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A well-known theorem of Frame, Robinson, and, Thrall states that if h is a 
partition of n, then the number of Standard Young Tableaux of shape h is n! 
divided by the product of the hook-lengths. We give a new combinatorial proof of 
this formula by exhibiting a bijection between the set of unsorted Young Tableaux 
of shape A, and the set of pairs (T, S), where T is a Standard Young Tableau of 
shape h and S is a “Pointer” Tableau of shape A. 

1. INTRODUCTION 

Leth= {A, TX,2 . . . 2 A,} be a partition of n. The Ferrers diagram of 
shape h is an array of cells indexed by {(i, j) 1 1 5 i I m; 1 sj I Ai}. If A 
is a set of positive integers such that ] A ] = n, then a Young Tableau (YT) of 
shape h on A is any arrangement of A in the cells of the Ferrers diagram of 
A. Such an arrangement is a Standard Young Tableau (SYT), if the rows and 
columns are increasing sequences (see Fig. 1). 

Let[n] = {1,2,... , n}. Then the number of Standard Young Tableaux on 
[n] of shape X is denotedf,. For each cell (i, j) in the Ferrers diagram of A, 
define the hook to be the set of cells Hij = {(k, I) ] k = i and I ?j or k 2 i 
and I = j}. The hook-length of (i, j), h,,, is ] H;, 1 . 
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Younq 
Tableau 

Standard Younq 
Tableau 

THEOREM (Frame-Robinson-Thrall) [ 11. If A is a partition of n, then 

fx = n”\,,Y 0) 
(i. j) ” 

where the product is taken over all cells in the Ferrers diagram of A. 

An excellent introduction to Young Tableaux, and a classical proof of 
this formula, can be found in Knuth [4]. Another nice proof was given by 
Hillman and Grass1 [3]. More recently, Greene et al. [2] found a probabilis- 
tic interpretation of the formula, and provided a procedure for constructing 
an SYT uniformly at random. Remmel [5] has given a very different sort of 
bijective proof, using a lattice path interpretation of Young Tableaux. So 
far, however, no direct and simple bijective proof has been found. 

We show that there is a simple bijection establishing the formula. How- 
ever, it is nontrivial to verify that the mapping is a bijection. 

We first rewrite (1) as 

n!= fx. l-Ihij 

and note that n! is the number of Young Tableaux on [n] of shape X. To 
analyze the right side of (1)’ we define a Pointer Tableau of shape X to be an 
assignment of a cell index (i’, j’) to each cell (i, j) of the Ferrers diagram of 
X, such that (i’, j’) E H,,. The number of Pointer Tableaux of shape A is 
simply lIhij. Let P = {(T, S) ] T is an SYT of shape X on [n]; S is a Pointer 
Tableau of shape X}. Then 1 P I= fx . II hij. We call (T, S) E P a Pointed 
Young Tableau (PYT). 

Our bijection consists of an algorithm for sorting a Young Tableau R; to 
produce a unique pair (T, S) in P. The Pointer Tableau S records each step 
of the sorting algorithm, storing just enough information to enable us to 
reverse the procedure. 

The algorithm makes repeated use of a procedure called IC (Insert 
Column), which we describe in detail in Section 2. The input is (T, S), a 
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PYT, where T is an SYT on some set A c [n], and a column vector 

aI 
Q2 

a= . 

of distinct numbers not already in T. IC first inserts a into T, obtaining an 
augmented Tableau (not necessarily an SYT). IC then sorts T and con- 
structs a column vector d of pointers so that (T, dS) is a PYT. Starting with 
a YT R, the final PYT is built up one column at a time, starting with the 
rightmost (shortest) column, as described in the following procedure. 

R-SORT 

Input: Young Tableau R on [n] with shape X = {A, 2 A, * *. 2 X,}. 
Output: PYT (T, S) of shape h on [n]. 

1. Initialize: (T, S) + (+, +);K + A,. 
2. While K # 0 do 

a + Kth column of R 
Call IC (a, T, S) to obtain an augmented PYT (T, S). 
K+K- 1 

endwhile 
exit Cl 

In Section 3 we present DC (Delete Column), the inverse procedure for 
IC. DC begins with a PYT (T, S), where T has m rows, deletes a column 
vector of length m from T and deletes the first column of S, obtaining a 
diminished PYT. Applying DC successively, we eventually recover R. More 
formally, we define: 

FIND-R 

Input: PYT (T, S) of shape X = {h, I . . . 2 A,}. 
Output: YT R of shape X on [n]. 

1. Initialize: R + $I; K + 1. 
2. While K I A, do 

Call DC (T, S) to obtain smaller PYT (T, S) and column 
vector a 
Kth column of R + a 
K+-K+l 

endwhile 
exit 0 
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In Sections 4 and 5 we prove that algorithms IC and DC are effective, 
and, in Section 6, show that they are inverses of each other. Together, these 
results are sufficient to show that R-SORT provides a bijection between the 
set of PYT and the set of Young Tableaux of shape X. In Section 7 we show 
that the Pointer Tableau can be viewed as a generalization of the familiar 
inversion table for a permutation. 

2. INSERTING A COLUMN INTO A TABLEAU 

We show how to insert each column of R into T and how to construct S. 
First, some notation. 

DEFINITION 2.1. A Pseudo Tableau is a Young Tableau whose rows are 
increasing. 

DEFINITION 2.2. Let ak, < ak, < . . . < sky be the kth row of a Pseudo 
Tableau. To INSERT the number b into row k means to insert b so that the 
row is still increasing. For example, inserting 7 into 13568 yields 135678. If 
akr<b<aki+l then the new row is renumbered so that a(ki+l * b, a;;+* +- 
akr + , , and so on. 

