
Visualizing the World-Wide Web with the

Navigational View Builder

Sougata Mukherjea, James D. Foley

Graphics, Visualization & Usability Center

College of Computing

Georgia Institute of Technology

E-mail: sougata@cc.gatech.edu foley@cc.gatech.edu

Abstract

Overview diagrams are one of the best tools for orientation and navigation in hypermedia systems.
However, constructing e�ective overview diagrams is a challenging task. This paper describes the
Navigational View Builder, a tool which allows the user to interactively create useful visualizations of
the information space. It uses four strategies to form e�ective views. These are binding, clustering,

�ltering and hierarchization. These strategies use a combination of structural and content analysis
of the underlying space for forming the visualizations. This paper discusses these strategies and
shows how they can be applied for forming visualizations for the World-Wide Web.

KEYWORDS: Information Visualization, Overview Diagrams, Binding, Clustering, Filtering, Hi-
erarchization.

1 Introduction

One of the major problems with current hypermedia systems is being lost in hyperspace. For exam-

ple in Mosaic [1] the process of jumping from one location to another can easily confuse the user.
This is primarily a result of the user's lack of knowledge of the overall structure of the information

space. For this purpose overview diagrams or navigational views are very useful. By presenting a

map of the underlying information space, they allow the users to see where they are, what other
information is available and how to access the other information. In fact, they are one of the best
tools for orientation and navigation in hypermedia documents [12].

However, construction of e�ective overview diagrams is a challenging task. There are various prob-

lems involved:

� The navigational views are two or three dimensional projections of generally multidimensional

hypermedia networks. Finding e�ective views of such complex network structures that convey

all the required information is hard. In particular, this task is impossible without knowledge

of the structure and the contents of the information space.



Figure 1: An overview diagram of the World-Wide Web pages about the research activities at
GVU. It indicates clearly why traditional overview diagrams are useless for real-world hypermedia

systems.

� Even if such a view is developed, the resulting structure would be very complex for any
non-trivial hypermedia system. Creating an aesthetic layout of such a complex structure is

extremely di�cult. In fact the overview diagrams are generally represented as node and link
graph diagrams and graph layout is a very complex problem [2].

� As the size of the underlying information space increases, it becomes very di�cult to �t the

whole information structure on a screen. If the size is reduced to �t on the screen, the details

become too small to be seen. An alternative is to browse the large layout by scrolling and arc
traversing. However, this tends to obscure the global structure. The goal should be to display
both the details and the context smoothly integrated together in a single screen.

� Just displaying the structure to the user is not enough. To be really useful, the user should
be able to get an idea of not only the structure but the actual contents of the nodes and links

just by looking at the navigational views.

We are building the Navigational View Builder, a tool for letting the designer develop e�ective

overview diagrams of hypermedia systems. (The implementation is done using C++, Motif and
Open Inventor [13]). The tool uses various strategies to reduce the problems concerned with devel-

oping overview diagrams. This paper discusses these strategies and shows how they can be used to

form useful views of the World-Wide Web.

We assume a database-oriented hypermedia system where the nodes are described with attributes.

Since the WWW is unstructured and does not have this model of the hypermedia system, the model
was built from the node and link structure of the WWW extracted by parsing the html documents

using the strategy described in [10]. Some of the attributes of the nodes like the author (the owner

of the �le) and the �le-size could be extracted automatically from the �les. However, a major



drawback of the World-Wide Web is the absence of many useful semantic attributes for the pages.

Therefore, to fully show the power of our tool, attributes like the topic of the page (whether it is a

research page or a personal page, etc.) were inserted manually. (E�orts are underway to incorporate

metadata into WWW and hopefully in the near future we can extract all useful information from

WWW automatically).

Figure 1 shows an unstructured overview diagram of the WWW pages about the research activities

at the Graphics Visualization & Usability (GVU) Center at Georgia Tech.1 These pages mainly

contain information about the faculty, students and research activities of GVU. This �gure shows

how useless such overview diagrams can be for helping the user understand anything. The whole

information space does not �t on a screen, and the interconnections between the nodes make the

structure too complex for easy understanding. The �gure also does not give any details of the char-

acteristics of the nodes and links. The following sections will describe various strategies to make

this diagram more understandable.

