then ay is not destroyed in stage v by Case 1.1, contradiction. Clearly, 

y KL E. Since a' is destroyed by Case 1.1, by the choice of so, E fL y. Therefore y C E. 
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Since there is a 7-designated number when r is visited in stage v, condition (i) on (X, P) in 

Case 1 implies that j ( ~ )  <_ j(7) = i. Hence E g P.  Towards a contradiction assume that 

Rm <L E. By the choice of P, E- g /? since j(E) < i. Then n, < L  E-. Since some node _> n, 

received attention in stage t ,  either c'- is destroyed at stage t or p6 4 for the unique C such 

that C- = n, n E and C C E .  Note that c:- L. By Subclaim 2, c:- = c:- L. Therefore pc L 
at some point in stage t. By the choice of E, we know p$ r. Hence pc is destroyed at a stage 

2 t and < v. But when pc is destroyed, so is c" since C c E-, contradiction. Hence E < I  n, 
or nm C E. Since a' is destroyed in stage v, so is arm, contradiction. Therefore E = 7. 

By Subclaim 5, since Case 1.1 holds at r and E = 7, X E A $ ~  since X is the unique 

7-designated number at the begining of stage v by (e) of vi) of 5.3. Therefore X E ~ $ l  since 

v < U by Subclaim 2. 

Towards a contradiction assume that kf 6 B,. Let v > t be the least stage in which 

some node _> a0 and E p is visited. Clearly, v 5 U. Let a! be the the greatest node C a 0  

which is visited in stage v. 

P Subclaim 6. rf = T , + ~  I. 

Proof of Subclaim 6: Towards a contradiction assume rf # ~ f + ~ .  Let W > t be the least 

stage in which TP is destroyed. Clearly, W < v. By iv) and xii) of 5.1, in stage W either cP 

or one of a" (T E A(/?)) is destroyed. Suppose a" is destroyed in stage W for some n E A(/?). 

Choose such n least possible. Since aTm is not destroyed in stage W, T, < n by xiii) of 5.1. 

Since R, E pG1 L. Hence p: 1 by choice of W. Also, p" is destroyed in stage W since 

a" is. By (c) of vi) of 5.3, a' is destroyed in stage W for some E E A(/?) with E <L n, which 

contradicts the minimality of R. Therefore, 3 for aJl Ir E A@). Hence cP is destroyed 

in stage W. Let T receive attention in stage W. By ii) of 5.1, there are four cases: 

Case 1. p' is destroyed in stage W for some E c ,B. By the choice of so, E Sf cro. Suppose 

a 0  C E E P. Note that p' 1 throughout stage t by xv) of 5.1 since X with a(z)  _> n, enters 

B at stage t .  So p' becomes defined at a stage > t and _< W, contradicting the minimality 

of v. 

Case 2. ae is destroyed in stage W for some E <L P. This is impossible from the remarks 

before Claim 1. 
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Cases 1 and 2 are the only ones pertaining to the ending of the stages. For the rest we 

can assume that c0 is destroyed in the main part of the construction. 

Case 3. Case 8 holds at r with r C P and rA((2,i(r))) 5 P. Note that c; = 0 and 

c;+, = 1. By the choice of so, r (YO. Therefore (YO C T C P. Since r is visited in stage W, 

this contradicts the minimality of v. 

Case 4. r < L  ,B. By the choice of so, cro C r. Let 9 _> cro be the first node which is 

visited in stage W. Since no node > a 0  and E p is visited in stage W, there is a jump to 8 

and 9 < L  P. Clearly, T n P = 9 n P. By xsi) of 5.1, since aB is not destroyed, some z enters 

B at stage W. Let E E p be the node such that E- = r n p. Since c0 is destroyed and either 

Case 3.1 or Case 8 holds, p' is undefined throughout stage W. By xv) of 5.1, r:+, f for all 

6 with cA((2, i(())) c p. By choice, for such 6, rC remains undefined throughout stage W. 