DEFINITION 2.3. Let ak-,, < ak-12 * * * < ak-ly 

akl < . ‘. < sky’, 

with y’ s y, be rows ( 1 k i ’ of a Pseudo Tableau. To EXCHANGE ak-,,, 
and ako means to delete these entries from their original positions and 
INSERT them into rows k and k - 1, respectively. For instance, exchang- 
ing 3 and 6 in ( $z) yields (z:i). The entries are then renumbered. 

(Note: from now on, “insert” and “exchange” will be used interchangea- 
bly with INSERT and EXCHANGE.) 

We also need a convenient way to represent Pointer Tableaux. Let Sij be 
the (i, j)th entry in a PT, S. If Slj = Cx (x 1 1) then Sij points to cell 
(i, i + x - 1). If Sij = Ry (y 2 2) then Sij points to cell (i + y - 1, j). For 
example, if X = (3,2) then the following Pointer Tableaux are equivalent: 

(193) (292) (1,3) C3 R2 Cl 

c&l) W) 1 Cl Cl 

We can now give: 
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Procedure IC (Insert Column) 

Input: (T, S) PYT with I rows; 
aI 

Columnvectora=( ; );mlI,a,@TVi. 

am 
Output: Augmented PYT (T, S), where now ai E T Vi. T and S have the 

same shape as on input, except that an additional column of m 
cells has been adjoined to each. 

Wa, T, 9 

(0) Initialize: For j = 1 to m do 

INSERT aj into row j of T 
let (j, z) be the new position of aj 

dj + Cz 
endfor 

(1) While [T is not a Standard Young Tableau] there is an entry 
a,, E T such that a,, < a,-,, 
do begin: 

(2) ukx + min{a,t 1 a/t < a/- I,> 

Lakx is the smallest entry out of order] 
(3) [Claim: d,-, = Cy for some y] 

EXCHANGE akx and ak-,,, 
Let (k, y’) be the new position of ak- ,,, 

(4) [Update pointers] 

Ru ifd,= Ru- 1, 

dk-, + 

1 

R2 if d, = Cx, 

Cv ifd,= Cv, v # x, 

d, +- Cy’ 

endwhile 
(5) [T is now an SYT] 

s * dS 
exit •i 

EXAMPLE 1. Application of R-SORT; X = (4,3,3,2). 

CR) CT) (S) 
9 12 8 1 1 3 4 8 Cl R3 C2 Cl 
254 -j 2 7 9 c3 Cl Cl 

11 3 7 5 10 12 R2 C2 C1 
10 6 6 11 c2 Cl 
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We use IC to insert in succession: 

[II (T) (4 
1 1 Cl + exit 

[2] 1 8 c2 

4 Cl --t No entry is out of order so we exit. 
7 Cl 

[3] 1 8 12 c3 1 8 12 C3 
45 C2 34 R2 --) ~ 
3 7 Cl 5 7 Cl 
6 Cl 6 Cl 

(4 (b) 

1 48 R3 1 48 R3 
3 12 c2 3 7 Cl ~ 
57 Cl 5 12 c2 

~ exit 

6 Cl 6 Cl 

Cc) 
(a) akr = 3; k = 3, x = 1. d, = C2, az2 = 5 so 3 and 5 are exchanged, 

d, = Cx so d, +- R2 and d, + Cl. 

(b) Now akx = 4, k = 2, x = 2. 4 must be exchanged with a,3 = 12. 
d, = R2 so d, + R3, d, +- C2. 

tc) ak.x = 7; akelb, = 12. d, = d, = Cl # Cx so d, - Cl, d, + C2. 

[4] 1 4 8 9 c4 1 3 48 Cl 
237 Cl 279 C3 

- 51112 C2 51112 1 
6 10 I c2 6 10 I / 

1 3 48 
279 ~ 
5 10 12 
6 11 

c2 
c2 

Cl 
c3 
R2 

- exit 

c2 

EXAMPLE 2. h = (3,3,3). 

648 147 R3 R2 R3 
319-258 Cl Cl Cl 
257 369 c2 Cl Cl 
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Remark . Throughout IC, T remains a Pseudo Tableau; this fact will be 
used repeatedly in the proof of correctness. 

3. DELETING A COLUMN FROM A TABLEAU 

We now construct DC, the inverse of IC. At each stage, DC finds the last 
two entries exchanged by IC and exchanges them back to their original 
positions. 

To motivate DC, we recall that if IC has just exchanged entries akx and 
ak- ,,,, between k i ’ , then ( 1 

(1) d, = cy for somey, and 
(2) either 

(a) dk-, = Ru for some U, or 
(b) d,-, = Cu and (as we shall prove in Section 4) akx is in position 

(k - 1, x) with u < X. 

We shall also prove that the following hold (see Figure 2): 

(1) ak- It < akr Vt, 

(2) ak--lt ( akr- 1 xctsy, 

(3) ak-lx ’ akx-l. 

This suggests the following algorithm. 

Procedure DC (Delete Column) 

Input: (T, S), a PYT with m rows 
aI 

Output: Column vector a = 

H 

: ai E T Vi 

anI 
(T, S) a new, smaller PYT where ai 65 T Vi. (T, S) have the 

immediately after IC has exchanged akx and ak-,y. Notation 
convention: there is a directed arrow from (I to h if a < b. 
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same shape as the original pair except that their leftmost col- 
umns have been deleted. 

WT, s> 

(0) Initialize: For j = 1 to m do 

dj + ‘,I 
endjor 
[d + leftmost column of S]. 

(1) While there is an entry aiv, in T satisfying: 
(i) d, = Cyj 

(ii) d,-, = Ru for some u or 
d,-, = Cv for some v <yj 

where a,,-, < ai-,* 
for some v < t I y, 

[Rows j - 1 and j could have exchanged entries during 
ICI. 

do begin: 

(2) For each such j define s,: 
Zj a,- ,, < a/,-, for 2 5 t 5 r, 

ordj= Cl 
Then s, + 1. 