2 Binding

To make the overview diagrams useful for the user, they should depict more information than merely

the structure of the information space. The user should get an idea of the content of the space
so that just by looking at the diagram the user can decide what part of the overall information
space is of interest to her. For example, in the WWW, an user should be able to get an idea
about the topic of the page by just looking at the overview diagram. Similarly, if certain nodes
are important (known as landmarks in hypermedia literature), they should be identi�able from the

views. To achieve this purpose, visual properties can be used in the overview diagram to represent
information from the underlying information space. For example, the topic of the nodes may be
represented by di�erent colors. Similarly, special icons or brighter colors can be used to represent
the landmark nodes.
The designer of the overview diagrams should be able to specify the bindings between the information

attributes and the visual attributes of the nodes and links. These bindings specify a mapping

between the information space and the visual space of the hypermedia system. At the time of
displaying the navigational views, these bindings and the information in the underlying information
space control the actual appearance of the views. For example, if the topic is bound to the color

of the nodes, the color of the nodes in the view would be controlled by the topic of the page which

the node represents. Unfortunately, the number of visual properties that can be used to depict

information is usually less than the amount of information in the underlying database. Therefore,

only the important data attributes should be bound to the visual properties. Thus, the mapping
between the database and the visual attributes should not be hardwired into the system since the

importance of the data attributes cannot be �xed a-priori. The Navigational View Builder allows
the designer of the navigational views to specify the bindings between the data and the visual

attributes of the nodes and links in an easy-to-use interface. A sample interface for binding node

attributes is shown in Figure 2. Figure 3 shows an example of a view of the GVU WWW pages
with various visual properties bound to information attributes. In this example icons are used to

represent various media types, the node size is bound to the �le size (inversely) while the shape

represents whether the author of the page was a student (circles represent students). The color

hue represents the topic of the page while the color saturation represents the last modi�ed time.

1
URL: http://www.gatech.edu/gvu/gvutop.html



Figure 2: Piece of the interface for binding visual attributes to database attributes.

Figure 3: An example of binding for the WWW. Visual attributes are used to represent information.

Moreover, links connecting two html �les are solid while links connecting html �les to other kind

of �les are dashed. More information is presented to the user in this diagram than in Figure 1. A
more detailed discussion of our binding strategy and its usefulness is presented in [5].

3 Clustering

One of the major problems with the overview diagrams is that the screen gets cluttered with too

much information for even a reasonably sized hypermedia system. One way to overcome the problem
is to reduce the information that needs to be shown on the screen through suitable abstractions.

These abstractions will show the user the overall information space without cluttering the screen.

For example, it is obviously not possible to show the entire GVU WWW pages on a single screen.
Hence we may form an abstraction which clusters all �les in the same directory into a single node.



Figure 4: An example of similarity-based clustering: Clustering done by authors. Clusters for the
di�erent authors of the GVU WWW pages are formed. Shapes represent the type of the authors

(circles represent students).

Clustering is possible for the abstracted views also. For example, if the number of directories are
large, even the abstraction which represents each directory as a single node may be too confusing for
the user. Hence there may be further clustering based on, for example, the topic of the pages. These

abstracted views would be able to show the overall information space on a single screen without
much cluttering. Hence the user would have a better feel of the global information structure from
these abstracted views. Depending on the intentions and goals of the users, di�erent kinds of
abstractions would be useful to them. For example, one user may want to see an abstraction of the
information space based on the topic. Some other user may want to see the abstraction based on
the author of the pages. Hence, for the abstracted navigational views to be really useful, we should

allow the interactive speci�cation of the abstractions.

3.1 Types of Clustering

Two types of clustering are useful. They are as follows:

1. Structure-based clustering:

In structure-based clustering, the hypermedia structure is searched for subnetworks that match
a given pattern. These subnetworks form a cluster. The simplest form of this type of clustering

is link-based clustering in which nodes that are joined by a particular class of links are

clustered together. For example, in an overview diagram we may want to form clusters of

nodes that are linked by annotation links.

2. Content-based clustering:

In this type of clustering the nodes of the hypermedia are considered individually and their

attributes are examined to determine the clusters. The simplest form of content-based clus-
tering is when all nodes whose attributes satisfy certain properties form a cluster. Sometimes



Figure 5: An abstracted view of the GVU's WWW research pages. Succesive abstractions done by

directory, sub-topic, topic, etc.

