Nearly On Line Scheduling Of
Multiprocessor Systems With Memories*

Ten-Hwang Lai and Sartaj Sahni
University of Minnesota

Abstract

We show that ho multiprocessor system that contains at least one processor with memory size
smaller than at least two other processors can be scheduled nearly on line to minimize the finish
time. An efficient nearly on line algorithm to minimize C,. is developed for multiprocessor sys-
tems that do not satisfy the preceding requirement. Finally, we review the complexity of some
other scheduling problems for multiprocessor systems with memories.

Keywords and Phrases

Multiprocessor systems, memories, scheduling, nearly on line, C ., complexity, algorithm.

* The research reported here was supported, in part, by the Office of Naval Research under con-
tract N00014-80-C-0650.

1. Introduction

A uniform processor system with memories consists of aset of m, m= 1, processorsP;, 1<i<m.
A tuple (s, W) is associated with each processor P;. s isthe speed of P; and ; isits memory size.

When p;, =, = ... = 4y, the processor system isreferred to as a uniform processor system. A uni-
form processor system with memoriesin which s, =s, = ... = s, isaso caled an identical pro-
cessor system with memories. If boths; = ... = s, and iy = Y, = ... =, the processor system is

simply a system of identical processors.

Let J={J,,J,, ..., Jn}, beaset of n, n = 1, independent jobs. With every jab, J;, a 4-tuple
(t, m, r;, d;) isassociated. t; ,t; = 0, isthe processing requirement of job J;,. So, a processor with
aspeed of s; would take t/s; time to completely run job J;. m is J;’s memory requirement. J; can
be run (or processed) only on those processors that have a memory size no smaller thanm. r; is
Ji'srelease time. The processing of J; cannot begin until timer;. Finally, d; isJ;’sduetime. This
represents the time by which J;’s processing should complete. If it does not, then J; istardy.

A feasible preemptive schedule, S, for job set J on the processor system P={P,, P,, ..., P}
is an assignment of jobs to time dlots on the processors such that:

(@ Nojobisprocessed before its release time.

(b) Nojobisprocessed by more than one processor at any given time.

(c) Nojobisassigned to a processor with memory size less than the job’s memory requirement.
(d) No processor processes more than one job at any time.

(e) Thetota processing assignment for each job equals its processing requirement.

If in addition to the above requirements, Sis such that each job is processed continuously
from its start to its finish on the same processor, then Sis a nonpreemptive schedule. The finish
time, f;, of J; isthe time at which the processing of J; is completed. Note that f; is defined relative
to a schedule S. The length or finish time, C(S), of schedule S is the least time by which all
jobs have been processed. S0, Ca(S) = max{ fi}. The C problem isthat of finding a schedule
Sthat minimizes C .

The lateness, L;, of job J; in schedule Sis f; — d;. The maximum lateness, L, Of any jobin
Sismax;{L;}. The L, problemisthat of finding a schedule Swith minimum L .

Any agorithm that produces feasible preemptive schedules is called a scheduling algo-
rithm. A scheduling algorithm that generates schedules with minimum C,., is an optimal
scheduling algorithm. A scheduling algorithm that generates the schedule from time O to time t
(for every t) only using information about jobs released beforet is caled an on line algorithm. I
in addition to knowning the jobs released before t, the algorithm also needs to know the next
release time (either t or following t), then the algorithm is nearly on line. A scheduling algorithm
that is not nearly on lineis off line.

The Ca problem is known to be NP-hard when S is required to be a nonpreemptive
schedule. Thisistrue even for processor systemswithm=2,s, =s,, y; =, and job setswithr,

=r, =...=r, [5]. Hence, we shall be concerned primarily with schedules in which preemptions
are permitted.
For identical processor systems (i.e., s; =s; = ... = sy and Yy = Yy = ... = Uy,) there is an off

line algorithm with complexity O(nlogmn) that obtains schedules (if they exist) with a given C
[11]. Bruno and Gonzaez [4] have developed an O(mn + nlogn) nearly on line algorithm that
obtains optimal schedules for identical processor systems.

