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Abstract

A set of natural numbers is called d.r.e. (difference recursively enumerable) if it may ob-
tained from some recursively enumerable set by deleting the numbers belonging to another
recursively enumerable set. Sacks showed that for each non-recursive recursively enumer-
able set A there are disjoint recursively enumerable sets B, C which cover A such that A
is recursive in neither A N B nor A N C. The thesis constructs a counterexample which
shows that Sacks’s theorem is not in general true when A is d.r.e. rather than recursively

enumerable.
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Chapter 1

Introduction

All sets in this thesis are subsets of w, the set of all natural numbers. Following the usual
conventions of recursive function theory we identify sets with their characteristic functions.
A (partial) function is called (partial) recursive if it is computable by an algorithm. A subset
of the natural numbers A is recursively enumerable (r.e.) if there is an algorithm which
will list the elements of A. One set A is Turing computable from another set B, written
A <7 B, if there is an algorithm for computing the characteristic functions of A given an
‘oracle’ for B. Two sets are Turing equivalent, written A =7 B, if A <7 B and B <71 A.
The (Turing) degree of a set A is deg(A) =4e5 {B : B =r A}. A degree a is less than or
equal a degree b (written a < b) if there is aset A € a and a set B € b with A <7 B. A
set A is n-r.e. if there is a recursive function f such that for all z, lim, f(z,s) = A(z),
f(z,0)=0and |{s: f(z,s+1) # f(z,5)}| < n. In particular, a set A is r.e. if and only if
Ais 1-r.e., and A is the difference of two r.e. sets (d.r.e.) if and only if A is 2-r.e.. A degree
is called r.e. (d.r.e., n-r.e.) if it is the degree of an r.e. (d.r.e., n-r.e.) set. A d.r.e. (n-r.e.)
degree is called properly d.r.e. (n-r.e.) if it is not r.e. ((n-1)-1.e.). An r.e. set A is complete
if for every r.e. set B, B <7 A. An r.e. degree is complete if it includes a complete r.e.
set. The degree of the halting problem, 0, is complete. For each n < w, the n-r.e. degrees
D,, are partially ordered by <. Let (R, <) denote (D1, <). The partial order (D, <) has
a least degree O (the degree of the computable sets) and a greatest degree 0’ (the degree
of the halting problem). Every pair of degrees has a least upper bound. For each pair of
degrees in D,,, their least upper bound also in D,,. But a pair of degree may fail to have
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a greatest lower bound. The partial 6rder (Dp, <) is thus an upper semi-lattice. For more
notation and background termjnology'see [12].

All early examples of nonrecursive r.e. sets were complete. This led Post to ask the
natural question: is there a nmonrecursive r.e. set which is not complete? Friedberg and
Muchnik independently solved this problem by exhibiting a pair of <r-incomparable r.e.
sets. The technical they used became known as the priority method. The easier applications
of this method, including the proof of the Friedberg-Muchnik theorem, are characterized as
“finite injury” arguments. A construction is made in w stages to meet certain goals, usually
called “requirements”. In a finite injury construction each requirement is injured at most a
finite number of times and so need be addressed at at most a finite number of stages.

The priority method has become the central technique in the study of recursion theory.
The finite injury priority method was first extended by Shoenfield and later by Sacks to
prove further theorems and this technique is now known as the infinite injury priority
method. Lachlan [9] further refined the infinite injury priority method to prove the famous
Nonsplitting Theorem. This was the first example of a 0"-priority argument.

We now sketch the history of the study of the n-r.e. sets and degrees. For the r.e. case,

there are two most fundamental results which were all by Sacks.
Sacks Density Theorem. The partial order of r.e. degrees is dense.

Sacks Splitting Theorem for r.e. sets. For each non-recursive recursively enumerable
set A there are disjoint recursively enumerable sets B, C which cover A such that A is

recursive in neither AN B nor ANC.

These two theorems can be found in Soare’s monograph [12], see VIII.4.1 and VII.3.2.
As a corollary of the latter result one can get:
Sacks Splitting Theorem for r.e. degrees. For each nonrecursive r.e. degree a there

exist r.e. degrees ag, a; such that agpVa; =aand a; <afor:=0,1.

The question of whether the d.r.e. degrees are also dense is answered negatively by a
number of authors in [6]:

Nondensity Theorem for n-r.e. degrees. The d.r.e. degrees are not dense.

The splitting conjecture for d.r.e. degrees is confirmed by Cooper [2]:
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Splitting Theorem for n-r.e. degrees. For each nonrecursive n-r.e. degree a there exist

n-r.e. degrees ag, a; such that ag Va; =a and a; <afori=0,1.
Cooper, Lempp and Watson [7], verifying a claim of Arslanov [1], proved:

Theorem. (D;,<) k= (Va > 0)(Ib < 0')[aUu b = 0'].

This was the first example of a first-order sentence true in (D3, <) and false in (R, <).
The failure of this particular sentence in (R, <) was shown independently by Cooper and
Yates [see 10]. An unrelated sentence true in (D2, <) but not in (R, <) was found by
Downey [8]:

Theorem. (D3,<) = (Ja,b< 0')laUub=0'Aanb=0].
Lachlan’s nondiamond theorem [12, 1X.3.1] says that this sentence is false in (R, <).
The goal of this thesis is to discover how strong an analogue of the Sacks splitting
theorem for r.e. sets is true for properly d.r.e. sets. What we succeed in doing is to show

that a strong analogue of Sacks’s theorem fails. More precisely we prove:

Main Theorem. There exists a properly d.r.e. set D such that for all r.e. sets A%, A!
with 40N Al =0,

DCA°UA' = [D<r A°NDVvD<r A'nD].

One should note that, if the word “properly” is deleted in the statement of the theorem,
then we can obtain a trivial example by letting D be the completement of a maximal set.

The proof of our main theorem above is long and fairly complicated. Therefore, before
giving the formal proof of above theorem, we shall outline some of the basic ideas. In
Chapter 2 by way of introduction to the complexities of the main theorem we show that the
negation of the main theorem is not true effectively. This provider the basic module used
for our main construction.

The most exciting application of splitting properties of d.r.e. degrees is Cooper’s solution
to an old question of Kleene and Post by showing that Turing jump operator is definable in
D (see Cooper [4,5]). Thus splitting theorems are not only important for themselves. There
are other applications for them, e.g. Slaman and Woodin [11] showed that the R, is definable
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in D(<L 0'), by using the Sacks Splittihg Theorem for r.e. sets (and a general definability
result). Here we prove that the strongest possible analogue of the Sacks splitting theorem
for d.r.e. sets fails. One should note that, if a suitable theorem allowing the splitting of
d.r.e. sets into low d.r.e. sets could be found, then it could be used in the manner of Slaman
and Woodin [11] to show that D, is definable in D(< 0).



Chapter 2

The basic module

Our immediate aim in this chapter is to show that if a properly d.r.e. set D is presented via
the indexes of r.e. sets B, C such that D = B — C, then one cannot always effectively find
A®, A such that B = AU A and deg(A’ — C) <r deg(D) (i < 2). This means that the
strongest possible analogue of the Sacks splitting theorem for r.e. sets fails for d.r.e. sets.
The module developed in this chapter will play a crucial role in everything that follows.
Formally, we establish:

2.1 Theorem. Given the indezes of r.e. sets A®, A1, we can effectively enumerate B,C

with C C B such that D = B ~Cis properly d.r.e. and
B=AUA'= [D=r A°-CVvD=r A'-C].

Proof. Let {(W*, ®°,¥°) : e < w} be an effective enumeration of all tuples (W, ®, ¥), where
W is an r.e. set and ®,¥ are p.r. functionals. Let indexes of the r.e. sets A, A! be given.
Our task is to effectively enumerate B,C such that C C B and D = B — C meets the

following requirements:

R : D # ¥e(We) v We # &¢(D);
S: B=,A0LIA1=-*.>[DSTAO—CVDSTAI—C].
Remark. In describing a construction, notations such as A%, D, ¢, and ¥* are used to

denote the current approximations to these objects. The notations A2, D,, ®¢, and ¥
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denote the approximations which exist immediately before stage s. Occasionally, if the
notation A° would be ambiguous, we use A% to make it clear that we are referring to the
value of A9 at the end of the construction. The use function for a p.r. functional, which is
the length of the initial segment of the ‘oracle’ used in this computation, is denoted by the
corresponding lower case letter.

Before describing the construction of B, C we discuss how to meet a single requirement

R: D#YW)VvW# D)

of the same kind as R®. R can be met by proceeding as follows:

1. Choose a number, k say, not yet in B. Our intention is to make D and ¥(W) disagree
at k.

2. Wait until ¥(W;k) = 0, and ®(D) is defined and agrees with W upto ¥(W, k). At
this stage, s say, enumerate k in B and restrain all numbers < ¢(D, (W, k)) (= r say) from
C.

3. If a number < (W, k) is enumerated in W, then enumerate in C all numbers < r
which entered B at a stage > s. Restrain all numbers < r from B and C.

By exploiting this basic module we obtain a finite-injury construction of r.e. sets B,C
such that D = B — C is properly d.r.e. We call this strategy as I.
In using this simple idea to solve the problem at hand we can make use of two simplifi-

cations:

i) We can assume that a number is enumerated in A% U A? only if it has already been
enumerated in B, that A°NA! = (), and that a number enumerated in B is immediately

enumerated in either A° or Al.

ii) At any point in the construction, given k, we can “request” that some number > k be

enumerated in A° without any more numbers < k being used.

We achieve i) and ii) as follows.
For i) we ensure that A%, A C B and that A° N A! = @ by not enumerating in 4° a
number which has already been enumerated in A!~* or which has not yet been enumerated

in B. Also, whenever b is enumerated in B, we reset and restart the strategy I using only
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numbers which are large compared with those used so far. As soon as b is enumerated in
one of A%, Al we terminate this copy of the strategy I enumerating in C all numbers it
has enumerated in B. At the same time we return to the construction described below. Of
course, if b is never enumerated in either of A° or A!, then the construction succeeds in a
trivial way. So we ignore this possibility in describing the construction below.

For ii) the procedure is similar. When a number > k is requested in A®, we reset and
restart the strategy I using only numbers which are both > k£ and > any number yet used
in the construction. We pursue the strategy I, restraining numbers < k from B and C
until some a > k, which has been enumerated in B but not yet in C, is enumerated in A°.
If no such a is ever found, either B is not covered by A° U A! or D is almost a subset of
Al. In either case the construction again succeeds in a trivial way. So again we ignore the
possibility in describing the construction below. When a is found, we terminate this copy
of I enumerating in C all numbers it has enumerated in B except for a.

The activity just described to ensure i) and ii) will be called the invisible strategy. Apart
from supplying the numbers requested in A°, its net effect is to generate pauses in the
construction (pauses which are ignored in the description given below), and to enumerate
certain numbers in B and then in C, numbers which are large enough to be irrelevant to the
visible strategy. The latter point means that we must be careful to ensure that the visible
strategy has enough numbers to work with. During the construction a number will be said
to have been used if it is, or has been, the value of one of the parameters k¢, a®, r¢, k**, a®",
7% mentioned below or has been enumerated in B (and then in C) by the invisible strategy.

Now we describe the basic module for a single requirement

R: D#UW)VW # &D).

Our main strategy M is aimed to satisfying R while at the same time building a Turing
reduction of D to A° — C to satisfy S. To attack R we choose a target number k, not
yet used, at which we would like to make D and ¥(W) differ. We also choose a number
a € A® — C, such that k < a. The purpose of a is to serve as the use, for numbers > k and

< a, of the reduction of D to A° — C being constructed.
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In the interval (k,a) we are playing an auxiliary strategy S which assumes that all
numbers which are enumerated in B by § are enumerated in A! rather than A°.
Now we describe stage s of the basic module under the simplifications assumed above.

No action is taken unless
(D, $(W, k) L NE(W;k) = 0 A (Y < $(W, E)[@(D;2) = W(a).  (2.1)

Note that D(k) = 0 by choice of k. If eventually (2.1) never holds, then R is satisfied and
S is not injured.

When (2.1) is satisfied we begin by executing one step of the strategy S, being played
in the interval (k,a). There are two possibilities:

Case 1. If a number is enumerated in B by S at this step, then that number is in A'. In

this case we enumerate a in C and we reset a to a new larger value in A% — C.

Case 2. Otherwise. Some number b, k < b < @, is enumerated in B by § at this step and b is
enumerated in A°. (So the assumption underlying S has been violated.) This event is seen
as permission to execute one step of the strategy M. We enumerate k£ in B and restrain all
number < ¢(D, (W, k)) (= r say) from B and C.

At this point we have:
D(k)=1#0=¥(W;k).

The functional being constructed to reduce D to A® — C has not been injured since A° —C
has changed at 5. So unless some number < ¥,(Wj, k) is enumerated in W at a stage > s,
R has been satisfied and no further action is required except for an appropriate restraint
on B and C. On the other hand, if some number < s(W;, k), say z, is enumerated in W
at a stage > s, then we enumerate k and b in C. Then ®(D) and W differ at z, since

W(z)=1#0= ®;(Ds;z) = ®(D;z),

and this disagreement is preserved forever. The functional being constructed to reduce D
to A° — C has not been injured since A? — C has changed at b again.
We conclude that, if Case 2 ever occurs, then the basic module is successful and imposes

only a finite restraint. Suppose Case 2 never occurs. Now the strategy S comes to the fore
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because it is reset only a finite number of times and infinitely many steps are executed.
Since all numbers enumerated by S in B are in A!, the strategy S need not be concerned
with the requirement S. Thus the basic module is successful in this case too, as same as

the basic module to constructe a properly d.r.e. set.

Organization of the construction. As well as enumerating the r.e. sets B,C we shall
be implicitly constructing a Turing reduction of D to A° — C. The main strategy M aims
to satisfy all the R®’s as well as ensuring there is such a reduction. However, if it has to
act infinitely often on behalf of R®, then M fails. Thus, for each e, we have an auxiliary
strategy S¢. If e is least such that R® requires attention infinitely often from M, then D
will be recursive in 4! — C, by default as it were, and the strategy S¢ will ensure that the
requirements R’ (j < w) are all met.

There are a number of parameters associated with the M’s attempt to satisfy R®:

i) k® is the argument of attack, i.e., the argument at which we aim to make W¢(W¥¢)

different from D.

ii) a® is an element of A% — C which is > k°, which can be regarded as the ‘use’ at k¢ of
the functional which we hope will reduce D to A° — C. The auxiliary strategy S will
be pursued in the interval (k°,a®).

iii) r¢ is the restraint intended to protect the M’s attack on R°.

iv) ¢° is a counter which records how far M’s attack on R°® has proceeded.

Similarly, with the §¢’s attempt to satisfy R’ we associate:

i) k*9, the argument of attack.

ii) ¢/, a counter which records how far $’s attack on R® has proceeded.

Re requires attention from M if one of following holds:

i) k1
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i) B LA 0 = 0 A @*(D, 6o (W*, k%)) | A
Te(We;k%) = 0 A (Vz < ¢8(W*,k°))[®4(D; z) = We(z)]
i) k¢ | A et =1A(3z < pp(W7, k))z € We - W],

where t is the last stage in which ¢® was set equal 1.

R' requires attention from S¢ if one of following holds:
i) k& 1

i) k| A ¢ = 0 A (D, (W, ko)) | A (D, (W, k%)) < a®A
T(WE ) = 0 A (Vo < /(W ko)) [(D; ) = Wi(2)]

iif) ko | A e = 1A (3 < Yi(Wf, k))[e € W' — W,

where ¢ is the most recent stage in which ¢** was set equal 1.

The construction is now given by:

Stage s. Let e be least such that R® requires attention from M. (In discussing the construc-
tion we shall say that R® receives attention from M at stage s.) Cancel the values if any of

ki, a7, v, ¢, k%%, r%, and ¢/ for all j > e and all 7. For the rest there are three cases:

Case 1. ¢® T . Let b be the least number which exceeds every number used so far in the
construction. Request a new number a € A° — C such that a > 2b. Note that the numbers

in [b,2b] are all unused. Set k¢ = b, r® = a®* = a, and ¢®* = 0.

Case 2. c® = 0. From the definition of requiring attention we know that
oF(D, $° (W%, k%)) | ABE(W*, k) = O A (Ve < $°(W°, k°))[8°(D; 2) = W*(a)].

Let i be the least number such that R' requires attention from S°. (In discussing the
construction we shall say that R? receives attention from S at stage s.) Cancel the values

if any of k®7, r%J, and ¢’ for all j > i. For the rest there are three subcases.

Case 2.1. ¢ 1. Set k®* equal to the least z if any such that z < a° and z is greater than
any number < af which has been used by the visible strategy. If k** becomes defined, set

¢ = 0. Otherwise, leave ¢®* undefined. Whether such z exists or not, enumerate a¢ € C.



CHAPTER 2. THE BASIC MODULE 11

Request a new number a € A° - C such that a > 2b, where b is the least number exceeding
all those used in the construction so far. Set a® = a. (This process beginning with the

enumeration of a® in C is called resetﬁng a¢.) Set r® = a°.
Case 2.2. ¢ = 0. From the definition of requiring attention:
¢ (D, (W, k) L A (D, 9 (W, k) < a®

and

TH(WHES) = 0 A (Ve < ' (W, k%)) [@(D; 2) = Wi(z)].
Set r& = 1 + ¢(D, ¢ (W*, k%')). Enumerate k** in B. Again the case splits:
Case 2.2.1. k® is enumerated in A°. Cancel the values if any of k%9, r®J, and ¢* for all j.
Enumerate k® € B. Set ¢ = 1+ (D, ¥*(W*,k¢)) and c® = 1.
(Note that a® is neither reset nor enumerated in C.)
Case 2.2.2. k° is enumerated in Al. Reset a® as in Case 2.1. Set 7® = a°, r* = 1+
(D, ¢ (W, k1)), and ¢ = 1.

Case 2.3. ¢®' = 1. From the definition of requiring attention:
(Fz < (W, k)z € W' = W],

where ¢ is the most recent stage in which c®' was set equal 1. Enumerate k> € C, set

c®' = 2. Reset a®. Set r¢ = at.

Case 3. ¢® = 1. From the definition of requiring attention:
Gz < YF(WE, k9))(z € W* - W),

where t is the most recent stage in which ¢® was set equal to 1. Cancel the values if any of
k®7, r®7 and ¢ for all . Enumerate in C the two numbers which were enumerated in B

at stage t. Set ¢® = 2.

(Note that 7§,y = 1+ @§(Ds, (W5, k®)) from stage t. Since 7° is constant, between stages
t and s no number < r§,, is enumerated in BUC. Thus the effect of the action at this stage
is to ensure that D,yy | 7 = D; | r. Since W* has gained a member z < §(W7,k®)) at a
stage > ¢ and < s, W*¢ and ®°(D) now disagree at z. Further, r{ ; = rf,; is large enough

to preserve the disagreement.)
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To conclude stage s we enumerate one number in one of the sets W/ (j < w) and one

axiom in one of the p.r. functionals &/, ¥/ (5 < w).

Verification. We will show that for all e, R€ is satisfied, and D is recursive in A% — C or
Al -C.

Suppose that, for all i < e, R’ requires attention from M at at most a finite number of
stages. Let so be the least number such that no R (i < e) requires attention from M at
any stage > sp.

At stage sp, k© is defined and c® is set equal to 0. Notice that k¢ is neither cancelled nor

reset at any stage > so. There are now three cases.

Case 1. There exists s > sg such that c® is set equal 1 at stage s. Let s; denote the least
such s. From the construction we see that Case 2.2.1 obtains at stage s;. Let i; be the

unique 7 such that R? receives attention from the 5¢ at stage s;. There are two subcases.

Case 1.1. There is a stage s > s; at which R® receives attention from M. Let s; be the least
such s. It is clear that at the stages > s; and < s; only R¥s with ¢ > e receive attention
from M. Thus a°, ¢, and k° do not change between stages s; and s2. For brevity, let a, 7,
k denote the values of -ae, r¢, and k¢ at the end of stage s;. Any number enumerated in B
or C at a stage > s, and < s, is either a value of k! or k%’ established after stage s; or is
enumerated by the invisible strategy. It follows that any number enumerated in B or C at
a stage > s; and < s; is > max(a,r) by Cases 1 and 2.1 of the description of stage s. Case
3 obtains at stage s;. Notice that the ¢ for Case 3 is s;. From the description of Case 3, in

stage s there exists z such that

x <G5 (WE, k) Az € W — W,

1
From Case 2 at stage s; we have
Q:]_(Dsl;z) = W:].(z) = 0 # 1 = Wsez(z)‘

In stage s2, the numbers k and kgfl which were enumerated in B in stage s;, are enumerated
in C. This means that
D32+1 f T = Dsl f T.
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From Case 2.2.1 at stage s,

r=1+ ‘Pgl (D$1 ’ "p:;l (Wse1 ’ ke)) > (,Dil(Dsl ’ z)’

Therefore

‘I’§2+1(D32+133) = ‘1)51(1)31;17) =0#1= sz(z)-

Moreover, at stage s, ¢© is set equal 2 and so at no subsequent stage does any Riwithi<e
receive attention. It follows that no number < r is enumerated in B or C at a stage > s2.
Hence, at the end of the construction, ®¢(D) and W*® disagree at z. So in this case R® is
satisfied and receives attention from M at at most finitely many stages.

Case 1.2. Otherwise. At no stage > s; does R€ require attention from M. Let ¢ denote sy,
and 7, k the values of 7¢, k° at the end of stage ¢t. By induction on stages, r¢ = r, k¢ = k,
and c® = 1 at all stages > ¢. Since R® never requires attention from M at a stage > ¢

through Case 3, we have
(Ve < 9 (Wr, k%)) [W*(z) = Wi(=)].

By the same token, k¢, which is enumerated in B in stage ¢, is never enumerated in C. Thus

at the end of the construction
Ye(We k) = U5 (W7 k%) = 0 # 1 = Dy(k®) = D(k).

So in this case R is satisfied and receives attention from M at at most finitely many stages.

Case 2. Not Case 1 and R€ requires attention from M at only a finite number of stages.
Let k denote k5 ;. By induction on stages k° = k and c® = 0 at all stages > 3o, and k is
never enumerated in B. Since eventually R°® never requires attention from M, by Case 2

we see that at all sufficiently large stages
(D, ¢ (We, k) T VI (W k) # 0V (3z < 5(W*,k))[®%(D, z) # We(z)].

Thus R is satisfied.

Case 3. Otherwise. Then there are an infinite number of stages at which R® requires

attention from the M-strategy. Let these stages which are > sg be numbered s;, s, ...in
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order of magnitude. At each stage s;; with k¥ > 0 Case 2 holds but Case 2.2.1 does not.
Thus a® is reset at each of these stages and so increases to co as the construction unfolds.
At the stages s with & > 0 the Se-stré.tegy is pursued on the interval (k¢, a®). The restraint
r¢ ensures that after stage sp the S¢-strategy is never injured.

Kk > 0,c* 1, and R’ receives attention from 5 at stage si, then there exists a suitable
value for k%' in stage s; because, when a® is set or reset in stage s;_;, then a whole block
of numbers (b,2b] is left unused, where k¢ < b < 2b < a® = r® at the end of stage sx—;.
Further, at stages > sx—; and < s; no number < r¢ is used. Since there is a copy of I
operating in the interval (k¢,a®) at the stages s, Sg, ..., it is easy to see that, for each ¢,
R? receives attention at stage si for only finitely many % and is satisfied.

Any number enumerated in B or C at a stage s > sp—1, s & {sx : £ > 0}, is > a® =
(a8, ). Any number enumerated in B in a stage si is also enumerated in A'. Hence

Sk—1

D <t A'-C.
From the discussion above we conclude that there are two possibilities:

i) For some e, R® receives attention infinitely often from M, D<1A! — C, and all the

requirements R* (i < w) are satisfied by S°.
ii) For every e, R® receives attention at at most a finite number of stages and is satisfied.

The requirement § is satisfied in the former case because D <t Al —C. It only remains
to show that & is also satisfied in the latter case. So from now on assume that each e, R®
receives attention from M at at most a finite number of stages. For each e, as s — o0, k has
a limit k¢, and a¢ has a limit af,. Further, a¢, € A° — C. Assume that an (A9 — C,,)-oracle

is given. Then for every e we can compute s(e) such that
(A%e) = Cs(e)) 1 (a5(e) + 1) = (AL = Cu) 1 (a5) + 1) (2:2)

The key point in the argument is:
Claim. For each e,
Dye) I (a5e) + 1) = Do 1 (a5 + 1)

To prove the claim we argue as follows. If there are no stages > s(e) in which D changes

< a:(e), then the conclusion is clear. So let so, $1,..., s, be the stages > s(e), listed in
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increasing order, in which D changes < ag(e). For each i < p let e; denote the number such
that R® receives attention from M at stage s;. If e < €, then, at any stage > s(e), either
k¢ 1 or k¢ > a:(e). Thus no number < a(e) is enumerated in either B or C at a stage
> s(e) in which some R¢', e < €, receives attention. Thus each e; is < e. Further, we see
that

e>e e >...2 ¢

because as soon as R¢ receives attention at a stage > s(e) from M all the parameters
whose (first) superscript is > €’ are cancelled. Any subsequent values of these parameters
are > agy. By the same token ki = k:ée). It follows that afi = a‘:ze) < @) Otherwise a®
is reset at some stage > s(e) and < s;, and a:ze) is enumerated in C contradicting (2.2).

At stage sg, since D is changed and a* is not enumerated in C, either Case 2.2.1 or
Case 3 holds. If Case 3 holds, let g be the greatest stage < sp in which ¢® is set equal
1. Then in stage to Case 2.2.1 holds, k% (= k:‘(’e)) and a number z of the form k% are
enumerated in B, the latter being enumerated in A®. By definition of so, ¢ < s(e). At stage
S0,  is enumerated in C. This contradicts (2.2). Hence Case 2.2.1 holds at stage so. Thus
in stage sq, k% (= k:ge)) and a number z of the form k' are enumerated in B, the latter
being enumerated in A°. Since (2.2) holds it must be the case that e; = ¢p and that Case 3
holds at stage s;; otherwise = stays in A® — C forever. So the two numbers < ag(e), which
were enumerated in B in stage sp, are enumerated in C in stage s;. Now we can apply the
argument which we made for sg to s;. We see that two numbers < ag(e) are enumerated in
B at stage s; and enumerated in C in stage s3. And so on. After the last of the the stages
8;, D is the same for arguments < ai(e) as it was just before stage s(e). This completes the
proof of the claim.

From the claim it is clear that D is recursive in A? — C, which completes the proof of

the theorem.



Chapter 3

The modules

Recall that our final goal in this thesis is to prove:

3.1 Theorem. There ezists a properly d.r.e. set D such that for all r.e. sets A°, Al with
A%n A =0,
DCAUA'=[D<7 A°NDVD<r A'nD].

In present chapter we will move closer to achieving this end by describing the modules
for the construction which is described in detail in the next chapter.
Our task is to effectively enumerate B,C such that C C B and D = B — C meets for

all e, the following requirements:

Re: D # U¢(We) v W* £ &%(D);
§¢: B=APUAN = [D<r A° —CV D < A% - C),
where {(A4%°, A%1)}.<,, is an effective enumeration of all pairs of r.e. sets.
The priority ranking of the requirements is §%,R?, 8!, R1,82,R?, - - .. We already know
how to attack R° while maintaining our strategy for S°. The next thing to understand is

how to attack R* for ¢ > 0 while according priority to the requirements S°,81,---, S5

16
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3.1 The R-requirements below two S-requirements: S°, S?

The question addressed here is how a requirement:
R: DY (W)VW #@(D)

should be attacked while priority is being given to two S-requirements: S°, 8.
We choose a target number k, which is unused, at which we would like to make D and
¥ (W) differ. We assume at any point, ¢(D, (W, k)) | implies

Y(W;k) = 0A (Vo < (W, k))[®(D;z) = W(z)].
Choose markers g; (j < 4) such that

k<g<q<q<g<aq.

In the interval (k,go) we are playing the main strategy of fhe basic module (described
below) which assumes that both A%° U A%! and A¥® U Al! cover B and that arbitrarily
large elements of A%? — C (i = 0, 1) are available on demand. In the interval (go,q1) we are
playing a strategy Qo which assumes that eventually all numbers enumerated in B enter .
A%l TIn the interval (g1,¢2) we are playing a strategy ¢); which assumes eventually all
numbers enumerated in B enter A1, For ¢ = 0,1, a strategy Q2.; is played in the interval
(g24i,g3+:) which assumes that the last number to enter B via one of Qg, @1 or the main
strategy will never be enumerated in A*° U AL,

The main strategy tries to define markers a® and a' such that
k<a®<al

and a' € A"? — C. It proceeds as follows. H the marker a® is not defined, then look for z €
(90,91)N(A%° —C) and set a° equal to the greatest such z. Reset all the g;’s so that a° < go.
H no such z exists, then play one move of Qo and reset ¢;,---,gs. Suppose a® is defined.
Then play a move of the strategy @;. Once a° is defined look for z € (g1,g2) N (A0 - C)
and set a! equal to the greatest such z. Reset all the ¢;’s so that a' < go. If no such z

exists, then play one move of ¢; and reset g2, ¢s3, gs.
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The role of @, and Q3 is as fo]lows./ When some number z is enumerated in B by either
the main strategy or one of Qo, @1, then @, is reset and is played on the interval (g2, ¢3)
until  has been enumerated in A%°U A%!. While @, is being played, go, 41, g2 are fixed but
g3 moves steadily to the right. Once  has been enumerated in A%° U A%1, g5 also becomes
fixed. ¥ the main strategy enumerates z in B without prior permission from A%° and z
turns up in A%° U A%!, we make another move in the main strategy. (In fact, if z € A%°,
then a number will be enumerated in B and otherwise a! is destroyed.) Then Qj is reset
and played on (g3,q4) With g4 moving steadily to the right until z enters A1:0 U AV,

So the strategies @; (¢ < 3) are only significant if at some stage, the main strategy is

0. a! it wants for k or if one of the numbers enumerated in B

unable to find the markers a
fails to turn up in (A%°U A%1)N (A0 U AV?). I, for particular ¢ < 3, infinitely many moves
of @; are played without @; being reset, then the basic module is successful because each
Q; enjoys a substantial advantage. For instance, @; may ignore S'. Thus below we may
assume that the main strategy always finds a® and a! eventually and that B C A*° U 4!
(<.