Since arm is not destroyed at stage W, there is a maximal ( C X, such that ( E C[w]. By (f) 

of vi) of 5.3, r$;, I. Note that ak+, I. Towards a contradiction assume that a0 C E. Since 
E ( E C[w], a& and r&, are defined. Since W < v, a; = at and 6 = rf;,. Since X entered 

B in stage t, by v) of 5.3, we have j ( t )  5 j ( ~ , )  = i,. This contradicts the hypothesis on 

p. Therefore ( 2 (YO. Since ( E C[w], it follows by (f) of vi) of 5.3 that T ; . ~  I. By v) of 

5.3, j(() 5 j(6) for all 0-nodes with ( C (' E r n p. Let h be the least stage > W at which 

at is destroyed. 

Subsubclaim. If 6 _> ( is visited at a stage > W and 5 h, then 6 < L  P. 

Proof of Subsubclaim: Towards a contradiction consider the least k, W < k 5 h, such that 

some node a _> ( is visited in stage k and a f L  ,B. Let a be the first node _> ( which is 

visited in stage k. By (d) of vi) of 5.3 5.3, p" becomes defined in stage k and a # ( implies 

j(a) < j([). By the choice of so, a # (. Therefore in stage k the construction jumps to a 

which implies that T$- 1. Since c$+, 1, 4 f by the choice of k. Hence P a by vi) of 5.1. 

Suppose P < L  a-. Then cu- and r"- are destroyed in stage W, unless p6 1 for some S C a-. 

But p6 is destroyed before stage X: by xv) of 5.1. By (E4), when p6 is destroyed, so is CO-. 

Hence c$- f and T$- f ,  contradiction. The only remaining is a- C P which we divide into 

three subcases. Suppose ( C a C r n P or r n P < L  a. Then there is a 0-node such that 

C C E r n ,B and j(<) < j ( t ) ,  contradiction. Suppose a- > T n P. Since a- C P we have 

r <L a-. Then at stage W, cu- is destroyed since ca is destroyed and p' f. Hence c i -  f and 
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r f -  1 by the choice of k, contradiction. Finally, suppose a- = T np. Let n be the least node 

such that T n p C n E T. Note that E is a 0-node and E 5 a. So n is a 0-node and n <L E. 

Since the construction jumps to a in stage k, of L and pi 1 for all C E A(o-) with C 5 a. 

In particular, p i  1. By xiv) of 5.1, a; L. By choice of k, a; = a; 5. If p' is destroyed in a 

stage, so is a'. Hence pc T throughout stage W. Hence n # C[w]. By v )  of 5.3, j ( [ )  5 j(n). 

But j(x) < j(a) < j ([) ,  contradiction. This completes the proof of Subsubclaim. 

Suppose C[h] is defined. Fix any 0-node such that [ C C C R,. Towards a contradiction 

suppose C E C[h]. By X )  of 5.1, a: j. By Subsubclaim, since 2 enters B at  stage W, a: = af L. 
Note that C # C[w] by the choice of [. Hence C # C,+l by xxv) of 5.1. We now consider 

two cases according as [ C q, or not. First suppose C C cro. Then c E V,+1. If c # Ch,  

then C E Vh, which contradicts vii) of 5.3. So we may assume C E Ch. Let k be the least 

stage such that C E Ck+1, we have C E Vk which again contradiction. This finishes the case 

C c ao. Now suppose a0 C C. By the choice of v, a$ = a& = a:. Hence z entered B after 

a< was set equal to a:. Let y be the C-designated number when C[h] is defined. By (e) of 

vi) of 5.3, y is the first number to  enter B after a< is set equal to a:. Hence X enters B 

after rc' is set equal to 76-. Recall that cP is destroyed in stage W. By the subsubclaim 

cP, and hence also TP, are undefined throughout stage h. Hence a, 4 C[h]. Recall also that 

a ( x )  > n,. Since (' E C[h], taking [ = C, a = n, and y = X in iii) of the definition of C, 

there exists a 0-node a such that C a C n, and j(a) 5 j(n,) = i,. This contradicts the 

choice of p. Therefore, C # C[h]. 