If Pisauniform processor system (i.e., g, =, = ... = 4,) and all jobs have the same release
time, minimum C,,» schedules can be obtained in O(n + mlogm) time using the algorithm of
Gonzalez and Sahni [6]. When the release time are not necessarily the same, the off line algo-
rithm of Sahni and Cho [12] may be used to obtain schedules (if they exist) with a given C5 in
O(mn + nlogn) time. If a nearly on line algorithm is desired, the algorithm of [13] is nearly on
line and generates optimal schedules in O(m?n + mnlogn) time. The algorithms of [12] and [13]
generate schedules with O(mn) preemptions. There is another nearly on line algorithm for uni-
form processor systems. Thisis due to Labetoulle et a. [8] and generates optimal schedules with
O(n?) preemptions in O(n?) time.

The problem of scheduling systems of identical processors with memories has been studied
by Kafuraand shen [7] and Lai and Sahni [9]. Kafura and Shen [7] develop an O(nlogm) (n = m)
agorithm for the C .« problem when all jobs have the same release time. Lai and Sahni [9] con-
sider the L5 problem when all jobs have the same release time. The algorithm they develop has
complexity O(kn? + nlogn) where k is the number of distinct due times. Their algorithm can also
be used to solve the C,,, problem when the release times are not necessarily the same. When
used for this problem, their algorithm is off line and has the same complexity as for the L, prob-
lem except that now k is the number of distinct release times.

The genera problem of scheduling systems of uniform processors with memories has been
studied by Lai and Sahni [10]. They obtain linear programming formulations for both the C,
and L, problems. The proposed algorithms are off line. In addition, they also develop low
order polynomial time algorithms for specia classes of processor systems when all jobs have the
same release time.

In this paper, we examine the problem of obtaining nearly on line agorithms for uniform
processor systems with memories. We may partition the set of processors in a processor system
into two partitions A and B such that B contains all processors with the least memory and A con-
tains the remaining processors. 1.e., if the memory sizes i, 4y, Us, K4, and ps of afive processor
system are 10, 20, 10, 15, and 10, respectively, then B = { P4, P3, Ps} and A ={P,, P,}. In sec-
tion 2, we show that whenever |A| = 2, no nearly on line agorithm exists. In section 3, we

develop afast nearly on line algorithm for the case |JA| = 1. When |A| = 0, the processor system is
simply a uniform processor system and a nearly on line algorithm for such systems already exists
[8, 13]. Finaly, in section 5 we review the complexity of some scheduling problems for systems
of processors with memories.

2.|A|22

In this section, we show that whenever a uniform processor system contains at least two proces-
sors that have a memory size larger than the smallest memory size in the system, no nearly on
line algorithm is possible.

To get aflavor for the proof, we first establish this result for the processor system {P4, P,,
Ps} with's; =s, =s3, and py; =, > pz. Suppose that four jobs are released at time 0. Their pro-
cessing times are 1, 1, 3, and 3 respectively. The memory requirements are i, Wi, Uz, and ps
respectively. The next release time is 1. The schedule from 0 to 1 must be constructed without
any knowledge of the jobs to be released at or after time 1. Let us consider two possible
schedules for this time interval. In the first of these, jobs 1 and 2 are the only jobs scheduled on
P, and P, from 0 to 1. Jobs 3 and 4 are used to utilize P;. The resulting schedule is asin Figure
1(a). In the second schedule (Figure 1(b)), jobs 1 and 2 are assigned to P, to utilize al of P,’s
capacity from0to 1. Jobs 3 and 4 are assigned equally to P, and P5.

Figure 1

Note that if only 1 job with processing requirement 1 and memory requirement p; is
released at time 1, then a schedule of length 3 can be obtained from Figure 1(b). Thisisoptimal.
From the schedule of Figure 1(a), we can at best obtain a schedule of length 3.5. Furthermore, all
schedules of length 3 have the form of Figure 1(b) from 0 to 1. On the other hand, if two jobs,
each with a processing requirement of 5 and memory requirement of ., are released at time 1,
then all schedules having a length of 6 have the form of Figure 1(a) from 0 to 1. Thisis the
optimal length. The best schedule that can be obtained from Figure 1(b) has a length of 6.5.