We now describe the main strategy in detail. In the interval (k,a®) we are playing a
strategy S° which assumes that all numbers enumerated in B by S° are enumerated in A%!
rather than A%C. In the interval (a°,a!) we are playing a strategy S' which assumes that
if a number enters B by $! without prior permission from A%, and enters A%°, then that
number isin A!. Under the assumption of strategy S, we are playing a list of substrategies
S1i, §1¢ agsumes either we get a reduction of D to A%! — C or the functionals reducing D
to A% — C and AV! — C are preserved and R’ is satisfied. For each i, $** has a substrategy
5140 which assumes that each number which is enumerated in B by S enters A%

We now describe stage s of the basic module. No action is taken unless ¢(D, (W, k)) |.
If eventually (D, (W, k)) | never holds, then R is satisfied and none of S°,S? is injured.

When ¢(D, (W, k)) | is satisfied we begin by executing one step of the strategy S?.
We think of (a°,a') as the universe on which S operates. Whenever we play a move of S!
which does not enumerate a number in B, we may enumerate a! in C. Then al is reset by
the main strategy thus extending the universe of S*. Let the current aim of 5! be to satisfy

R‘. Executing one step of S! means executing one step of S1. S1# will proceed as follows.
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Choose a target number k¢ for R?, which is unused, at which we would like to make D and
(W) differ. The strategy S+ also tries to define numbers a}, b} such that

<k <a<b<a

ah € A% — C, b} € AY — C and k' greater than all parameters used for R for all j < 3,
(here k%, a}, and b% are parameters for R?). The search for af and b proceeds as follows.

Choose markers qj (7 =0,1,2) such that
F<g<dg<dg<a.

In the interval (g, ¢!) we are playing a strategy @} which assumes that all numbers enu-
merated in B enter A%!. In the interval (gi, gi) we are playing a strategy Q% which assumes
that all numbers enumerated in B enter A'. If the marker af is not defined, then we look
for z € (g},¢¢) N (A% — C) and we set @} equal to the greatest such z. We reset all the
qj-’s so that af < ¢i. If no such z exists, then we play one move of Q% and reset ¢i,¢5 and
a!, and put a! into C. Suppose a} becomes defined. Then we play a move of the strategy
Q!i. If the marker b; is not defined, then we look for z € (g3, ¢5) N (4! — C) and we set
bi equal to the greatest such z. If no such z exists, then we play one move of Q’l and reset
¢5,a! and put a! into C. We need not enquire into the nature of the strategies Qj (7 <2).
It is sufficient to notice that, if, for particular j < 1, infinitely many moves of Qj- are played
without Qj. being reset, then a substantial advantage has been gained because one of $°,S?
may be dismissed from consideration. The module is successful by the last section.

To focus attention on what is essential we assume that the assumptions for Q} and Q!

both fail. Thus we succeed in finding aj, b}, such that
0 _ i i o b 1
a <k'<ay<bi<a

and a} € A% - C, bi € AV - C.

No action is taken unless ©*(D, (Wi, k') | < al. If eventually ©(D, v (Wt k) |< al
never holds, then R’ is satisfied and none of S°,S! is injured. When (D, ¥{(W*, k%)) | < a!
is satisfied we begin by executing one step of the strategy $1*°, being played in the interval

(k*,ab). There are two possibilities:
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Case 11. If a number is enumerated in B by S1#° at this step, then that number is in A%!.
In this case we enumerate a},b! and a' in C and we reset them to new larger values. (Note

that k,a® and * are all unchanged.) -

Case 2!. Some number p!, kf < p! < ai, is enumerated in B by §1%° at this step and p! is
0 p

enumerated in A%°. Enumerate k¢ into B and set ¢! = 1. Now there are two subcases.

Subcase 21.1. p! is enumerated in A}C. (The assumption underlying S? is violated.) This
event is seen as permission to execute one step of the strategy S° being played in the interval

(k,a°).

Subcase 21.2. p! is enumerated in A", (The assumption underlying S+ is confirmed.) In
this case we enumerate al in C and we reset it to a new larger value. (Note that k,a°, kf, a}

and b} are all unchanged.)
For the strategy S°, again there are two possibilities.

Case 1°. If a number is enumerated in B by S° at this step, then that number is in A%!. In
this case we enumerate a® in C. We teset a®,a},bi,a! in that order and reset the strategy
ST,

Case 2°. Some number p?, k < p® < a®, is enumerated in B by $° at this step and p° is

enumerated in A%%. We enumerate k into B and set ¢ = 1.

At this point we have:
D(k)=1+#0=YW;k).

The functionals being constructed to reduce D to A*°® — C (i = 0,1) have not been injured
since A%% — C has changed at p* for each i < 1. So unless some number < ¥,(W;, k) is
enumerated in W at a stage > s, R has been satisfied and no further action is required except
for an appropriate restraint on B and C. On the other hand, if some number < 9,(W, k),
say «, is enumerated in W at a stage > s, then we enumerate k, k* and p* (¢ = 0,1) in C.
Then ¥(D) and W differ at z, since

W(z)=1#0=9,(D;;z) = &(D;z),

and this disagreement is preserved forever.
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The possible of outcomes

First, assume the main strategy is executed at only finitely many stages. Let ¢ be least
such that ¢; acts infinitely many stages. Here the strategy @; comes to the fore because
it is reset only a finitely number of times and infinitely many steps are executed. Since @;
may ignore either Sy or 8; according as 7 is even or odd, it is an easy matter within ¢; to
satisfy the other S-requirement and all the R-requirements.

For the rest suppose the main strategy is executed at infinitely many stages. In each

case we assume that none of the previous cases holds. There are several cases.

Case 1. Case 2° eventually occurs. R is satisfied, the only cost being a finite restraint which
is eventually fixed. The functionals which are implicitly being constructed to reduce D to
A0 — C (i=0,1) are not injured.

Case 2. Case 19 holds infinitely often. Now the strategy S° comes to the fore because it
is reset only a finite number of times and infinitely many steps are executed. Since Case
1 never holds all numbers enumerated by S° in B are in A%!. Thus the strategy S° need
not be concerned with the requirement S°. The module is successful in this case too, even
though R has not been satisfied, because one of the S-requirements of higher priority has

been eliminated.

Case 3. Otherwise. Eventually §° is never pursued. Thus eventually every move played in
the main strategy is a move in the strategy S!. Recall that S consists of the substrategies
S,

Case 3.1. There exists  such that S is addressed at infinitely many stages. Fix ¢ to
be the least such number. These are two subcases.

Case 3.1.1 The strategy §1*C is pursued at infinitely many stages. In this case eventually
all numbers enumerated in (a?, af,) enter A%!, a® is fixed, and af, increases to co. Thus S°
can be ignored and there will be no difficulty in satisfying the other requirements.

Case 3.1.2. Otherwise. One of Q}, Q! is pursued infinitely often. Let ! be the least such
that Q! is active infinitely often. Then eventually in the interval (gf,q} 1) every number
enumerated in B is enumerated in A%! if [ = 0, and in A if / = 1. Moreover, qf is fixed

while qf 41 increases to co. So we have a similar situation to that of the previous case.



CHAPTER 3. THE MODULES 22

Case 3.2. For each i, S1* is active at most finitely often. In this case the assumption
of §1, that all numbers enumerated in B from (a°,a!), without A%C-permission, enter A%°
and then Al is eventually not violated. For each i, eventually R‘ is satisfied at the cost

of a finite restraint. At the same time we obtain reductions of D to A%® — C and A!"! - C.

3.2 The general module

In general, an R-requirement will have to be satisfied while priority is being given a finite
number of the S-requirements say S°,---,8". To focus attention on what is essential we

shall assume that for each i < n
APNAT =QAAPUA DB

and that arbitrarily large elements of A%/ — C (i < n,j < 1) are available on demand. We
will first describe the basic module under these simplifications.

We choose a target number k, which is unused, at which we would like to make D and
¥(W) differ. We also choose numbers a', i < 7, such that

k<a’<al<---<a®

and a' € A*® — C. We think of a* as the use at k of a functional which is implicitly being
constructed to reduce D to A%® — C. We set the counter ¢ = 0.

We now proceed as follows. For 0 < 7 < 7 in the interval (a‘~!,a’) we are playing a
strategy S* which assumes that any number z enumerated in B, without pi'ior permission

from any A7° — C with j < 4, satisfies
(1: € ﬂj<,’Aj’0) =z € APl

In the interval (k,a®) we are playing a strategy S° which assumes that all numbers enumer-
ated in B are enumerated in A%! rather than A%°.
For i < n, §* becomes active when there exists ¢ less than the current stage and

Zp,---,Ti+1 € B — By such that
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o Y(W,k) = b(We,k) | and o(D, (W, k)) = @(De, (W, k)) |
o z; is designated by S', a1 <z <d, and z; € nngf’O forall 1,1+1<I<n.

The witnesses z; (i + 1 < I < n) only activates St for one stage, except that, if in the first

stage of activation S? enumerates y € B, then S* becomes active for m more stages, where
m = max{k < i:(Vj < k)[y € 47°]} + 1.

When §% (0 < 7 < n) enumerates a number in B it may designate it. The strategy 5*
has the right to assume that only a finite number of designated number are enumerated
in Nj<;A%°. When S* designates a number z at stage ¢ the main strategy is set until z is
cleared or some $7 with j > ¢ is reset. S* may not enumerate any number in C which was
already in B at stage t and so may not ask for a* to be reset. Apart from this restriction
S* may request that a* be reset and main strategy will comply. S* (¢ > 0) is responsible for
producing a Turing reduction to A#® — C for each j < 4 of the restriction of D to (a*~!,a’].

We now describe stage s of the basic module under the simplifications made above. No
action is taken unless ¢(D,(W,k)) |. Note that D(k) = 0 by choice of k. If eventually
¢(D,¥(W,k)) | never holds, then R is satisfied and none of $%,---,8" is injured. When
e(D, (W, k)) | is satisfied we begin by executing one step of the strategy S™, being played

in the interval (@', a"). There are two possibilities:

Case 1. The assumption underlying S™ is not violated. In this case we enumerate a™ in
C and we reset a™ to a new larger value in A™® — C. (Note that k,a°---,a" ! are all

unchanged.)

Case 2. Otherwise. Some designated number j*, a"~! < j® < a™, is enumerated in B by
S™ at this step and j™ is enumerated in N;j<, A*°. (So the assumption underlying S™ has
been violated.) This event is seen as permission to execute one step of the strategy $7!

being played in the interval (a"~?,a™1).
Again there are two possibilities:

Case 1"~1. The assumption underlying $S™~! is not been violated. In this case we enumerate
a™ ! and @™ in C. We reset a"~! and then a”. We reset the strategy S™ since it has been

violated.
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1 an=?% < j»~1 < g™~1, is enumerated in

Case 2771, Otherwise. A designated number j*~
B by 5§71 at this step and j*~! € Nj<n-14°. (So the assumption underlying $™~! has
been violated.) This event is seen as permission to execute one step of the strategy §™~2

being played in (a™~3, a""2).

The pattern of cases should now be clear. For i > 0, Case 2¢ splits into Case 1°~! and

Case 2t~1. It remains to describe Case 29.

Case 2°. For each i < n, we have j* which was enumerated in B by strategy S* such that
a*~! < j* < a' and such that j* has just been enumerated in N;<;A*° and is not yet in C.

We enumerate k in D and set ¢ = 1.

At this point we have:
D(k)=1+#0= ¥ (W;k).

The functionals being constructed to reduce D to A%*°—C (i < n) have not been injured since
A*0—C has changed at j* for each i < n. So unless some number < ¥s(Ws, k) is enumerated
in W at a stage > s, R has been satisfied and no further action is required except for an
appropriate restraint on B and C. On the other hand, if some number < 94(W;, k), say z,
is enumerated in W at a stage > s, then we enumerate k and j* (i < ») in C. Then ¥(D)

and W differ at z, since
W(z)=1# 0= ®,D,;z) = ®(D;=z),

and this disagreement is preserved forever.

We conclude that, if Case 2° ever occurs, then the basic module is successful and imposes
only a finite restraint. Suppose Case 2° never occurs. There is a least i, say i = j, such
that Case 1° occurs infinitely often. In this case a®,---,a’"! are eventually fixed. Now the
strategy 57 comes to the fore because it is reset only a finite number of times and infinitely
many steps are executed. $7 enjoys a small but significant advantage: after some point any

number z enumerated in B, without pI’iOI' peImission from an Ai,O - C with i < ', satisfies
Yy ¥
(2? (S l,‘<in’0) =z € AJ',I-

The main difficulty of the construction which follows is to exploit the small advantage we

have exhibited by nesting similar strategies one within the other to achieve the desired goal.
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As we have noted above, in the actual construction we cannot assume that 4“0y 451 OB
and that elements of A% (§ < 1)(not yet in C) are always available when we need them.
This necessitates the introduction of additional nodes into the tree of strategies which is
the “priority tree” described in the next section. For example, when attacking R° while
giving priority to S°, apart from the main strategy (which is constructing a reduction of
D to A%® — C) and the back-up strategy (which assumes that eventually “all” numbers

enumerated in B fall into A%!~7), we need

e a strategy based on the assumption that the last number to enter B will never enter
A%O U A% gnd

o a strategy based on the assumption that the element of A% not yet in C currently

being sought for the main strategy will never be found.

Further down the priority tree analogous strategies must be introduced to allow for the
possibility that A*° U A*! may not cover B or that suitable elements of A* not yet in C
may not present themselves. |

These aspects of the construction, although they introduce new complications, do not
really cause any serious difficulty. It might be added that, although it was not nade explicit,
the module described in 3.1 already takes into account the fact that some of the pairs
(A0, A»') may not cover B. If it is known that A%° U A*! D B for all 4, then the level of

the complexity of the problem is reduced dramatically.
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Construction

In this chapter we describe the construction. Before giving the construction we should de-
scribe the priority tree T which we shall picture as growing downwards. This tree provides
a convenient way of organizing the various substrategies which make up the whole construc-
tion. The nodes of the tree are finite strings of pairs (n,j), where n < 6 and j < w. Such
strings will be denoted by lower case Greek letters. With each node a there is associated
a natural number i(a) and a strategy for satisfying R¥®). If at the end of the construc-
tion the true path contains a, then all the requirements R’ with i < i(a) are satisfied by
strategies associated with nodes 8 C a. (For readers not familiar with the concept we shall
explain the concept of the true path later in next section.) With a node a there may also
associated a strategy for satisfying S*(®) by implicitly constructing a Turing reduction of D
to AH)0 _ C. We say “may” because the outcomes of a strategy at some node above «
may already have guaranteed that D <7 A“®)»! — C in which case there is no need for us
to be concerned with S*®) at node a. A number j < i(e) is called active at « if none of
the “outcomes” of the nodes above a guarantees that D <7t A7l — C. Thus j is active at o
if 7 < i(a) and we must still be concerned with building a reduction of D to 4%° - C.

At node a the attack on R® will proceed in the way described for the basic module
of the last section. Now R#(®) plays the role of R and the requirements S7, j < i(c) and
J active, play the role taken by S%,---,8" in the last section. The outcomes at node o

corresponding to the outcomes of the module described in last section are:

26
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(2,%(a)): the a-attack on R¥e) is successful trivially
(3,4(a)): the a-attack on R¥®) is successful non-trivially

(0,7): the a-attack on R¥®) is not successful and j is the least number active at o such

that A7C-permission is given only a finite number of times.

To take account of the possibility that either
A‘i(a),O u A‘i(a),l 2 B

or that suitable elements in A%* —C, j < i(e) and i < 1, are not always available eventually,

we allow three further kinds of outcome:
(6,i(a)): A0y A=)l 3 B

5,7): at some point in the construction we wait forever for a sufficiently large element of
J y laIg
A~ C

(4,7): at some point in the construction we wait forever for a sufficiently large element of

A0 —C.

~ We also find it convenient to include in our design certain pseudo-outcomes:
(1,4): correcting the functional which reduces D to A%! — C.

The additional nodes arising from these pseudo-outcomes help us keep track of tasks

that need to be performed during the construction.

We now give some definitions which will be needed for the description of the priority
tree T. Let A denote {(2,—1)). Then A € T. Suppose a € T is given, let i(a) denote the
least ¢ such that (n,?) does not occur in « for n € {2,3}. j is called active at o if j < i(a),
none of (4,3),(5,7),(6,5) occurs on a and for every n such that a(n) = (0,7) there exist
m > n and [ < j such that a(m) € {(0,0),(4,1),(5,1)}. 7 is called pseudo-active at o if
J < i(a), none of (4, 7),(5,7),(6,7) occurs on @, j is not active at o, and there exists ¢ < j
such that ¢ is active at a. For n < 6, o is called an n-node if a(l(a) - 1) = (n,j) for

some j. Sometime we also call that & an (,j)-node. For each node o # ), o~ denotes the
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immediate predecessor of a, i.e. a~ —a I ({(a) = 1). When « is a 0-node, let j(a) denote

the unique number j such that a = a=*{(0, 5))-
Remark. For each 0-node ¢, j(a) < i(a™).

We have already stipulated that A € T; A is the root of the tree. We complete the
definition of T' by specifying what the outcomes of a are for each o € T. The immediate
successors of a in T' are just the strings of the form a™((m, 7)), with (m, j) an outcome of
a. We note that “outcomes” of the form (1,¢) are not really outcomes of the strategy at
a but serve to include nodes on the tree which are useful for book-keeping purposes. If o
is a 1-node, then o has no immediate successor. If  is an n-node for n € {2,3} then the

outcomes of a are:
{(0,7),(1,2),(2,i(e)),(3,i()), (4,5),(5,%),(6,i(a)) : j is active at e, 1 is pseudo-active at a}.
For the rest the outcomes of o are:

{(0,4),(1,7),(2,%(e)), (3,i()), (4,7),(5,%) : j is active at o, is pseudo-active at a}.

This completes the description of T'. Let A = {{4,1) : 7 < 6, < w}, be the set of symbols
for the possible outcomes. Define a linear ordering <j on A as follows. Let n = (ng,n1)
and m = (mg, m1) be two outcomes of a. If ng,mp ¢ {1,5}, then n <, m if and only if
ng < Mg, OT ng = Mo and n; < my; if mp = 1, then n <4, m if and only if ng < 1 and
ny < my; if mg = 5, then n <, m if and only if np < 4, or ng € {4,5} and n; < m;. As

described in Soare {12], two orderings <r,, < are defined as follows:
4.1 Definition. Let o, € T.
i) o is to the left of B (a <z B) if
(3a,b € A)(Fy € T)[y(a) Cany"(B) C BAa<nb].
it)aLfifa<pforacp.

itt) a< fifa< fand a#p.
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4.2 Definition. i) 8 is an active extension of @ if B has the form o”{(0,7)). B is
a pseudo-active extension of o if B has the form a”{(1,75)). We introduce the
notations: .A(a) for the set of active extensions of @, and B(e) for the set of active

or pseudo-active extensions of a.

it) Let mg,---,mr €wand B C abenodesin T. (myg,---,mg) occurs on o below B3, if
there exist numbers ng < --- < ni such that ny > || and for each 7 with 0< ¢ <k,

a(n;) = (0,m;).

For each o € T, there are a number of parameters associated with the a-strategy’s

attempt to satisfy R#e):

i) k* is the point of attack, i.e., the argument at which we aim to make W) (W)

different from D.

ii) a? for B € B(a). if B = a™{(i,5)), then aP, if defined, is an element of A%* — C which
is > k®, can be regarded as the ‘use’ at k* of the functional which we hope will reduce
D to A% - C.

iii) p® for B an active extension of a. If 8 = a™((0,5)), then p?, if defined, is a number
which has been enumerated in A’ and which can be regarded as j-permission (i.e.,

permission from the intended reduction of D to A%° — C) for k* to be enumerated in

B.
iv) ¢* is a counter which records how far the a-strategy’s attack on R¥®) has proceeded.

v) r? is the restraint intended to protect the a-strategy’s attack on R¥®),

FEach parameter belongs to a node. k%, c%,r%,a%, p* belong to o. Partition w effectively
into infinite sets Ny (@ € T'). The members of N, are called a-numbers. Now we describe
what actions should be taken at the various nodes of T. If z is enumerated in B during
the construction then z = k° for some 3. When z = k° enters B, then we set o(z) = .

For a € T, at any particular stage we say that a is ready if ¢*(2)(D, pHWHD) k) ||

q,i(a)(Wi(a); ka) =0A (V:c < ¢i(a)(Wi(a),ka))[Qi(a)(D;x) = Wi(a)(x)]’
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and for all 7 < 1 and for all :-nodes such that C a or a™{(2,i(a))) <g &, either a® 1, or
a® | and

D, W, k%) < a’.
Two key notions for the construction described below are:

4.3 Definition. Let 8 be a 0-node and jo < -+ < jm = j(B) be an enumeration of all
i < j(B) which are active at f~. At a particular instant in stage s, z is a designated

number for 8 if the following conditions hold:
i) a | for each y € B(87), ¥~ |, a(z) |, and a(z) 2 8.
ii) = entered B after r°~ attains its cuurent value
iii) (Jm,:-+,Jo) occurs on afz) below 7.

iv) Let <5_7'm, Oimrs®
;s C a(z) and §;; is a (0, j;)-node (i < m). When z enters B, the following hold:

-+,8;,) be the unique (m + 1)-tuple in T such that 8 =¢; C---C

o % | for all 5 € {jo,- -, Jm}-
o pt | for all £ such that £ € A(67) for some j € {jo,"--,m} with §; < €.

It is worth noting that for some of the j and £ just mentioned, r%i and p° may be defined

earlier in the same stage at which z enters B.

4.4 Definition. Let £ C 3 be 0-nodes. Let jo < :-- < jm, be an enumeration of all § < j(£)

which are active at £~. £ is preferred to § if one of the following cases holds:

i) B = (uy)[y € A(B7)] and (jm,- -, jo) occurs on 3~ below £~

ii) There exists § D max{6:6 € A(B~)A6 <t B}, (m,-**,Jo) occurs on 8 below £~.

Remarks. 1. If £ is preferred to 8, then there exists a 0-node 6 such that 8 is preferred to
B,&C 0 C B and j(0) < j(B)is active at £
2. The intuition for the notion “preferred to” is: Suppose £ is preferred to § and

B = (uy)[y € A(B)]. I kP~ is enumerated in B, then ¥°” may be designated for £.
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Suppose ¢ is preferred to 8 and § 2 max{6: 6 € A(B~) A § <z B} is such that (jp,,- -, jo)
occurs on 6 below £=. If k% is enumerated in B, then k¢ may be designated for €.

3. £ is “preferred to” B in the sense that before we define p® we wish to complete the
£—-attack to the point at which r€” is defined and p? is defined for all # € A(€7), 8 > €.
This is appropriate because some 0-node 7 with j(n) < j(3) lies in £ C 5 C 8.

4.5 Lemma. i) Let &, i, 6, B be O-nodes such that 6 = (ud)l6 € A(n~) An <z 8] and
€ CnC B. If€ is preferred to B, then € is preferred to 6.

i) Let w, o, ( be O-nodes such that * C o C (, 7 is preferred to { and there is no
(n,j)-node B with ¢ C B C { and j < j({). Then r is preferred to o.

Proof. The first part is clear from Definition 4.4. Let , o, ¢ be 0-nodes such that 7 C o C ¢,
7 is preferred to ¢ and there is no (n,j)-node B with o C 8 C (and j < j(¢). Let jo< --- <
jm be an enumeration of all j < j(7) which are active at 7. Suppose ¢ = (ué)[é € A(¢)]-
Then {jm,* *,jo) occurs on {~ below 7. Let {r;_,---,7; ) be the unique (m + 1)-tuple on
¢~ such that 7; is a (0,7)-node. Then jo < j(¢) and so 7j, C ¢. Hence 7 is preferred to
o. Suppose { # (ub)[6 € A(¢™))- Let e = max{§:6 € A((")A 6 <z (]. Then there exists
6 D ¢ such that {jm,---,Jo) occurs on 6. Let (r; ,---,7; ) be the unique (m + 1)-tuple on
6 such that 7; is a (0, j)-node. Let i be the least j such that r; C (~. By Remark 1 above,
i < j(¢). Hence 7; C 0. Also, for all j < ¢, j is active at {~ if and only if j is active at o~

Thus 7 is preferred to 0. B

Before we describe the construction, we define a class C of 0-nodes as follows. At any

point in stage s, £ € C if the following conditions hold:
it L
i) there exists some z € B which is designated for ¢,
iii) for each (n,j)-node o such that

o {Canj< i)

e there erists a number y with a(y) 2 a which entered B after ¢ attained its

current value,
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there exists a 0-node 7 such that £ C 7 C @, j(n) £ j, and n € C.

Remarks. 1. It will turn out that, if £ € Cs41, then a§ 1= a§+1.

2. The reader should note that the truth-value of £ € C is defined by recursion on |£|.
Since ¢~ | for only a finitely number of € € T, the induction is sound.

3. £ € C means that the attack on R*€™) which is associated with &~ need not be reset

because of activity at nodes extending &.

CONSTRUCTION

At stage s of the construction we begin at node A and carry out certain instructions
passing down the tree. We now give the instructions for node a. When at node a we first
carry out the action prescribed for the first of the following cases which holds, with one

exception which is mentioned below, and then the instructions for ending a stage.

Case 1. ¢® | and there ezist i, z such that i < i(c) and, either

tE€EB~CAzg ALOU AL A
[(ia”) < ina(z) <p a™((6,1)))V (i(a”) 2 iA(a(z) <p aV a(z) D a))],

or

there ezists a 0-node B such that j(B) = i, a(z) D B D a, z is a designated
number for 3, p” 1 for each 0-node v such that either ¥ C Bor 8 >1 v € A(87),
% 1 for each node 8 with 6°((2,i(6))) C B, and either

i) ¢ € A%, and there is no 8-designated number for each O-node 8 such that
aC0Cp and j(8) < j(B), or
i) € AL0 and for each 0-node £ C B which is preferred to 3, the following
hold: |
o ¢ is defined,

" @ for each node { € A(£7) such that £ <z, ¢, p¢ is currently defined.

Choose the least such i and then the least z. It will turn out that, if o"((6,%)) ¢ T,
then z € A0 U A%, If z ¢ A%0 U A%, pass to o{((6, i)). Otherwise, choose the <-least 3.

There are two cases:
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Case 1.1. z € A%, Destroy c” and r7 for T >, . Destroy a”, r7 for each 0-node v
such that ¥ C 8 or B <r 7. Let C[s] be the class C at this point. Also, destroy a” and r7"
for each 0-node v such that v O 8 and there is y with a(y) 2 v which entered B after a”
was set unless either there exists a 0-node £ such that £ C v and £ € C[s] or there exists =
such that 8 C 7w C 7#((2,4(7))) C 7 and 7™ is defined.

Case 1.2. z € A*0. Then pass to 8 and go directly to Case 3 at 8. We call this jumping

from a to B.

Case 2. a is an i-node for i < 1,a* 7, and a® |, where & is the mazimal O-node such that
§ C o if any. Let o = a={(i,5)). Set a® equal to the greatest z in (k% ,a®) N (4% - C)
such that a(z) D §, and for all ¢ < s and all B

8

e f<raVaCfB=a; <z,

e B<aVacCB=k <z,

o BN(2,i(B))) <L a=>1f <z,

o o ¢ {at:alham <1 d),

o aN(6,i(a")) €T = = & {a: a5 L Aa=N(6,i(a"))) C b,

and if v is the last stage at which a® was defined, then z exceeds every values taken by a
parameter at a stage < v. Destroy a® for each 0-node § such that either § C a or a <z, 6.
Read A for § and oo for a® when 6 is undefined. Destroy ¢” and 7™ for T >, a.

(The construction will only pass to « if a suitable z exists.)

Case 3. a = a~"{(0,7)), p* T, and there ezists = € A — C, such that z is a designated
number for a. Fix the least such z. (In fact, it will turn out that there is at most one
possibility for z.) Set p* equal to z. Further, let § € A(a~) be the maximal node if any

such that § < a. There are two subcases:

e Case 3.1. & does not exist. Enumerate k% in B, and set ¢® = 1. Destroy ¢” and
r7 for T > o unless p” is defined for 7 C 7 with 7~ = 7Na. Let C[s] be the class
C at this point. For each 0-node + such that either v C a~ or a=*{(2,i(a7))) <z 7,
destroy a” and r7 unless either there exists a 0-node & such that & C v and

€ € C[s] or there exists 7 such that 7((2,i(r))) C v and " is defined.
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o Case 3.2. § exists. Pass to &.

Case 4. c® 1, cB |, a¥ |, where [ denotes a~ and 7 is the mazimal 0-node C o if any.

Let = be the least unused a-number in (k‘6 ,a") if any such that for all t < s,
ebé<a=k <z
eé<ra=d <z
e §<paNN(2,i(8)) Ca=r <z

and if v is the last stage at which ¢® was defined, then z exceeds every values taken by a
parameter at a stage < v. In this definition read —1 for ¥* when a = A and co for a” when
7 is undefined. If z exists, set k% = z and ¢* = 0. In any case, destroy a® for each O-node §

such that either § C @ or a < §. Destroy ¢” and r” for 7 > a.