Towards a contradiction assume that p" 1 at some point in stage h for some a with 

[ c a c X,. By the Subsubclaim, pu at some point in stage W. This contradicts xv) 

of 5.1 if a E T n P. Suppose T n p C a C n,. By the choice of v, pu 4 at  some point in 

stage t .  This contradicts xv) of 5.1 again. Thus pu 1 throughout stage h for a l l  a with 

[ C a C n,. By the same argument we see that for each a such that [ C aA((2, i(a)) S p, 
rU T throughout stage h. By xxiii) of 5.1, arm is destroyed in stage h, contradiction. This 

completes the proof of Subclaim 6. 

Recall that we are aiming for a contradiction from the assumption kf  # B,. Prom 

Subsubclaim 6 ,  ?c! = k f .  Since k! B,, p$ 1 for some C E A(@. Let n be the maximal 

0-node in A(@) such that pc f. From Subsubclaim 1, a, E Ct+1. Hence p!+l L for all 
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8 E A(P) with n, <L 8. By (c) of vi) of 5.3, no pe is destroyed after stage t since aTm is 

not destroyed after stage t .  Hence n 5 K,. 

Subclaim 7. Case 1 holds at cr in stage v with i = j(n) and ,L3 = n. 

Proof of Subclaim 7: Let W the least stage 2 t at  which some node > R is visited. If 

R = nm, then W = t .  Otherwise, pc for C E A(@ immediately to the right of n must be 

defined before stage v, and n is visited in that stage. Therefore W < v and some node _> n 

receives attention at stage W .  By xxi) of 5.1, some number z enters B at stage W since a" 

is not destroyed. Clearly, either o(z) = /? or a(z) 3 r. But a ( z )  = P contradicts k f  gi B,. 

Therefore a(z) _> n. Towards a contradiction assume n # C[w].  Since a" is not destroyed 

in stage W ,  there is a maximal 0-node t C n such that 5 E C[w]. By v) of 5.3, j(5) 5 j(n). 

So C C uo by the choice of p. By (f) of si)  of 5.3, r$il I. By xxv) of 5.1, C E 
and 8 # C,+l for each 0-node 8 with 5 C 8 G n. Let h > W be the least stage in which 

a€ is destroyed. By (a) of vi) of 5.3, aT is destroyed at stage h, contradiction. Therefore, 

n E C[w]. Let y be the R-designated number when C[w] is defined. By (f) of vi) of 5.3, 

rcil 1. By xxv) of 5.1, a E By xv) of 5.1, f throughout stage W for each 0-node 

8 G p, and re f throughout stage W for all 8 with OA((2, i(8))) G P. By the choice of v and 

xv) of 5.1, p: 1 for each 0-node 8 G P, and r: 1 for all 8 with eA((2, i(8))) P. Now we fix 

C E A(p) with C <L n. Towards a contradiction assume p$ 1. Let h be the greatest stage 

in which p6 becomes defined. Then p{ 4 for all 8 E A(@) with C < L  8.  Note that p: T. 
So pT is destroyed at a stage 2 h and < v. By (c) of vi) of 5.3, a6 and hance also are 

destroyed at a stage 2 h and < v, contradiction. Therefore, p$ 1 for C E A(@) with < L  T .  

U A $ * ) ~ ,  then Case 1 holds at a!. So we may suppose that y E A$')~ U A$+'. Zfy #AV 
Towards a contradiction assume that there is a 0-node T such that a! C T C n, j ( ~ )  < j(n), 

and there is a T-designated number at stage v. Clearly, T C a ! ~ .  Let a be the first node 

3 T which is visited in stage v. Such a exists by the choice of v. By (d) of vi) of 5.3, pu - 
becomes defined and a # T implies j(a)  < j ( ~ ) .  By the choice of a, a I> a, and either 

a G p, or p <L a and a- C p. In either case, there is a 0-node 8 such that a0 C 8 c P 
and j(8) < j(7) < j(R) < i, contradiction. Thus there is no 0-node r, a C T C R, such that 

j ( ~ )  < j (n)  and there is a T-designated number when a! is visited in stage v. 
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If y E A';(("))", then (i) of Case 1 holds at a in stage v. It remains to consider the case 

y E A$(("))". For this we need: 

Subsubclaim. For each 0-node 8 which is preferred to a, when a is visited in stage v, 

1 for each C E A(@-) with 8 <L C. 