Else let ;be the largest column index such that 
r I yj and aj,-, < a/- ,r; 
s, - r. 

1 
were the last rows to exchange entries during IC 

(3) 

(4) 

(5) 

then a,- ,s is the new entry in row j - 11. 

ak- Is - n;ax{aj- is, I a,.v, satisfies (i) and (ii) above} 

akv +- ak.vA- 

[These were the last entries exchanged by IC] 
EXCHANGE ak- IS and ak,,,. 
Let (k - 1, y’) be the new position of ak ); 
[Update Pointers] 

I Ru - 1 if dkp, = Ru, u > 2 

d,- + cs if d,-, = R2 

cv if d,-, = CV 

dk-, + Cv’ 

endwhile 
(6) [T now looks like the pseudo tableau obtained by initializing IC: 

d, = Cy, Vj, and deleting aj,., from T for all j leaves an SYT]. 



EXAMPLE. Application of FIND-R to Pointed Tableau of Example 1, 
Section 2. 

CT) 
1 3 48 
2 7 9 
5 10 12 
6 11 

(9 CR) 
Cl R3 C2 Cl 9 12 8 1 
c3 Cl Cl 2 54 

-+ R2 C2 Cl 11 37 
c2 Cl 10 6 

Ul 1 3 48 Cl 13 48 Cl 
279 C3 _,279 C3 
5 10 12 R2 51112 C2 
6 11 c2 6 10 c2 

(a) (b) 

CR) 67 
14 89 C4 9 148 
237 ---) Cl+ + exit 2 37 
51112 C2 11 512 
6 10 c2 10 6 

(a) There are two eligible pairs of rows: 

( 2 1 1 : aIs* = 3, a23 = 9, s2 = 2, d, = Cl, 

( 3 I : a3s, 

104, 3 so 

= 10, ad2 = 11, 

10 and 11 are exchanged. 
d, = R2,lO is in cell (4,2), so 
d,+C2, d,+C2. 
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For 1 ljlmu,+a- ,,,,, where d, = Cy, 

a1 
a2 

a+ . 

\ a,, 
T + T with {a,,. . . ,a,} deleted 

1 \ s,, 

82, 
S + S with deleted. . 

\ s’ ml 
exit 0 

Again we note that T remains a Pseudo Tableau during the execution of 
DC. 
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(b) (j k is4t;;~;I;~;kd; ;ai;; s2 = 2 = s. d, = Cl so d, + cl, 
. . 

9 . 

PI 1 48 R3 148 R3 
37 Cl 3 12 c2 
5 12 c2 --) 5 7 Cl 
6 Cl 6 Cl 

1812 C3 1 8 12 C3 
-34 R2+45 C2 

5 7 Cl 3 7 Cl 
6 Cl 6 Cl 

12 18 
5 4 + 
3 7 

-+ exit 

6 

--) exit 

[41 1 ICl -1 + exit 

4. PROOF OF EFFECTIVENESS FOR IC 

We prove that IC is effective by induction on the number of exchanges 
made. It is sufficient to show: (1) The algorithm does not abort at step 3, 
i.e., if uki is chosen in step 2, then d,_, = Cy for some y; (2) a::, ai?,. . . , 
the sequence of entries chosen to exchange upward in step 2, is nondecreas- 
ing; this ensures that the algorithm will halt, since the number of times an 
entry can move upward is bounded by the number of rows in the Tableau; 
(3) at all times during IC, the d, point to existing hook cells. Step (3) is 
immediately apparent, so we only prove (1) and (2). 

To facilitate the proof we introduce a bookkeeping vector e. We shall use 
the notation ej’) (i 2 0) to denote the value of ej after the i th iteration. 
When the context is clear we use e, to denote ej”) or ej and e; to denote 
e(“-I), e:“). We use a similar convention for uj:) and dj’). 

J 

DEFINITION 4.1. For i 2 0. 

e”’ = The former column index of the last entry to move into rowj, if rowj 
J 

has exchanged with j - 1 or j + 1; 

= z,where d,“) = Cz, 3 otherwise. 

In effect, e stores the information lost during an exchange. 
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EXAMPLE. 

7 
ii 2 

1 5 
a= T=3 8 

6 4 

We insert a using IC: 

1 
2 
4 

T 
5 
3 
6 

d e 
c3 3 
Cl 1 

I c2 2 

1 3 
- 2 7 

4 6 

1 3 
-+ 2 6 

4 7 

5 Cl 2 
8 C2 3 I I c2 2 

THEOREM 1. For n 2 0, the following hold after the nth exchange of IC: 

Hl. Let akx and ak- ,Y be the entries exchanged during the nth exchange, so 
that d, = d:“) = Cz for some z. 

Then x = ek-, I z 5 ek = y after the exchange. 

H2. For each pair of rows 
( 1 
j 5 ’ 

(A) If d,-, = Ru then ej-, I e,. 

(B) If d,-, = Cv then v I ej-,. 

(c) If dj-1 = Ru 

ordj-, = Cvandvce,, 

then aj- Ir < aj, Vt; 

ife,-, <e,, 

then also a,- I* < a/,-, , e,-,<tle,. 

(D) Else, if dj-, = Cv, e, 5 v, 

then aj-l1 --z aj,+l, e,Stlv, 

aj- It < aj* otherwise. 

[Observe that H2 implies that if ajt < a,- I! then d,- , = Cu.] 
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Theorem I, H2.C Theorem 1,HZ.D 

FIGURE 3 

H3. For each pair , if there is a t such that ajr < ajpIr then akx I aj,. 

[H2 and H3 are sufficient to prove (1) and (2) above.] 