Since, the nature of the jobs to be released at time 1 is not known in advance, there is no
way to determine the form of the schedule from 0 to 1 in order to guarantee a schedule with
minimum C,,,. Hence, there is no nearly on line algorithm for the processor system constructed
above.

Theorem 1: Let {P4, P, ..., Pn}, m= 2, be an arbitrary system of m processors with memory sizes
M, Hay ey My @Nd SPEEAS S1, Sy, ..., S, FESPECEiVElY. Let p=min{p}; A={j [y >p}; andB={j|
Hj = u}. If JA] = 2, then there is no nearly on line algorithm that minimizes Cy,, for this processor
system.

Proof. Without loss of generality, we may assumethat 1,2e Aand 3¢ B;s, <s; <s forall j,j ¢
A -{1, 2}, and that s; < s for al j,j € B. So, P, and P, are the two slowest processors with
memory larger than 1 and P5 isthe slowest processor with memory equal to .

Let Ay =s,/s1; Ay =(sp/s1)?; and f =1+ (1 + A, +A,)(1 + s,/s5). Definethem-3jobsJ;, 4<
i <msuchthatt; =sf and m = ;. Assume that these jobs are released at time 0. Let R denote
the set of remaining jobs released at or after time 0. Assume that the optimal schedule for R O
{J |4<i<sm} hasC,, =f. It should be clear that if R contains no job with memory requirement
larger than min{ 4, p,}, then there is no advantage to having a schedule in which jobs from R are
scheduled on Py, Ps, ..., Pn. S0, we may assume that the jobs J;, 4 <i <m, in Jare scheduled to
fully utilize P4, Ps, ..., P, and that P4, P,, P5 are fully available for R. Hence, we need only con-
cern ourselves with job set R and processors P4, P, and Ps.

Now suppose that R contains 6 jobswitht; =s;,t, =sp,t3 = (L +A; +Ay)s3, ta = (L + A, +
Dy)sy + 83, t5 = [(tg +ta)/s3 - 1]sq, and tg = [(ts +t4)/ss - 1s,. Assumethat my =m, =mg =mg =
min{yy, uo}; mg=m, =y; jobs 1, 2, 3, and 4 are released at 0; and jobs 5 and 6 are released at 1.
All schedules with finish time f have the form given in Figure 2(a).

Next, suppose that R contains 8 jobs with the first four being as before. Let Az = (1 +A; +
Ny)sy/s; and let ts = Aysy, te = (L+ Ag)sy, t7 = (1+ Ag)s,, and tg = Ags;. Assume that mg = min
{H1, uo}; mg =my; =mg = ; job 5isreleased at time 1; and jobs 6, 7, and 8 are released at time 1
+ A, +A,. A minimum C,,, schedule for this set of 8 jobsisgiven in Figure 2(b). This schedule

Figure 2

has length f. It is easily verified that there is no schedule for this set of 8 jobs that both has a
finish time of f and in which jobs 1 and 2 are scheduled as in Figure 2(a). To see this, observe
that ts/s; = A, < Ay + A, and tsls, = Aysifs, = A < A+ A,. Hence, no matter how job 5 is
scheduled on P, and P, from 1to 1 + A, + A, (Figure 2(c)), there must be intervals in which both

P, and P, areidle. SimultaneousidletimesonP,, P,, and P; cannot be filled up by jobs 3 and 4
aone. Hence, no matter how jobs 3, 4, and 5 are scheduled on P, P,, and P; from1to 1 +4A; +
A, (in Figure 2(c)), there must be someidie time. Consequently the overall schedule length must
exceed f.

Since at time 0, there is no way to distinguish between the two job sets of the previous
paragraphs, there is no nearly on line algorithm for the given processor system that minimizes
Crax. O

3.|A|<2

When |A| = 0, al processors have the same memory size and the nearly on line agorithm of
Sahni and Cho [13] may be used to minimize C,». So, we need only consider the case |A| = 1.
In this case, the m processor system consists of m - 1 processors having the same memory size |
and 1 processor with memory size larger than L.

Let {P,, Py, ..., P} be an m processor system with JA] = 1. Assume that the processors
have been indexed such that s; = s, = ... =2 s,, and that Py is the lone processor with memory size
larger than 1. We may arrive at a nearly on line scheduling algorithm, by first determining how
jobs with memory requirement larger than W are to be scheduled.