Proof of Subsubclaim: Fix 8 such that 8 is preferred to n. By the remark after 4.4, there is 

a 0-node 8' such that 8 C 8' C a and j(8') < j(a). Therefore, 8 C ao. Suppose 8 is visited 

at stage v. Then a: l, otherwise no node > a0 is visited in stage v by iv) of 5.3. By i) of 

5.3, we have the conclusion of the Subsubclaim. Suppose 8 is not visited in stage v. Then 

either 8 C a or a C 8. Let a be the first node > 8 which is visited in stage v. Then there 

is a jump from a node C 8 to a. We show that 8 is preferred to a. Suppose 6 C a!. Since a 

and some node a!o are visited in stage v, a < L  a, a' C a, and 

a! _> max{S : S E A(a-) A S <L a). 

Hence by 4.5, 8 is preferred to a. Suppose a! C 8. Then (ao)- C a, and either a C P, or 

p <L a and 

2 max{S : S E A(a-) A S <L a). 

Note that in either case 8 is preferred to a by 4.5 since 8 is preferred to n. By i) of 5.3, we 

have the conclusion of Subsubclaim. 

Now Case 1 holds at a! again by taking X = y, P = n and i = j(lr). 

By Subclaim 7, no node > a0 and C P is visited in stage v, contradiction. Therefore 

k f  E B, and so k f  E B,. This completes the proof of Claim 1. 

To see that g E D if and only if g E D,, we just verify the following: 

Claim 2. 

i) If X 5 a! is enumerated in B at a stage 2 S,  then X is enumerated in C. 

ii) If X 5 a! is enumerated in C at a stage 2 S ,  then X is enumerated in B at a stage 2 S. 
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Proof of Claim 2. Recall that aq is not destroyed at a stage 1 S. 

i) Let X < a! be enumerated in B at stage U 2 S. Then X = kt for some S by vii) of 

5.1. By iv) of 5.2, either S < 7 or 7 E S. We have kt = kt; otherwise c6 becomes defined by 

Case 4 at a stage 2 S and < U, which would destroyed a" 7 g S since 7 is a l-node. 

Subclaim. Let P be a any node such that 

( V j  E I i )b  is active at P ] ,  

0 kf enters B at a stage 2 S. 

Then kf E C. 

Proof of the Subclaim: Let kf enters B at a stage W 2 S. Note that when kP enters B, 

flA((Oyim)) is defined. Let y be the value of g A ( ( O d m ) )  when kf enters B. Since y is designated 

for PA((O, i,)) when is set equal to  y, by (e) of vi) of 5.3 y is the first number z 

was set. Towards a contradiction assume with cr(z) PA((O, i,)) to enter B since a, 

that y E B,. By Claim 1, kf E B,, contradiction. 

Therefore y 6 B,. Let h be the least stage 2 S such that y E Bh and cro is visited in stage 

h. apA((Olirn)) is never destroyed at a stage 2 S since PA((O, i,)) <L q. Hence apA((o"m)) 

has the constant value a, at all stages > S. Applying Claim l with = P, u = k, 

and X = y, we have y E A;''. By ii) and viii) of 5.2, y < al .  By the choice of (7,s)) y 

enters C at some stage v > U. By xii) of 5.3, y = a$ or y = k$ for some c. By vii) of 

5.2, C 3 PA((O, i,)). Suppose a$ = y and a< is destroyed in stage v, then as is destroyed 

in stage v, contradiction. Suppose y = L$. Then Case 11 holds at some node in stage v, 

where G C. Since J, for all W > U, G P. Since kf enters B after y, when y 

enters C at stage v, so does kf. This completes the proof of Subclaim. 

Let S C q. Then 6 _> QO by the choice of so. By Subclaim, kf enters C. 