Proof of Theorem I. For n = 0 (after initialization), Hl and H3 hold 
trivially. Since d,.= Cu, and ej = uj for all j, H2.A and H2.B also hold. 
H2.C and H2.D hold because T was a Standard Young Tableau before a 
was inserted (see Figure 4). 

Now assume Hl, H2, and H3 hold through the n - 1st exchange, and let 
akx be the entry chosen in step 2 of IC (we assume T is not yet an SYT). 

We first verify that H 1 holds after the n th exchange. By induction (H2), 
d,-, = Cy for some y, and ek I y 5 ek-,. Let akz be the largest entry in 
row k such that akz < akplv. It is clear from Fig. 3 and the definition of 
akx, that ek I x 5 z 5 y I eke,. One can also see that the new positions of 

akx and ak-ly are (k - 1, x) and (k, z) respectively. Hl follows from the 
definition of et”): ep, = x, et) = y. 

j;’ .q--fqT. 
before insertlon 

u<v “>V 

after lnsertlon 

FIG. 4. Rows before and after the first iteration of IC. 
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To verify H3 we use the following lemma, which is an immediate 
consequence of the definition of ukx and that fact that T is a Pseudo 
Tableau (see Figure 5). 

LEMMA 4.1. Before akx and ak- ,y are exchanged 

ak-21 ( ak- ,I ( akr < ak+ lt for t < xp 
akx ( ak+ lx’ Cl 

Since x I z I y, exchanging akx and ak-,,, shifts the entries 

‘kx+l, akx+2,- . . Takz one cell to the left, and shifts the entries 
ak- lx, ak- lx+ ,, ’ . *, ak-ly-l one cell to the right. No other entries are 
moved. Thus, if j = k - 1 or k + 1, and ujr < aj- It after the exchange, 
x I t by Lemma 4.1, and so ukx 5 aj,. Ifj # k - 1 or k + 1, ukx < ail by 
the choice of ukx. So H3 holds after the nth exchange. 

ThisleavesuswithH2toverify.If (‘J’) # (:IT),(“;r),(,:,) then 

H2 holds by induction, since rows 

change. 

were not affected by the ex- 

Rows k;l ( 1 

H2.A follows from Hl. If d;-, = Co after exchange, then d, = Cv 
(v # x) before exchange. By induction (H2.B), v I ek. But ek I x (shown 
in verifying Hl), so v < x = e;- ,, which verifies H2.B. An examination of 
Fig. 6 shows that H2.C holds for (k ; ’ ) . 

Rows k ( 1 k+l 

di = Cz with z 5 y = e;, by Hl, so H2.A is vacuous, and H2.B holds in 

( 1 k $ , . To show that H2.C and H2.D hold, we note that there are three 
possibilities: (a) x I z < ek+,, (b) x < ek+, I 2, or (c) ek+i I x 5 z. In (a) 
and (b) we have ek < ek+, before exchange, since ek 5 x. So akt < uk+ lt-1 
for x < t I ek+, by induction (H2.C). Since only entries akx+,, . . . ,ukr are 
shifted left, if z < ek+, then we still have akt < ukflr-, for z < t 5 ek+, 
and akr < ak+ It for all other t, so H2.C holds. If ek+i 5 z, then, at worst, 
akt < ukflr+, for ek+, 5 t I z, akt < ak+it, otherwise, so H2.D holds. In 
(c) before the exchange, akt < uk+ 11 for all t. If not, then ukl > uk+ It implies 
t 5 x by Hl (recall that we would have d, = CU and u 5 x), but this 
violates Lemma 4.1. Thus, H2.D still holds in ( 1 k : , 
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k-2 

k-l 

k 

k+l 

FIG. 5. Lemma 4.1 

We need two additional lemmas. 

LEMMA 4.2. Suppose the newest entry in row k - 2 was exchanged up 
from row k - 1. Then ekB2 I x. 

Proof. Let w  = ekm2, and let b = akez,,, be the entry exchanged up from 
k - 1. Figure 6 shows that ak- ,w-, < b just after ( : I f) exchange. Let c be 
the next entry exchanged up from k into row k - 1. By H3, c > b, so 
c > akwlw- ,. Thus c must be exchanged into position (k - 1, x’) with 
w  I x’. Either c = akx, or akx is exchanged into k - 1 after c. Then, since 
akx > c by H3, w  5 x’ < x. 0 

before exchonqe 
dk=Cv, Cx or Ru 

ek-l ek 

after exchange 
d;-,=Cv, R2 orRut 

CZ 

FIG. 6. Rows during the exchange of nkx and ukP1 y into positions (k - 1, x) and 

(k, z) by IC. Relabel the rows with to prove Lemma 4.2. 
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LEMMA 4.3. Just before k ; ’ ( ) exchange, assume that the newest entry in 

row k - 2 mooed down from k - 3. (So d,-, = Cu for some u.) Then (k ; ’ ) 

have not exchanged entries since the last time ( 1 f I’, exchanged. 

Proof Suppose to the contrary that (k ; ’ ) have exchanged. Let b be the 
last entry exchanged up into k - 1, and assume b is in column x’. We have 
assumed that (“, 7 t) d o not exchange subsequently, so eke, = x’. By H3, 
akx > b, so ek-, = x’ < x. But x I y I ek-, by Hl and H2.B, a contradic- 
tion. 0 

COROLLARY. Under the assumption of Lemma 4.3, where d,-, = Cu, if 
u < ek-, then ukvIt < ak -,*-, for u c t 5 ek- ,. [Note that this is stronger 
than H2.C.J (See Figure 7.) 