Figure 6: Viewing the abstracted structure. The user is seeing the details of Research pages. The
details of each layer are shown in the x-y plane. The layers are arranged in the z dimension with

the most detailed view (of the Research pages) in front.

the user would like to cluster all nodes that have the same value for a certain attribute. If the

user has to generate a clustering command for each value of the attribute it would be quite

tedious. Therefore,Attribute-similarity-based clustering is allowed in which for each value
of the speci�ed attribute, clusters of nodes having that value is formed. For example, all pages

built by the same author can be clustered together (as shown in Figure 4).

To allow the clustering to be done interactively, it is essential that the clustering algorithms are

e�cient. We discuss our clustering algorithms in [6]. Note that clustering can be combined with

binding so that information about the clusters are shown visually. Thus in Figure 4, shapes represent

the type of the authors (circles represent students).

3.2 Visualizing the Abstracted Views

By a series of clustering, the user will be able to see the global view of the information space.

After the user gets an idea of the global structure, she would generally want details of some part



Figure 7: A top view of the structure making the hierarchy formed by the abstraction layers
apparent. The user is seeing the details of the Hypertext research area. Colors represent di�erent

research areas.

of the space and the problem with the abstracted views is that the details would be lost to the
user. To show the details together with the context, we have developed a visualization strategy
using 3 dimensions. Initially the user will be shown the most abstracted view as in Figure 5. (Here
the abstraction was done by directory, sub-topic, topic, etc.) When the user wants the details of a
particular node, those details will be shown at the front while the more abstract layers move deeper.

For example, Figure 6 shows a view where the user wanted to see the details of the Research pages.
The x-y plane is used for showing the details of each particular layer and the layers are arranged in
the z dimension with the most detailed view (of the Research pages) in the front. It can be argued
that as more and more details are available, the context would move deeper and deeper into the
screen. However, the eye-point can be shifted to bring di�erent parts of the space in focus. For

example, besides the front view, back, side and top views can also be provided. Figure 7 shows
a top view of the information space after the user wanted to see details of the Hypertext research

area. (Note that colors are used to represent di�erent research areas). We allow smooth animation

so that the view changes are not abrupt and allows the user to see the changes easily. This view
shows that the details of the user's interest as well as the context are integrated together on a single
screen. (However, it should be noted that the user can generally see the details of one part of the

space only - otherwise the view becomes very confusing).

4 Filtering

To reduce the complexity of the overview diagrams, the user may want to remove unwanted in-

formation (or show the useful information only). Therefore, we allow various �ltering options.

1. Content-based: In this type of �ltering only nodes whose attributes satisfy certain proper-

ties are shown/ hidden. For example, Figure 8 shows only the pages related to research in



Figure 8: An example of content-based �ltering: Showing only the pages related to Animation
research.

Figure 9: An example of structure-based �ltering: Showing only the html pages linked to both

images and movies. Icons represent the media types of the pages.



Animation.

2. Link-based: In this type of �ltering only certain types of links are shown/ hidden.

3. Structure-based: Suppose some organizations have guidelines for their employees when they

are making their WWW home pages. It may state that a central html page should be linked

to a gif �le and another html page. Later on, an administrator for these pages may wish to

check whether people have been following the guidelines. Traditional content-based database

querying would not be of much help. Therefore we allow structure-based querying which

allows the showing/hiding of certain subgraph patterns only. For example, Figure 9 shows

the html pages that are linked to both images and movies. (Icons represent the media types

of the pages).

Note that our �ltering algorithms are similar to the clustering algorithms. Also note that our
content-based �ltering is similar to the concept of dynamic queries [14].

5 Hierarchization

The previous sections have assumed that the overview diagrams would be presented as node and
link graph diagrams. Since the underlying hypermedia structure is a network, this may seem to be
the best way to present the information. However, graphs are the most di�cult data organizations
to visualize. Moreover, views of the full graph structure are di�cult for the users to comprehend.
Although clustering and �ltering help in reducing the complexity, unless the user has some idea

about the underlying information space, she would not know what type of clustering or �ltering
would be useful for her. Therefore, some automatic mechanism which shows the user the overall
information space in an easy-to-understand visualization would be required.
In [9] Parunak notes that: \The insight for hypermedia is that a hyperbase structured as a set
of distinguishable hierarchies will o�er navigational and other cognitive bene�ts that an equally

complex system of undi�erentiated links does not, even if the union of all the hierarchies is not

itself hierarchical." [8] observed that the ability to view knowledge from di�erent perspectives is
important. Thus, if di�erent hierarchies, each of which gives a di�erent perspective to the underlying
information can be formed, the user would be better able to comprehend the information. It should

be also noted that unlike graphs some very e�ective ways of visualizing hierarchies have been

proposed. Examples are Treemaps [3] and Cone Trees [11].
Therefore, we have developed an algorithm for forming hierarchies from hypermedia graphs. It

uses both structural and content analysis to identify the hierarchy. The structural analysis looks
at the structure of the graph while the content analysis looks at the contents of the nodes. These

hierarchies can be visualized in various ways.