Let S <L 7. Let C, T be the least nodes respectively such that S n 7 C C C S and 

S n 7 C T C 7. There are two subcases: 
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Case 1. There is no (n, e)-node a such that C C cr C S and e < i. Hence for each j E I;, 

j is active at S. By Subclaim, kt enters C. 

Case 2. Otherwise. Let a be the least such node. Towards a contradiction assume that 

r is a k-node for k > 2.  Then S <L 7- and cq- is destroyed at stage U. We now obtain a 

contradiction by showing that a" is destroyed at some stage 2 U. The arguments is almost 

identical to that used for the Case 4 in the proof of Subclaim 6 of Claim 1. The parameters 

p, r, W, z of that argument correspond to the present 7-, S, U, and X respectively. Therefore, 

T is a k-node for k 5 2, and is a 0-node. By xviii) of 5.1, at  4 since a! = a! L. Suppose 

a is a 0-node and a: 4. Suppose a E C[u]. Let n be the (0, &)-node in A(cr-). Note that 

c\! < n. Since a E C[U], a: L. If n < n, then p" is defined when C[u] is defined. Let y be this 

value of p". I f p n  is set equal to y at  stage W, the y enters B after T"- is set equal TZ-, i.e., 

after a" is set equal to a:. Further, a: = a:. Otherwise p" would be destroyed at a stage 

2 W and < U, contradiction. So whether cr < n or a = a, there is a number y with a(y) 2 n 

which enters B after a" is set equal a:. Let W > U be the least stage in which cue is visited. 

By Claim 1, kE- E B,. Note that kz- enters B after stage U. By Subclaim, kE- enters C 

at a stage v > S. Towards a contradiction assume kE- = a; for some T .  T <L a- by vii) of 

5.2. So T <L 7, contradiction. Therefore, by xii) of 5.3, Case 11 holds in stage v at some 

node ,L? E a-. Note that kt enters B before Ice- enters B. Therefore, by Case 11, kt also 

enters C .  Suppose either n # 0, or n = 0 and a: 1. Then (' # a and j(c) > e. So (' $! C[u]. 

Since a( is not destroyed in stage U, there is a maximal 0-node ( C C such that ( E C[u]. 

By v) of 5.3, j ( ( )  5 j for all (L, j)-nodes B with ( C B C cr. In particularly, j(() 5 e, and so 

C ao.  Let W > U be the least stage in which a( is destroyed. Then a& = a5 1. By (f) of 

vi) of 5.3, 4. By xxv) of 5.1, E C,+1 and 0 # C,+1 for all 0-nodes 0 with 6 C 19 G C. 
Hence C E Vu+D Clearly, c$,- 4 and L. By ( a )  of vi) of 5.3, a( is destroyed at  stage W. 

By xiii) of 5.1, a 5 s  destroyed at stage W ,  contradiction. This completes the proof of i). 

ii) Suppose X 5 a: is enumerated in C at a stage U > S .  By xii) of 5.3, X = at or X = k: 

for some S. 

Let X = a t .  By ii) of 5.2, either S <L 7 or 7 C S. By xiii) of 5.3, a6 is destroyed at 

stage U. By xiii) of 5.1, a! is also destroyed at stage U, contradiction. 
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Let X = k t .  By i v )  of 5.2, S < q or q 2 S .  But r)  g S since r )  is l-node. Towards a 

contradiction suppose k t  E B,. There are two cases: 

Case 1. S receives attention at stage U. Then Case 11 holds at S in stage U. 