k - 3 Proof Suppose (k- 2) last exchanged on the ith iteration. Let a::$ 

and a&3$ o-‘) be the entries exchanged. Since k - 2 does not exchange again, 
d,-, = dfila = Cu. k - 1 does not exchange after the i - 1st iteration, by 
Lemma 4.3, so ek-, = et:,,,. We have ef1;) I x’ I u < et:,,, by H2.D 
(and by assumption u < ek-,). Thus a;Ii,’ < u~I,,j-, for ef:i, -K t I et:,,) 
by H2.C. Then, after (“, r i) exchange, we have aylz, = ukw2, < u~-,~-, = 
ufi,,-, for u < t I ek-,. 0 

We can now verify H2 for (i 1 i). If d,-, = Cu, then H2.B holds by 
induction (d,-, was not affected by the nth exchange). If d,-, = Ru then 

,~l-ll 
h-2 x’ ” 

,(‘-‘I 
k-l 

k-3 

k-2 

k-l 

k-3 

FIG. 7. The effect of the last exchange between rows (:I:) onrows(:I:) asdescribed 

in the corollary to Lemma 4.3. 
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the newest entry in row k - 2 must have moved up from row k - 1, so 
Lemma 4.2 shows that eke2 I x = ek-, after exchange, so H2.A holds. 

There are three cases to consider for H2.C and H2.D: (a) d,-, = Ru, (b) 
d,_, = Cu, u < ek- ,, and (c) d,-, = Cu, eke, I u. In all three cases, d,-, 
= Cy, y 5 ek-,, and x = e;-,. 

In (a), Lemma 4.2 applies, and ekw2 5 x I y I ek- ,. By induction (H2.C) 
ukP2( < uk- ,t-, for ekV2 < t I eke ,, akezt < uk- I( otherwise. Recall that 
the exchange only shifts ukPlx,. . . ,uk- ,“-, one cell to the right. So, if 
ek-2 < X then ak-2r < ak-,[-, for ek-2 < t 5 x = f& ,, a&2* < ak-,t 
otherwise, so H2.C still holds. If eke2 = x, then if b is in position (k - 
2, x), b was exchanged upward by definition of ekP2. So b < a& by H3. 
Then, after exchange, ak-2[ < ukwIr for all t, and H2.C holds. 

In case (b), (d,-, = Cu, 2) < ek-,), first suppose that k - 2 last ex- 
changed with k - 3. Then uk-2r < uk- ,,-, for u < t % ek-,, ak-2r < ak-,t 
otherwise, by the corollary to Lemma 4.3. If x I u then, since y I 
ek-,, akm2( < u~-,~+, for x I t I u, ak-2t < u~-,~ otherwise (x = e;-,, so 
H2.D holds). If u < x then (i 1 f) are in order after the exchange, and since 
u 5 ek-2, if ekP2 < e;-, = x then H2.C holds. If k - 2 has never ex- 
changed entries, then ek-2 = u and the analysis is similar. Otherwise, row 
k - 2 exchanged last with row k - 1 and so ekP2 I x by Lemma 4.2, and 
the analysis is the same as in case (a). (Note: u < ek-2.) 

Finally, in case (c) d,-, = Cu, and ek-, 5 u I ek-2. H2.D applies, and 
smcey I ek-,, after exchange we have uk-2r < ok-,,+, for e;-, = x 5 t 5 

u and uk-21 < uk- ,r otherwise, so H2.D still holds. 0 

This completes the proof of Theorem 1, and shows that IC (and hence 
R-SORT) is effective. 

5. PROOF OF EFFECTIVENESS FOR DC 

The proof is similar to that in the previous section. It is sufficient to show 
(1) either there is an entry satisfying the conditions of Step 1 in DC, or if all 
the uj are deleted from T’, then the result is a Standard Young Tableau; (2) 
upls, a&,,. . ., the sequence of entries exchanged downward is non- 
increasing; and (3) the pointers remain legitimate throughout DC. 

We define another bookkeeping vector f, similar to e. Again, h(j) denotes 
the value of fj after the ith iteration. 

DEFINITION 5.1. For allj and i 2 0. 

fj(‘, = The former column index of the newest entry in row j, if row j has 
exchanged with j + 1 orj - 1; 

=o otherwise 
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DEFINITION 5.2. Rows j 1 ’ 
( 1 

will be called eligible (for exchange) if 

they satisfy the conditions in &ep 1 of DC. 

We first state our Theorem 2 then show how (l), (2), and (3) follow from 
the theorem. 

THEOREM 2. For n 10 the following hold after the nth exchange of DC: 

Hl. Let ak- ,S and sky be the entries exchanged during the nth exchange, so 
d,-, = Cz after exchange, d, = Cy before exchange. Then, 

s=fklfk-, =ylz. 

If d,- , = Cv before exchange then also v < s. , \ 
H2. For each pair of rows 

( 1 
j 5 ’ 

(4 If 

Then 

d,-, = Cu, dj = Rv, oqru, 

‘,-if < ajl+ly 4 I t 52 24, 
aj-1, < aj,, otherwise. 

P) If 

Then 

d,-, = Cu, dj = Cv, 

‘j-It < ‘jti- 1) 

aj-lr < aj,, 

v I u, 

vltlu, 

otherwise. 

(C) Otherwise 

a,-,, < aj, for all t. 

H3. If (II’) are eligible after the exchange then 

'j-h, - (n) < ak-,s = (n-1) 
ak- Is . 

Thcorem2,!i2.A Theorem2,H2.B 

FIGURE 8 
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It is clear that (2) follows from H3, and (3) follows from Hl (v < s) and 
the pointer updating rules. The next lemma will be used to show that (1) 
follows from H2. The proof is immediate. 

LEMMA 5.1. tit j;’ 
( 1 

be two rows in a Pseudo Tableau. Deleting a,- ,X 

andajYfrom (jr’) leaves (‘I’) inorder(aJ-,,<aJ,Vt)iff 

(a) x <yand 

aj-1, < ajr-l, x<tcy, 

aj- It < ajr otherwise, 

or 

(b) x lyand 

'j-l* < ajt+l, yrtsx 

aj- It < ajt otherwise. 