5.1 Visualizing WWW through Multiple Hierarchies

Our algorithm has been implemented in the Navigational View Builder. The left hand screen of
Figure 10 shows the top level of the default hierarchy created for the data by our algorithm. The

�le research.html which lists the various research activities of GVU is the root. It has branches to

the major research area as well as to gvutop.html, a �le containing general information about GVU.



Figure 10: The left hand screen shows the top level of the default hierarchy formed for the GVU
WWW pages. research.html is the root and the major research areas are shown. The right hand
screen shows a book view of a portion of this hierarchy showing research in Software Visualization.

Figure 11: A 3d Tree view of the default hierarchy of the GVU research pages. The node colors

represent author types while the link colors depend on the media type of the destination pages.
The interface allows various zooming, rotating and �ltering operations for the tree.



Figure 12: Our algorithm can form various hierarchies. A list of these are shown to the user ranked
by a metric. The user can choose any one.

The right hand side of Figure 10 shows a view of a section of this hierarchy (showing research in
Software Visualization) where the nodes are listed as a table of content of a book. Figure 11 shows
a 3d tree view of this hierarchy. Binding can be used in these views as well. Thus, in this �gure the

node colors represent author types while the link colors depend on the media type of the destination
pages. Also note that the interface allows various zooming, rotating and �ltering operations for the
3d tree.
In each step, our hierarchization algorithm tries to identify a root and partition the other nodes
of the graph into di�erent branches. These branches are themselves graphs and the algorithm is

recursively called for each branch. At each step various partitions are possible based on structural
and content analysis. A metric is used to rank these. By default the partitioning with the best
metric is chosen and thus, the algorithm forms a hierarchy automatically. However, the user can
guide the hierarchization process. Various choices for forming partitions can be shown in a menu
as shown in Figure 12 and the user can choose any one. Details of the algorithm is presented in [7].
The left hand screen of Figure 13 shows a Treemap view of a hierarchy that was formed with the

attribute topic being used to initially partition the nodes. Here also colors are used to represent

author-type. In this way, multiple hierarchies, each giving a di�erent perspective to the underlying
information space can be formed. If a user selects a node in one view, its positions in other views

are also highlighted. Thus, these views help the user in comprehending the data. It should be also
noted that the user can go directly to the corresponding WWW page for the selected node. Thus in

the Treemap view the node visdebug.html is highlighted. The corresponding WWW page is shown

on the right hand screen of Figure 13.

5.2 Generating Other Views

Once a hierarchy is formed from the original graph structure, other views can be developed as

well. For example, if the original partitioning for forming the hierarchy was done by a quantitative

attribute, a linear structure sorted by that attribute can be formed from the subtrees of the root
node. For example, Figure 14 represents a perspective wall [4] view of a linear structure sorted

by the last-modi�ed-time. From the hierarchy whose initial partitioning was by the attribute last-



Figure 13: The left hand screen shows a Treemap view of a hierarchy of the GVU research pages
where topic was used for the initial partitioning. The node colors represent author types. The node
visdebug.html is the selected node. The corresponding WWW page is shown on the right hand

screen.

Figure 14: A Perspective Wall view showing a linear arrangement of the �les based on the last

modi�cation time. The di�rent walls shows �les which were last modi�ed in di�erent time frames.
Only some walls are in the focus at a given time.



modi�ed-time, the �les were divided into partitions based on the time when they were last modi�ed.

These partitions were arranged on walls. Only some walls are in the focus at a given time. The

user can easily control the walls which are in focus through a scrollbar. Similarly a tabular view

showing useful statistics for the various pages and also for groups of pages organized by topic can

be formed by a depth-�rst traversal of the hierarchical structure whose initial partitioning is done

by the attribute topic.