Suppose 6 C r). Note that cto c 6. Let y = p ~ A ( ( o " m ) ) ) .  Then y is designated for 

SA((O,  i,))) at stage W in which p 6 A ( ( 0 ~ ~ ) ) )  is set equal to ptA((",'"))). Note that atA(('""))) = 

akA((O""))) J. since p6A((0.k))) is not destroyed in any stage 2 W and < U. huther, c: = c; 

by the same token. We also observe that y E B, and X = k t  = k; 4 B, since a k6 cannot 

be enumerated in B until p' 4 for every E E A(S). By ( e )  of v i )  of 5.3, y is the first number 

z with a(z )  > S A ( ( O , i m ) ) )  which enters B after a6A((09h))) is set equal to atA((O""))). Note 

that y E B,. y = ptA((O''"))) < a:A((07im))) < a: = a: by ii) and vi i i )  of 5.2. By Claim 

1, y E A $ ~ .  By the choice of (q, S ) ,  y enters C at  a stage v < S .  Towards a contradiction 

assume that y = a: for some T .  By v i i )  of 5.2, T 1) S A ( ( O ,  i,))). Since any value assigned 

to a p is not in C, W 5 v. By xi i i )  of 5.3, aT is destroyed in stage v, which contradicts 

xi i i )  of 5.1. Therefore y = k,7 for some T and Case 11 holds at some t C T .  By v i i )  of 5.2, 

r 2 S A ( ( O ,  i,))). Again, W < v. Here W # v since, if Case 11 holds in stage W ,  it will be at a 

node <L SA((O,  i,))). By x v )  of 5.1, t E S.  Let C be the immediate successor of t such that 

C T. By Case 11, E A([). By i x )  of 5.3, p$ 1 since it must have been defined during the 

greatest stage < v in which c( was set equal 1. Since c6 remains defined at all stages 2 W 

and < U, is not destroyed at any stage 2. v and < U. Since no node _> C can be visited 

during these stages, X = kt E B,. Since y is enumerated in C by Case 11 at [, y must have 

entered B after r$- was set. Since X entered B after y and before stage v ,  Case 11 requires 

that X also be enumerated in C at stage v. This contradicts the choice of X .  

Now suppose S <L q. When Case 11 holds at S in stage U, a" is destroyed, contradiction. 

Case 2. S does not receive attention at stage U. Let 6 receive attention at  stage U. By x i i )  

of 5.3, Case 11 holds at 5 in stage U such that for some C E A([), C C S and kf entered B 

since T$ was set. Note k$ is enumerated in C at stage U. By iii) of 5.2, k$ < a:. Applying 

to [ the argument used for S in Case 1 above, 6 C q and k$ is enumerated in B at stage 2 S. 

It is obvious that cro C c. Let h the greatest stage at which re was set equal T$. Clearly, 

r;,, = T$ and so a: = a1 for all E E A(E). By choice of S ,  a( is not destroyed at any stage 
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> h for any E E A([) with E 5 ["((O, i,)). Further, p: 1 for all E E A(() since p' 1 when kt 

enters B, and a' cannot become undefined at a stage 2 h and < U. By (e) of vi) of 5.3, p$ 

is the first number y with a(y) > C to enter B after a$ is set. Note that kt entered B after 

v2 was set, so kf entered B after a$ was set. There are two cases: 

(A((0'")). By ( e )  of vi) of 5.3, y is the first number z with Case 2.1. j(C) < i,. Let y = p, 
A O i  ) Q(Z) > ("((0, i,)) to enter B after a t  (( ' m is set since y is ["((O, i,)-designated when 

ptA((O,im) is set equal to y. By Claim 1, y enters B at a stage 2 S, otherwise k$ enters B 

at a stage < S,  contradiction. Towards a contradiction assume that k t  enters B at a stage 

v < S. Clearly, h 5 v. Then when kf enters B, ptA((O&m)) is undefined. Hence 5. # C[v]. 

Since a( is not destroyed in stage v, there is a maximal 0-node C C such that E E C[v]. By 

v) of 5.3, j ( ~ )  5 j(C). Hence C cro by the choice of q. By (f) of vi)  of 5.3, rzil 1. By xxv) 

of 5 . 1 , ~  E C,+1 and 0 # C,,+1 for all 0-nodes 0 with C C 0 C C. Let W be the least stage > v 

at which a' is destroyed. By ( a )  of vi) of 5.3, a( is destroyed, contradiction. 