Case 5. ¢® =0, a® | for the mazimal 0-node § C a if any, and there exists (3 € B(a) such
that a® 1. Let v = o™((4,4)) be the <-least such 3. If there exists z in (k%,a’) N (4% - C)
such that a(z) D é, and for all ¢ < s and all 3,

e f<LyVyCB=dl <z,

e f<YVYCB= K <z,

o BN2i(B) <Ly =>1{ <z,

. z¢{a§:.a:iAa<Le},

e o™{((6,i(a))) € T = z ¢ {a5 : a5 | Aa((6,1(a))) C €},

and if v is the last stage at which a” was defined, then z exceeds every values taken by a
parameter at a stage < v, then pass to . Otherwise pass to a”((4 + 1,5)). Read A for ¢

and oo for a® when § is undefined.
Case 6. ¢* = 0, and o is not ready. Pass to o*{(2,i(a))).

Case 7. ¢®* =0, r* 1, and o is ready. Define

r® = Maz({¢" (D, "W, k%) U {a” : B € B(a)}).
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Perform the actions prescribed by the first of Cases 8-9 which holds.

Case 8. A(a) = 0. Enumerate k* in B, and set ¢* = 1. Destroy ¢” and r” for 7 > a
unless p” is defined for 7 C 7 with 77 = 7 N a. Destroy c® and rf for all 8 D a such that
a™{(2,%(a))) < B. Let C[s] be the class C at this point. For each 0-node 7 such that either
v C aor a<y 7, destroy a” and " unless either there exists a 0-node £ such that £ C v
and £ € C[s] or there exists 7 such that #{(2,%(x))) C v and r” is defined.

Case 9. A(a) # 0. Pass to the maximal node in A(a).
Case 10. ¢ = 1 and no number < ¢:(°‘)(W:(a),k°‘) has entered W®) since the stage t, in
which r* attained its present value. Pass to a™{((3,i(a))).

Case 11. ¢ =1 and a number < ¢:(°’)(W:(°‘),k°‘) has entered WH®) since stage t, where
t is the stage in which r° attained its present value. Enumerate k°; into C. Put into C
every y such that a(y) 2 3 for some 3 € A(a) and y was enumerated in B since 7* was set.
Set ¢® = 2. Destroy a’ for each 0-node § such that either § C a or a <z, . Destroy ¢” and

r7 for T > a.
Case 12. ¢* = 2. Pass to a™{(3,i(a))). -

Case 13. None of above Cases holds at «. Destroy ¢¥ and 77 for ¥ > a; a” fory C a or

Y >L .

Ending a stage

Let a be the last node which is visited; « is said to receive attention at this stage. After
completing the instructions for the particular cases which hold at the various nodes, to end

the stage we carry out the following:

El) if 6§ <z v and a® is destroyed in the main part of the stage, then a” and c” are
g

destroyed.
(E2) if a® has been destroyed in the stage, then a® is to be enumerated into C.
(E3) if a® has been destroyed and § € .A(67), then p’ is destroyed if defined.

(E4) if p® has been destroyed, then ¢, if defined, is destroyed for all 3 D é.
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(E5) 7° is destroyed if either a” has been destroyed for some g € B(6) or ¢’ has been
destroyed.

Remarks. 1. In the construction, if £* becomes defined, then it retains its value until reset
to a new value.

2. For a 0-node a, r®", p* may become defined in a stage and be destroyed before the
end of the stage.

3. When the construction jumps to 3, the instructions of the construction ignore the
Cases 1 and 2 at 3. The conditions for jumping ensure that Case 3 holds at # hence p?
becomes defined.

4. If a 0-node is visited at a stage, then the construction passes to that node by one of

the following cases:
i) Case 1.2,i.e. by jumping.
ii) Case 3.2.
iii) Case 5.
iv) Case 9.

5. Let 4 be a 0-node such that 77~ |. The first node in .A(y~) which is visited in stage
s, if any, is reached by jumping.

6. If @ is a 1-node, then a® can only be destroyed at the end of a stage through (E1).

7. Because the class is just referred at a point in some stage in the construction, in stage

s we just define C;, and C[s] if one of the Cases 1.1, 3.1 and 8 holds at stage s.

In the construction the class C plays an important role although no analogue of it
occurred in Chapter 3. Roughly speaking, £ € C means that we wish to protect af. As
mentioned above with each 0-node £ is associated a strategy S¢ which either reduces D
to A1 — C or gets A7€)Opermission for the £~ -attack to enumerate k¢~ into B. Let
J¢ be the set of all j < j(£) which are active at £~. Then the assumption of $¢ is that
every &-designated number which enters n{AJ"O : j € J%}, enters A3, It will turn out
that in any particular instant, there is at most one {-designated number. So, if there is

no £-designated number, the assumption for the strategy §¢ is not violated and we can
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think that S¢ still active. In this ca.sé we also can destroy af if we need to. If there is a
¢-designated number, the module for the £ ~-attack requires that a® not be destroyed unless
and until the &-designated number enters 47! for some j € J¢ U {j(£)}. Now the class C
allows af to be destroyed more often than would otherwise be the case. £ ¢ C and there is
a £-designated number means that, at the particular instant, the strategy 5S¢ appears to be
invalidated because there is a strategy at 8 D £ of higher priority which is currently active.
Let o witness £ ¢ C. Suppose either ¢ is not a 0-node or there is no o-designated number.
In this case we can take 8 = a. Suppose a is a 0-node and an a-designated number exists.
Note that o ¢ C. By the induction hypothesis, there is a strategy at § D a currently active
which has higher priority than §%. The strategy at 8 also has higher priority than 5¢ which
intuitively just keeping £ out of C.



Chapter 5

Verification, Part I

We need to verify that the above construction satisfies both the R® and the $° requirements.
In present chapter we investigate the properties of the construction. We say that the a-
attack has been started at stage s if r* becomes defined at stage s and that the a-attack is
destroyed if r* is destroyed. The a-attack is completed if ¢* is set equal 1. We start with

lemmas about the parameters of the construction:
5.1 Lemma. i) k% is defined whenever c® is defined, and cg, a? are defined for each
B € B(o) and for all s such that r® is defined at some point in stage s.

i) Let ¢ |. Then c® is monotonic non-decreasing < 2 unless destroyed through one of

the following circumstances:

(a) a node B < a receives attention and if either Case 3.1 or Case 8 occurs at (3,

then there is no © such that
Tt CaAr” =FNaAD" |;

(b) a node B receives attention, Case 8 holds at 3, 8 C a, and B*((2,1(B))) < o;
(c) p" is destroyed for some v C a;

(d) a" is destroyed for some v <L a.

ii) Let § C a. If ¢® is destroyed, then so is c®.

38
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iv) Let r* |. Then r® retains the same value unless destroyed simultaneously with c*, or

unless aP is destroyed, for some 3 € B(a).

v) Let B be a 0-node and af L. If B is visited at stage v, then rP~ is defined at some
point during stage v before 3 is visited.

vi) Let o C B. Then

(a) B is visited at stage s implies c< |.
(b) cf | implies c2 |.
vii) A number which is enumerated in B at a stage s in which a receives attention has
the form kP, where B = o if A(B) = 0, and B = o~ otherwise. In the latter case,

p becomes defined at stage s. If k2 is enumerated in B in stage s, then c? = 0 and

Cf+1 = 1.
viii) Let a € B(a™) and a% |. If a® is destroyed in stage s, then one of the following holds:

(a) a” is destroyed for some v <r, @;

(b) a node B receives attention such that either o C B or B <y ¢, and one of Case
3.1, Case 8, and Case 11 holds for (3;

(c) a node (B receives attention such that either a C B or B < ¢, and Case 2 holds
for B; |

(d) a node B receives attention such that a C B8 or 8 < a, and one of Case 1.1 or
Case 4 holds for 3;

(e) a node (B receives attention such that o« C B or B <1 @, and no case in the

construction holds.
i) Let a2 |. Then in stage s, a2 is destroyed if and only if it is enumerated in C.
z) If 6 € Cs41, or C[s] ezists and 6 €C[s], then a® |=al_, |.
zi) Let p® |. Then p® retains the same value unless destroyed simultaneously with a®.

zii) Let a® | and o € B(a™) — A(a™). Then a® retains the same value unless destroyed

simultaneously with a®, for some B € A(a™) and B <L a.
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ziit) Let a, B and s satisfy af |, a? | and either a D B or o <r, B. If a® is destroyed at

stage s, so is aP.
ziv) If a, B € B(a™) and a <y, B, then a® is defined implies a* is defined.

zv) e Let o be a 0-node, and some node 2 o be visited in stage s. Then p§ T.

e Let a be a 0-node, and some node D « be visited in stage s. Then p® T throughout

stage s.

o If P is defined at some point in stage s, then there no node 2 B*((2,i(8))) is

visited at stage s.
zvi) If a node D o™{(3,i(a))) is visited at stage s, then ¢ > 1.

zvii) If B~ = (7, B < ¢, and { is an i-node with i < 3 and ( is visited in stage s, then
a? |.

zviii) Let o, B satisfy o <r B, o~ C B, and (anNB)™{(3,i(anp))) £ B. Then at any stage,

a® | implies a® |.

- ziz) Let 8, B be 0-nodes such that 8 <r B, 6~ = B~ and both are visited at stage s. Let o
be the mazimal node in A(B~) such that a <z B. Then PP becomes defined in stage
s, a is visited at stage s after pP is defined, a = 0, and p* cannot becomes defined in

stage s.

zz) If o is visited at stage s, then for each node B C «, either (3 is visited at stage s or
there ezists a jump from some node C ( to some node § D f such that § = a or
8~ Ca, §=(ud)f € A(67) A a <r 0]. Moreover, if we jump to é at stage s, then '

becomes defined at stage s.

zzi) Let al |. If some node D § receives attention at stage s, then at stage s one of the
following holds:
e ad is destroyed.
o k% enters B and p® becomes defined.

e some y enters B with a(y) 2 6.
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zzii) Let al | and r™ be defined at some point in stage s for some w with #"((2,i(r))) C 6.

Then af is not destroyed unless and until r™ is destroyed.
zziii) Let €, 6, B, u satisty:
(a) £ C é, 6 is a O-node,
(b) a§ |, a} |,
(c) B receives attention at stage u,
() ECB=pB<LéVECH,
(e) If C[u] exists, then there is no o such that { C o C § and o € Clu],
(f) There is no o such that £ C 0™{((2,i(c))) C é and r"N | in stage u,
(g) There is no o such that £ C 0 C é and p° is defined at stage u, and p° | implies
6~ # 47,
(h) af is destroyed at stage u.

Then a® is destroyed at stage u.

zziv) (a) Let v be a 0-node and v be a stage such that "Z-;1 l, and vy € C, — Cyy1. Then
' there erist a and w such that a D © € A(y™), # <7, and a receives attention in

stage v.

(b) Let v be a O-node and v be a stage such that C[v] ezists, v € C, — C[v], and r7~ |
when we define C[v]. Then there exist o and  such that a 2 7 € A(y~), 7 < 7,

and a receives attention in stage v.

zzv) Let one of the Cases 1.1, 3.1 and 8 hold at stage v. Let vy be a 0-node such that "Z;1 l.
Then v € C[v] if and only if ¥ € Cpy1.

Proof. We just verify v) — vii), ), z4i%), zv) — ziz), T2i) — zzv), the rest are obvious.

v) If B is visited in stage v, then either ™ is also visited and Case 9 holds at 3~ or the
construction jumps to a node § such that 3~ = §~. In the former case 7#~ | is required for
Case 9. In the latter case there is a number designated for § which means that #7 .

vt) It is sufficient to show firstly that, if 3 is visited, then ¢P” is defined, and secondly

that ¢®” is defined whenever ¢? is defined. By iii), whenever c®~ becomes undefined, so
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does ¢f. Suppose S is visited at a pa.rtiéula.r stage. Every case which allows the construction
to pass from B~ to 3 requires that ¢~ |. Thus, if 3~ is also visited, then ¢®~ ]. Otherwise,
there is a jump to § with 6~ = B~ and r®~ |. So again ¢~ | by ). Since ¢® becomes
defined only if 8 is visted this enough.

vii) A number can enter B only through Case 3.1 or Case 8 at the node which receives
attention in the given stage. Examining those cases we see that we need only verify that, if
k? enters B in stage s, then ¢? = 0. This is clear if .A(3) = . Otherwise, Case 3.1 occurs
and there exists z designated for a. So p® becomes defined at stage s and r? is defined at
some point in stage s. By i), ¢? |. Towards a contradiction assume that ¢ > 1. Let u < s
be the last stage at which ¢ was set equal to 1. At stage u, p* became defined. Hence at
a stage v, 4 < v < 8, p* becomes undefined. Then a® and r° are destroyed at stage v. But
when % becomes defined, ¢® = 0. This is a contradiction.

z) When %" becomes defined, a® is already defined. When af becomes undefined, so
does r%”. This is sufficient since either § € Cy41 or 6 € C[s] requires r®~ | at some point in
stage s.

ziit) Let a be destroyed at stage s. Suppose 8 C a. By zii) we may suppose that a
is a 0-node. By the construction af is also destroyed at stage s if defined. Now suppose
a <z, B. By (E1), a? is also destroyed at stage s if defined.

zv) Suppose a is not visited at stage s. Then there is a jump to some node D a, and by
Case 1, p% T. Suppose a is visited at stage s.Then the construction passes to o by one of
Cases 1.1, 3.2, 5, and 9. p T if there is a jump to a. Suppose « is visited by Case 3.2. Let
7 be the maximal node in A(e™) which is visited at stage s. Since Case 3.2 holds at the
0-node é which is visited immediately before a, by Case 3 some number 2 € B is designated
for & at stage s and so r®” = %" is defined at some point in stage s. Since z € B when the
construction passes to &, z € B,. It follows that r¢ |. By i), a? | for all 8 € B(67). So, if
in stage s the construction passes to §~, then 7~ and a® (8 € B(6~)) are all defined, and
Case 1.2 must hold. It follows that there is a jump to 7 and then the construction passes
to a by repetition of Case 3.2. Clearly, a <z, 7. By the conditions for Case 1, p* 1.

Suppose a is visited by Case 5. a2 T. But when p* becomes defined, a* |, and p* is

destroyed only by (E3). Hence p* | implies a* |. Thus p* 1 if a* 1. Suppose « is visited
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by Case 9. Then « is the maximal O-ﬁode in A(a™). Towards a contradiction assume that
pZ |. Let p® have been set equal to p¢ at stage v < s. Hence ¢ |. Note that at stage s,
7% becomes defined. Hence 7~ became undefined between stages t and s, say at stage w.
Suppose one of a7, v € A(a™), was destroyed at stage w. By z4¢), we can choose v € A(a™).
Then v < a. Hence a® and then p* were destroyed at stage w, contradicts the choice of ¢.
Suppose ¢®~ was destroyed at stage w. Then ¢* becomes defined between stages w and s,
and at the same time a® and then p® are destroyed, a contradiction.

The second part of zv) is immediately from the first part unless p* becomes defined in
stage s. Suppose p® becomes defined at stage s. By Case 3, there is no node D ¢ is visited
in stage s. This is enough. The third part of zv) is clear.

zvt) We prove zvi) by induction on stages. Suppose some node 2 a”*{(3, i(a))) is visited
at stage s. Note that a”{((3,i(c))) is visited at stage s only if ¢Z > 1. So zv?) is clear unless
there is a jump from some node D a to some node 8 D a*{(3,i(c))). Note that ¢?~ | and
B~ D a”{(3,i(a))). Let t be the last stage before s in which c®~ became defined. By the
induction hypothesis, ¢ > 1. Then ¢S > 1 unless ¢* is destroyed between stages t and s.
However, if ¢* is destroyed, then ¢®~ is also destroyed by #44) which contradicts the choice
of t.

zvii) Suppose { € B(B™). If the construction passes to  other than by Case 5, then a$ |
and so a? | by z17). Also, if the construction passes to { by Case 5, then a? |. Suppose ¢
is an n node for n € {2,3}. By the construction, { cannot be visited unless Case 5 does not
hold at 8~. Hence af l. This is sufficient.

zviit) Fix . We proceed zviii) by induction on I(3). Suppose a® is destroyed. By (E1),
a? is destroyed. Let ¢ be the least node such that N 8 C { C B. Then ( is an n-node for
n € {0,1,2,3}. Suppose B = (. Then ¢ € B(a™). By ziv), when a® becomes defined, a® is
already defined, and if a® is destroyed a® is destroyed simultaneously. Suppose 8 # (. Let
a® become defined at stage v. Suppose that some 0-node £ with ( C £ C B is visited and
a |. By the induction hypothesis, a |. Suppose there is no such £&. Then (= and ( are
visited at stage v. Let § C o~ be the maximal 0-node if any. Suppose § exists. Then 4§ is
visited since {~ (= o) is visited. Towards a contradiction assume a$ . Then § cannot be

visited unless Case 5 holds at §~ at stage v. Note that at stage v, if Case 1 holds at §, then
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Case 1 holds at §~. Then Case 1 canﬁot hold at § at stage v. Hence Case 2 holds when §
is visited at stage v and then § receives attention, a contradiction. Now by Case 5, af |.
Otherwise ¢ cannot be visited at stage v. This is sufficient.

ziz) From the construction the only possible 8 is visited after 3 is visited is p? becomes
defined at stage s, and Case 3.2 holds at 8. By Case 3.2, a is visited. Towards a contradiction
assume a # 6. Clearly, § <z @. Then 6 is not visited at stage s unlees p® becomes defined.
Therefore p* is also defined at stage s. Let p* be set equal to z at stage s. Let z enter B
at stage u. Then u < s and r%; |=7r¢" | because z is d esignated for o at stage s. By the
same token p? was defined at some point in stage u. Observe that pg 1= p? |. Otherwise,
let p° become undefined at stage v, u < v < s. Then a” becomes undefined at stage v and
so does 7P~ contradiction. Hence p® cannot become defined at stage s because 1.

zzi) Let o receive attention at stage s. Clearly a® is destroyed at stage s unless Case 3
or Case 8 holds. Suppose one of Case 3 and Case 8 holds at . In either case some y enters
B at stage s. If a(y) 2 6, it is enough. Suppose a(y) 2 6. Hence a~ = a(y), a = §, Case 3
holds at o and p®° becomes defined at stage s. This is sufficient for zz%).

zzii) Towards a contradiction consider the least s, m and then é which witness that
zz1i) fails. Then r7,; | and a® is destroyed at stage s. Let  receive attention at stage s.

By zv), 8 2 ©™{(2,i(7))). By viii), at stage s, one of the following holds:

a) a” is destroyed for some v <, 7*{(2,#(r))).
b) 8 <t #{(2,%())) and one of Case 2, Case 3.1, Case 8 and Case 11 holds.
¢) B <r #™{(2,i(r))) and no case in the construction hold.

d) B < #™{(2,i(r))) and one of Case 1.1, Case 4 holds for 3.

Suppose a) holds. Then 7 <z, 7 or 7y 2 7 for some 7 € B(«). v <g 7. ¢ is destroyed
at stage s by (E1). If ¥ D 7 for some 7 € B(r). Then a7 is destroyed at stage s by ziiz).
Hence in either case r™ is destroyed at stage s by (E5), contradiction. Suppose one of b) —d)
holds. Let B <1, m. BY construction, ¢” is destroyed at stage s unless one of Case 3.1, and

]

Case 8 holds. However, in these two cases, a’° cannot become undefined because 7" is not

destroyed. Suppose 3 C 7. Then one of Case 1.1 and Case 4 holds. By i), ¢ | since r7,; |.
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By vi), ¢? | since ¢T |. Hence Case 4 cannot hold. Suppose Case 1.1 holds. Then a® cannot
become undefined because 7™ is not destroyed. Suppose 8 2 7 for some 7 € B(r). Then by

zz1), one of the following holds:
i) a7 is destroyed.
ii) k™ enters B and p” becomes defined at stage s.
iii) some y enters B with a(y) 2 7.

Since 7™ is not destroyed, ¢) cannot hold. Suppose ¢:) holds. By Case 3.1, a’ is not
destroyed at stage s. Suppose iii) holds. By Case 3.1 and Case 8, a® cannot become
undefined because is not destroyed at stage s. This is sufficient.

zziit) By wiii), it is clear that ad is destroyed at stage u unless at stage u one of the

following four cases holds:

A) B2 €& or B <&, and one of the Cases 3.1, 8, and Case 11 holds at S;
B) 8D €or B <€, and Case 2 holds at 3;
C) £ C Bor B <&, and one of Cases 1.1, 4 holds at 3;

D) £ C B or B <y &, and no case in the construction holds.

Suppose Case 4 holds at 3 at stage u with £ C 8 or B < £. By (d), in either case, § C 3
or B < §. By Case 4 of the construction, a® is destroyed at stage u.

Suppose Case 1.1 holds at stage u. By (d) we see that there are three possibilities: 8 c ¢,
B <z 6,and 6§ C B. Let B C £. Since at is destroyed at stage u, by z#i4) for each 0-node
7 C &, if a |, then a”™ becomes undefined at stage u. From this fact and by (e) there is no
T C é such that 7 € C[u]. By (f), there is no 4 such that £ C v C y*((2,4(v))) C 6 and
is defined at stage u. Hence by Case 1.1, a® is destroyed at stage u. Let 8 <z, 6. It is clear
by Case 1.1 that there exists a 0-node 7 D f3, ay | and a™ is destroyed at stage u. By zi),
a® is destroyed at stage u. Let 6§ C 3. Clearly af is destroyed by Case 1.1.

Suppose Case 2 holds at stage u. Let 8 <, £. Clearly a® is destroyed at stage u. Let
B DE By(d),B <r boré C . By Case 2, in either case a® is destroyed at stage u.
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Similarly, if Case 11 holds or no case holds at (8 at stage u, we see that a® is destroyed at
stage u.

Suppose Case 3.1 holds at stage u. Since a is destroyed, either 8 D £ or 87((2,i(87))) <¢r
€. Let B~((2,i(87))) <z & Then B~2((2,i(87))) <z 8. By (e), (f) and Case 3.1, @® is
destroyed at stage u. Let 8 D £. By (d), either B D 6 or 8 <z 8. Also, if a® is destroyed at
stage u, by Case 3.1 a7 is also destroyed at stage u for each 0-node 7 C £ with a] |. By (e),
there is no 7 C § with 7 € C[u]. By (f), there is no 7 such that £ C v*{(2,4(y))) C é and
7 is defined at stage u. Hence a® is destroyed at stage u if 8 D & or B7((2,4(87))) < 6.
Suppose § D @ for some 0 € A(8~) with § <r 6. By Case 3, there is a designated number
for B at stage u. Then p? is defined at stage u, which contradicts (¢). For Case 8 the
argument is similar to that for Case 3.1 but simpler; we leave it to the reader.

zziv) Without loss of generality it suffices to consider v with |y| maximal such that
7 E€Cy, 7¢€Cop1
° r;’;l 1.

Since v € Cy, 77~ |, and 77" is not destroyed in stage v, the first two conditions in the

definition of C,4; for v hold. Because ¥ ¢ Cy+1, there exists an (n, j)-node g such that

e YCBAF<Ii(),

o there ezxists y € B,y with a(y) D B which entered B after 7 attained its value at

stage v,
o for each 0-node 1 such that vy C n C B and j(n) < j, n & Cyt1-

If y enters B at stage v, then desired conclusion is immediate. Suppose y € B,. Because
v € C,, there exists a (least) 0-node 7 such that vy C n C B, j(n) < j and n € C,. Suppose
r7 is not destroyed at stage v. Note that & C,41. This contradicts the maximality of |y|.
Therefore 7~ is destroyed at stage v. By iv) and zi7), at stage v either ¢" is destroyed or
a” is destroyed for some 7 € A(n~). Towards a contradiction assume that a™ is destroyed
at stage v for some 7 € A(7™). By ziit) and 7v), a” and then 7 are destroyed at stage v,
a contradiction. Hence ¢” is destroyed at stage v. By i), the destruction of ¢7 at stage

v is caused by one of the following;:
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A) a node o <z, 7~ receives attention;
B) ¢ is set equal to 1 for some € with €*{(2,%(¢€))) < n~;
C) p°® is destroyed for some € C ~;

D) a is destroyed for some € <z ™.

Consider stage v. Suppose A) holds. There are two cases:

Case 1. & <r v~. Since ¢” is not destroyed at stage v one of Cases 3.1, 8 holds and
p™ is defined for the unique 7 such that # C ¥ and 7~ = a N+v. But in this case, ¢7 also
cannot become undefined by Case 3.1 and Case 8.

Case 2. Otherwise. Then o 2 7 for some 7 such that 7 € B(y~) and = < v, which is
the desired conclusion.

Suppose B) holds. By the construction we know that at stage v, k¢ enters B. Let o
receive attention at stage v. Clearly, ¢ C a. If ¥ C a, we are done. The only other case
is @ < 7. Then €*{(2,i(¢))) < 7 and so €*{(2,i(¢))) < v~. In this case, ¢’ and 7" are
destroyed at stage v, contradiction.

Suppose C) holds.- Then either ¢ C v~ or v C €. Let € C 4v~. When p° becomes
undefined, ¢ becomes undefined by (E4), a contradiction. Let v C €. Since p° is destroyed,
a‘ must have been destroyed in stage v. Hence a” is destroyed at stage v by z:¢), which
means that 77" is also destroyed, contradiction.

Suppose D) holds. Clearly, € <z, 1. So when a° is destroyed at stage v, a” and then a”
are destroyed by ziit). This yields the destruction of 77~ at stage v, contradiction. This
completes the proof of (a). The argument for (b) is similar. We leave it to the reader.

zzv) Towards a contradiction consider a 0-node v with |y| maximal such that
® Y€ C[”]} 7 ¢ C‘U+1)
) 7‘3_,__1 l.

As in the proof of zziv) there is a 0-node 7 D 7 such that 5 € C[v] and 1 &€ Cpt1. By the
choice of 7 we know that 7 is destroyed in stage v after C[v] is defined. By iv) either ¢

or one of a™ (7 € A(n~)) is destroyed in stage v. But the destruction of a” for (x € A(77))
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implies the destruction of a” by ziii). By iv), 7 is also destroyed, a contradiction. Hence
¢" is destroyed after C[v] is defined. By Cases 1.1, 3.1, and 8, no ¢’s can become undefined
after C[v] is defined in the main part of the construction. Therefore ¢ is destroyed after
the main part of the construction, i.e., it is destroyed by one of (E1) and (E4). Suppose
¢"” is destroyed by (E1) because a® has been destroyed in the main part of the construction
for some § <z, 7~. Whether § <z, v~ or not, 7~ is destroyed, a contradiction. Suppose ¢"
is destroyed by (E4) because p® has been destroyed for some § C n~. Note that af is also
destroyed since p’s can only be destroyed by (E£3). Whether § C 4~ or not, #*" is destroyed
in stage v, a contradiction.

Towards a contradiction consider a 0-node v with |y| maximal such that ¥ € C,4+; and
v ¢ C[v]. Note that rj; | since ¥ € Cy41. As in the proof of zziv) there is a 0-node 7 D ¥
such that € C,4; and 77 & C[v]. This contradicts the maximality of |y|. This completes
the proof of zzv). B

5.2 Lemma. Lett < s. The following are true whenever the parameters mentioned are

defined provided that cf, is also defined for each pair (£,v) such that kf is mentioned:
) §< o=k < k2.
i) §<paVeaecCé= a<al.
i) a<PVPCa= k¥ <d’.
w) § < o => af < k2.
v) a™(2,i(a))) < B = 1¢ < KV (Im)[x C B AT 1= 2% U],
vi) K < rg.

vii) Let € be a 0-node and 8 be an i-node for i < 1. Thene C a(p®), B <t B~{(3,i(B))) <L
a(af), and a(aP) D & where § is the mazimal 0-node C 3 if any.

viii) a] < pP < af for all B, v such that v~ = = and v <1, B.

iz) Let a2 < af and a® be destroyed at stage s. Then aP is destroyed at stage s.
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Proof. 1) Suppose § <1, a. When ¢? beéomes defined at a stage v, § receives attention and ¢
becomes undefined by Case 4. Whether ¢ is destroyed or not, if k* is defined subsequently,
then by Case 4 we have kS < k%. So k¢ < k% whenever ¢{, cZ are both defined. Now suppose
6 C a. Whenever a is visited ¢’ is defined by 5.1 vi). So by Case 4, when ¢* becomes
defined, we have k® < k. But, if ¢’ is destroyed, so is ¢* by 5.1 443). Also, k{ < k$. This is
sufficient.

ii) When a® becomes defined at stage v, a®* becomes undefined by Case 2. Now if a®
becomes defined at a stage > v, then by Case 2 we have a$ +1 < @®. This is sufficient.

ii) When ¢® becomes defined at stage v, a® becomes undefined. If a® becomes defined
subsequently, k%,; < a®. This is enough.

iv) Let 6§ <z, . When @° becomes defined at stage v, ¢* becomes undefined. If ¢* is
defined subsequently, then by Case 4 we have a’ < k* whether or not a’ has been destroyed.
So af < k& whenever al, k¢ are both defined.

v) Let r* be set equal to r{ at stage v. Note that whenever a node <j # receives
attention ¢@ is destroyed unless p™ is defined for some 7 C 3. There are two cases.

Casel. a <y B. HcPis destroyed at stage v, then whenever ¢ becomes defined at stage
> v, kP is given a vlaue > 1%, = r{. ’Otherwise, we have © C f such that p” is defined
when « is visited in stage v. Either p] |, or p” is destroyed at some stage > v and < ¢. In
the latter case ¢® is destroyed in the same stage by (E3) and so we again have the desired
conclusion.