EXAMPLE. 

=l 3 6 9 
4 5 7 

4 and 6 can be deleted by (b) + : t 9s 

3 and 7 cannot be deleted + 12 9. 
We now claim that (1) follows from H2. Suppose there is no a,,, satisfying 

Step 1 of DC. Then dj # Ru for any j (otherwise there would exist 
(’ 1 
’ 5 ’ 

with dj-, = Ru, dj = Cu). Let j I 2, so dj-, = Cu, dJ = Cv for some u and 
u. If u P u, then ajelU and ajO can be deleted by H2.B and Lemma 5.1(b). If 

u < u then aj- It<=,,-, for u < t 5 u otherwise 
(’ 1 ’ 5 ’ would be eligible. So 

ajU and ajo can be deleted by Lemma 5.1(a). 

Proof of Theorem 2. For n = 0, Hl and H3 are vacuous. T is initially an 
SYT,so ‘;I 

( 1 
are in order for all j, and H2 holds. 

Assume Hl-H3 hold through the n - 1st exchange and assume there is a 
pair of eligible rows. Let akpls and sky be the entries chosen in Step 3. 

We first verify Hl. From Step 1 of DC, if d,- , = Cu, then ZJ < s I y. Let 
z be the largest column index such that ak-,= < sky. Since (“ii) are in 
order by H2.C y I z. Also, by the definition of s, ak- ,r < a,+, for 
s < t <y, and ak--ls > aks-,. Thus, the new positions of akeIs and akl, are 
(k, s) and (k - 1, z), respectively. After exchange, fk = s, f+, = j by 
definition, so Hl holds. 
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before exchange 

dk-, q Cu or Rv 

fk fk-l 

after exchange 

d; =Cu, Cs or Rv - I 

during the exchange of ukmls and akY into positions (k, s) and 

(k- 1,z)byDC. 

The next lemma, which is analogous to Lemma 4.1, will help establish H2 
and H3. 

LEMMA 5.2. Before (and hence after) ak- IS and sky are exchanged: 

0) ak-2t < ak- It 

(4 

t < s. 

akt < ak+ It 

Prooj The result is certainly true if (t 1 t) and (k : , ) satisfy the 
conditions of H2.C so we only consider the other cases. 

Rows (,:,I 

Case 1. dk+, = Rv,O < fk+, <s. 
(If s <fk+] then (2) holds by H2.A.) The newest entry in row k + 1, b, 

came from row k and is in position (k + 1, f,,]). By H2.A, akt < akflr for 
t < fkt ,. By definition of s, aks-, < a& ,s, and ak- ,s < b by H3. So akt < b 
for f,, , I t 5 s - 1 and (2) holds. 

Case 2. dk+ , = Cv,v-csly. 

Observe that if any entries in (,:,) areoutoforder,then(k:,) must 

have exchanged at least once, because, ( 1 k : , are in order at n = 0, and (by 

Hl) exchanging entries in (k ; , ) or (t 11) only causes entries in row k to 
shift right or entries in row k + 1 to shift left. 
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Let c be the entry which moved down the last time k: , ( 1 exchanged. 

k + ’ First, suppose that (k + ,) do not exchange subsequently, so c is in position 
(k + 1, fk+,). Note that akt < ak+,t for t <fk+, (Fig. 9) immediately after c 
moves down, and this is still true after any exchange of (k ; , ). For 

.fkf l s t < s, akt ( akflt 

Now we assume k + , ( 1 

holds by the argument in Case 1. 

ki2 
do exchange. Let d be the next entry to move into 

row k + 1. After this exchange, dk+, = Cw and d is in position (k + 1, w). 
Observe that (“, z i) cannot exchange a second time. Otherwise, let c’ be the 
entry moving down into k + 2, in column s’. Then, w  < s’ by HI, and 
c’ > d, which violates H3, hence w  = 2). By H2.B, akt < akflt for t < IX The 
same argument in Case 1 shows that since a&Is < d (H3), akt < ak+,r for 
v _( t I s - 1, and (2) still holds. 

Rows (;I;) 

Again (:I:) h ave exchanged at least once or they are in order. The 

argument in Case 2 above shows that (k ; ’ ) have not exchanged after the 

last exchange of ( t 1 f ), ot h erwise they would not be eligible now. Let c be 
the last entry exchanged down into k - 1, so c is in cell (k - 1, fk- ,). From 
Figure 9, ak-2t < a& ,t 
trueif (:I:) 

for t < fk-, just after the exchange, and this is still 
exchange. ak- ,s I c by H3, so s if,- , and (1) holds. q 

We now verify H2. It is necessary only to consider rows (:I:)Jk;‘j2 

( k : , ) . Figure 9 shows that H2.A or H2.B holds in ( k ; ’ ) 

If H2.C holds before exchange, then it also holds afterward. So we 
assume d,-, = Cv, and, before exchange, either (a) d,-, = Cu, ( ZJ < s) and 
u I v or (b) d,-, = Ru and 0 < fk-, I v. In (a) we have (after exchange) 
ak-2r < ak- ,t for t < s by Lemma 5.2, and for s _( t < z by H2.B and Hl. If 
v < z then H2.C holds; if z 5 v then H2.B holds (recall di-, = Cz). 

In (b) we showed that s 5 fk-, in the proof of Lemma 5.2, and ak-2t -C 
ak-,t for t < fk-,. Again, if v < z then H2.C holds (since ak-2r < ak-,t for 
v < t before exchange); if z _( z, then H2.B holds. 