Suppose that n jobs are to be scheduled and that their release times arer,, r,, ..., r,, respec-
tively. Let cq, o, ..., ¢, be the distinct release times in the multiset {r, r,, ..., r,}. We assume
that c; <c, <c3<..<c, LetR denote the set of jobs with release time ¢; and having memory
requirement larger than p. Let § be the set of jobs with release time ¢; and memory requirement
W. Let T, be the sum of the processing requirements of the jobsin R. We shall show that thereis
aways a minimum C,,, schedule in which the jobsin R are scheduled fromt; to & = 1; + Ti/sq,
whereT; isas given below:

_ Cq i=1
U= max{c, 84} i > 1)

Consider any minimum C,,» schedule for the given njobs. Clearly, all jobsin .Eﬁ must be
1=

scheduled on P,. Suppose that the jobs in 'ElRi are not scheduled as discussed above. Let r be
1=

such that there are no preemptions in the interval (jr, (j+1)r) for any j. Further, nog, 1;, or & isin
the interval (jr, (j+1)r) for any j. (Note that r does exist since all values we deal with are rational
numbers.) The time interval 0 to C,,» may be divided into intervals of length r. These intervals
will be called r-intervals. Let a be the least i such that the interval [1;, 8] has ajob not in R
scheduled on P,. Let b be the leftmost r-interval in [1,, 8;] such that the job scheduled on Py in
thisinterval isnot in R,. Let ¢ be the leftmost r-interval to the right of [t,, 8,] such that the job

Figure 3

scheduled on P inthisinterval isfromR,. (Note that no job in R, can be scheduled to the left of
[Ta, 8.].) Figure 3 shows two possible situations for b and c. In the first (Figure 3(a)), both r-
intervals lie between two consecutive release times. In this case, we merely interchange the
scheduling assignments of the two r-intervals. The resulting schedule satisfies the release time
requirements. The second possibility is that at least one release time falls between the two r-
intervals (Figure 3(b)). In this case, a straightforward interchange of the two r-intervals could
result in some jobs being scheduled before their release times. Assume that at least one of the
jobs scheduled in the r-interval ¢ has a release time greater than ¢;. In this case, the interchange
proceeds as follows. First interchange the jobs scheduled in the r-intervals b and ¢ on P, (jobs 1
and 2 of Figure 3(b)). If job 1 was not previously scheduled in ¢, no conflict is created and we
are done. If job 1 was already scheduled in c, aconflict is created. The earlier scheduling of 1in
¢ is exchanged with the job scheduled on the same processor in b, i.e., job 3 of Figure 3(b). If job

3 was not already scheduled in ¢, we are done with the interchange. If it was, then the earlier
scheduling of 3 in ¢ is exchanged with job 4 scheduled on the same processor in b. And so on.
This exchanging processis clearly finite and has the result of producing a new schedule that does
not violate any of the release time requirements.

By continuing in the way described above, the original schedule may be transformed into
another schedule that has the same C,,, and in which all jobsin R are scheduled on P, fromT; to
T; + Tils, 1 <i<u. Scheduling jobsinR inthisway iseasily done on line.

Figure4

Our nearly on line scheduling algorithm will construct the schedule in u phases. In phasei,
the schedule from ¢ to ¢4, 1 <i < u, will be constructed. In phase u, the minimum C,,5 is first
computed. Let this value be c,,;. Next, al remaining jobs are scheduled in the interval [c,
cy+1]. The scheduling in phase i is done by first computing T; using equation (1). Next, al jobs
released at ¢; and having memory requirement larger than | are scheduled from; to & =1; + Ti/s,
on processor k. If & = ¢4, then P is not available for additional work in the interval [c;, ¢i.4]
and the schedule for the remaining processors is obtained using one phase of the nearly on line
algorithm of Sahni and Cho [13]. If §, < ¢, 1, then P, isavailable for further processing from g; to
ci+1 (Figure 4(a)).