Case 2. a C B. Case 7 holds at o in stage v. If Case 8 also holds at a, then ¢? is
destroyed since o((2,i(a))) < B, and we finish as in Case 1. Otherwise, Case 9 holds and
a node <y, (B receives attention. Again we finish as in Case 1. This completes the proof of
).

vi) To see k{ < r2, notice that, whenever a is visited at a stage v,t < v < s, and Case
7 holds, then c§ is defined. So by Case 7, when r* becomes defined, we have k& < r&. But
destruction of ¢§ implies the simultaneous destruction of & by (E5). Also, kf < k2. This
is sufficient.

vii) € C o(p®) is clear from Case 3. Also it is obvious that 8 <p 67"((8,i(8))) if
B eB(B7).
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Let a? |. Towards a contradiction assume that B~(3,i(B))) £L a(a?). Let v denote
a(af), and n be the current value of a®. Note that 7 is not a 1-node. Let t be the stage at
which k7 was set equal 7 and s be the stage at which a® was set equal n. Then ¢ < s since
n enters B after stage t and a? can be set equal n only if n is already in B. We examine
four cases:

Case 1. y < ™. By i),n =k} < kf™, and by iii), n = a® > kf™, a contradiction.

Case 2. v D 8~ and 7 <, B. By iii), n = k] < @ = n, a contradiction.

Case 3. v O B. Let 6 be the greatest 0-node such that § C . If k7 becomes defined at
stage t, a$ is defined. Since 8 C 6 C v, by Case 4 of the construction, n = k. < al. But
a < a? = n by 4i), which contradicts n < al.

Case 4. Otherwise. Then v D ¢ and 8 <z, {, where either { € A(87) or { = 8~"{(n,#(B)))
where n € {2,3}. Let v < s be the greatest number, if any, such that a? |. By Case 2 of
the construction, af +1 > k7, for w < v. Hence v < t < s, and at stage ¢, { is not visited by
5.1 zvii). Since ( is not visited and + is visited, at stage ¢ there is a jump to some 0-node 7,
¢ C 7. By the condition for a jump, a} |. By 5.1 zwiii), af 1. This contradicts the choice
of v. This completes the proof of 3-"((3,i(8))) <z a(aP).

Let & be the maximal 0-node C 8 if any. From Case 2 it is clear that § C a(a?). This
completes the proof of viz).

viii) Suppose that n is the greatest stage < s at which p® becomes defined. Then a? |
and p? is set equal k¢ for some § D B by Case 3. Let v < n be the stage in which K? is set
equal to k§. Let ¢ be the greatest 0-node C §, which exists since § O 3 and 3 is a 0-node.
By Case 4, a |. By ii), a5 < a8. So p? = k8 < af < df by iii).

Let v~ = 8~ and v <z 8. By vii), a(p®) 2 B. Notice that pf = k2(P®). With the above
notation, if @] |= a], then by Case 4, kf,+1 > a]. Towards a contradiction assume a] # a;.
When a” gets the value a), af and ¢f, if defined, are both destroyed which means that k¢
must already have entered B. This makes it impossible for p? to be set equal k{ since a? is
set after k enters B. This is sufficient.

iz) By 1), a <t B or B C a. By 5.1 zii), it is clear. W

Before we show the next lemma, a ‘cla.ss D of 0-nodes is defined which is related to the

class C: A 0-node £ € D at some point in stage s if it the following conditions:
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i) ot |,
ii) there exists z € B with a(z) D £ which entered B since a° was set,

iii) £ ¢ C.

Remark. If £ € D at some point in stage s, then af |.

5.3 Lemma. i) Let B be a 0-node which is visited at stage t and af l. Then for eqch ~y
such that v = B or v is preferred to 3, at some point during stage t before 3 is visited,
the following hold:

(a) ™7 is defined.
(b) p° is defined for each £ € A(y™) with v <r €.
it) There are no nodes T, © and stages t(r), s, s(r) and number 2(r) such that
(a) TLL T,
(b) t(r) < s < s(),
(¢c) T receives attention at stage s,
(d) p™ is set to 2(7) at stage s(w) and z(x) entered B at stage t(r).
1) Let o, i and s satisfy: ¢ < i(a), a™{((6,%)) € T and (6,%) does not occur in a. If @

is visited, but there is no jump to o at stage s, and y € B, — C with o(y) <g a or
a(y) D a, then y € A0 U AYL,

w) Let 8 be the mazimal 0-node C c. If a is visited at stage s, then a? | or B = a and

a® becomes defined at stage s.
v) Suppose that at some point in a stage, £, o satisfy

e fCa
e fcC
e there is no 0-node € such that § CeCa ande € C

o there ezxists a number y with a(y) D a which entered B since " was set.
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If a is an (n,j)-node, then j(£) < j.
vi) Let § be a 0-node and a$ |.

(a) Let u, § € Dyy1 and £ satisfying
e £CHEDy, u<s;
e £ is the maximal node C § such that £ € Cpp1;
o Lt Lyl =df;
e there ezists y € Byy1 with a(y) D § which entered B since 7‘1":_1 was set;
e af is destroyed at s.
Then a° is destroyed at stage s.
(b) o pilAcl |=é€C.
o [a’,c®7,p® all defined when C[s] is defined | => é € C[s].
(c) Let p° be defined at some point in stage s and (It € A(67))[r <z 8]. Then p® is

destroyed at stage s implies that a™ is destroyed for some = € A(6™) with T <r, 6.

]

(d) Suppose there ezists y € B, with a(y) D § which entered B since a® was set equal

aé, and some node D & is visited at stage s. Let o be the first node D & which

s’

is visited in stage s. Then p* becomes defined in stage s, and a # & implies
je) < 3(6)-

(e) Let z be designated for é at some point in stage s. Then z is the first number to

5

enter B since a] was set.

(f) Suppose that in stage s a D § receives attention, one of Cases 3.1 and 8 holds,
and § € C[s]. Then 8, |.

vii) There are no stage w and node é such that

§ €Dy A6 €CyuaV (Clw]] NS €Clw])].

viii) At each stage s, one of the Cases 1-12 holds at the node which receives attention at

stage s.

i) Iff |>1,rf | and 'rf_H T, then cf_H T.
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z) Let §, B and s satisfy that af |, 6’3 B, 6 <z BMN(2,i(B)), 8 | and B |> 1. Ifaﬁ_i_1 T,
then a§+l 1 for each € € A(B).

zi) Let 6§ D BN(2,4(B)))- If a® is destroyed in stage s and P | at some point in stage s,
then rf Tl

zii) Let x be enumerated in C at stage s and o receive attention. Then z = af or z = kS.

Further, if z = k¢ and is not of the form a? for any v, then Case 11 holds at o and
either § = a or 6 D B for some B € A(a).

ziii) o (V6,B,t,8)[6 # BAal | Aa? |=> af # df],
o If af |, then a8 ¢ C..

Proof. i) Suppose 7 is visited at stage 2.

Case 1. " becomes defined in stage t. Then Case 9 holds at ¥~ and v = max A(7y7).

Case 2. 7 |. If we jump to 6 € A(y~), then p® becomes defined and either this is the
end of the stage or the construction passes ¢ = max{r € A(y~) : * < é}. By 5.1 ziz), p°
does not become defined and so no further node in A(y™) is visited. So 7 is either é or e.
Since p° becomes defined there exists z which is designated for §. From the definition of
designation, p™ | for all * > §, 7 € A(y™).

Suppose 7 is not visited at stage t. Let @ be the first node D v which is visited at stage
t. 0 exists since v C B and 3 is visited at stage . Note that at stage ¢ we jump to §. Note
that we have § = B or 8 D max{6 : 6 € A(6~) A6 <r 6}. By Lemma 4.5, v is preferred to
6 if B # 6. Hence in either case, 7 is preferred to . By Case 1 in the construction, a) and

b) hold when the construction jumps to 6.

i1) Towards a contradiction assume i) fails. Let 7, 7, t(7), s, s(7) be chosen to satisfy
(a) — (d) and to minimize first |7 N 7| and then s. Let {, 6 be the least nodes respectively

suchthat rAntCdCrandTN7T C{C.

Claim 1.

a) (=7".

b) 8 is not visited at stage s.
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Proof of the Claim 1: a) Towards a contradiction assume that a) fails. Then 7 <y =~.
At stage s, T receives attention, so ¢ is destroyed unless p¢ is defined at stage s by 5.1
ii(a)). Suppose p¢ is defined at stage s. At stage s(7), 7 is visited. By 5.1 zv), p¢ is
destroyed between stages s and s(7) and ¢™ is destroyed at the same time. But by 5.1 vi),
c’s'(;) l. So at some stage u, s < u < s(7), ¢™ becomes defined and at the same stage a™
becomes undefined by Case 4. At stage s(r), p™ is set equal to 2(7). But by Case 3, 2(7) is
designated for 7 at stage s(r) which means that af ;) and af, are both defined and equal.
This contradicts a™ being destroyed at stage u. This is enough.

b) Towards a contradiction assume that b) fails. By a), 7~ = 7N 7. Because in stage s,
0 is visited. By ), p” is defined at some point in stage s before 8 is visited. So p™ becomes
undefined at some stage u, s < u < s(7), and at the same stage a” becomes undefined
since p” only becomes undefined through (E3). This contradicts ™ remaining unchanged

between stages ¢(7) and s(7). This completes the proof of the Claim 1.
Let € be the first node O @ which is visited at stage s. By Claim 1 b), € # 6 and there

is a jump from some node C 7 N 7 to €, and then p° becomes defined when ¢ is visited at
stage s. Let p° be set equal to z(€) at stage s which entered B at stage t(¢) < s. By the
minimality of s, t(¢) < t(x). Clearly #(€) # t(r).

Let v be the least stage such that v > #(€) and at which some node D o is visited for
some o € A((”) and { < 0. Note that v exists and < #(r). Fix such node o.
Claim 2. At stage v, there is no jump from a node C TN 7 toanode D TNm.
Proof of the Claim 2: Towards a contradiction assume that at stage v there is a jump from
some node C 7N to some node D TN 7. Let 7 be the first node D 7N« which is visited at
stage v. Then 7 is a 0-node and p” becomes defined at stage v. Note that o < 7 otherwise
nodes 2 o cannot be visited at stage v. Let the number which is set equal to p” at stage
v have entered B at stage () < v. Clearly t(n) # t(€). But ¢(n) < t(¢) contradicts the
minimality of s since ¢(7) < t(€) < v (= s(n)). t(¢) < t(n) contradicts the minimality of v.
This completes the proof of the Claim 2.

Now let ¢ be the maximal stage < ¢(7) at which there is no jump from anode C 7N«
to a node O 7N 7 and some node o is visited at staget with 0 D6 € A(rN7)and 7 <o

for some 6.
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Claim 3. No node D 0 is visited at a stage w such that t < w < s.

Proof of the Claim 3: Towards a contradiction assume that there exist a stage w and a
(least) node 8 such that t < w < s, 7N7 C B, B <r ™ and S is visited at stage w. By the
minimality of s, w < #(r). Clearly w # t(7). Let u be the least stage > w at which some
(first) node 7 is visited with 7N 7 C nand 7 < 7. Note that u exists and t < w < u < #(7).
Then by the choice of #, at stage u, there is a jump to . Let p” be set equal to z(n) at
stage u which entered B at stage t(n) < u. By the choice of u, #(7) < w. Clearly #(n) # w.
Hence t(n) < w < u (= s(n)), contradicts the minimality of s and yields the conclusion of
the Claim 3.

Below we show that Case 1 in the construction holds at 7 N = at stage . To see that
Case 1 holds at stage t at 7 N 7 reading j(¢) for 7, z(¢) for z, and € for B we need to show

that for each 0-node 4 which is preferred to ¢, the following hold:
A) 77" is defined at some point in stage t when 7 N7 is visited,

B) p° is defined at some point in stage t when 7 N 7 is visited for each node o € A(y™)

such that v <z o.

" By Claim 3, for each 0-node 74 such that 7 N7 C 4 C € and 7 is preferred to ¢, the
following hold:

oy L,
e p? | for each node o € A(y~) such that v < 0.

Fix a 0-node ¥ C 7 N7 which is preferred to . If v is visited at stage ¢, then A) and B)
hold by ¢). Suppose v is not visited at stage ¢, then because 7N 7 and § are visited at stage
t there exists a 0-node n such that y C 9, n~ C7Nm, n= (uB)[B € A(n")ATN7T <L B],
and we jump from some node C v to n. By Lemma 4.5,  is preferred to 7, thus A), B) hold
by ?).

Since é is not a 6-node, it is not visited at stage ?, contradicts the choice of t. This

completes the proof of iz).

i11) Towards a contradiction assume there are ¢ and y which witness that 7i7) fails. Let y

enter B at stage u. Let € receive attention at stage u. Note that € exists, and either ¢ = a(y)
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or €= = a(y). Let 4 be the (n,i — 1)—1iode C a for n € {2,3}. Note that v # a. Since (86, 1)
does not occur on a, a <z, Y*{(6,7)). Then there exists a jump from some node C v to some
node 7 >1, a and ™ D v at stage s, because a is visited at stage s. Note that a(y) < .
Let v be the least stage > u at which some node >, a(y) and D « is visited. Then v < s
and there exists a jump from some node C v to 7 such that ¥ C 7 and o(y) <z 7. Hence
P™ set equal to 2(7) at stage v. Let z(7) enter B at stage (7). Then by the choice of v,
t(r) < u. Taking = = 7, t(x) = #(7), s(7) = v, T = € and s = u we have a contradiction
with 42).

iv) First we show that, if @ = 8 and af 7, then a® becomes defined at stage s. Suppose
a? 1. Then by the construction the only possibility of visiting 8 at stage s is that Case
5 holds for 5~ and we pass to §. Towards a contradiction assume that Case 1 in the
construction holds at 8 at stage s. Choose the least 7 and then the 2 such that they witness
that Case 1 holds at 3 at stage s. By iii), z € AY° U AL! since 8 is a 0-node. Suppose z is
a é-designated number for some 6 O 8 with ¢ = j(§). Then Case 1 holds on S~ at stage s.
However, a jump from 8~ to § is impossible since af T. This is a contradiction. By Case 2,
a® becomes defined.

Let 8 C a. Consider stage s. Suppbée B is visited. Then a? | is defined by the previous
case. Now suppose f is not visited. There is a jump from some node C 8 to n O B. Since
o is visited either n = a or a <z 7. In either case there is a 0-node 4 such that 8 C v C a,
a contradiction.

v) Towards a contradiction assume that j < j(£). Because at some point in a stage £ € C
and there exists a number y with o(y) 2 o which entered B after 7~ was set, there exists
an 7 such that £ C 7 C B and n € C at this moment, a contradiction with the choice of &.
Hence j(€) < .

vi) The proof is by induction first on s and then on |4] and finally on |£|.

For a) we apply zziii) of 5.1. So our task is to verify that the hypotheses (a) — (k)
of zziii) are all satisfied. Let S receive attention at stage s. Now (a) — (¢) and (h) are
immediate from our present hypotheses.

Note that j(§) < j for each (7, j)-node with £ C o C é by v).
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Claim 1. Let ¢ be the last stage < u é,t which some y entered B with o(y) 2 é. Then for
all v,t < v < s, if 7 is visited at a stage v, it is impossible that £ C 7 and either 7 C § or
§<pT.

Proof of Claim 1: We proceed by induction on v.

Consider the first node 7 visited at stage v such that £ C 7 and either 7 C éd or § <p 7.
Suppose £ is visited at stage v. By (d) of the induction hypothesis, p¢ becomes defined at
stage v. In stage v, the construction either stops at £ or passes from £ to a node { <, £.
Hence 7 is not visited, contradiction. So £ is not visited at stage v. Thus there is a jump
to 7 and p” becomes defined at stage v. Suppose § <1 7. Let p” be set equal to z(7) at
stage v. Then 2(7) entered B at a stage t(r) < v. Clearly, t(7) # t. If t{(t) > t, then
the hypothesis of induction on v implies that in stage #(7) no node 2 7 is visited. This
contradicts a(z(7)) 2 7. Therefore #(7) < t. Now %) yields a contradiction. We take 7 for
7, #(7) for t(x), 2(7) for 2(x), t for s, the node 2 7 receives attention in stage ¢ for 7, and
v for s(7). We conclude that § <y, 7 is impossible.

Suppose £ C T C 8. By (d) of the induction hypothesis, j(7) < j(£€). By v), j(€) < j(7),

a contradiction. This completes the proof of Claim 1.

In Claim 1 taking v = s we see that £ C § implies 5 € 6 and 6§ £ 5. Hence £ C 3
implies 8 < d or 6 C B. If £ = B, then by the induction hypothesis, taking £ for §, we
have from (d) that p¢ becomes defined in stage s. Since af is destroyed in stage s, so is c¥,
contradiction. Hence hypothesis (d) of zziii) of 5.1 holds. To check that the hypotheses
(f) and (g) of zz2:z) hold we argue as follows.

At stage t, a node 2D 6 receives attention. Applying zv) of 5.1 at stage ¢ we see that 77
is undefined throughout stage ¢ for each o such that 6((2,i(c))) C . By Claim 1, o is not
visited at any stage > £ and < s. Hence (f) of zz4i7) of 5.1 holds. Similarly we see that (g)
of zzi#i) of 5.1 holds.

It only remains to establish that hypotheses (e) of zz#i7) of 5.1 holds. Towards this goal

We prove:

Claim 2. Let £, 5, v satisfy:

OE'QECﬂ,i'GCwWG'Du,u<vSS
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e for each (n,j)-node € with £ C ¢ C n, j(€) <j

Then 9 & Cyt1 if v < s and 7 & C[v] if C[v] is defined.
Proof of Claim 2: Towards a contradiction consider the least v and then the maximal |7

for which the Claim 2 fails, i.e., n € D, N (Cy41 U Clv])).

Subclaim 1. At stage v, there is no 7 which is visited with £’ C 7 C 7.

Proof of Subclaim 1: Consider the first node 7 visited at stage v such that & C 7 C .
Suppose &' is visited at stage v. Applying the induction hypothesis with £ for 8, by (d)
we see that p¢' becomes defined at stage v. In stage v, the construction either stops at
€' or passes from £’ to a node <z £¢'. Hence T is not visited, contradiction. So &' is not
visited at stage v. Let { D &' be the first node visited at stage v. Thus there is a jump to
¢ and p¢ becomes defined at stage v. Applying the induction hypothesis in the same way
as before, j({) < j(¢'). Note that either 7 = {, or 7~ = ¢~ and 7 <z (. In either case
J(1) £3(¢) < j(€¢') which contradicts the assumption of Claim 2. This completes the proof
of Subclaim 1.

Below we reduce a contradiction in the case C[v] exists and € C[v]. For € Cpa
(v < s) is similar. We leave it to the reader. Because 9 € C[v], there exists a 7-designated

number when C[v] is defined. Now we split into two cases.

Case 1. A number z designated for 7 enters B at stage v. In this case we will deduce
a contradiction. Let T be the first node D & which is visited at stage v. Applying the
induction hypothesis exactly as above we see that p” becomes defined at stage v and that
T = ¢ implies that j(7) < j(&'). If r = £, this implies that no node D 7 is visited in stage
v, contradiction. Hence ¢ C 7 and j(7) < j(¢'). From Subclaim 1,7 € 7.

To deduce a contradiction assume that 7 <z 7. Then 7~ C 7. Let 8 be the least node
such that 7= C @ C 7. Then 6 is a 0-node and j(0) < j(7) < j(&'). This contradicts the
choice of & and 7. Hence 7 C 7, and p” becomes defined at stage v. Let p” be set equal to
z(T) at stage v which entered B at stage t(7). There are two subcases:

Subcase 1. There is no (n,k)-node € such that » C ¢ C 7 and k < j(7). Clearly j(7) is
active at 7~. Whether 7 = (po)[o € A(77)] or not, z cannot be an 7-designated number

because the condition ¢:2) in 4.3 fails.
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Subcase 2. Otherwise. Let € be an (n,k)-node such that  C € C 7 and k is least
possible. Clearly n € {0,4,5} and k£ < j(7) < j(§'). Let » = 0. From the choice of ¢, any
J < j(e) which is active at €~ is also active at 7~. From 4.4 one can easily check that € is
preferred to 7. Since in stage v the construction jumps from a node C ¢’ to7, & C e C 7,

and ¢ is preferred to 7 we have:

o7 |

e pf | for each o € A(e™) with e <y 0.
Let w be the least stage such that
ot l=1
o pl11 |=17 for each o € A(e™) with e <y 0.

By 5.1 ziz), € is visited at stage w. Note that p° cannot become defined at any stage > w
and < v. Otherwise 7 cannot be visited at stage v. Now by 5.1 zz1), either a¢ is destroyed
at stage w or some y enters B at stage w with a(y) 2 7. By choice of w, a° cannot become
undefined between stages w and v. Thus y enters B at stage w with a(y) 2 €. Suppose
y is an e-designated number at stage w. Then y is an e-designated number at stage v and
at stage v, the construction jumps to € rather than 7 since if v is preferred to €, then 7 is
preferred to 7. Therefore y is not e-designated at stage w. Since y enters B either Case 3.1
or Case 8 occurs at the node which receives attention in stage w. Since a° is not destroyed
in stage w there is a maximal 0-node { C € such that { € C when u receives attention. By
v), j(€) < j(¢). Hence ¢ C &'. Note that j(¢) < j(7). By (&) of the induction hypothesis,
T cannot be visited at stage v unless and until a¢ is destroyed between stages w and v, say
at m. Towards a contradiction assume that one of c5,, cfn 41 is undefined. Then by 5.1 vi),
one of ¢¢, cfn 41 is undefined. Since ¢ |, ¢¢ becoems defined at a stage z, m < z < 5. Thus
by Case 4, a¢, a¢ are destroyed at stage z. Whether 2 < v or v < z, this is a contradiction.
Hence both ¢, cfn 41 are defined. Now applying (a) of the induction hypothesis by taking
s=m,u=w, £ =(and § = ¢, a is destroyed at stage m, which a contradicts the choice
of w. This completes the case » = 0.

Let n» € {4,5}. Clearly z cannot be an n-designated number because the condition #i7)
in 4.3 fails.
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Case 2. Otherwise. Just before stage v there exists z € B which is designated for . 77 |
because " | in stage v and #~ is not visited at stage v by Subclaim 1. Because 5 € D,
and the first two conditions in the definition of C, hold for 7, there exists an (m, k)-node v

such that

e nCYNk<j(n)
o there ezists z € B, with a(z) D v which entered B after v was set equal v
e for each 0-node T such that n C 7 C v and j(1) <k, T € C,.

Because 7 € C[v], there exists a (least) 0-node 7 such that  C 7 C 7, j(7) < k and 7 € C[v).
T € D, because a] |, T € C, and 2z with a(z) 2 v entered B after 7" attained its value at
stage v — 1 and hence also after a” attained its value at stage v — 1.

To complete the proof of Claim 2 we will show that 7 satisfies all the assumptions about

7. Since  C 7 and T € C[v], the choice of 7 is thereby contradicted.

Subclaim 2. For each (7, j)-node @ such that & C e C 7, j(§') < J.
Proof of the Subclaim 2: If £ C o C 7, then desired conclusion is immediate from the
hypothesis of Claim 2. Let n C @ C 7. By choice of v, there exists a number 2 with
a(z) 2 v O a O n which entered B after 7 attained its value at stage v — 1. Note that
n € C[v] and by the choice of 7, there is no ¢ such that 7 C € C 7 and € € C[v]. Hence by v),
j(n) < j. It follows by the hypothesis of Claim 2 that j(£") < j(n) < 5.

Next we want to show that j(§') < j(7). First we show that:

Subclaim 3. For each 0-node 8 and w, if 3 € D,, and 8 € C[w], then there exists z with
a(z) 2 B which enters B at stage w.

Proof of the Subclaim 3: Fix w we proceed it by reverse induction on |G|. Suppose a -
designated number enters B at stage w. It is enough for Subclaim 3. Otherwise. Let y be a
B-designated number at stage w. Hence y € B,,, and then 78~ is equal the value of %~ in
stage w. Because 3 € D,, and the first two conditions in the definition of C hold for 3 just

before stage w, there exists an (n,7)-node a such that

e BCanj<iB)
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o there exists z € B, with a(2) D o which entered B after r*~ attained its value at

stage w — 1
o for each 0-node m such that 8 C © C a and j(7) < j, T € Cy.

Because 3 € C[w], there exists a 0-node 7 such that 3 C 7 C o and 7 € C[w]. Then by
the induction hypothesis, there exists z with a(z) 2 ©# D 8 which enters B at stage w. This

completes the proof of Subclaim 3.

Remark. By Subclaim 3, we know that, there is z with a(z) 2 7 which enters B at stage

v.

Now we return to the proof of Subclaim 2 and, in particular, to showing that j(¢') < j(7).
Towards a contradiction assume that j(7) < j(£'). Let ¢ be the stage in which ¢~ was set
equal to r§ . Suppose there exists y € B, — By such that a(y) D 7. Because ¢’ € C,, there
exists a 0-node v such that & C ¥ C 7, j(v) < j(r) and v € C,. Note that v # 7 since
T € C,. Since Subclaim 2 has already been proved for a # 7, j(v) < j(7) < j(¢') < (%),
a contradiction. Hence no such y exists. Since 7 € D, there exists tp < v such that at
stage to a number z enters B with a(z) 2 7 and af, = a7 |. Fix such #p and z with to least
possible. From above ty < t. We will complete the proof of Subclaim 2 by showing r¢"~

cannot become defined in stage ¢ thus contradicting the choice of t. There are two cases.

Case 1. 7 € C[tg]. Since a” is not destroyed at stage o by whichever of Case 3.1 and Case 8
enumerates z in B, there exists a maximal o C 7 such that o € C[tg]. Note that by zv) of
5.1 there is no 7 such that r™ is defined at some point in stage ¢, and 7*((2,%(x))) C 7. By
v), j(0) < j(6) for each 0-node @ such that o C 6 C 7. In particular, taking § = 7 we have
j(o) < j(7), which gives j(o) < j(¢'). Since j(&') < j(¢) for each 0-node € with ¢’ CeC T,
we have o C £. By inspection of Cases 3.1 and 8, ¢ which is defined since o € C[t]
remains defined throughout the main part of stage #o. Further, at the end of the stage ¢~
is not destroyed by (E1) since no a° is destroyed with € <z, 6~. Also, by zv) of 5.1, ¢ is
not destroyed by (E4). We conclude that ¢7,; |. Since o € C[to], r°  and a° are defined
just after z enters B and are not destroyed in the main part of stage t9. By inspection of
(F1) a° is not destroyed at the end of stage to. Towards a contradiction suppose 77 is

destroyed in the ending of stage o. This must be by (E5). Hence a® has been destroyed
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for some € € B(o~). By zii) and ziii) of 5.1 we can choose such € € A(o™) with o < €.
Fix the least possible e. Since o € Clto], p° |. By (£3), pf,41 T. By (c) of the induction
hypothesis, a™ is‘ destroyed in stage to for some 7 € A(0~) with ™ <z, €. By the choice of ¢,
7 <r o. Finally, by z4ii) of 5.1 this implies that a is destroyed in stage #o, contradiction.
Hence 7§ ,, is defined. By zzv) of 5.1, 0 € Cto41.

Suppose af, = af. Let o be the first node 2 o which is visited in stage t. a exists
since £~ is visited in stage t. By the induction hypothesis, taking o for é and ¢ for s, we
have from (d) that p® becomes defined in stage t, and o # o implies j(a) < j(o). Since
€'~ is visited in stage ¢, either o C ¢~ or ¢ <r a. Suppose a C £~. By zv) of 5.1, '
cannot become defined in stage . Suppose £ <z, a. Then there exists a 0-node # such that
oCOCE,0" =a and § <z a. Then j(o) < j(8) < j(a) < j(o), a contradiction. Hence
a7 # af. Let h be the least stage such that {o < b < ¢ and @’ is destroyed in stage h.
Since a” is not destroyed in stage h, by (a) of the induction hypothesis one of ¢f, ¢f ., is
undefined. Since o C &’ C £, by ii¢) of 5.1, one of ci, ci 41 is undefined. Hence ¢¢ becomes
defined in a stage k with A < k < s. Note that £ C 7. By Case 4 when ¢ becomes defined,
a”, a¢ become undefined, if defined. Hence k < v contradicts a;, = ay. But v < k implies

u < k < s which contradicts af = aé.

Case 2. T € C[tg]- By the argument in case 1 which shows that o € Csy 41, We see that
T € Ciy41. Let B be the maximal 0-node which is preferred to 7. By Remark 1 after 4.4,
B C &' since Subclaim 2 has already been proved for a # 7. Note that af = a;, |. Suppose
p” becomes defined between stages to and . Since p” is destroyed implies a” is destroyed
simultaneously, p7, |. Hence by zv) of 5.1, no node D 7 is visited in stage v. This contradicts

Subclaim 3. Hence p; T.

Subclaim 4. r]” =17 ;.

Proof of Subclaim 4: Towards a contradiction consider theleast stage w such that {p < w < v
and 77~ is destroyed in stage w. By iv) of 5.1, either ¢” is destroyed or a” is destroyed
at stage w for some m € A(77). Suppose ¢, # ¢f. |. By Subclaim 3, some & enters B
at stage v with a(z) D 7. By vi) and vii) of 5.1, ¢™ becomes defined in a stage > w and
< v. But when ¢”~ becomes defined, a” is destroyed. This contradicts a, = aj. Hence

¢11 l= ¢}, and some a” (7 € A(77)) is destroyed in stage w. Note that 7 € C41 sO
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P§,41 | for each € € A(77) with 7 < e. Hence by ziii) of 5.1 and (c) of the induction
hypothesis by taking w for s, a” is destroyed at stage w. This is a contradiction and yields

the conclusion of Subclaim 4.

Subclaim 5. Case 1 holds at £~ in stage t.