6 Conclusion

We have presented the Navigational View Builder, a tool for forming various useful visualizations

of the WWW. We believe that by using the various strategies that are described in the paper the
user will be able to form visualizations that help in reducing the lost in hyperspace problem. Future

work is planned along the following directions:

� A limitation of our system is that no evaluation of how useful our strategies and views really
are have been done so far. We plan to do serious usability studies in the near future. These

studies may give us new insights that will help to improve our system.

� At present our system runs for the research pages of GVU having about 400 nodes and 800

links. For larger data sets our hierarchization algorithm will become slower. (Presently the
algorithm takes about 7 seconds on a SGI reality engine). Therefore, we are trying to use
smarter data structures to improve the e�ciency of the code. Moreover, for larger data sets
better visualizations of hierarchies will be needed. Research needs to be done in this direction.

� To improve our content-based analysis we need to incorporate more useful metadata into our
system. For example, information like the last time a �le was accessed or the number of
times a link was traversed would be very useful. These information can be easily accessed by
incorporating a web analysis tool [10] into our system. Finding other useful metadata is an

open research issue.

Acknowledgement

This work is supported by grants from Digital Equipment Corporation, Bell South Enterprises, Inc.
and Emory University System of Health Care, Atlanta, Georgia as part of the Hypermedia Interface

for Multimedia Databases project.

References

[1] M. Andreessen. NCSA Mosaic Technical Summary. Technical report, National Center for
Supercomputing Applications, 1993.

[2] G. Battista, P. Eades, R. Tamassia, and I. Tollis. Algorithms for Drawing Graphs: an Anno-

tated Bibliography. Technical report, Brown University, June 1993.



[3] B. Johnson and B. Shneiderman. Treemaps: A Space-�lling Approach to the Visualization of

Hierarchical Information. In Proceedings of IEEE Visualization '91 Conference, pages 284{291,

San Diego, Ca, October 1991.

[4] J. D. Mackinlay, S. Card, and G. Robertson. Perspective Wall: Detail and Context Smoothly

Integrated. In Proceedings of the ACM SIGCHI '91 Conference on Human Factors in Com-

puting Systems, pages 173{179, New Orleans, La, April 1991.

[5] S. Mukherjea and J. Foley. Navigational View Builder: A Tool for Building Navigational Views

of Information Spaces. In ACM SIGCHI '94 Conference Companion, pages 289{290, Boston,

Ma, April 1994.

[6] S. Mukherjea, J. Foley, and S. Hudson. Interactive Clustering for Navigating in Hypermedia

Systems. In Proceedings of the ACM European Conference of Hypermedia Technology, pages
136{144, Edinburgh, Scotland, September 1994.

[7] S. Mukherjea, J. Foley, and S. Hudson. Visualizing Complex Hypermedia Networks through
Multiple Hierarchical Views. To appear in Proceedings of ACM SIGCHI '95, May 1995.

[8] C. Neuwirth, D. Kau�er, R. Chimera, and G. Terilyn. The Notes Program: A Hypertext
Application for Writing from Source Texts. In Proceedings of Hypertext '87 Conference, pages
121{135, Chapel Hill, NC, November 1987.

[9] H. Parunak. Hypermedia Topologies and User Navigation. In Proceedings of Hypertext '89

Conference, pages 43{50, Pittsburgh, Pa, November 1989.

[10] J. Pitkow and K. Bharat. WEBVIZ: A Tool for World-Wide Web Access Log Visualization.
In Proceedings of the First International World-Wide Web Conference, Geneva, Switzerland,
May 1994.

[11] G. G. Robertson, J. D. Mackinlay, and S. Card. Cone Trees: Animated 3D Visualizations
of Hierarchical Information. In Proceedings of the ACM SIGCHI '91 Conference on Human

Factors in Computing Systems, pages 189{194, New Orleans, La, April 1991.

[12] K. Utting and N. Yankelovich. Context and Orientation in Hypermedia Networks. ACM

Transactions on O�ce Information Systems, 7(1):58{84, 1989.

[13] J. Wernecke. The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open

Inventor. Addison-Wesley Publishing Company, 1994.

[14] C. Williamson and B. Shneiderman. The Dynamic HomeFinder: Evaluating Dynamic Queries
in a Real-Estate Information Exploration System. In Proceedings of the ACM SIGIR '92 Con-

ference on Research and Development in Information Retrieval, pages 338{346, Copenhagen,
Denmark, June 1992.