Case 2.2. Otherwise. Let y = p$. To show kf enters B at a stage 2 S we just need to 

show that y enters B at a stage 2 S. Towards a contradiction assume y E B,. Let T be the 

least (0, i,)-node 2 C on a(y). T exists since y is a C-designated number. Note that for all 

j E Ii, j is active at r-. Clearly, when y entered B, it was designated for T. By (e) of vi) 

of 5.3, y is the first number z with a(z) > r enter B after aT is set equal to a:. By Claim 

1, y E A$'. By viii) and ii) of 5.2, y < a$ < aZ = a!. By Case 11, y is enumerated in 

C at  stage U because y = p$ and the value given to  is required to have entered B since 

v(- = T E  was set. By the choice of S, y E C,. By xiii) of 5.3 this is a contradiction because 

y cannot be enumerated in C both at a stage < S and at stage U. This completes the proof 

of ii). 

Case 3.2. i E Ii. Let io < < i, be an enumeration of I;. Note that for each e > i(cuo), 

there exists an ye E T such that 

To see how to find this y e  we can let 6 be the least S E P such that i(6) = e + 1, then ye 

can be chosen as S""((0, i)). Note that by vi) of 5.4, aze is defined. 
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Define F C T as 

{ a  : a 1 a0 A a ( l ( a )  - 1)  = (0, i )  A (Vj E Ii)[j i s  active at a ] ) .  

Note that for each e 2 i (ao) ,  ye E 3. To show that D 5~ AifO - C ,  fix g ,  find the least 

(7, S )  such that 

r each node E a0 is visited at stage S 

(A$' - C,) 1 (a2 + 1) = ( A i l  - C,) (a? + 1). 

Note that, for each e 2 max{n, i (ao ) )  there exist arbitrarily large S such that (ae, S )  satisfies 

the conditions specified for ( y ,  S ) .  

It can be shpwn that g E D if and only if g E D,. It is sufficient to establish the following 

two claims hold: 

Claim 1. Let ,L?, U satisfy 

r a0 is visited in stage U, 

I f  some y entered B at a stage > so and < U with a ( y )  _> PA((O, i,)) since was 

set, then kP E B,. 

Claim 2. 

i) I f  X < a? is enumerated in C at a stage 2 S ,  then X is enumerated in B at  a stage 2 S .  

ii) U X _< a? is enumerated in B at a stage 2 S ,  then X is enumerated in C. 
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The proofs of these claims are similar to  the proofs of Claims 1 and 2 in the treatment 

of Case 3.1.2 above. Since the proofs are easier in the present case, we leave them to the 

reader. Now from Claim 2 it is clear that g E D if and only if g E D,. This completes the 

proof of 6.4. 1 
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Further notes and conjectures 

First, the question as to what splitting property might hold for d.r.e. sets is addressed by: 

Conjecture 1. There exists a properly d.r.e. set D such that for d d.r.e. sets A', A', 

Definition. Fix n. A degree a E D, is called a minimal cover in D, if there exists a 

degree b E D, with b < a such that there is no degree c E D, and b < c < a. 

As was mentioned in Chapter 1 the d.r.e. degrees are not dense, see [6]. That theorem 

was proved by showing that 0' is a minimal cover in D2. We believe that that result can be 

strengthened: 

Conjecture 2. Every high d.r.e. degree is a minimal cover in D2. 

Verification of this would be interesting because it would yield an elementary property 

separating high degrees from the low2 degrees in the upper semilattice of d.r.e. degrees. 

Cooper asked whether there are such properties. 

Conjecture 3. There is no d.r.e. degree which is a miminal cover of an r.e. degree in D2. 

An isolated degree is a d.r.e. degree d such that among the r.e. degrees < d there is a 

greatest one. Such degrees exist by unpublished work of Cooper and the author indepen- 

dent ly. 

Conjecture 4. The isolated degrees are dense in the r.e. degrees. 



CHAPTER 7. FURTHER NOTES AND CONJECTURES 

Finally, the question about definability of d.r.e. degrees is still open: 

Conjecture 5. The set of d.r.e. degrees is definable in the upper semilattice of Turing 

degrees. 
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