Proof of Subclaim 5: Let y be a designated number for 7 at stage t. y exists since 7 € Cyy41
and r{" = r] ;. Write o for £~. We will show that Case 1 holds at a reading y for z,
T for B, t for s and j(7) for i. First, j(7) < j(¢') < #(€~) = i¢(a). Suppose ¢ 1. By
vi) of 5.1, cf- 7. Hence ¢!~ becomes defined at a stage w with ¢ < w < s. But w < v
contradicts af, ., = a7 |, and v < w < s contradicts that o = a§ |. Therefore ¢ |. Clearly
a(y) 2 T D a. Since j(r) < i(a~), Case 1 holds at o if y g AI()0y 411,

We now suppose y € A{(T)’O U A{(T)’l. Fix a 0-node 7 such that eithery CTor7 > v €
A(77). Towards a contradiction assume p” is defined when « is visited.” Suppose v C a.
By zv) of 5.1, p; 1 since « is visited at stage . If p” becomes defined in stage ¢, then r*
cannot become defined in stage t. Suppose & C v C 7. Recall that for each (m,j)-node ¢
such that ¢ C e C 7, j(7) < §(§') < j. Hence j(7) is active at y~, and y~{(0, (7))} <L 7.
Suppose p} |. By zv) of 5.1, no node D T is visited in stage v. This contradicts Subclaim 3.
Therefore p” is destroyed at a stage > ¢ and < v. Hence by (¢) of the induction hypothesis,
a™ is destroyed for some 7 € A(y~) with = <z 7. Note that = < L T so @’ is also destroyed
at a stage > t and < v, a contradiction. Clearly, p” does not becomes defined in stage ¢
before a is visited since o C . For v = 7, we have already seen that p” T above. Suppose
y < T with ¥~ = 77, Fix 7 to be the maximal node in .A(y~) such that v <z 7 and p] |.
Let 8 be the leftmost 0-node in A(y~) with ¥ <z, 8. Then p¢ 1. Let p” be set equal to p; at
stage w. Since there is a y-designated number at stage w, p’ is defined in stage w. Hence
p? is destroyed at a stage > w and < ¢. By (c) of the induction hypothesis, ¢” and hence
p" are destroyed when p? is destroyed, a contradiction. Therefore py 1.

Now fix a node 6 such that 8°((2,i())) C 7. Towards a contradiction assume r? |. By
zv) of 5.1,8 ¢ a. Also 8 # a since ¢ is not a 2-node. Therefore @ C 6, and so r{ |. By zv)
of 5.1 since some node D 7 is visited at stage v, rf is destroyed at a stage w, t < w < v.
Hence either ¢f is destroyed or some a™ (7 € A(6)) is destroyed at stage w. Recall that

T3 41 =Ty - By vi)of 5.1, c®,+1 1. Therefore some a™ (1 € A(6)) is destroyed at stage w.
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Note that = <z, 7 since 8"((2,:(8))) C('r. By ziit) of 5.1, a” is also destroyed in stage w, a
contradiction. Note that there is not 0-node 8 such that &'~ C theta C 7 and j(8) < j(7).
Thus Case 1 holds at o if y € A7(7):1,

Suppose y € A/(")9, For any 0-node 7, if v is preferred to 7, then ¥ C 8 C &'~. We

want to show that
o 77 is defined,
o p”™ is defined for each * € A(n™) with v <g «.

If v is visited at stage ¢, then a] | by vi) and the desired conclusion then follows by 7).
Suppose 7 is not visited at stage ¢. Let the construction jump 8 D 4 from a node C v. By
4.4, v is preferred to . Again the desired conclusion follows by 2).

Thus Case 1 holds at o reading z for z, 7 for 8 and j(7) for i. In any case 7~ cannot
become defined at stage t. This contradiction completes the proof of Subclaim 2.

From Subclaim 2, Claim 2 fails with 7 for 7 at stage v. But we chose a particular
counterexample (7,v) to Claim 2 minimijzing v and then maximizing |7|. Further, 7 D 7

and so we have contradicted the choice of (7, v). This completes the proof of Claim 2.

Claim 3. For any 0-node o and a.ny stagevsuchthat { CoCdandu<v<s,0¢C,

and o ¢ C[v] if C[v] exists.

Proof of Claim 3: Fix a 0-node o such that £ C o C é. Suppose af 1. Then a? 1. Otherwise

af would be destroyed at a stage > u and < v, contradicting the hypothesis of (a). Hence

o & Cy, and o & C[v] if C[v] exists by z) of 5.1. '
Suppose a2 |. Then a7 = af otherwise af is destroyed at a stage > u and < s,

contradiction.

Subclaim 1. For each v such that u < v < s, if 0 € C,, then o € D,.

Proof of Subclaim 1: From the hypothesis of (a) some y € B,4; with a(y) D § entered B
since rf;l was set. Clearly y entered B after af was set since a and r¢” are destroyed
when a” becomes defined. Hence o € D, because ¢ ¢ C, and aJ = aJ. This completes the

proof of Subclaim 1.

Subclaim 2. There exists a function v — &, (v < v < s) such that for all v, w with

©u<v,w<s,
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e £ €C,

o fupn=¢

e v<<w = £,C&

@ a¢v is not destroyed at a stage > v and < s

® for each (m,j)-node € such that &, C € C o, j(&) £ 7.

Proof of Subclaim 2: First note that for each node ¢ C &, ¢§ | and ¢¢ cannot become
undefined at a stage > u and < s.

For v = u+ 1, let £,41 = €. Clearly, all conditions hold. Suppose we have &, for a
particular v < s which satisfies the above conditions. If £, € C,y1, We can let £,41 = &,.
Suppose &, ¢ Cy+1. Towards a contradiction assume that 7'5':;_-1 T. Since &, € C,, rsv— l.
But cS‘_’I—_l = ¢fv, so a” is destroyed at stage v for some 7 € A(£;). Let 7 be the leftmost
such node. Suppose 7 < §,. By ziii) of 5.1, a’* is destroyed at stage v, a contradiction.
Therefore £, < m. Since &, € C,, p7 |. p™ is destroyed at stage v by (E3) since a7 is
destroyed at stage v. By (c¢) of the induction hypothesis, a is destroyed at stage v for some
€ € A(¢;) with € <g w. This contradicts the choice of . Therefore 7'5'11 l. By zzv) of 5.1,
&, € C[v]. By zziv) of 5.1, there exist o, 7 such that a 2 7 € A(§;), ® < & and o receives
attention at stage v. Note that a7 | since al® |. By zzi) of 5.1, since a®* and hence a” are
not destroyed in stage v, some z enters B at stage v. Towards a contradiction assume that
a(z) = 7~. Then o = 7. Hence p%* is defined when C[v] is defined. By (b) of the induction
hypothesis, £, € C[v], a contradiction. Therefore a(z) 2 .

Since a®* is not destroyed at stage v, by Case 3 and Case 8 there is a maximal 0-node
¢ C &, such that { € C[v]. Towards a contradiction suppose © € C[v]. Then 7 # £, from
above. Also, p® | when C[v]is defined since 7 <y, £,. From (b), &, € C[v]. This contradiction
confirms that = ¢ Cv]. By v) for each (n,j)-node € with { C e C m, 5({) < j. So the same
is true with ¢, instead of w. By (f) of the induction hypothesis, 7'5:_1 l. By zzv) of 5.1,
¢ € Cyy1. We claim that there is no 0-node 7 such that { C 7 C v and 7 € C,4,. Otherwise,
T € Cy41 implies ], | and so 7 € C[v] by zzv) of 5.1, contradicting the choice of {. By (a)
of the induction hypothesis with £ = {, § = 7, u = v, a® is not destroyed at a stage > v +1
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and < s otherwise a7, a$’ are also desfroyed in the same stage, contradiction. By letting
&y+1 equal ¢ we have the desired conclusions. This completes the proof of Subclaim 2.

Now we prove Claim 3. Towards a contradiction consider the least stage v such that
u < v < sand o € C,UC[v]. Suppose o € C,. By the maximality of £ in the hypothesis of
(a),v > u+ 1. Then o ¢ C,_,. By Subclaim 1, 0 € D,_;. Now by Claim 2, reading o for 5
and &, for £, we have o ¢ C,, a contradiction. Therefore o ¢ C,, which implies o € C[v]. By
Subclaim 1, o € D,. Applying Claim 2 again, o ¢ C[v], a contradiction.

Finally, (e) of zzii¢) of 5.1 now follows from Claim 3. This completes the proof of (a).

(b) Let p® be defined at some point in stage s and = be the value of p® in stage s. Let
" z enter B at stage v < s and p’ be set equal to z at stage ¢ < s. Clearly, z is a designated
number for § at the end of stage v. Towards a contradiction assume that § ¢ C,4;. Note
that 7'5:-1 1= rf” otherwise p® cannot be set equal to z at stage . It follows by iv) of 5.1,
al = af,_,_l L. Also a? |= af because af is destroyed implies p° is destroyed at the same stage

§ cannot become defined in stage v, we have ¢ = a |. By zzv)

if p° is defined. Since a
of 5.1, § € C[v]. By Case 3.1 and Case 8, since a’ is not destroyed at stage v, there is a
maximal 0-node £ such that £ € C[v] and € C 6. By v), for each 0-node € with £ C € C 4,
Jj(€) £ j(€). Towards a contradiction assume a |= aé. Let a D £ be the first node visited
in stage t. Applying (d) with § = §, s = ¢, and y = z, we infer that p* becomes defined in
stage t and a # £ implies j(a) < j(§). Since & is visited, o ¢ é by zv) of 5.1. If & # §, then
there exists § € A(a~) with £ C 8 C § and 0 < a. Therefore whether a = § or not, there
exists § such that j(0) < j(¢) and € C 6 C é which contradicts our finding above. Hence
at is destroyed between stages v and t. Towards a contradiction assume ¢, 1 for some w
with v < w < s. Since ¢§ | by the hypothesis of (5), ¢!~ becomes defined at some stage
> w and < s by vi) of 5.1. But when ¢¢~ becomes defined a® is destroyed, contradiction.
Therefore ¢§, | for each w with v < w < 5. In particular, 65;1 }. By (f) of the induction
hypothesis, rf,;l l. Hence £ € Cyq1 by zzv) of 5.1. Also, for each 0-node 0, § C o C 6,
o & Cyy1. Otherwise 77,; | and o € C[v] by zzv) of 5.1 which contradicts the maximality
of £. Note that § € D,y since § € Cpy1 and aﬁ l= af, +1- Let at be destroyed at stage u
with « least possible such that v < » < £. By (a) with s =  and u = v, af is destroyed at

stage z. Hence r®” is destroyed at stage u, contradiction. Therefore § € Cyys.
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Towards a contradiction assume r§~ # rl;. Let m be the least stage > v such that
ré .1 1. Wehave m < s. Note that ¢§~ | forall z, v < z < s, and in particular for z = m+1.
I not, since ¢5~ |, ¢®” becomes defined at some stage > v and < s, a® would be destroyed
in the same stage, contradiction. Therefore, one of a™ (7 € A(67)) is destroyed at stage m.
We choose such 7 least possible. By ziii) of 5.1, 8 <p = otherwise a® is destroyed at stage
m, contradiction. Since § € Cyy1, pJ,; |- Then p7 |. By (¢) of the induction hypothesis,
a is destroyed at stage m for some € <y, 7 with € € 4(6~). This contradicts the minimality
of 7. Therefore r8~ = rf_,.

Towards a contradiction assume § ¢ C;. From above a® |= af and ¢~ | for v < 2 < s.
Let w < s be the least stage such that w > v and § € C,,41. Note that w exists and § € C,,.
By zziv) of 5.1, there exist , 7 such that @ D 7 € A(67), * < § and « receives attention
at stage w. a7, | by 5.1 z4) since al, |. Note that a™ is not destroyed at stage w otherwise
%7 is destroyed at stage w, a contradiction. By zzi) of 5.1, some y enters B at stage w.
Hence C[w] is defined. Note that either a(y) = a or a(y) = a~. § ¢ C[w] by zzv) of
5.1 since 78 ; | and § & Cypy3- Towards a contradiction assume that a(y) = 7~. Then
a = 7. In stage w, p™ becomes defined and p° is defined when C[w] is defined. Note that
a® and ¢*” are defined when C[w] is defined. & € C[w] by (b) of the induction hypothesis, a

contradiction. Therefore a(y) O 7. Because a’

is not destroyed at stage w and § ¢ Clw],
by Case 3.1 and Case 8 there exists a maximal 0-node o such that ¢ C § and o € C[w]. By
(f) of the induction hypothesis, r%; |. Hence o € Cyy41 by zzv) of 5.1. By v), j(o) < j(€)
for each 0-node € with ¢ C ¢ C 7. Suppose w < t. Towards a contradiction assume that
af = aj,. Let 7 2 o be the first node which is visited at stage ¢. Note that T exists because
4 is visited in stage ¢t. By (d) of the induction hypothesis, p” becomes defined at stage ¢
and 7 # o implies j(7) < j(o). Hence either 7 = § or 7~ C § with § <z 7. In either
case there exists a 0-node € such that o C € C § and j(¢) < j(o), a contradiction. Hence
aj, # af. Let m > w be the least stage at which a” is destroyed. Note that m < t. ¢Z, |
and c%,; | by vi) of 5.1 since cfn_‘ | and ¢, |. Note that for each 0-node € such that
0 CeCm,e ¢ Cyyy otherwise € € C[w], contradiction. Towards a contradiction assume
T € Clw]. Since § ¢ Clw], ¥ < 6. Also p° | when C[w] is defined since 7 € C[w]. By
(b) of the induction hypothesis, § € C[w], contradiction. Hence 7 ¢ C[w]. By zzv) of 5.1,



CHAPTER 5. VERIFICATION, PART 1 68

T & Cyt1. Since af,,, | and y with a’(y) 2 7 enters B in stage w, T € Dyy1. By (a) of
the induction hypothesis with § = 0, § = 7, s = m and u = w, a’ is destroyed at stage m.
Thus af is destroyed at stage m, contradiction. Suppose ¢t < w. Note that p® | when C[w]
is defined. By (b) of the induction hypothesis, § € C[w], a contradiction. Therefore é € Cs.
To complete (b) assume C[s] exists and that a®, ¢®”, p are all defined when C[s]is defined.
Towards a contradiction assume § ¢ C[s]. Note that ag | and #§” | since é € C,. Examining
the instructions of Cases 1.1, 3.1 and 8 we see that #°” cannot become undefined in stage
s before C[s] is defined. Otherwise either ¢/~ or a’ is destroyed at the same time. Then
the first two conditions in the definition for é to belong to C[s] hold. Because é§ ¢ C[s] and
8 € Cs, there exists a 0-node 7 D § such that 7 € C; and n € C[s]. Towards a contradiction
assume 7" 1 when C[s] is defined. Note that 77 |. Let ( receive attention at stage s. By
zv) of 5.1, { 2 & since p® is defined when C[s] is defined. Suppose Case 1.1 holds at (. Let
[ be the 0-node from Case 1.1. There are three cases: { <z ~, 7 C B and £ <r 7. Since
6 ¢ (and 6 C 7, either { <1 6 or § C B. Suppose that either § C 8 or ( <z §~. By Case
1.1 757 is destroyed before C[s] is defined, contradiction. Hence 6~ C ¢ and ¢ <z 6. Let 7
be the unique node in C(67) such that = C (. By Case 1.1 r” = r™ is destroyed before
Cls] is destroyed, contradiction. For Cases 3.1 and 8 the arguments are similar. We leave
them to the reader. Therefore, 7"~ | when C[s] is defined. By zziv) of 5.1, there exists
a D § which receives attention in stage s. Since p’ is defined at some point in stage s, this

contradicts zv) of 5.1. This completes the proof of (b).

(¢) p® can be destroyed only by (E3) which requires the destruction of a. Also, p° can
only be defined when af is already defined. Thus a’ is defined whenever p® is. Suppose that
p° is destroyed at stage s.

Let € be the maximal node in .A(6~) with € < §. We will show that a° is destroyed in
stage s. Let 8 receive attention at stage s. By viii) of 5.1 since a’ is destroyed one of the

following conditions holds for stage s:

A) a" is destroyed for some vy <, §;
B) either § C S or B <, 6, and one of Case 3.1, Case 8, and Case 11 holds at 5;

C) either § C S or B <r 6, and Case 2 holds at S;
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D) § C Bor B < 6, and either Case i.l or Case 4 holds at 3;

E) 6§ CBor B < d,and Case 13 holds at 3.

Suppose A) holds. Then v <1 € or € C 7. By ziii) of 5.1, a® is destroyed. In the
remaining cases we can suppose that a’ is not destroyed in the ending of stage s. Suppose
B) holds. Towards a contradiction assume § C 8. pS | contradicts zv) of 5.1. Suppose p°
becomes defined in stage s. Since € exists, § € 8, a contradiction. Therefore 8 <z, §. Then
either 8 <y, € or ¢ C 3. If Case 11 holds, a¢ is destroyed. Suppose one of Cases 3.1, 8 holds.
Let z enter B at stage s. Note that a® is defined when C[s] is defined. Suppose ¢/~ T when
Cls] is defined. 6~ ¢ a(z) by vi) of 5.1. Also, it is clear that a(z) # 6~. Therefore 8 <1, 6~.
Note that € ¢ C[s] since ¢®~ and 7*” are undefined. If a(z) <z é, then a¢ is destroyed in
stage s since a® is destroyed at stage s. If a(z) C 67, then a® is not destroyed by Case 3.1
and Case 8. Since the cases a(z) <z 6~ and a(z) C §~ are exhaustive, we have the desired
conclusion if ¢/~ 7 when C[s] is defined. Suppose ¢’ | when C[s] is defined. By (b), 6 € C[s].
Hence af

The cases C') through F) may be treated in similar fashion. We leave them to the reader.
(d) Suppose the hypothesis holds. We have to show that p® becomes defined, and o # §

cannot be destroyed in the main part of the construction in stage s.

implies j(a) < j(6). Let z be the first number to enter B after a® is set equal to af such
that a(z) 2 6. Let z enter B at stage t < s.

Case 1. § € C[t]. Hence r®" | and p° | for each o € A(6~) with >1 § when C[f] is
defined. ¢®~ | since r® | when C [f] is defined. Since Case 3.1 or Case 8 holds at the node
which receives attention no a¢ is destroyed in stage t before C[t] is defined. By (b) of the
induction hypothesis o € C[t] for each o € A(§~) with § <1, 0. Hence r®~ is not destroyed
in the main part of stage t. Also r®" cannot become undefined in the ending of stage t
because a(z) 2 6. Therefore r{,, |. Towards a contradiction assume ¢ 1 for some v
with t < v < s. Since @ D § is visited at stage s, ¢® becomes defined at a stage > v and
< s by vi) of 5.1. By Case 4, when ¢/~ becomes defined a® is destroyed, contradiction.
Therefore ¢~ for all v with ¢ < v < s. Towards a contradiction assume that r§~ 1 for some
(least) v with ¢ + 1 < v < s. By iv) and %) of 5.1 since ¢ |, a? T for some o € A(67).

Choose such o least possible. Suppose o < 6. a® is destroyed by zii1) of 5.1, contradiction.
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Therefore § <z o. p° | when C[f] is defined since § € C[t]. Hence pJ_, | since af_, |. By
(¢) of the induction hypothesis, a¢ is destroyed at stage v — 1 with € <, o, contradicting
the minimality of 0. Therefore 7§~ |= rf_;. Since r{~ | and p7 | for each 7 € A(6~) with
§ <z 7, § cannot be visited unless there is a jump to §. Suppose o = §. Then (d) is clear.
Suppose a # 8. Then § is not visited at stage s and there is a jump from a node § C é to a
at stage s. So p® becomes defined at stage s. Towards a contradiction assume j(4) < j(a).
Let p* be set equal to 2(a) at stage s. There are two subcases:

Subcase 1.1. There is no (n, k)-node € such that § C € C @ and k < j(6). Then for each
0-node 7 C 4, if v is preferred to 4, then v is preferred to a. By the argument used in the
proof of Subclaim 5 of the proof of (a), we can show that Case 1 holds at 6 in stage s with
i=j(6) and B = 4. This contradicts o # 4.

Subcase 1.2. Otherwise. There are two subcases again.

Subcase 1.2.1. There is a 0-node 7 such that § C 7 C a and 7 is preferred to a. Fix
such 7 with j(r) least possible. By the Remark following 4.4, j(7) < j(a). Note that for
each 0-node 8 C 7, if B is preferred to 7, then B is preferred to a. Since at stage s, the

construction jumps over 7, by Case 1 we have

or] |

e p7 | for each T € A(T™) with T <, 7.

Let v be the least stage such that

o ri =1l

o p7,, |=pf for each @ € A(T™) with T < .

Note that 7 is visited at stage v by ziz) of 5.1. Because a” is not destroyed at stage v,
some y enters B at stage v by zzi) of 5.1. Since 77 is not destroyed at any stage > v and
< s, we have a7 = a7 |. So, if p” becomes defined in stage v, p] is defined. By zv) of 5.1
this contradicts a beong visited in stage s. Therefore p™ does not become defined in stage v.
Hence a(y) D 7. Suppose T € C[v]. Recall that every « which is preferred to 7 is preferred
to a. Suppose that there is not e—designéted number for each 0-node ¢ suchthat § Ce C 7

and j(¢) < j(7). By the argument used in the proof of Subclaim 5 of the proof of (a), we
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can show that Case 1 holds at 6 in stage s with ¢ = j(7) and 8 = 7. This contradicts a # 7.
Suppose there is a e-designated number when 8 is visited for some € such that 8 C e C 7
and j(e) < j(r). Choose such € with j(¢) least possible. Towards a contradiction assume
8 C € C 7. First we show that for each 0-node o such that § C o C 7 and j(o) < j(7), there
is an (»,j)-node n with & C 7 C 7 and j < j(o). Otherwise, o is preferred to e, contradicts
the minimality of 7. Form this it is clear that € ¢ C[v]. Let u be the stage at which a€ is
set equal to ai. Suppose u < v. Since a® is not destroyed at stage v, there is a maximal
0-node £ C € such that £ € C[v]. Note that £ C §. By v), there is no 0-node 7 such that
£ Cw Ceand j(x) < j(€). Towards a contradiction assume af = af. Then by (d) of the
induction hypothesis, @ cannot be visited in stage s. Therefore af # aé. Let A > v be the
least stage such that ai_ﬂ 1. By (f), rf,_;_l l. By zzv) of 5.1, £ € Cy41 and © & Cyyq for
each 0-node 7 such that £ C © C e. Therefore, € € calD,1;. By vi) of 5.1 since for all w,
v<w<s, e |, ci—l and cig_l 1. By (@) of the induction hypothesis, a¢ is destroyed at
- stage h, contradiction. Suppose v < u. Then v < u. By the argument used in the proof of
Subclaim 5 of the proof of (a), we can show that Case 1 holds at ¢~ in stage u with i = j(7)
and 8 = 7. This contradicts that a® becomes defined at stage u. Therefore, € C . By (d)
of the induction hypothesis, it is impossible since j(€) < j(7), j(e).

Therefore 7 ¢ C[v]. Because a” is not destroyed at stage v, there is a maximal 0-node
& C 7 with £ € C[v]. By (f) of the induction hypothesis, ri;l l. Note that 7 € D,y since
@y+1 |. Also, for each 0-node { with £ C { C 7, { & Cyy1, otherwise ¢ € C[v] by zzv) of
5.1, which would contradict the maximality of £. By v), for each O-node { with ¢ C{ C T,
J(§) £ j(¢). Towards a contradiction assume that £ D §. Note that j(¢) < j(7). Suppose
there is no (n,k)-node € such that £ C € C 7 and k < j(£). Then j(¢) < j(7) and € is
preferred to 7. Hence £ is preferred to o, contradicting the choice of 7. Suppose such ¢
exists. Since £ € C[v] there exists a 0-node 7 such that £ C = C € and = € C[v]. This
contradicts the maximality of {. Therefore £ C 4, and so j(£) < j(6).

Towards a contradiction assume a$ = af. Let § be the first node D ¢ which is visited
at stage s. By (d) of the induction hypothesis, p° becomes defined, and 8 # ¢ implies
J(B) < 7(€). Then B ¢ o by zv) of 5.1 since « is visited at stage s. Recall that there is
no node D # and C o which is visited in stage s by the choice of a. Suppose 8 # a. Then
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£ C 0. But 8 is visited in stage s. So ,3‘ C 6 and 6 <1, 3. Let ¢ be the unique 0-node such
that ¢ € A(87) and ¢ C 6. Then £ C { C 7 and so j(£) < 7(¢) < J(B) < j(§), contradiction.
Suppose B = a. Then j(7) < j(a) = j(B) < j(§) £ j(7), contradiction. Therefore af # af.
Let w be the least stage > v with afu +1 1. Note that both &, cfu_,,_l are defined. Otherwise.
¢~ becomes defined at some stage > w and < s by vi) of 5.1 since « is visited at stage s.
But when ¢~ becomes defined a” is destroyed. This contradicts a] = a7 | which we found
above. Now applying (@) of the induction hypothesis with § = 7, ¥ = v and s = w, a7 is
destroyed at stage w, contradiction.

Subcase 1.2.2. Otherwise. Let € be an (n,k)-node such that § C € C a with k least
possible. € exists, k < j(6), and n € {0,4,5}. In fact, n # 0 otherwise € is preferred to a,
contradicting the hypothesis of the case. Let p® be set equal to 2(a) at stage s, and z(a)
have entered B at stage v.

Suppose a® = af |. By the choice of ¢ we have ¢ < v. Recall that r{,; = ¢~ |. So z(a)
enters B after 7%~ is set. If 6§ € C[v], then there exists a 0-node 5 with § C 5 C € such that
j(n) < k (and 5 € C[v]). This puts us back in Case 1.2.1. Hence é ¢ C[v]. Since a® is not
destroyed at stage v there exists a maximal £ € C[v] with £ C § by Cases 3.1 and 8. By (f)
of the induction hypothesis, 7‘5;1 l. By 2zv) of 5.1, £ € C41 and é € Cy41. Hence 6 € Dy
since af,+1 1. Similarly there is no 0-node 7 such that £ C 7 C § and 7 € Cyy1- By v),
7 (&) < j for each (m, j)-node 7 such that £ C 7 C e. In particular, j(€) < k and j(£) < j(7)
for each 0-node 7 such that £ C 7 C e. By the minimality of k, k¥ < j(7) for each 0-node 7
such that € C 7 C a. Also by hypothesis j(6) < j(7). Hence j(§) < j(7) for each 0-node 7
such that £ C 7 C o. Towards a contradiction assume that a§ = a$. Let ¢ be the first node
such that O & which is visited at stage s. { exists since a is visited at stage s. By (d) of the
induction hypothesis, p* becomes defined at stage s and £ # ¢ implies j(¢) < 5(£). Clearly,
¢ ¢ o otherwise a cannot be visited at stage s. Whether { = & or not, there exists a 0-node
7 such that £ C 7 C a and j(7) < j(£), contradiction. Hence a # af. Let w be the least
stage such that v < w < s and afu +1 1. Towards a contradiction assume one of ¢, , cfu_,,_l is
undefined. Since « is visited at stage s > w, ¢t~ becomes defined at a stage > w and < s
by vi) of 5.1. But when ¢ becomes defined, a® becomes undefined, a contradiction. Hence

¢t | and cfu__,_l 1. By (a) of the induction hypothesis with » = v and s = w, af is destroyed
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at stage w, contradiction.

Suppose al # a$. Then v < t and a® becomes defined after stage v, say at stage u. Note
that 6~ is visited at stage u because § is visited at stage u and ad 1. Since Subcase 1.2.1
fails any 7 preferred to o satisfies 7 C 6. Repeating the argument used to show Subclaim
5 in the proof of (@), we can show that Case 1 holds at §~ in stage u with ¢ = j(a) and
B = a. Hence § is not visited at stage u, contradiction. This completes the case é € C[t].

Case 2. § ¢ C[t]. There exists a maximal 0-node £ such that £ C 6 and £ € C[t] by Cases
3.1 and 8, since a’ is not destroyed at stage t. j(£) < 5(¢) for each 0-node with £ C { C §
by v). By (f) of the induction hypothesis, rf_l__l 1. 6 € Dy, since af+1 1. Also, { & Ciyq
for each 0-node ¢ with £ C ¢ C é. Suppose af |= af. Let B be the first node D £ which
is visited at stage s. Note that 3 exists since a D £ is visited at stage s. By (d) of the
induction hypothesis, p° becomes defined at stage s, and 3 # zi implies j(8) < j(£). By
zv) of 5.1, B ¢ . Hence either 8 = o or a <, 8. In either case there exists a 0-node v
such that £ C v € a and j(y) < j(£), contradiction. Suppose a$ # af. Let v be the least
stage, t < v < s, such that a¢ is destroyed at stage v. Note that ¢§ and cﬂ_l are both
defined. By a) of the induction hypothesis with » = ¢t and s = v, a® is destroyed at stage v,
contradiction. This completes the proof of (d).

e) Let z be designated for § at stage s and d be the first number to enters B after af
is set. Let d enter B at stage v < s. If v = s, (e) is immediate because in a given stage at
most one number enters B. So suppose v < s.

Claim. A number which enters B at a stage > v and < s is not §-designated at stage s.