Rows (k: 1) 

d, = Cy before exchange. We again assume (a) dk+, = Cv, v I y or (b) 
d k+, = Rv,O <fk+, (Y- Ifscfk+,in(b)ors<vin(a),then(k:,) will 
be in order after the exchange, so we assume fk+, I s (or v I s). 
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Then a;, < a;+ ,r (after exchange) for t < S, by Lemma 5.2, and for t > s 
by H2.A or B. 

For t = s we must consider the location of the newest entry in row k + 1. 
In (b), this entry moved down from k and is in cell (k + 1, fk+l). Thus 

ak-ls = a;s < a;+l,k+, 5 a;+ ,S by H3. In (a), if fk+ 1 = 
o*en(k:l) 

are in 

order before and after exchange, so assume fk+ I > 0. If the newest entry in 
k + 1 came from k, the analysis is the same as in (b). Otherwise, the newest 
entry moved up from k + 2 and is in cell (k + 1, v). The analysis is again 
the same, with 1) substituted for fk+ ,. Thus H2 holds for all rows after 
exchange. 

Finally, we consider H3. Again we need only consider 
(:d and (,:I) 

by the definition of ak-,s. 

Rows (,:I) 

It is sufficient to show that if (k : , ) become eligible, then sk+, I S. 

Assume ( ) k : , eligible, so that d ;+,=d,+,=Cvandd;=Ruord;=Cu 

(U 5 S) and u < v. Assume s < v otherwise sk+, I v I s by definition of 
Sk+,. By H2.B, ak, < ak+it for t < 2, (dk = Cy), SO a;, < U;+l,-, for 

s < t I v after exchange and sk+ 1 I S. 

Recall that d;-, = Cz and that ak-is,...,ak-lz-l are shifted left. As- 
sume ( ) : 1: eligible. If dLW2 = d,-, = Rv for some v, then i I T ( 1 are in 
order before exchange by H2.C. Thus a;-zI < a;-,l-, for s < t I z so 
sk-, 5 s and so ak-2Sk_, < ak-,Is. 

Else, diW2 = Cv with v c z. In verifying H2, we showed that (f 1:) must 
be in order after exchange (H2.C). By H2.A or H2.B, we have akez, < ak- ,r 
for v < t before the exchange, so a;-21 < a;-,,_, for max(v, s) < t I z, 
after exchange. Then, if s 5 v, i I t ( 1 are not eligible, and if v < s then 
Sk-, Is. 0 

Theorem 2 is now established, and we conclude that FIND-R is effective. 

6. PROOF THAT IC AND DC ARE INVERSES 

The proofs will follow easily by induction from the following two lemmas. 

LEMMA 6.1. Let (T, d)(“‘) be a Pseudo Tableau and pointer vector obtained 
by m 2 1 iterations of IC. If akx and ak-,,, were chosen to exchange in 
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(T, d)(“-” then ai- ,x = akx is the largest entry in the set defined in Step 3 of 
DC. 

Proof. d; = Cz and Fig. 6 shows that ai, satisfies (i) and (ii) of Step 1 of 
DC, with sk = x, so a;-,, is a member of this set. 

We first consider the cases in which (k : , ) or (f I :) are eligible in 
(T,d)(“). Assume dk+, = Cu with z < u. Then z < ek+ , by Theorem 1, 
H2.B. ek 5 x 5 z before exchange (H2.D), so uk, < ukflf-,, ek < t 5 ek+,. 
After exchange, a;, < a;, ,I-, for z < t I ek+, so ( 1 k : , are not eligible. 

If d;_, = Cu after exchange then u < x and a;- ,U < ai- ,x. If (:I:) are 
eligible, then sk-, I u and so a;(-*+, -=c a;- ,x. 

Now assume j # k - 1, k, or k + 1, and 
( 1 
’ 5 ’ are eligible. Then 

dj = Cu for some u. If dj’_, = Rw then b, the newest entry in j - 1, came 
from j and is in (j - 1, e,-,). u 5 ej, and either u I ej-, or aj- I* < a,,-, 
fore,-,-(tIu,soa,- , ,s I b (Theorem 1, H2.C). But b < a;- ,x by H3. 

Now assume d,‘-, = Cw with w  < u (u I ej). Theorem 1, H2.C applies; if 

w  = ej-, then ‘- ’ 
( 1 

are not eligible, so w  < eJ- ,, and j - 1 has exchanged 

at least once. Suppose the newest entry in j - 1 came from row j, then the 
argument above (for dj’_, = Rw) holds. Otherwise, b, the newest entry, 
came from j - 2 and is in (j - 1, w). It follows from Lemma 4.3 that 

.i 
( 1 j+l 

can exchange entries at most once after b moves down. If j : , 
( 1 

do 

not exchange, then the corollary to Lemma 4.3 shows that uJ- I< < ujt-, for 

w<tle,, so 
( 1 

’ 5 ’ are not eligible. If J i , 
( 1 

do exchange, then c, the 

entry which moved up is in (j, ej). The exchange does not affect uJt for 

t<e,,so ‘-’ 
( 1 J 

are still not eligible since w  < e,. 0 

LEMMA 6.2. Now let (T, d) (n) be a Pseudo Tableau and pointer vector 
obtained by n 2 1 iterations of DC. If ak- ,S and sky were chosen to exchange 
in (T, d)‘“-” then a;, = ak- ,S is the smallest entry out of order in (T, d)‘“‘. 

ProojI From Figure 9, a;, < a;- ,s so a;, is out of order. From Lemma 
5.2, uke2, < ai-,, for t < s. In verifying H2 (Theorem 2) we showed that 

( 1 k t , are in order for all t. 

If a;, is out of order, with j # k - 1, k, or k + 1, then (’ 1 ’ J ’ must have 
exchanged at least once. If b was the last entry exchanged down, then 
b I Q;,, and ais < b by Theorem 2, H3. 0 

THEOREM 3. Let (T, S) be a PYT with 1 rows, and 
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a column of positive integers not in T. Then 

DC[IC(a, T, S)] = (a, T, S). 