Proof of Claim: Let v < u < s and z enter B in stage u. It is clear that z is not é-
designated number unless a(z) 2 é. Suppose a(z) D §. Let a be the first node D § which
is visited at stage u. By (d) of the induction hypothesis, p* becomes defined at stage u and
a # ¢ implies j(a) < j(6). Towards a contradiction assume o = §. By Case 3, o(z) 2 6.
Therefore o # 6. Towards a contradiction assume that there is no (n, j)-node € such that
6 CeC aand j < j(a). Then condition 7i7) in 4.3 does not hold for a(z) and so z is not a
designated number for § at stage s. Therefore there is an (n, j)-node € such that § C € C a
and j < j(a). Choose such € such that j is least possible. Suppose n # 0. It is clear that z
is not é-designated at stage s. So n = 0. Note that ¢ is preferred to a. Let p® be set equal
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to z(o) at stage u, and z(¢) have entered B at stage t(a). By the conditions for jumping,

o7 |

o p2 | for each o € A(e™) with e < 0.
Let ¢ be the least stage such that
o riy1l=ry
o pi,1 l=pf for each o € A(e™) withe <y o.

Note that at stage ¢, € is visited. Because a° is not destroyed at stage ¢, by zzi) of 5.1,
some y enters B at stage t. p¢ cannot become defined at stage ¢; otherwise o is not visited
at stage u by zv) of 5.1. Hence a(y) D e.

Suppose € € C[t]. Note that every v which is preferred to ¢ is also preferred to a. Hence
at stage u, the construction jumps to € rather than a, contradiction.

Suppose € ¢ C[t]. Because a¢ is not destroyed at stage ¢, by Case 3.1 and Case 8 there
exists a maximal 0-node £ such that £ € C[t] and £ C e. By v) we know that j(£) < j(7)
for each O-node £ C 7 C e. Hence £ C é. Towards a contradiction assume af |= af. Let
B be the first node D £ which is visited at stage u. By (d) of the induction hypothesis,
p° becomes defined and B # £ implies j(8) < j(£). Since « is visited at stage u, 8 ¢ o
by zv) of 5.1. Hence either § = o, or @ <z, # and B~ C 6. Suppose @ = . Then
7(B) < j(€) < j(€) < j(a), contradiction. Suppose 3 # a. Then there exists a 0-node 6
such that — = 8=, 0 <z B and £ C 6 C 6. But j(€) < 7(0) < j(B) < j(£), contradiction.
Therefore af # af. Let af be destroyed at stage w, t < w < u, with w least possible. From
vi) of 5.1, ¢5 |. If ¢§ becomes defined at a stage > w and < u, then a® is destroyed. But
since 7§, ; = rS | we have af,; = af | which yields a contradiction since ¢ < w. Also,
¢ & Ctyq for each 0-node ¢ with £ C { C € by zzv) of 5.1, and € € Dyyy since af; |. By (f)
of the induction hypothesis, rf_:l }. Hence £ € Ciy1 by zzv) of 5.1. By (a) of the induction
hypothesis with 6 = ¢, u = t and s = w, a is destroyed at stage w, contradiction. This
completes the proof of Claim.

Now (e) is immediate by the Claim above.

(f) Towards a contradiction assume 811 1. By iv) of 5.1 either ¢/~ or a¢ for some

€ € A(67) becomes undefined in stage s. From Cases 3.1 and 8, we know that ¢’ is not
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destroyed in the main part of the stage s Also, ¢!~ cannot become undefined in the ending
of stage s (through (F1) or (F4)). Hence ¢5}; |, so a¢ is destroyed in stage s for some
€ € A(67). Choose € to be least possible such that a¢ is destroyed at stage s with e € .A(67).

¢ cannot become undefined in the main part of the

Clearly, ¢ £1 6. Suppose ¢ = 6. a
construction since § € C[s]. So a¢ is destroyed by (E1) because some a” is destroyed in the
main part of the construction with 7 <z §. This is impossible. Therefore § <, €. Note that
p° | when C[v] is defined. By (c) of the induction hypothesis, a” is destroyed at stage v for
some T <y, €, contradicting the minimality of e. Therefore rf_{__l 1. This completes the proof

of (f) and then v3).

vit) Towards a contradiction consider a pair (w,§) with least w and then greatest |§|
such that § € D, and 6 € Cyy1 UC[w]. @6 | by z) of 5.1. Because § € D,, there exists
a least stage v < w such that a’ |= af and some z enters B at stage v with a(z) D 6.
Suppose § € Cyy1. Let y be the number designated for § at stage w + 1. By z) of 5.1,
aé,,y = al. By (e) of vi), y = z. Therefore 75, = ré2, |. Since the first two conditions

for 6 to belong to C,, hold, there exists an (n,j)-node a such that
e §CaNnj<j(b)

® there exists y € By, with a(y) D o which entered B after r®” attained its value at stage

w—1
@ for each 0-node € with § C € C a and j(€) < j, € € Cy-

Because § € Cy41, there exists a 0-node € such that § C € C a, j(¢) < j and € € Cypy1.
By z) of 5.1, af,; = af, |. Note that y entered B after a® attained the value af, because
when a¢ becomes defined, a® and then 7%~ are destroyed. Hence ¢ € D,,. This contradicts
the maximality of 6.

The case in which § € C[w] can be treated similarly. This completes the proof of viz).

v111) By induction on stages we show that when o is visited, one of Cases 1-12 in the
construction holds at a. It is obvious that at stage 0, k* becomes defined. Consider stage
s > 0. The conclusion is clear if ¢§ |> 1. Suppose « is a 0-node, and a% 1. By iv) of 5.3, a®

becomes defined at stage s. Suppose o is a 1-node, and a2 1. Since a? T, the construction



CHAPTER 5. VERIFICATION, PART I ' 76

can only pass to a through Case 5 a.t/a‘, in which Case 2 applies at o and a® becomes
defined. Suppose a? | or a is not an i-node for 2 < 1. Let ¢Z T. Let 4 be the maximal
0-node C a. v # @, a) | by iv). If a = v, then a7 | by hypothesis above. By v7) of 5.1,
¢* |. Hence Case 4 holds at a. It remains to consider the situation in which ¢ |= 0 and

in which a2 if a is a 0-node. There are three cases:

Case A. 72 |. Then a? | for each 8 € B(a) by ) of 5.1. Since ¢ = 0, there is a
maximal § € A(a) such that p} 7. Let ¢ < s be the greatest such that at stage t, r®
becomes defined or p® becomes defined for some 3 € A(a) with § <z 8. For v € A(e) the
parameters p” become defined in <y-decreasing order, and whenever p” becomes defined
the <z-immediate-predecessor of v is visited if it exists. Also, if p® with 8 € A(c) becomes
defined, then r“ is already defined. When r® becomes defined, then construction passes to
the node max{8 : 8 € A()}. So § is visited at stage t. Note that p’ cannot become defined
at stage t. Otherwise, suppose p® becomes defined at stage ¢, then p | since af = af |,
contradicting to the choice of t. Hence some node 2 § receives attention at stage t. By zz¢)

é

of 5.1, since a° is not destroyed at stage t, some z enters B at stage t. Note that a(z) D §

since p° 1 in stage t. Note that a} = af.

Claim. § € C[t).

Proof of Claim: Towards a contradiction assume é € C[t]. Since @’ is not destroyed at stage
t there exists a maximal 0-node £ such that £ C § and £ € C[t]. By v), fdr all 0-node € with
ECeCé,j(€) <jle). By (f) of vi), rf_:l 1. Hence £ € Ci11 by zzv) of 5.1. By the same
token, € & C;,1 for each 0-node € with £ C € C §. Hence 6 € Dy, since af +1 - Towards a
contradiction assume a$ = af. Let 3 be the first node C £ which is visited at stage s. By
(d) of vi), p° becomes defined at stage s, and 3 # £ implies 5(8) < j(€). By zv) of 5.1,
B ¢ a. Note that a is visited at stage s. Then either 8 = o, ora <z fand f~ Coa. In
either case there exists a 0-node @ such that £ C 8 C o and j(8) < j(£), contradicting the
fact we have found above. Therefore a # a§. Let aé be destroyed at a stage v,t < v < s,
with v least possible. Note that ¢§~ | and so both ¢§~ and c%; are defined, otherwise When
¢*” becomes defined af is destroyed, contradiction. Now applying (a) of vi), a® is destroyed

at stage v, contradiction. Therefore § € C[t].
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Let y be the §-designated number at stage ¢t when C[t] is defined. Then y is the é-
designated number at stage s. By the argument used to prove Subclaim 5 in the proof of
part (a) of vi), Case 1 holds at o with ¢ = j(8) and S = é. This completes the proof of Case
A.

Case B. r¢ 1 and (V8 € B(a))[a? |]. Either Case 6 or Case 7 holds if no earlier case holds.

Case C. Otherwise. Then for some 8 € B(a), a? 1. Let § be the maximal 0-node C o. If
8§ # a, a | by iv). If a = §, then af | by hypothesis above. Hence Case 5 holds at @ in
stage s. This completes the proof of viiz).

iz) Let ¢® |> 1. Suppose P is destroyed at stage s. Then in stage s either ¢® or one of
a” (y € A(B)) is destroyed by iv) and zi¢) of 5.1.

Claim. p} | for all v € A(B).

Proof of the Claim: We may suppose that A(8) # 0. Let ¢ < s be the greatest stage in
which ¢ is set equal 1. Then Case 3.1 occurs in stage ¢ and immediately before Case 3.1 all
the p”s with v € A(B) are defined. If at some stage u,t < u < s, p” is destroyed for some
v € A(B), then a” is destroyed in the same stage since p* can only be destroyed by (E3). It
follows by (E4) that, if one of the p”’s is destroyed at stage u,t < u < s, then so is ®. But
® must be redefined at a stage v, u < v < s, and ¢ = 0 since Case 7 holds, contradicting
the choice of . This completes the proof of the Claim.

Now iz) is immediate if cf +1 1- Suppose for some v € A(B), a” is destroyed. By (c) of
vi), we can choose 7 to be the least node in A(B). Let a receive attention at stage s. By
zv) of 5.1, @ 2 4. Then a <z 7 or a C v by viii). First suppose a” is destroyed in the
main part of the stage s with 7 <z y. Then 7 <z 8. So cf_H 1 by (£1). For the rest we
may assume that a” is not destroyed in the ending of stage s.

Suppose a C B = 7~. Then one of Cases 1.1 and 4 holds at . But ¢2 | since ¢ | by
vi) of 5.1. Therefore Case 1.1 holds at a. Let { be the 0-node 8 mentioned in Case 1.1.
Clearly, v € ¢ since pY |. Suppose a” is destroyed before C[s] is defined. Then { <r v, and
so { <z B. By (E1), ¢ is destroyed in stage s since a¢ is destroyed in the main part of
stage s. Suppose a” is not destroyed in stage s before C[s] is defined. I ¢# T when C[s] is
defined, the result is clear. Suppose ¢® | when C[s] is defined. By (b) of vi), v € C[s]. Then
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a” is not destroyed in the rest of stage ’s, contradiction.

Suppose « <1, 7. Then o <1, 8. ¢? is destroyed at stage s unless one of Cases 3.1 and 8
holds and p™ | when a receives attention for the unique 7 such that 7~ = anNB and 7 C 5.
For the rest we assume that Case 3.1 or Case 8 holds at stage s. a™ is destroyed in the main
part of the construction in stage s since a” is. Hence p™ is destroyed in stage s by (E3). By

(E4), cP is destroyed in stage s. This is sufficient and completes the proof of iz).

z) Let § D « for some m € B(B). a¥ | since r? |. Suppose af is destroyed in stage s. By
z4ii) of 5.1, a™ is destroyed at stage s. By zi7) we can assume that 7 € A(G). By the last
Claim above we know that p] | for all v € A(B). By (£3) and (¢) of vi), all a” is destroyed
for v € A(B) and so for all v € B(8) by ziii) of 5.1.

z1) Suppose §, (3 satisfy the hypothesis of zi) with § <j-least possible. Towards a
contradiction assume rf +1 1. Let v be the maximal 0-node in A(S5). Let a receive attention
at stage s. By zv) of 5.1, a 2 B"((2,#(8))). Then by viii) of 5.1, there are three cases:
a < B,aC Bora( for some { € A(B). First suppose a7 is destroyed in the main part
of the stage s with 7 <z é§. Then 7 < v or ¥ C 7 by the minimality of §. a” is destroyed
in stage s by ziis) of 5.1. By iv) of 5.1, r° +1 T, contradiction. For the rest we may assume
that a’ is not destroyed in the ending of stage s.

Suppose a C 3. Then one of Cases 1.1 and 4 holds at stage s. But ¢ | since cf | by ?)
and vi) of 5.1. Therefore Case 1.1 holds. Let n be the 0-node which plays the part of 8 in
Case 1.1. Then 7 2 B*{(2,i(B))) by the choice of 7 since r° |. Suppose a’ is destroyed in
stage s before C[s] is defined. Then either 7 < § or § C 7. Hence a” is destroyed and either
n <L v or v C 7y since 5 2 B(2,:(B))). By ziii) and iv) of 5.1, a” and r° are destroyed in
stage s, contradiction. Suppose @’ is defined when C[s] is defined. Note that r? | when C[s]
is defined since rf +1 and # cannot become defined after C[s] is defined. By Case 1.1, @’ is
not destroyed in stage s, contradiction.

Suppose a <z, 8. Since c? is not destroyed at stage s, one of Cases 3.1 and 8 holds and
p" | when a receives attention for the unique 7 such that 7~ = an 8 and = C 8. Since a°
is destroyed in the main part of the construction in stage s, then p™ is destroyed in stage s

by (E3). Hence c? is destroyed in stage s by (E4), and so is @ by (E5), contradiction.
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Suppose a D 7 for some 7 € A(B). Note that a7 {. By zzi) of 5.1, either a” is destroyed
in stage s or some z enters B at stage s. Suppose a],; T. Then rfﬂ T by iv) of 5.1,
contradiction. Suppose some z enters B at stage s. By Cases 3.1, and 8, a® is not destroyed
in stage s since 7® | when C[s] is defined. This is sufficient and completes the proof of zi).

z1t) Suppose z # aﬁ for all §. From the construction the only case which can enumerate
a number in C which is not af for some & is Case 11 holds. Then either z = k2 or a(z) D 8
for some 3 € A(a) and z entered B after 7~ attained its value at stage s. Note that for
4 2 B, when ¢” becomes defined, a® and r#” are destroyed. Hence z = kY for some 728
if z is not k2.

ziii) Let af |, a? | and 6 # B. Let a® have been set equal to af at stage v. Without loss
we can assume that ¢ < v. From Case 2, clearly af # af ifé<p B, 6CB,BCH B <16,
or B~™(6,i(87))) € T A B~"((6,i(87))) C é. Suppose B <r, §. Let € be the unique node
C & such that e~ = SN 4. For the rest we can assume ¢ is an (%, j)-node for n < 5. Let af
be set equal to a at stage u < t. Suppose a2 |. By Case 2 at stage v, a5 < af +1- Suppose
a? |. Also we can assume that a7 | for all v € B(8~) with v <z 8. Otherwise, a¥ must
become defined at a stage > u and < v. When a” becomes defined, a’ is defined is destroyed
and enumerated in C. Hence in this case a® cannot be set equal to ad 41 in stage v. Now
let a® be set equal to k at stage u and k enter B at stage z < u. Towards a contradiction

assume a” is set equal to k at stage v. It follows that & ¢ C,.

Claim. Let 2z < w < u and a node D 8~ and C 6 be visited in stage w. Then there is a
jump from a node C 3~ to a node D B~ at stage w.
Proof of Claim: Fix such a stage w. Towards a contradiction assume there is no such jump.
Then Case 1 fails at 8~ in stage w since € is not 6-node. By #iz), k € A{,,(ﬁ )’OUA{;,(ﬁ M Hence
ke A{U(ﬁ)’j if B is a (4, j(8))-node. By iv), a, | where 7 is the maximal 0-node C 5~ if any.
Note that a® will be set equal to k at stage v > u and for any 6, if af is destroyed, a® enters
C. Hence Case 5 holds at 3~ in stage w and the construction passes to 3, contradiction
and completes the proof of Claim.

By the Claim, there is a jump from a node C 8~ to a node # O §~ at stage u. Since
a® becomes defined, § <z, 0. Let w be the least stage such that z < w < u, at which there

is a jump from a node C B~ to a node 7 O B~ with § <7 7, and some node D $~ and
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C § is visited. If ad, |, then the va,lue’a.ssigned to a® in stage u must exceed all the value
of parameters at stages < w. In particular, this implies that k < af 4+1- Hence ad, 1 and so
776~ . Let ¢ be the unique 0-node such that (= = r~ and ¢ C §. ( exists otherwise no node
D B~ and C § is visited in stage w. Since @ is set equal to k at stage u, a(k) 2 (. Suppose
p" | when C[2] is defined. By (c) of i) of 5.3, af is destroyed at a stage > z and < w. But
a$, |. So at a stage h > z and < w, a¢ becomes defined. But  satisfies the requirements for
w, contradicting the minimality of w. Therefore p” T when C|[2] is defined. Hence ¢ & C[z2].
From the argument above we know a¢ is not destroyed in stage z. By Cases 3.1 and 8,
there is a maximal § C { such that £ € C[2]. By v), j(§) < j(0) for all 0-node 6 such that
£ C 6 C¢. By (f)of vi), rﬁ_:l 1. So £ € C,41 by zzv) of 5.1. By zzv) of 5.1 again, 6 € C, 41
for each 0-node 6 such that £ C § C (. Hence ¢ € D,4;. Suppose afu +1 = @&. By (d) of vi),
there is a 0-node 6 such that £ C 8 C ¢ and j(6) < j(£), contradiction. Suppose afu 41 7 4t
Let k be the least stage such that z < A < w and af is destroyed in stage h. Note that ci— l
and ci_-H | by the argument above used to show a¢ is not destroyed in stage z. By (a) of
vi), a¢ is destroyed in stage h, contradicting the minimality of w by the argument above.
Therefore, af # a?.

Suppose a’ |. Let k = ad. Towards a contradiction assume k € C,. Suppose k enters
C at stage t. From above we know that k # af for all B # é. By zi), k = kf for some
B and Case 11 holds in stage t. By viz) of 5.2, § <p . Let o receive attention at stage
t. Suppose @ = B. Clearly a® was set equal to k before stage ¢ by Case 2. But when
a’® becomes defined, c? is destroyed and then kf cannot enter C by Case 11 at a stage in
which 3 receives attention. Suppose a # 3. From Case 11, 8 O 7 € A(a) for some 7. Since
§ <r, B, either 7 C § or § <r, 7. Also, a® was set equal to k before stage t. When a® becomes
defined, a™ and r® are destroyed. So kf cannot enter C' by Case 11. This completes the

proof of zii¢) and then Lemma 5.3. W

Define the true path P to be the subset of all & € T such that a is visited infinitely often
and there are at most finitely many stages in which some 8 <z, a is visited.

In the next lemma when we say that a parameter is eventually fired we mean the pa-
rameter is defined only finitely often. If we say that a parameter p, — o as s — 0o we

mean that there are infinitely many stages in which p becomes defined and that the values
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assigned to s tend to co.

5.4 Lemma. (True Path Lemma)

For each o € P the following hold:
i) For all B <1 a, eventually a®, p?, kP, cP and r* are fized.
i) If o is a O-node then p* is eventually always undefined and a2 — oo as s — 0.
i) k%, c* are eventually fized.

iv) e ais not a 1-node;
¢ o is a2-node = ¢ = 0;

e aisa3-node = c* >1.
v) There is w € A such that o™(w) € P.
vi) If & is a 2-node or 3-node then aP is eventually always defined for all B € B(a™).
vit) If no B € A(a™) is visited infinitely often, then r® is eventually fized.
viii) k%, c® are eventually always defined.
iz) For each n there are at most finitely many s such that (38)(a <r BA a8 | Ad? < n).

Proof. We will use induction on (T, <).

i) Let 8 <z a be a 0-node. Once defined, a® retains the same value unless destroyed;
and similarly for p?. a® can become defined only when 3 is visited, and thus only finitely
often. Further, p° can become defined only while a? is defined and a? is destroyed whenever
p? is. Thus p? becomes defined only finitely often. The rest is clear because whenever a®
(k? or c® or rP) becomes defined B is visited. This is sufficient.

1t) Consider what happen in the construction once nodes < o have been visited and
the parameters belonging to those nodes have been changed for the last time. There are
two cases:

Case 1. (38 € A(a™))[B <L o]. By Case 3, when p® becomes defined, a node <, o is
visited. Hence p® cannot become defined infinitely often. By zv) of 5.1, if pJ |,  is not

visited at stage s. Hence p® is eventually undefined.
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Case 2. Otherwise. Note that when p® Becomes defined, ¢* is set equal 1. From vii) of 5.1,
¢ = 0if ¢*” is set equal 1 at stage s. Bu 4ii) of the induction hypothesis ¢*~ is eventually
fixed. Hence p® becomes defined only finitely often. But by zv) of 5.1,

p* T when « is visited. Therefore p® is eventually permanently undefined.

Fach time a® is redefined it is given a strictly larger value. By iv) of 5.3, if a is visited
at stage s and a2 T, then a* becomes defined at stage s. Towards a contradiction assume
a® is destroyed only finitely often. Consider what happens in the construction once a¢* has
been destroyed for the last time. Since a® is not destroyed, by zz7) of 5.1 at each stage in
which a is visited some y with a(y) D a enters B. Further, k*(¥) was set equal to y before
a® was set. So there are only finitely many possible y. When k*®) enters B, c*(¥) is set
equal to 1. k*®) cannot enter B at a later stage unless ¢*(¥) becomes 0 again which means
that k%) is reset to a larger value. We conclude that « is visited only finitely often. This
contradiction completes the proof.

i1t) By ii) of 5.1, once defined, c¢* is monotonic non-decreasing < 2 unless destroyed

because one of the following holds:

® a node <[, a 1s visited;

¢ 2 >1<4= o isa 3-node.

a) some 7 with 7*((2,4(7))) < o receives attention, and c” is set equal to 1;
b) p” is destroyed for some v C a;

c) a” is destroyed for some v <z, a.

By the induction hypothesis, this yields the desired conclusion for ¢*. Once defined, £*
retains the same value until reset to a new value. If £ is reset in a stage, then ¢® becomes
defined in the same stage.

iv) Towards a contradiction assume o is a 1-node. When a is visited, a* becomes defined
if it is not already defined and retains the same value unless destroyed. Whenever a* is
destroyed, by Lemma 5.1 zi7), af is destroyed for some S8 € A(a™) with § <i a. Notice
that 8 <z a. By 1), this happens at most finitely often. Eventually a® is defined never to

be destroyed again. Whenever a® is defined, o is not visited, a contradiction.
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Suppose a is a 2-node. By construcfion, o is visited at stage s only if ¢~ = 0. This is
sufficient. Similar for the case a is a 3-node.

v) First we show that for some immediate successor § of a, there exist infinitely many
stages at which some node D § is visited. Towards a contradiction suppose there is no such
6. Clearly, there are only a finite number of stages in which nodes D a are visited. Consider
what happens in the construction once the nodes <z a and O o have been visited and
the parameters belonging those nodes have been changed for the last time. Note that a
parameter belonging to 8 can only be assigned a new value in a stage in which 3 is visited.
By the induction hypothesis, i) and ii¢) we can also assume that all parameters k, ¢ and p
belonging to nodes C a have been changed for the last time.

Suppose ¢ is a 0-node. Clearly, when o is visited a® becomes defined if it is not already
defined and retains the same value unless destroyed. By 5.1 viii), eventually a® is destroyed
only if o receives attention.

Now we show that, whether a is a 0-node or not, ¢* is eventually always defined. Suppose
not. By the induction hypothesis, choose the least stage ¢ after which, r° for §*((2,(§))) <
a, a” for v <z a, and k¥ for ¥ < a are all fixed. Let n be a number greater than all
such parameters. Let s be the last stage if any such that ¢ |. Choose the least a-number
m > maz{n, k%}. Notice this a-number is unused because any used a-number is one of the
(previous) values of k*. Let 4 be the maximal 0-node C a. By ii), a] — oo as v — oo.
Choose the least v > ¢ such that @] > m. Let u be the least stage > v at which « is visited
and af | if a is a 0-node. Such u exists. Towards a contradiction assume one of Cases 1-3
holds at a in stage u. Note that o receives attention. Case 1.1. cannot hold; otherwise a® is
destroyed for some 0-node 8 D a, contradiction. Case 2 cannot hold since if e is a 0-node,
then a¢ |. Case 3 cannot holds at a; otherwise c¢®  is set equal 1, contradiction. Therefore
none of Cases 1-3 hold at « in stage u. Note that if a # «, then a? | by i) of 5.3. By vi)
of 5.1, ¢ |. Hence Case 4 holds at a when a is visited in stage u. ¢* becomes defined at
~ stage u, contradiction.

Consider a stage s at which a is visited and @ |. From the argument of the last
paragraph there is such an s and none of Cases 1-4 holds at  in stage s. But by inspection

of the construction in each of these cases either the construction passes below a or one of ¢,
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¢* isincreased. This contradicts our ﬁndjngs above. We conclude that for some immediate
successor § of a there are infinitely many stages in which a node D § is visited. Fix é to be
the least such node.

We will prove that § is visited infinitely often. Towards a contradiction suppose there is
a stage t after which é is never visited. Consider a stage v > t at which a node D § is visited.
In stage v there is a jump from a node C a to a node 7 = 7, D é via Case 1.2. We node
that a7 | and r] | since Case 1.2 requires that there be a number designated for 7. Let
u = u, < v be the stage at which a” was set equal to a]. Consider the least v, if any, such
that ¢ < u. In stage u, a” is destroyed for all o such that either 0 C 7 or 7 <1, ¢. Note that
Tos1 T Let s be the least stage > s in which " becomes defined. Clearly, s < v. Since in
stage s the construction jumps from a node C « to 75 and then moves left, 7 < 7. Clearly,
a”* becomes defined at a stage > v and < s. This contradicts the choice of v. Hence u, <t
for all ».

Consider stages v > w > ¢ such that in both stage v and stage w a node D § is visited.
In stage w, p™ becomes defined. Either pj* | or p™, and hence also a™, is destroyed at a
stage > w and < v. In the latter case 1, = 7, would imply u, > w > t, contradiction. In
the former case 7, # 7, because p™ is aJready defined. Therefore 1, # 7. Since there are
only a finite number of values possible for 7, the proof is completed.

vi) By 1), a® is fixed for all 8 € B(a™). Let t be a stage after which a” is fixed for all
B € B(a™). Towards a contradiction consider ¥ = a="{(%, 5)), the least node in B(a™) such
that a],; 7. Consider a stage s > t at which a is visited. Since o is a 2- or 3-node, o™~ is
visited at stage s. We want to show such s does not exist.

Since the construction passes from a~ to a one of Case 6, 10, and Case 12 occurs at a”.
Towards a contradiction suppose ¢ > 1 and let v be the greatest stage < s in which ¢®~
is set equal to 1. By wii) of 5.1, 737 ; |. Since a] T, 7™ 1 by 7) of 5.1. Let u be the least
stage > v such that 73, 1. By iz) of 5.3 one of ¢¥ and ¢, is undefined. Since u < s,
the choice of v is contradicted. Therefore ¢~ % 1.

By vi) of 5.1, ¢~ | and so ¢&~ = 0. Let é be the maximal 0-node C o~. By iv) of 5.3
since @~ and o are visited at stage s, ad | if 6 exists. Now Case 5 holds at o~ in stage s.

By Case 5 and the choice of ¢, pass to a=*{(4 + ¢, 7)), and then « is not visited in stage s,
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contradiction.

vi1) If no B € A(a™) is visited infinitely often, it follows that a=*{(2,i(a7))) < a. If
B € B(a™), then a? is fixed eventually by i). So after a® is fixed for all 8 € B(a™), and ¢~
is fixed, #* changes at most once by iv) of 5.1. This is sufficient.

viit) After c* is fixed for the last time, there is a stage at which some node D ¢ is visited.
By vi) of 5.1, ¢* |. By i) of 5.1, k* | whenever c* |.

iz) Let 8 >1 @ and B € B(8~). Suppose that a® becomes defined for the last time in
stage ¢. Consider a stage s > # in which a is visited and such that a8 = a® 1= a? +1 4. Since
a® is not destroyed, by inspection of the construction Case 3.1 or Case 8 holds in stage s
and some y enters B with a(y) <z, B or a(y) 2 8. Since a? = af+1, y= kf(y) because, when
E*®) is reset by Case 4, a? is destroyed. Hence there are only a finite number of possible
values of y. From the proof of i7) each y is enumerated in B at most once. Hence there are
only a finite number of possibility for s. We conclude that a® never becomes defined for the

last time. This is sufficient because the value assignated to a? as the construction proceeds

are strictly increasing. B

Below, when a € P, we shall use a® to denote the unique immediate successor of « in
P.



Chapter 6

Verification, Part II

In the present chapter, we verify that all requirements are satisfied.

6.1 Lemma. For each i < w, R* is satisfied.

Proof. We proceed by induction on :. Fix . The set
{8 €T :(2,7), (3,%) do not occur in 8}

is finite. Hence there exists a € P such that i(e) = i and a* is either a 2- or 3-node. From
the definition of T', o is uniquely determined by i. We will show that the strategy associated

with o succeeds for R.
By 5.4, fix the least stage ¢t after which:
A. § is not visited for 6§ <z o and @, ¢f, k%, p? are fixed for § <, a,
B. k¢ is fixed for 6 C o,
C. p® is fixed for 6 C a,
D. §M(3,i(§))) Canc, > 1= (Vs> t)[c |> 1],

E. 0 is fixed for § with 6%((2,i(6))) < a.

86
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We first show that cg,, T.

Let B denote the node which receives attention at stage t. Towards a contradiction sup-
pose that ¢® becomes defined in stage t. By Case 4 of the construction the only parameters
(apart from ¢*) belonging to a node < «, which change in stage ¢, change through the
destruction of af for § C a. By zv) of 5.1, no p® with 6§ C a is defined at any point in stage
t. Examining (E1) ~ (E5) we see that A — E all hold for stage ¢, contradicting the choice
of t.