Proof By Lemma 6.1, if DC is applied to (T, S)(“) with m L 1, then 
a;- ,X and a;, are exchanged on the next iteration. From Fig. 6 it is easy to 
see that the pointers will be reversed correctly, and that the result will be 
(T, S)(“- ‘). 

If (T, S)(O) is the Tableau obtained by initializing IC, then DC[(T, S)(O)] 
= (a, T, S) since step 6 will be executed (see Fig. 4 and Lemma 5.1). The 
theorem follows by induction on m. 0 

THEOREM 4. Let (T, S) be a PYT. Then IC[DC(T, S)] = (T, S). 

Proof Figure 9 and Lemma 6.2 show that IC[(T, S)cn)] = (T, S)(“-‘) 
for n z 1. If n = 0, then (T, S)(O) is a PYT, so IC[(T, S)(O)] = (T, S) since 
Step 5 will be executed. Cl 

7. POINTER TABLEAUX AND INVERSION TABLES 

Let u be a permutation of [n], and let a, < a2 * . . < a,, be a sequence of 
positive integers. The inversion table for the induced permutation a,,, a02 
. ..a on is the sequence b,, b,, . . . , b,, where, for allj, b, is the number of a,; 
which are to the left of aj and greater than aj. For example, the inversion 
table for 92758 is 12110. 

It is easy to check that if we apply R-SORT to a single column, then the 
resulting pointer column, S, gives us the inversion table directly. However, 
we can make a few stronger statements. 

We can also define another type of inversion table, which we shall call the 
involuted inversion table. This is the sequence C,,C2,. . . C,, where for each 
j, Cj is the number of entries to the right of aOj which are smaller than aOj 
(the entry in the jth position). The involuted inversion table for 92758 is 
40100. [N.B. The name “involuted inversion table” comes from the fact that 
a2 = 1 iff bj = q for all j. (See Knuth [ 11, p. 19, Ex. 7 and 9)] 

Suppose that R-SORT is applied to a Tableau R = (a,,) whose columns 
are already arranged in increasing order. It is not hard to see that the effect 
of R-SORT is to sort within the rows, since, at each stage, only the insertion 
step of IC will be executed. Hence, the final Pointer Tableau S has the 
form : 

Ck,, Ck,, . . . Ck,,, 

Ck,, a.. CkZh, 

Ck,, ..- Ck,xm 
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where h = {h,, A, ,..., A,}. The reader can verify that, for each i, k,, - 
1, ki, - 1,. . . , kix, - 1, is the involuted inversion table for the permutation 
ui,ui2 * . . cllhi (the ith row of R). 

EXAMPLE. 

Involuted 
R T S inversion tables 

2 1 5 4 1 2 4 5 c2 Cl c2 Cl 1 0 1 0 
7 3 6 36 7 c3 Cl Cl 2 0 0 

10 9 8 8 9 10 c3 c2 Cl 2 1 0 

A more surprising result is that if R-SORT is applied to a Pseudo Tableau 
R (one whose rows are increasing), then the effect is to sort R within 
columns. Furthermore, the Pointer Tableau S has the form 

where Q = C if lij = 1, and Q = R otherwise; and for all j, the column 
l,j - 1, 12, - 1,. . . is the inversion table for the permutation determined by 
thejth column of R. 

EXAMPLE. 

Inversion 
R T S tables 

5 7 8 1 3 6 R2 R3 R2 1 2 1 
1 4 6 2 4 8 R2 R2 Cl 1 1 0 
2 3 5 7 Cl Cl 0 0 

This result is a consequence of the following, more general lemma. 

LEMMA 7.1. Let 

T = t,, t12 t,, . . . 

t2, t,, ... 

t ml t,, .., 
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be a Standard Young Tableau. Let 

341 

with 1 I m be a column vector of distinct positive numbers not contained in T. 
Let 

/ 
aI 
a2 

a= . 

\ aI I 

be the same vector sorted in increasing order (a, -C a2 < * - - < a,). If a, < 
t,,, a2 < t2,,. . .,a, < tml, then the SYT obtained by applying IC to 

and T is 

aT= a, 11, t,, * . * 

a2 f2l t22 * . . 

Furthermore, if d is the resulting pointer vector then dj = Cl or Ru for allj. 

Proof. The following facts can be established by induction on exchanges 
(we leave the details to the reader): 

After the n th exchange (n 2 0), let j be the smallest index such that aj is 
in row k but k > j (if k 5j for all j set j = I + 1); if j < I + 1 then 

(1) aj is in position (k, 1); 
(2) aj is the smallest entry out of order (i.e., the entry chosen in Step 2 of 

IC to exchange upward); 
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(3) Each row, i, contains exactly one entry from a; if di = Cx then this 
entry is in cell (i, x). 

We now show that the lemma follows from (l), (2) and (3). Suppose 
j = I+ 1 for the first time after the n th exchange. Then either n = 0 or two 
entries from a were just exchanged, by (3), so each row i still contains 
exactly one entry from a. 

Hence, by the definition ofj, ui must be in row i for all i. If n = 0, it is 
clear that IC will halt with output aT, and 

Cl ’ 

d= c’ 

\ Cl I 

(since ai < ti, Vi). If n > 0, then (2) and (3) guarantee that none of the t,, 
have been moved from their original rows. Thus IC must halt with output 
aT in this case as well. By (3), d has the desired form. By (2), IC cannot halt 
until j = I + 1. This establishes the lemma. 0 

Our result on inversion tables follows from the observation that each a, is 
exchanged upward once for each ak above aj in 

such that k > j, and that the pointer for the row containing a, becomes R2 
after aj is exchanged for the first time. 0 
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