Suppose ¢ |. Suppose A fails in stage {. A number of cases must be examined. We
will treat the case in which ¢? changes for some § <z, a. The other cases will be left to the
reader. Suppose cf,, |. Then § is visited and ¢* is destroyed unless pf,, |, where 7 C @
and 7 € A(an ). But from 1) of 5.4, pf,; T by choice of ¢. Therefore ¢f,; 1. Suppose that
¢ is destroyed in stage ¢. From i) of 5.1 we have the following cases:

Case 1. 8 <1, 6. We see that cf/; T by repeating the argument above.

Case 2. a7 is destroyed for some v <y, 6. By (E1), ¢* is also destroyed.

Case 3. Case 8 holds at 3, 8 C 6, and 8"((2,i(8))) < é. Either 8 <r, @, or 8 C o and
B*{((2,4(B))) < a. We may suppose that the latter holds. Then c* is destroyed in the main
part of the stage.

Case 4. p” is destroyed for some 4 C 6. Then a” is destroyed. Either v <7 o which
takes us to Case 2, 0r ¥ C a. By (E4) ¢* is destroyed.

The cases in which either B or C fails in stages ¢ is quite easy.

Suppose D fails in stage t. Then ¢{ = 0 and cf+1 = 1. Either Case 3.1 holds at 8 which
is the least node in .A(6) or Case 8 holds at § = B. If Case 3.1 holds, then # <y, @ which
takes us to A. Suppose Case 8 holds. By Case 8, ¢* is destroyed.

Suppose E fails in stage ¢t. Suppose 7° is destroyed in stage t. By iv) and zii) of 5.1,
either ¢ or a” is destroyed for some v € A(6). By #4) of 5.1 and (E1) since ¥ <z e, in
either case ¢* is destroyed. Therefore c,; .

Let so > t be least such that ¢ is defined at stage sop. By Case 4, ¢5 ,; |= 0 and &k
becomes defined at stage sg. Note by i) of 5.1, ¢* is not destroyed after stage so. Hence

k“ is eventually always defined and constant. To see R is satisfied, there are two subcases.
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CAsE 1. ¢ = 0. Then eventually for étages at which o™ is visited, ¢* = 0. By iv) of 5.4,
o™ is a 2-node. Note that B, (k) = 0. Suppose ¥! (Wi;k2) 1. Then clearly R is satisfied.

w wr!w

Similarly if ¥¢ (Wi;k2) |# 0. Suppose Wi (Wi k2) |=0. Let n = (W}, k2) and s, > so

w? Vw

be such that for all s > s;
(Wi I m;k2) |=0AW, I n=W, I n.

Towards a contradiction assume that for all # < n, 8. (D,; ) = Wi(z). Let m = ¢},(D,,,n).
Let s; > s1 be such that for all s > s2 and all z < n,

<I>f;(Ds b miz) = Ws’(z) = W:,(a:) A ¢i(Ds,n) =mAD; | m=D,}m.

By iz) of 5.4 let v > s; be the least stage in which a"((2,1)) is visited and for all j <1
and all j-node 3 such that either 8 C o or a”{(2,1)) <z B

ol |= af > m.

Note that « is visited at stage v and none of Cases 1-5 holds at «; otherwise o™((2,1)) is
not visited. But we can see that o is ready at stage v by the choice of n, m and v. Then ¢*

is set equal to 1 at stage v, contradiction. Therefore
(Fz < n)[@},(Du;z) # Wi(2)],

and so R' is satisfied.

Case 2. Otherwise. Since ¢ > 1, a* = a"{(3,7)). Then there exists s > so such that
c® is set equal 1 at stage s. Let s; denote the least such s. Let z denote the stage < s; in

which r* attained its value at stage s;.

Cask 2.1. There is a stage s > s; at which ¢® was set equal 2. Let sz be the least such
s. When c® is set equal 1 at stage s;, o-attack is completed. Note that by Cases 3.1 and
8, 18 41 - By iz) of 5.3, 7* is not destroyed after stage s;, and then is not destroyed after

stage z by the choice of 2.

Claim 1. There is no # < r%,; which enters C at stagev € {s:5 > 2 As # s2}.

Proof of Claim 1: Fix v such that v > z and # s;. Towards a contradiction assume
)

¢ or z = k{ for some 6.

z < 1%, enters C at stage v. By zii) of 5.3,z = a
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Towards a contradiction assume z - a’. By the choice of t and by ziii) of 5.3, § £L
and a® is destroyed in stage v. Suppose a((2,4)) <z 6. Suppose a’ |. Since a is ready at
stage 2, r%,; < a¢, contradiction. Suppose af 7. Since af |, let a® was set equal to af at
a stage u with 2 < u < v. u # 2 by the choice of 2. When a® becomes defined at stage
u> 2z, ry, < af by Case 2, contradiction. Suppose § C . Let 4 be the maximal 0-node
C a. By iv) of 5.3, when r* becomes defined at stage z, a |. Since a is ready at stage z,
r2; < al. By i) of 5.2, a] < af since § C o, contradiction. Suppose § D o”((2,1)). By =)
of 5.3, if a® is destroyed at stage v in which 7* is defined, then 7* is destroyed in the same
stage, contradiction. Suppose é§ 2 7 for some 7 € B(a). By zii) and iv) of 5.1, a™ and r*

are destroyed at stage v, contradiction. Therefore z # af for some §é.
Suppose ¢ = k. There are two cases:

Case 1. § receives attention at stage v. Note that ¢ |, ¢® is set equal to 2 in stage v,
and v # sg. Therefore § # a. § £ a by the choice of ¢. Suppose o”*{(2,%)) < 6. Then v # z
and so v > z. By zv) of 5.1, there is no = C § with p7 |. By v) of 5.2, r%,; < k5. Suppose
6 2 « for some 7 € A(a). By Case 11, a] is destroyed in stage v. Hence r* is destroyed at

stage v by iv) of 5.1, contradiction.

Case 2. Otherwise. By zi:¢) of 5.3, there exists 8 C § such that Case 11 holds at 3 in
stage v. Note that ¢2 |. By the argument of Case 1 it is sufficient to show that k% < kS,
Suppose ¢ |. By i) of 5.2, k% < k3. Suppose ¢} 1. Let w < v be the greatest stage such
that ¢, |. Note that k% entered B before stage w and ¢, is destroyed at stage w. 2 | by
vi) of 5.1. By 1) of 5.2, kB < k%, = k5. Towards a contradiction assume that k8 # kS. Then
at a stage u, w < u < v, c® is destroyed. Hence r? is destroyed at stage u. By Case 11,
when Case 11 holds for 8 at stage v, we just need to enumerate the numbers which entered
B after r® was set equal to its present value. But k? entered B before stage w and so before
stage u. Hence k% does not enter C at stage v, contradiction. This completes the proof of
Claim 1.

Claim 2. If z enters B at a stage v > z with z < r$,, then v < s; and either a(z) = ¢ or
a(z) 2 6 for some 8 € A(a).
Proof of Claim 2: Fix z, v such that z < v and z < r$,; enters B at stage v. Then z = kg

for some § by vii) of 5.1. By the same token, ¢} |= 0, ciﬂ l=1 and § receives attention at
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stage v. For the rest we suppose § # a. § £ a by the choice of t. Suppose a™{((2,1)) < 6.
By choice of z, v # 2. By zv) of 5.1, pJ 1 for all 0-node 7 C . By v) of 5.2, rg; < KL,
contradiction. Therefore, § O 8 for some 6 € A(«). Towards a contradiction assume s; < v.
Recall that 7* is not destroyed after stage z. Since p? is defined at some point in stage s,
9% is not destroyed at any stage > s;. Otherwise, a® and r“ are destroyed, contradiction.
Then by zv) of 5.1, § cannot be visited at stage v, contradiction. This completes the proof
of Claim 2.

Since Case 11 holds at « in stage s, there exists z < (W, k) such that z € sz -Wi.
At stage z we have

3i(Dsia) = Wie) = 04 1= W, (a).

In stage sz, by Case 11, all numbers z < rg,; which entered B at a stage > 2 and < s2

with a(z) 2 6 for some 6 € A(a) are enumerated in C. Hence by Claims 1 and 2
D32+1 r Tg-l-l = Dz r Tg+1.

By definition, r2,; > ¢i(D,, ¢L(W}, k%)) > ¢.(D., ). Therefore,

§22+1(D32+1;x) = Q;(‘DZ; :D) = 0 # 1= W:z(m)'
By Claims 1 and 2, at the end of the construction, ®/(D) and W* disagree at z.

CAsE 2.2. Otherwise.
Let r, k the values of r*,k* at the end of stage s;. We know r* = r, k® = k for all stages

> s;. Since o never requires attention at a stage > s;, we have
(Vo < (W, E)Wi(z) = Wi2)]
But k“ is enumerated in B at stage s; and is never enumerated in C. Thus
V(W k%) = WL (W} k%) = 0 # 1 = Dy, 41(k%) = D(X°).

This completes the proof of 6.1. B

6.2 Definition. 7 is called active on P if there exists a € P such that for all 8 D e,
B € P, iis active at (. '
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6.3 Lemma. If i is not active on P, then there ezists a € P such that i is not active at 3

forany B € P, a C .

Proof. 1t is obvious if one of (4, ¢), (5,),and (6,%) occursin P. Otherwise, forall @ € P, there
exists 8 D a, B € P, such that 7 is not active at 8. Notice that for all k, e, 8, if k is not active
at @, @ C 3, and k is active at §, then there exists § < k such that one of (0, 7),(4,5),(5,7)
occurs on 3 below a. Also, for any B, if there exist n < m such that §(n) = 8(m) = (0, j)
then there exist k,! such that n < I < m, k < j and 8(I) € {(0,k),(4,k), (5,k)}. This is
sufficient. B ‘
6.4 Lemma. For each i < w, if A*°U A" D B, then
i) (4,1) occurs on P => D <1 A*'n D.
i) (5,1) occurs on P => D <7 A" N D.
#1) Otherwise,
(a) i is not active on P => D <1 A" n D.

(b) i is active on P =—> D <7 A*°N D.

Proof. Fix i such that A*°U A*! D B. Note that (6,%) does not occur on P. Let J; be the
set of all j < 7 which are not active on P. Let I; be the set of all j < i with j ¢ J;. Let ap
be the least a € P such that

i) (V5)(VB€ P)j € J; Aa C BT = j is not active at f];
i) (Vj)(VB € P)[j € I, Aa C B+ = j is active at f);
iii) (Vi <9)(2,5) € ran(a) v (3,5) € ran(a)].

For each j < ¢, let 3; denote the (k, j—1)-node on oy for k € {2,3}. Then forn < m < i,
Br. C Bm. Recall that A is the (2, —1)-node. Let so be the least stage after which

® no 6 <, ag is visited

e a® and p? are fized for all 6 <1, oy
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o k5, c® and p® are fized for all 6 sdch that é < ag
o ¥ is fized for all § such that 6"((2,4(8))) < ao.

Remarks: 1. If ag is an (n, j)-node, then j > i and, if j = ¢, then n € {2,3}.
2. After stage sg, we cannot jump to some node 8 C ag, otherwise p° becomes defined

can can never subsequently be destroyed, contradiction.

Case 1. (4,1%) occurs in P. Let o be the least § € P such that (4,¢) occurs in §, and 4o be
the maximal 0-node C §p if any.

Case 1.1. 7o undefined. In this case after stage so every sufficiently number which enters
B is enumerated in A*! U C, hence D <7 A*! N D. Otherwise, for some sufficiently large =
which is enumerated in B, z ¢ C and z € A*°. Consider a stage in which z € A*® and &
is visited. Since dg is a 4-node, 6y is visited that stage and no Cases 1-4 hold. Hence Case

5 requires to pass 8§'((0,%)), which is <z, 8o, contradiction.

Case 1.2. vp exists. There are an infinite number of stages at which some node D 7o is
visited. We want to show that D <7 A*' — C. Fix z > sp. Choose s to be the least stage
such that

e 6o ts visited at stage s
ez<ayl]
o (A —CHt(z+)=(AB - C,) t (2 + 1)

o D, | (z41)C ALOuU 4i1,
Claim. z € D if and only if z € D; — E; where
E; = {a : a5 | Aldo <z €V [65°((6,i(65))) € T A 65"((6,i(55))) C €I}

Proof of Claim: Note that if z € E;, z ¢ D by iz) of 5.4. Towards a contradiction assume
z € D — D,. Let = enter B at a stage t > s. Then z = k? for some § with ¢} |= 0 and

cf+1 = 1 by vii) of 5.1. By the choice of so we have 4o C § or 7y <z, 8. Suppose 7o <, é.

§

Then e < k¢ = = by iv) of 5.2, contradiction. Therefore o C 8. Since ¢® increases at a
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stage > sg, either 85 <z 6 or 65 C 4. | Since AU A%! D D, let v > t be the least stage

such that z € A9 U A%!. Note that we can assume that for each stage u, A°U Ai! C B,.

Hence z ¢ A%® U A% since z ¢ B,. Towards a contradiction assume z € A%°. Let u > v be

the least stage at which &g is visited. u exists since 6p € P. a® | by iv) of 5.3. Note that

z ¢ C and z € E;. Then §; is visited at stage u, cf“; l= 0 and none of Cases 1-4 holds

at §; ; otherwise §p cannot be visited at stage u. By 5.2, ki"_ = ki‘;—H < k! < a |. Since
T > 8o, by Case 5, we pass to 6;°((0,4)) which <z o, contradiction. Therefore z € A%!.

Thus z € (A*! — C) — (A — C;), contradicting the choice of s. Therefore, if z € D, then

z € D;.

Towards a contradiction assume z € D; — (D U E;). Let z enter C at a stage v > s
and z have entered B at a stage t > so. Note that ¢ < s. Suppose a(z) D 9. By choice
of s, z € AU AL, Hence z ¢ A0 U A%} since = € B,,. Towards a contradiction assume
T € Af;’o. Repeating the argument of the last paragraph with s playing the part of u we
obtain a contradiction. Therefore z € Abl. Thus z € (44! —C,)~ (44! ~C,,), contradicting
the choice of s. Below we suppose that a(z) 2 7o. By i) of 5.3, z = @ or z = kS for some
8. By vii) of 5.2, 6 2 70. By the choice of s, § £ 7o. Suppose z = al. Since either § C 7o
or 10 <z 6, ¢ < aX < a = z by ii) of 5.2, contradiction.

Suppose z = k. Let o receive attention at stage v. Note that ¢Z,; > ¢® |= 1. By the
choice of sg, 40 <z @. Then a¥ < k& by iv) of 5.2. For the rest there are two cases:

Case 1. a = é. Then z < a° < k& = k} = z, contradiction.

Case 2. Otherwise. By zi%) of 5.3, § D « for some 7 € A(a) and k° entered B after
& was set. Note that ¢ |. First we show that k¢ < k5. Suppose ¢} |. By i) of 5.2,
k2 < kS. Suppose c) 1. Let w < v be the greatest stage such that ¢, |. Note that kI
entered B before stage w and ¢!, is destroyed at stage w. ¢2 | by vi) of 5.1. By ) of
5.2, k& < k3 = k. Towards a contradiction assume that k% # k%. Then at a stage u,
w < u < v, c*is destroyed. Hence r* is destroyed at stage u. By Case 11, when Case 11
holds for o at stage v, we just need to enumerate the numbers which entered B after r* was
set equal to present value. But k entered B before stage w and so before stage u. Hence k2
cannot enter C at stage v, contradiction. Therefore k5 = k3. Hence z < a° < k¢ < k$ = z,

contradiction. Therefore, if z € D, then £ € D. This completes the proof of Claim.
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Now D <7 A*! — C is immediate by Claim.
Case 2. (5,1) occurs in P. This is similar to Case 1.
Case 3. Otherwise. There are two cases:

Case 3.1. 7 € J;. Let ¥ C ap be the maximal (0,7)-node. There are two subcases.

Case 3.1.1. I, = Q.

Claim. If z enters B at some stage > so with a(z) D 7, then z € AL,

Proof of Claim: Let z enter B at stage t > sp. Let a receive attention at stage 1.

Subclaim 1. When «a is visited in stage ¢,
e p™ | for each ™ € A(y~) with vy <p 7.

Proof of Subclaim 1: Suppose 7 is visited in stage t. Since z enters B at stage t, a; | by
iv) of 5.3. We have the desired conclusion by 7) of 5.3. Suppose v is not visited at stage .
Then there is a jump from some node C v to 8 D 4. Since I; = 0, « is preferred to 8. By

i) of 5.3, we have the conclusion of Subclaim 1.

Note that 77" is not destroyed at stage t before C[t] is defined since ¥ C a. Hence z is
y-designated when C[t] is defined. By (e) of vi) of 5.3, z is the first number after a; was
set. Hence z is the first number to enter B after the value of 7" in stage ¢ was set. Then
v € Ct]. By (f) of vi) of 5.3, 77, |. Therefore ¥ € Cs41 by zzv) of 5.1. By %) of 5.4, a”
is destroyed infinitely often. Let v > t be the least stage such that a],, 1. Let 7 receive
attention at stage v. By wviit) of 5.1 and the choice of sg, n Cyor v C 7.

Subclaim 2. There is no node D 4 which is visited at a stage > ¢t and < v.

Proof of Subclaim 2: Towards a contradiction assume there is a stage « at which some node
D v is visited. Let 7 D 7 be the first node which is visited in stage u. By (d) of vi) of 5.3, p”
becomes defined at stage u, and 7 # v implies j(7) < j(7). But by 7) of 5.4 and the choice
of sp, 7 # 7. Therefore j(r) < j(7). This is a contradiction since I; = @. This completes
the proof of Subclaim 2.

Now from Subclaim 2, 2 . Therefore n C 4.
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Hence one of Case 1.1 and Case 4 holds at . Clearly, Case 4 cannot occur at 7 after

stage sg. Let 7 be the 0-node 3 in Case 1.1.

Subclaim 3. 7 = «.
Proof of Subclaim 3: By the choice of sg, 7 £ 7. Since a” is destroyed at stage v, either
® C yor v C 7. Towards a contradiction assume 7 C <. Because there is no (n,j)-node
a Dy with j <t =j(v),v €Cif and only if #?~ | and there is some 2 € B designated for
v. If #77 is destroyed at a stage u > t and < v, then a” is destroyed for some = € A(y~) by
iv) of 5.1. Consider the least such u and then the least such «. By ziii) of 5.1, v <p 7. We
have pZ |. By (¢) of v?) of 5.3, a” is destroyed in stage » for some o € A(y~) with ¢ < =,
contradiction. Hence 7~ = r7,; |. Since z remains designated for v until the definition of
C[v], v € C[v]. Hence by Case 1.1, a” is not destroyed in the main part of the construction
of stage v. By the choice of sg, a” is not destroyed in stage v by (E1). This contradicts the
choice of v. Therefore vy C 7. If ¥ C 7, then 7 C ¥ C 7 and at the beginning of stage v,
z is designated for . So (%) in Case 1 fails which means that Case 1.1 fails, contradiction.
Therefore v = «.

Now by Case 1.1, we have z € 471, This completes the proof of Claim.

There are an infinite number of stages at which some node D « is visited. We want to

show that D <1 4»' — C. Fix ¢ > so. Choose s to be the least stage such that
e v is visited at stage s
ez<all
e (A —CH I (z+1)=(4-C,) I (z+1)
o D, | (z+1)C AL0uU AYL.

Repeating the argument used for the case (4,7) occurs in P, we can show that z € D if
and only if z € D,. Hence D <7 A" — C.

Case 3.1.2. I; # 0. Let 79 < -+ < i,, be an enumeration of I;. Note that for each e > i(ap),
there exists an a® € T such that

* a® D ag, (0°)” € P, e = i(ef) < i(((e®)7)*),
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o 0t = (@) ((1,0)) <z ((&))*

To see how to find this a® we can let £ be the least § € P such that i(6) = e + 1, then a°
can be chosen as §~7((1,1)). Note that by Lemma 5.4 vi), a2 is defined.
Define £ C T as

{a:a D agAa(l{a)—1)=(1,i) A(Vj € L,)[j is active at " |}.

Note that for each e > i(ag), a° € £. To show that D <7 A*! — C, fix g, find the least
(n, s) such that

en€eEf,s> 8
e g<all

® o s visited at stage s

B, (a7 +1) C AU AW

(Ai’l - Cs) f (ag + 1) = (A:Jl - Cw) r (ag + 1)'

Clearly, for each e > max{n,i(ag)} there exist arbitrarily large s such that (a°%,s)
satisfies the conditions specified for (7,s). Note that a” is not destroyed at any stage > s.
We will prove that g € D if and only if g € D;.

Remarks. 1. By viii) of 5.3, a € C,. By Case 2 of the construction a? € A¥'. Hence by
the choice of (7, s), a” is not destroyed at any stage > s.

2. For each é < 7. k% is constant at stages > s. This is because that when k° is set to a
new value, Case 4 holds at § and a” is destroyed.

3. For each 6§ <, 7. a® is constant at stages > s. This is because that when a® becomes

defined a” is destroyed, and when a? is destroyed so is a? by ziii) of 5.1.

Claim 1. Let 3, u satisfy
L4 aoCﬂ<ﬂ,$Su,
e g is visited in stage u,

e for all j € I;, j is active at 3,



CHAPTER 6. VERIFICATION, PART II 97

o BMNOim) |

o some y with a(y) 2 B{(0,in)) enters B at a stage > sp and < u, and after af"{(0sim))

is set equal to aﬁA((o’im)).

Let z be the first number with a(z) 2 8°((0,%m)) to enter B at a stage > sg and < u, and
after a?"{(0m)) is set equal to aﬁA((o’i’")). Then z € A:! and k2 € B,.

Proof of Claim 1: Let z enter B at stage t < u. Let m, denote 8"((0, ¢,)) for n < m. Recall
that v is the greatest (0,%)-node C ag. By vi) of 5.1, c? |. By the choice of ¢, kf = kP |.
Subclaim 1. 7, € Ciy1, ¥ € Ci41, and z is the - and 7,,-designated number when C[t] is
defined.

Proof of Subclaim 1: By the choice of 9, 7, <z 1. By the choice of ¢ we know that a™
is not destroyed at a stage > t and < u, and so is not destroyed at a stage > t. First we
show that 7, € C[t]. Towards a contradiction assume 7, ¢ C[t]. Since a™ is not destroyed
in stage t, there is a maximal 0-node ¢ C m,, such that £ € C[t]. By v) of 5.3, j(€) < im.
Hence £ C ap. By (f) of vi) of 5.3, rf_i__l l. By zzv) of 5.1, £ € Cty1, and 7 € Cyqq forall 7
with £ C 7 C Tr,. Since ¢i7y |, T € Diq1. By 1) of 5.4, a¢ is destroyed infinitely often.
Let v > t be the least stage at which af is destroyed. By the choice of sy and viii) of 5.4,
cf,- and cf,;l are defined. By (a) of vi) of 5.3, a™™ is destroyed at stage v, contradiction.
Therefore 7, € C[t]. By (f) of vz) of 5.3, rf_f‘l l. By zzv) of 5.1, 1y, € Ci41. By (e) of vi)
of 5.3, z is designated for 7,, at the end of stage ¢.
To see that 4 € C¢y1, first we show that before z enters B at stage ¢,

o7 |
e p™ | for each € A(y™) with a <, 7.

Suppose v is visited at stage t. Note that a} | by iv) of 5.3, since z enters B at stage t.
By i) of 5.3, we have the desired conclusion. Suppose 7 is not visited at stage t. Let T be
the first node D 4 which is visited at stage t. Clearly, there is a jump from a node C vy to 7
- at stage t. v is preferred to 7 by ziz) of 5.1 since z is w,,-designated at the end of stage t.
Hence by ¢) of 5.3, we have the desired conclusion. Therefore, z is a designated number for

v when C[t] is defined. By (e) of vi) of 5.3, = is the first number y with a(y) 2 7 to enter
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B after a” was set equal a;. Hence v € C[t] since 7, € C[t]. By (f) of vi) of 5.3, 7'7-;1 {. By
zzv) of 5.1, 4 € Ci4;. This completes the proof of Subclaim 1.

Subclaim 2. Let v > t be any stage such that a) = a; |, and some node D 7 is visited
in stage v. Let a be the first node D 4 which is visited in stage v. Then a D 7, for some

n < m.

Proof of Subclaim 2: We proceed by induction on v. Suppose a} = a; and some node D v
is visited at stage v. Let a be the first node 2 v which is visited in stage v. Since a) = a7,
by (d) of vi) of 5.3, p* becomes defined at stage v and a # 4 implies j(a) < j(v). By
the choice of sp, @ # 4. Therefore o € B by the choice of 3. Towards a contradiction
assume T, <r a. Let p® be set equal to z(a), where z(a) entered B at stage t(a) < v.
By the induction hypothesis, ¢(a) < t. Now the three stages (), ¢, v contradict i) of 5.3.
Therefore 7, £1 . By the same token, if w > ¢, a}, = af |, and 7 D 7 is visited in stage
w, then 7 € B and 7, £ 7.

Towards a contradiction assume a <z, 8. By zzi) of 5.1, since ¢™ and so a® are not
destroyed in stage v, some z enters B at stage v. By ii) of 5.4, a” is destroyed infinitely
often. Let w > v be the least stage in which a” is destroyed. Below we show that a™
is destroyed in stage w, contradiction. First we want to show that ¢, r? are destroyed in
stage v. By 2v) of 5.1, in stage ¢ p™ 1 for all 7 with ¥ C 7 C 3, and ¢ 1 for all ¢ such that
7 € ¢ C¢™(2,4(¢))) € B. Suppose a(z) <z, B. Then in stage v, c® and 7P are destroyed
since there is no 7 C 3 such that p™ | in stage v. Suppose a(z) C 8. Note that Case 3.1
holds at the node which receives attention in stage v. Let { be the least node such that
a(z) C ¢ € B. Note that ¢ is not a 0-node, otherwise p¢ | when z enters B at stage v.
By zv) of 5.1, p{,, 1 and ( is not visited at any stage > ¢ and < v. Hence ¢? and r# are
destroyed in stage v by Case 3.1. Let € receive attention at stage w. From above, if € D v,
then € <1 7, or € D Ty,. Also since no node D v and C f is visited at any stage > ¢ and
< w,p" Tforall 7 with y C 7 C B, and 7™ 1 for all 7 such that vy C « C #((2,i(x))) C B
in stage w. The remarks above show that ¢® and 7# are destroyed in stage v before C [v] is
defined. Therefore 7, ¢ Cw] if C[w] is defined. Hence if C[w] is defined, 7 & C[w] for all 7
such that v C # C 7. By zz4i7) of 5.1, a™ is destroyed in stage w, contradiction. This

completes the proof of Subclaim 2.
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Let v > ¢ be the least stage in which a” is destroyed. By the choice of so and (¢) of vi)
of 53, 7 = r;y;l' 1. By Subclaim 2, v < u. Let 7 receive attention at stage v. By the

choice of sg and vi#3i) of 5.1, either r Cyory C 7.

Subclaim 3. Suppose y enters B at stage h < v, 7 = r',:;l, and o(y) 2 7, then h > ¢

and either a(y) = § or a(y) 2 7, for some n < m.

Proof of Subclaim 3: Since y enters B after 77 is set equal 77 , y enters B after a” is set
equal to a]. By (e) of v7) of 5.3,  is the first number z with a(z) 2 v to enter B after a”
is set equal to a;. Note that a} = a;. Hence h > t. Let a receive attention at stage k. By

Subclaim 2, & O 7, for some n < m. Now the subclaim 3 is clear.

Subclaim 4. v € C,.

Proof of the Subclaim 3: Towards a contradiction assume that v & C,. Let w be the least
stage > t such that v & Cp4;. Note that w < v and so 7'111 1. By zziv) of 5.1 and the
choice of sg, some a D v receives attention at stage w. By Subclaim 2, @ D  for some
6 € A(B) with 8 < m,. By zzi) of 5.1, since a™ and a’ are not destroyed in stage w,
some number z enters B at stage w. Note that either a(z) = 8 or a(2) 2 6. Suppose
a(z) = B. Then, when C[w] is defined %, ¢®, and a¢, p¢ for all € € A(B), are all defined.
Hence € € C[w] for all € € A(B) by (b) of v2) of 5.3. By subclaim 3, all y # 2 with a(y) 2 ¥
which entered B after 7 was set, a(y) 2 m, for some n < m and y entered B at a stage
> t. Therefore v € C[w]. By (f) of vi) of 5.3, 7,3 |. Then v € Cyyy by z20) of 5.1,
contradiction. Suppose a(z) D 4. Towards a contradiction assume 8 ¢ C[w]. Since a’ is
not destroyed in stage w, there is a maximal 0-node € C 0 such that £ € C[w]. By ») of
5.3, 5(€) < 7(8). Hence & C 7. By (f) of vi) of 5.3, 5, |. By 2zv) of 5.1, £ € Cypyq and
T & Cyy for each 0-node 7 such that £ C 7 C 0. Hence 0 € Dyyq. Let w’ > w be the least
stage at which a is destroyed. By choice of so and (a) of v3) of 5.3, a’ is destroyed at stage

w’, contradiction. Therefore 8 € Cw)].
Subsubclaim. Let a(y) 2 v and y enter B at a stage > ¢ and < w. Then there exists
o € A(fB) such that e(y) D0 and 6 < 0 < 7.

Proof of Subsubclaim: Let k be a stage such that ¢ < £ < w and some y with a(y) 2 v
enters B at stage k. By Subclaim 2 there is a unique o € A(B) such that a(y) 2 ¢ and
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o < Tm. Towards a contradiction assufne that o < 6. By zv) of 5.1, p¢ 1. Hence p? T when
y enters B at stage k since af is not destroyed after stage t. Hence o ¢ C[k]. Since o is not
destroyed in stage k, there is a maximal 0-node £ C o such that £ € C[k]. By the argument
used in the last paragraph we obtain a contradiction. This yields the Subsubclaim.

Since # € C[w], when C[w] is defined p° | for each o € A(B) with 6 <j, 6. By Cases 3.1
and 8, ¢ | and a® | when C[w] is defined. Then by (b) of vi) of 5.3, o € C[w]. Combining
this with the result above we have o € C[w] for all o € A(B), § < 0 < 7. We want to
check that ¥ € C[w]. From above, r}~ = r},; | and so r7” has the value 7}, ; throughout
stage w. Since 4 € Ci41 by Subclaim 1, z is designated for v at the beginning of stage ¢t + 1
and hence throughout stage w. To check the final condition for v € C[w] we consider an
(n,j)-node € O v such that j < j(y) = ¢ and such that some y with a(y) 2 € entered B
after ¥7 was set equal 77" . By subclaim 3, subsubclaim and the choice of 3, y entered B
at a stage > ¢ and a(y) 2 o for some o € A(B), 8 < ¢ < 7,,. By choice of 3,5 C €. So
o may taken for 7 in (447) of teh definition of C[w]. Note that j(¢) < j may fail. In this
case we can apply condition (4i2) to ¢ and € to obtain ¢’ with ¢ C ¢’ C € and j(o') < j as
required. Therefore v € C[w]. Hence 4 € Cy4+1 by zzv) of 5.1 since 7'1:-1 1, contradiction.

This completes the proof of Subclaim 4.

Towards a contradiction assume v C 7. By Subclaim 2, 7 D = for some = € A(8) with
© < . By zzi) of 5.1, since a™ and a” are not destroyed in stage v, some number z
enters B at stage v. Repeating the argument used for the proof of Subclaim 4, taking § = 7
and w = v, we see that 7 € C[v] (the only difference is that here we cannot assume 7., |).
Then by Cases 3.1 and 8, a” is not destroyed in the main part of the construction in stage
v. But clearly a” is not destroyed through (£1). Thus a” is not destroyed in stage v at all,
contradiction. Therefore 7 C 4. Then either Case 1.1 or Case 4 holds at 7 in stage v. By
the choice of sg, Case 1.1 holds. Let € be the 0-node 8 in Case 1.1.

Subclaim 5. € = 4.

Proof of Subclaim 5: Towards a contradiction assume € # 7. Recall that rJ” = 77, | and
r?" | when C[v] is defined. By Subclaim 4, ¥ € C,. By zziv) of 5.1, ¥ € C[v] since T C 7.
Suppose € C v. Then a” is not destroyéd in stage v by Case 1.1, contradiction. Clearly,
v £ €. Since a° is destroyed by Case 1.1, by the choice of sy, € £ 7. Therefore v C .
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Since there is a y-designated number vx;hen T is visited in stage v, condition (%) on (z,8) in
Case 1 implies that j(e¢) < j(y) = ¢. Hence € € 3. Towards a contradiction assume that
m <L €. By the choice of 8, e~ € 3 since j(¢) < ¢. Then 7y, <z €. Since some node 2 7,
received attention in stage t, either ¢¢” is destroyed at stage ¢ or p¢ | for the unique { such
that (~ = 7, Ne and { C e. Note that ¢ |. By Subclaim 2, ¢§ = ¢{ |. Therefore p¢ |
at some point in stage t. By the choice of €, we know p$ 7. Hence p¢ is destroyed at a stage
> tand < v. But when p¢ is destroyed, so is ¢ since { C ¢, contradiction. Hence € <; Ty,
or 7, C e. Since af is destroyed in stage v, so is a™, contradiction. Therefore € = «.

By Subclaim 5, since Case 1.1 holds at 7 and € = v, z € A%! since z is the unique
v-designated number at the begining of stage v by (e) of vi) of 5.3. Therefore z € A%! since
v < 4 by Subclaim 2.

Towards a contradiction assume that kf & B,. Let v > t be the least stage in which
some node D ap and C B is visited. Clearly, v < u. Let a be the the greatest node C ag

which is visited in stage v.

Subclaim 6. r8 = rtﬁ_,_l 1.

Proof of Subclaim 6: Towards a contradiction assume 72 # rf +1- Let w > t be the least
stage in which 7P is destroyed. Clearly, w < v. By iv) and i) of 5.1, in stage w either c?
or one of a™ (7 € A(B)) is destroyed. Suppose a” is destroyed in stage w for some 7 € A(B).
Choose such 7 least possible. Since a™ is not destroyed in stage w, T, < 7 by ziii) of 5.1.
Since 7, € Ct41, 7y, |- Hence pf, | by choice of w. Also, p™ is destroyed in stage w since
a”™ is. By (¢) of vi) of 5.3, a¢ is destroyed in stage w for some € € A(8) with € <z, 7, which
contradicts the minimality of 7. Therefore, a7, ., | for all 7 € A(B3). Hence P is destroyed
in stage w. Let 7 receive attention in stage w. By i) of 5.1, there are four cases:

Case 1. p¢ is destroyed in stage w for some ¢ C 3. By the choice of sg, € € ag. Suppose
ap C € C B. Note that p® T throughout stage ¢ by zv) of 5.1 since z with a(z) D 7, enters
B at stage t. So p° becomes defined at a stage > ¢ and < w, contradicting the minimality
of v.

Case 2. a¢ is destroyed in stage w for some € <z, 8. This is impossible from the remarks

before Claim 1.
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Cases 1 and 2 are the only ones pérta.im'ng to the ending of the stages. For the rest we
can assume that ¢? is destroyed in the main part of the construction.

Case 3. Case 8 holds at 7 with 7 C 8 and 7((2,i(7))) < 8. Note that ¢7, = 0 and
¢,4+1 = 1. By the choice of sp, 7 ¢ cp. Therefore ap C 7 C B. Since 7 is visited in stage w,
this contradicts the minimality of v.

Case 4. 7 <z 3. By the choice of sg, ag C 7. Let § DO ag be the first node which is
visited in stage w. Since no node 2 ap and C S is visited in stage w, there is a jump to 6
and 6 <z, 8. Clearly, 7N B = N B. By zzi) of 5.1, since a? is not destroyed, some 2 enters
B at stage w. Let ¢ C 3 be the node such that ¢~ = 7N B. Since ¢? is destroyed and either
Case 3.1 or Case 8 holds, p° is undefined throughout stage w. By zv) of 5.1, r§+1 1 for all
¢ with ¢*((2,4(¢))) C B. By choice, for such ¢, ¢ remains undefined throughout stage w.
Since a™ is not destroyed at stage w, there is a maximal £ C 7, such that £ € C[w]. By (f)
of v?) of 5.3, rf:,_l 1. Note that a, +1 |- Towards a contradiction assume that ap C £. Since
£ € C[w], af, and r$ are defined. Since w < v, af, = af | and 7§ = ré 1. Since z entered
B in stage t, by v) of 5.3, we have j(£) < j(*m) = in. This contradicts the hypothesis on
B. Therefore £ C ap. Since £ € C[w], it follows by (f) of vi) of 5.3 that 7'5011 l. By v) of
5.3, 7(&) < 7(¢) for all 0-nodes ¢ with £ C ¢ C 7N B. Let h be the least stage > w at which

af is destroyed.

Subsubclaim. If { D £ is visited at a stage > w and < A, then ( <z, 3.

Proof of Subsubclaim: Towards a contradiction consider the least k, w < k < h, such that
some node o D £ is visited in stage k and o £ 5. Let o be the first node O £ which is
visited in stage k. By (d) of v¢) of 5.3 5.3, p° becomes defined in stage k and o # £ implies
j(o) < j(€). By the choice of sg, o # £. Therefore in stage k the construction jumps to o
which implies that v{  |. Since Cfu+1 1, cf T by the choice of k. Hence § ¢ o by vi) of 5.1.
Suppose 8 <z o~. Then ¢°~ and 7" are destroyed in stage w, unless p° | for some § C 0.
But p’ is destroyed before stage k by zv) of 5.1. By (E4), when p’ is destroyed, so is ¢®~.
Hence ¢ 1 and r{ 1, contradiction. The only remaining is 6~ C 8 which we divide into
three subcases. Suppose £ Co C 7N B or 7N B <g o. Then there is a 0-node { such that
£ C (<N Band j(¢) < j(&), contradiction. Suppose 6~ O 7N B. Since 6~ C B we have

7 <1, 0~. Then at stage w, ¢’ is destroyed since ¢® is destroyed and p° {. Hence ¢~ 1 and
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r¢" 1 by the choice of k, contradiction. ’Fina.]ly, suppose 0~ = TN J. Let 7 be the least node
such that 7N 8 C © C 7. Note that € is a 0-node and € < 0. So 7 is a 0-node and 7 <y, €.
Since the construction jumps to o in stage k, af | and pi 1 for all ¢ € A(o~) with ( < 0.
In particular, p T. By ziv) of 5.1, a{ |. By choice of k, aj, = a, |. If p° is destroyed in a
stage, so is a¢. Hence p° 1 throughout stage w. Hence 7 ¢ C[w]. By v) of 5.3, j(§) < j(«).
But j(r) < j(o) < j(£), contradiction. This completes the proof of Subsubclaim.

Suppose C[h] is defined. Fix any 0-node ¢ such that é C { C 7,,. Towards a contradiction
suppose { € C[h]. By z) of 5.1, ai 1. By Subsubclaim, since z enters B at stage w, ai =a$ |.
Note that ¢ ¢ vC[w] by the choice of £&. Hence ¢ & C,41 by zzv) of 5.1. We now consider
two cases according as £ C op or not. First suppose { C ag. Then { € Dyyy. ¥ ¢ € Cp,
then ¢ € Dy, which contradicts vii) of 5.3. So we may assume { € Cj. Let k be the least
stage such that { € Cx4+1, we have ¢ € D; which again contradiction. This finishes the case
¢ € ag. Now suppose ag C {. By the choice of v, af =af, = ai. Hence z entered B after
aé was set equal to a$. Let y be the (-designated number when C[h] is defined. By (e) of
vi) of 5.3, y is the first number to enter B after a¢ is set equal to aﬁ. Hence z enters B
after ¢~ is set equal to 'r,(:. Recall that c? is destroyed in stage w. By the subsubclaim
¢?, and hence also 7°, are undefined throughout stage k. Hence 7, ¢ C[h]. Recall also that
a(z) D Ty Since ¢ € C[h], taking é = {, @ = ®, and y = 7 in i) of the definition of C,
there exists a 0-node o such that { C ¢ C 7, and j(o) < j(%*m) = im. This contradicts the
choice of 3. Therefore, ¢ ¢ C[h].

Towards a contradiction assume that p° | at some' point in stage h for some o with
§ C 0 C ™. By the Subsubclaim, p° | at some point in stage w. This contradicts zv)
of 5.1if 0 C 7N B. Suppose TN B C o C 7. By the choice of v, p? | at some point in
stage t. This contradicts zv) of 5.1 again. Thus p° T throughout stage h for all o with
£ C 0 C mpm. By the same argument we see that for each o such that £ ¢ o™{(2,i(0)) C 3,
7% 1 throughout stage h. By zziii) of 5.1, a™™ is destroyed in stage h, contradiction. This

completes the proof of Subclaim 6.

Recall that we are aiming for a contradiction from the assumption kf ¢ B,. From
Subsubclaim 6, k? = kf. Since k% ¢ B, pS 1 for some ¢ € A(B). Let 7 be the maximal
0-node in A(B) such that p] . From Subsubclaim 1, 7, € C¢p1- Hence pf_,_l | for all
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6 € A(B) with m,, <1 6. By (c) of vi) of 5.3, no p? is destroyed after stage ¢ since a™ is

not destroyed after stage . Hence 7 < mp,.

Subclaim 7. Case 1 holds at « in stage v with 2 = j(7) and 8 = 7.

Proof of Subclaim 7: Let w the least stage > t at which some node 2 = is visited. If
T = Tm, then w = t. Otherwise, p¢ for { € .A(B) immediately to the right of 7 must be
defined before stage v, and 7 is visited in that stage. Therefore w < v and some node 2 7
receives attention at stage w. By zzi) of 5.1, some number z enters B at stage w since a™
is not destroyed. Clearly, either a(z) = 8 or a(z) 2 7. But a(z) = 8 contradicts kf ¢ B,.
Therefore a(z) O . Towards a contradiction assume 7 ¢ Clw]. Since & is not destroyed
in stage w, there is a maximal 0-node £ C 7 such that £ € C[w]. By v) of 5.3, 5(§) < j(=).
So £ C ap by the choice of 5. By (f) of vi) of 5.3, rf:,,l l. By zzv) of 5.1, £ € Cys1
and 0 ¢ C,,4; for each O-node 6 with £ C 6§ C m. Let h > w be the least stage in which
at is destroyed. By (a) of vi) of 5.3, a™ is destroyed at stage h, contradiction. Therefore,
7 € C[w]. Let y be the w-designated number when C[w] is defined. By (f) of vi) of 5.3,
ros1 4. By zzv) of 5.1, € Cyy1. By zv) of 5.1, p° 1 throughout stage w for each 0-node
6 C B, and ¢ 1 throughout stage w for all § with §((2,4(8))) C B. By the choice of v and
zv) of 5.1, p& 1 for each 0-node 8 C 3, and r¢ 1 for all 8 with 67((2,4())) C 8. Now we fix
¢ € A(B) with ¢ <z 7. Towards a contradiction assume p$ |. Let h be the greatest stage
in which p¢ becomes defined. Then p? | for all § € A(B) with ¢ <z 8. Note that pT .
So p™ is destroyed at a stage > h and < v. By (c) of vi) of 5.3, a° and hance also p¢ are
destroyed at a stage > h and < v, contradiction. Therefore, p§ 1 for ¢ € A(8) with ¢ <z, 7.
Ify¢ APy AI™! then Case 1 holds at . So we may suppose that g € A3™Oy 431,
Towards a contradiction assume that there is a 0-node 7 such that a C 7 C 7, j(7) < j(n),
and there is a r-designated number at stage v. Clearly, 7 C ag. Let o be the first node
2 7 which is visited in stage v. Such o exists by the choice of v. By (d) of vi) of 5.3, p°
becomes defined and o # 7 implies j(o) < j(7). By the choice of a, ¢ O ay and either
o CfB,or B <z oand 0~ C B. In either case, there is a 0-node @ such that ag C 8 C 8
and 7(8) < j(7) < j(7) < i, contradiction. Thus there is no 0-node 7, & C 7 C 7, such that

J(7) < j(7) and there is a 7-designated number when « is visited in stage v.
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Ifye Af;(")’l, then (7) of Case 1 holds at a in stage v. It remains to consider the case

Yy € A‘Z;(")’O. For this we need:

Subsubclaim. For each 0-node # which is preferred to 7, when « is visited in stage v,
|
o p¢ | for each { € A(8™) with 0 <r, (.

Proof of Subsubclaim: Fix 8 such that 8 is preferred to . By the remark after 4.4, there is
a 0-node #' such that 8 C ' C = and j(#') < j(r). Therefore, § C . Suppose 8 is visited
at stage v. Then a? |, otherwise no node 2 «y is visited in stage v by iv) of 5.3. By %) of
5.3, we have the conclusion of the Subsubclaim. Suppose 6 is not visited in stage v. Then
either # C a or a C 8. Let o be the first node D 8 which is visited in stage v. Then there
is a jump from a node C 8 to . We show that 8 is preferred to o. Suppose § C a. Since o

and some node 2 ag are visited in stage v, @ <1, 0,0~ C @, and
aDmax{éd:6 € A(cT)Ab6<y 7}

Hence by 4.5, 8 is preferred to o. Suppoée a C 0. Then (ap)” C o, and either o C 3, or
B8 <1, o and
B2 max{f:6 € A(cT)Ab <L o}

Note that in either case 6 is preferred to o by 4.5 since 8 is preferred to 7. By 7) of 5.3, we
have the conclusion of Subsubclaim.

Now Case 1 holds at a again by taking z =y, 8 = 7 and ¢ = j(r).

By Subclaim 7, no node 2 ag and C 8 is visited in stage v, contradiction. Therefore
kf € B, and so kf € B,. This completes the proof of Claim 1.

To see that g € D if and only if g € D;, we just verify the following:

Claim 2.
i) If z < a? is enumerated in B at a stage > s, then z is enumerated in C.

ii) If z < a7 is enumerated in C at a stage > s, then z is enumerated in B at a stage > s.
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Proof of Claim 2. Recall that a” is not destroyed at a stage > s.

i) Let z < a7 be enumerated in B at stage u > s. Then z = kf for some § by vii) of
5.1. By i) of_ 5.2, either § < nor n C 6. We have k& = kf; otherwise ¢/ becomes defined by
Case 4 at a stage > s and < u, which would destroyed a”. n € § since 7 is a 1-node.

Subclaim. Let 8 be a any node such that
e apC A<
o (Vj € L)[j is active at ],
o k71,
o kP enters B at a stage > s.

Then k% € C.

Proof of the Subclaim: Let k7 enters B at a stage w > s. Note that when k° enters B,
pP"{(0im)} i5 defined. Let y be the value of p?"{(%#m)) when k? enters B. Since y is designated
for *((0,%m)) when pP"{(04m)) i5 set equal to y, by (e) of vt) of 5.3 y is the first number 2
with a(z) 2 B*((0, im)) to enter B since afA((o’i’")) was set. Towards a contradiction assume
that y € B,. By Claim 1, k% € B,, contradiction.

Therefore y € B;. Let h be the least stage > s such that y € Bj, and ay is visited in stage
h. @"{(©im)) is never destroyed at a stage > s since B7((0,in)) <z 7. Hence a?"{(%im))
has the constant value a” MOim) ot all stages > s. Applying Claim 1 with 8 = 8, v = k,
and z = y, we have y € A»!. By i) and viii) of 5.2, y < a?. By the choice of (5,s), ¥
enters C at some stage v > u. By zii) of 5.3, y = a§ or y = kS for some (. By viz) of
5.2, ¢ D BN(0,4r)). Suppose a§ = y and a¢ is destroyed in stage v, then a” is destroyed
in stage v, contradiction. Suppose y = k. Then Case 11 holds at some node 3 in stage v,
where 3 C (. Since pg,A((O’i’")) | for all w > u, B C B. Since k? enters B after y, when y
enters C at stage v, so does k2. This completes the proof of Subclaim.

Let § C 7. Then § D ap by the choice of sg. By Subclaim, & enters C.

Let § <r n. Let {,7 be the least nodes respectively such that éN#n C ( C é and
6N 7 C v C 7. There are two subcases:



CHAPTER 6. VERIFICATION, PART I 107

Case 1. There is no (n,e)-node o such that ( CaCdande< i Hence for each j € I;,
j is active at . By Subclaim, k¢ enters C.

Case 2. Otherwise. Let a be the least such node. Towards a contradiction assume that
7 is a k-node for k£ > 2. Then § <y 7~ and ¢” is destroyed at stage u. We now obtain a
contradiction by showing that a” is destroyed at some stage > u. The arguments is almost
identical to that used for the Case 4 in the proof of Subclaim 6 of Claim 1. The parameters
B, T, w, z of that argument correspond to the present 7™, §, u, and z respectively. Therefore,
7 is a k-node for k < 2, and ( is a 0-node. By zviis) of 5.1, a§, | since a7 = a7 |. Suppose
a is a 0-node and a% |. Suppose a € C[u]. Let 7 be the (0, ¢y, )-node in A(a™). Note that
a < 7. Since a € C[u],a] |. I 7w < 7, then p” is defined when C[u] is defined. Let y be this
value of p™. If p™ is set equal to y at stage w, the y enters B after r™ is set equal r7 , i.e.,
after a™ is set equal to a],. Further, a7, = aZ. Otherwise p™ would be destroyed at a stage
> w and < u, contradiction. So whether o < 7 or & = 7, there is a number y with a(y) 2 7
which enters B after a” is set equal a]. Let w > u be the least stage in which ag is visited.
By Claim 1, k2~ € B,,. Note that k2~ enters B after stage u. By Subclaim, k&~ enters C
at a stage v > s. Towards a contradiction assume kY = a] for some 7. 7 <p, @~ by vii) of
5.2. So T <1, 7, contradiction. Therefore, by z#%) of 5.3, Case 11 holds in stage v at some
node 3 C o~. Note that k% enters B before k%~ enters B. Therefore, by Case 11, k& also
enters C. Suppose either n # 0, or n = 0 and aZ 1. Then ¢ # a and j(¢) > e. So { & Clu].
Since a¢ is not destroyed in stage u, there is a maximal 0-node £ C ¢ such that £ € C[u].
By v) of 5.3, (&) < j for all (k,j)-nodes  with £ C 8 C o. In particularly, j(£) < e, and so
£ C ag. Let w > u be the least stage in which a® is destroyed. Then af, = a |. By (f) of
vi) of 5.3, 75,1 |. By z2v) of 5.1, £ € Cyt1 and 8 ¢ Cyyq for all 0-nodes 8 with £ C 8 C .
Hence { € Dy41. Clearly, ¢§, | and cﬁ;l 1. By (a) of vi) of 5.3, a¢ is destroyed at stage w.

By ziiz) of 5.1, a” is destroyed at stage w, contradiction. This completes the proof of 7).

it) Suppose z < a7 is enumerated in C at a stage u > s. By zii) of 5.3,z = af or z = k{
for some §.
Let z = af. By i) of 5.2, either § <z, nor 5 C §. By ziii) of 5.3, a® is destroyed at

stage u. By ziii) of 5.1, a? is also destroyed at stage u, contradiction.
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Let © = k3. By iv) of 5.2, § < 77 orn C 6. But n € 6 since 7 is 1-node. Towards a

contradiction suppose k{ € B,. There are two cases:

Case 1. § receives attention at stage v. Then Case 11 holds at § in stage u.

Suppose § C 7. Note that ag € §. Let y = pZA«O’i’"))). Then y is designated for
6M((0,4,,))) at stage w in which p®"{(@m))) is set equal to p5 (@imD) Note that a5 (@) =
aqu«O’im)) ) | since p?"{(0:im))} is not destroyed in any stage > w and < u. Further, ¢§ = & |
by the same token. We also observe that y € B, and z = k¢ = k§ ¢ B,, since a k% cannot
be enumerated in B until p¢ | for every € € A(6). By (e) of vi) of 5.3, y is the first number
z with a(z) 2 6M(0,i))) which enters B after a®"{(0im))} is set equal to a8 @imM) | Note
that y € B;. y = pZA«O’i"‘))) < a8 @imM) a?l = a7 by i) and viii) of 5.2. By Claim
1, y € A¥*. By the choice of (1,3), y enters C at a stage v < s. Towards a contradiction
assume that y = a], for some 7. By vii) of 5.2, 7 D §*((0,15,))). Since any value assigned
toapis notin C, w < v. By ziiz) of 5.3, a” is destroyed in stage v, which contradicts
z411) of 5.1. Therefore y = k) for some 7 and Case 11 holds at some £ C 7. By wvit) of 5.2,
7 2 6™{(0,%m))). Again, w < v. Here w # v since, if Case 11 holds in stage w, it will be at a
node <r, 6*{(0,x))). By zv) of 5.1, £ C é. Let { be the immediate successor of £ such that
¢ C 1. By Case 11, ¢ € A(€). By iz) of 5.3, p§ | since it must have been defined during the

5 remains defined at all stages > w

greatest stage < v in which ¢¢ was set equal 1. Since ¢
and < u, p° is not destroyed at any stage > v and < ». Since no node D ( can be visited
during these stages, z = k¢ € B,. Since y is enumerated in C by Case 11 at £, y must have
entered B after 7§~ was set. Since z entered B after y and before stage v, Case 11 requires
that z also be enumerated in C at stage v. This contradicts the choice of z.

Now suppose § <r, 7. When Case 11 holds at § in stage u, a” is destroyed, contradiction.

Case 2. § does not receive attention at stage u. Let £ receive attention at stage u. By zi7)
of 5.3, Case 11 holds at £ in stage u such that for some ¢ € A(€), { C é and k¢ entered B
since ¢ was set. Note k¢ is enumerated in C at stage u. By iii) of 5.2, k{ < a?. Applying
to £ the argument used for é in Case 1 above, £ C 7 and k¢ is enumerated in B at stage > s.
It is obvious that ag C €. Let h the greatest stage at which 7¢ was set equal 5. Clearly,

ri = ¢ and so af = af | for all € € A(£). By choice of s, a¢ is not destroyed at any stage
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> h for any € € A(§) with € < £*((0, zm)) Further, p, | for all € € A(£) since p¢ | when k¢
enters B, and a° cannot become undefined at a stage > h and < u. By (e) of vi) of 5.3, p
is the first number y with a(y) 2 ¢ to enter B after af is set. Note that k¢ entered B after
¢ was set, so kS entered B after af was set. There are two cases:

Case 2.1. j({) < im. Lety = piA((o'i"‘)). By (e) of vi) of 5.3, y is the first number 2z with
a(z) 2 £M(0,ix)) to enter B after al {©m) i set since y is (0, i, )-designated when
p¢™(0im) is set equal to y. By Claim 1, y enters B at a stage > s, otherwise k¢ enters B
at a stage < s, contradiction. Towards a contradiction assume that k{ enters B at a stage
v < s. Clearly, b < v. Then when k¢ enters B, p¢"((%im)) is undefined. Hence ¢ & C[v].
Since a¢ is not destroyed in stage v, there is a maximal 0-node € C ( such that ¢ € C[v]. By
v) of 5.3, j(€) < j(¢). Hence € C ap by the choice of 7. By (f) of vi) of 5.3, r5,; |. By zzv)
of 5.1, € € Cy41 and 0 & Cpyq for all O-nodes 8 with € C @ C (. Let w be the least stage > v
at which a° is destroyed. By (a) of vi) of 5.3, a¢ is destroyed, contradiction.

Case 2.2. Otherwise. Let y = p$. To show k2 enters B at a stage > s we just need to
show that y enters B at a stage > s. Towards a contradiction assume y € B;. Let 7 be the
least (0, ¢,,)-node 2 { on a(y). T exists since y is a {-designated number. Note that for all
J € I, j is active at 7. Clearly, when y entered B, it was designated for 7. By (e) of vi)
of 5.3, y is the first number > with a(z) D T enter B after a” is set equal to a]. By Claim
1, y € AYl. By viii) and 45) of 5.2, y < a$ < a? = a7. By Case 11, y is enumerated in
C at stage u because y = p$, and the value given to p¢ is required to have entered B since
<~ = ¢ was set. By the choice of s, y € C,. By zi4i) of 5.3 this is a contradiction because
y cannot be enumerated in C both at a stage < s and at stage u. This completes the proof
of 7).

Case 3.2. 1 € I;. Let i < -+- < i, be an enumeration of I;. Note that for each e > i(ap),

there exists an ¢ € T such that
* 7° 200, (Y°)” € P, () = e <i(((v*)7)F),
o 7°=(¥)77(0,9) <z (*)7)*

To see how to find this v* we can let §. be the least § € P such that i(6) = e + 1, then v°
can be chosen as §~"((0,7)). Note that by vi) of 5.4, )’ is defined.
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Define 7 C T as
{a:aDasAa(l(e)—1)=(0,i)A (V] € L;)[j is active at a]}.

Note that for each e > i(ap), v¢ € F. To show that D <r AY0 — C, fix g, find the least
(7, s) such that

e vyel ,s<sg

eall>g

o each node C oy is visited at stage s

o B, I (4] +1)C A°uU A

o (A7 =Co) 1 (a7 +1)= (45" - Cu) I (a3 +1).

Note that, for each e > max{n, i(a)} there exist arbitfa.rily large s such that (af, s) satisfies

the conditions specified for (v, s).

It can be shpwn that g € D if and only if g € D;. It is sufficient to establish the following

two claims hold:

Claim 1. Let 8, u satisfy
e 0o C A<y, s<u,
o ag is visited in stage u,
e for all j € I;, j is active at 3,

R ag"((o,"m)) L.

-If some y entered B at a stage > so and < u with a(y) 2 8"((0,%,)) since aB™MOm)) g
set, then kP € B,.

Claim 2.

i) If z < a? is enumerated in C at a stage > s, then z is enumerated in B at a stage > s.

ii) If z < a7 is enumerated in B at a stage > s, then z is enumerated in C.
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The proofs of these claims are similar to the proofs of Claims 1 and 2 in the treatment
of Case 3.1.2 above. Since the proofs are easier in the present case, we leave them to the
reader. Now from Claim 2 it is clear that g € D if and only if g € D,. This completes the
proof of 6.4. I



Chapter 7

Further notes and conjectures

First, the question as to what splitting property might hold for d.r.e. sets is addressed by:

Conjecture 1. There exists a properly d.r.e. set D such that for all d.r.e. sets A%, A?,
[A°UA'=D = D <7 A°v D <r Al].

Definition. Fix n. A degree a € D, is called a minimal cover in D, if there exists a
degree b € D,, with b < a such that there is no degree c € D, and b <c < a.

As was mentioned in Chapter 1 the d.r.e. degrees are not dense, see [6]. That theorem
was proved by showing that 0’ is a minimal cover in D,. We believe that that result can be

strengthened:
Conjecture 2. Every high d.r.e. degree is a minimal cover in D,.

Verification of this would be interesting because it would yield an elementary property
separating high degrees from the low; degrees in the upper semilattice of d.r.e. degrees.

Cooper asked whether there are such properties.
Conjecture 3. There is no d.r.e. degree which is a miminal cover of an r.e. degree in Ds.

An isolated degree is a d.r.e. degree d such that among the r.e. degrees < d there is a
greatest one. Such degrees exist by unpublished work of Cooper and the author indepen-
dently.

Conjecture 4. The isolated degrees are dense in the r.e. degrees.

112
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Finally, the question about definability of d.r.e. degrees is still open:

Conjecture 5. The set of d.r.e. degrees is definable in the upper semilattice of Turing

degrees.
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