Let G, 1 <i <m, be m processors with the same memory size. Let g;(t) be the speed of G;
atimet. {G,, G,, ..., Gy} isageneralized processor system (GPS) [12] iff each o;(t) is a honde-
creasing function of time and g;(t) = 0;,4(t), L<i <mfor al t.

since the remaining jobs to be scheduled in [c;, ¢, 1] have the same memory requirement ,

10

we may ignore the fact that P, has alarger memory size. Hence, scheduling on the processor sys-
tem of Figure 4(a) is equivalent to scheduling on the GPS of Figure 4(b). oi(t) for G, is defined as
below (we assume s,,,, = 0 for convenience):

_|'s ,[1<i<K] or [k<ismand §;<t<C;i.]
ai(t) = S+1, K<i<mand <t < | |)

i
Suppose that at time c; there are r jobs from Dlg that have a nonzero remaining processing
] =

requirement. Index theserjobs 1, 2, ..., r and let v; dencte the remaining processing requirement
of jobi. We assume that the indexing was done such that v, = v, = ... 2 v,. We may determine if
al these jobs can be completed on the GPS of Figure 4(b) by using the following result from [12].

Theorem 2 [Sahni and Cho]: Let {G4, G,, ..., Gy} be a GPS and let g;(t) be the speed of G; at
timet. Let{J,,...,J,} benjobsand lett; bethe processing requirement of job J,. Assumethatt,
2t, =... 2t, and that n=m (if n < mwe may introduce m - n jobs with zero processing require-

ments). Letl; = >t,1<i<mandLy,= 3t. Thegiven n jobs can be scheduled on the given
j=1 j=1

GPSto complete by timed iff

Ol O

k
Lys Y Joj(t)dt, 1<sksm (©))
j=1

d Ci+1

If the v;s and the GPS of Figure 4(b) satisfy (3) with [replaced by [, then all r jobs may be
0 G

scheduled to complete by c;.;. If (3) is not satisfied, then we need to determine the amount w;, w;
<v;, of job j that is to be scheduled in [c;, ¢i+1]. These w;s can be obtained using the equalizing
rule given in [13]. Thisrule computes the w;sin such away that

(@ wjsv, 1<j<r

(b)) wjzwjq,1sj<r

(€ Vi—Wj2Vj1— W, 1sj<r

M=e

@) Lgs

Ci+1
[ojdt, 1<q<m
i Ci

lg

q r
wherely = > w, 1sg<m(ifr<nthensetw.; =w, o, =..=w,=0)and L, = Y w;.
j=1 j=1

11

(e %(vj -w;) is minimized subjected to the conditions (a) - (d) above for every g, 1 < g <
j=1

min{m, r}.

Note that algorithm EQUAL of [13] computes the w;s only for a system of uniform proces-
sors. It is, however, easily modified to do the same for the GPS of Figure 4(b). Furthermore,
lemmas 2.1, 2.2, 2.3, and Theorem 2.1 of [13] hold in the case of a GPS also (though in [13] the
proof is provided explicitly only for a uniform processor system). This guarantees the success of
our u phase scheduling algorithm.

All that remains is the computation of c,,,. Thisisdone using Theorem 2 with the t;s being
the remaining processing times of the jobs at timec,. Given the simple nature of the GPS of Fig-

ure 4(b), theleast &', & in, SUch that
K Oy+d
Ly [oj®dt, 1sksm
j=1

iseasily computed. The minimum Ca iSCu+1 =8y + 8 min-

The actual scheduling of the w;s in any interval [c;, ¢+;,] may be done using the GPS
scheduling algorithm of [12]. Once again, since the GPS of Figure 4(b) is quite close to being a
uniform processor system (see Figure 4(a)), the scheduling of the w;s may be done in a somewhat
simpler manner by extending the algorithm of Gonzalez and Sahni [6] to the processor system of
Figure 4(a).

5. Complexity Issues

Published research on the scheduling of multiprocessor systems with memories has been
exclusively concerned with the scheduling of independent jobs to minimize either Ca OF Lmax
([71, 9], and [10]). When precedence constraints may exist amongst the jobs, the C,» problem
is NP-hard even when m = 2, s; = s,, al jobs require one unit of processing time, and the pre-
cedence constraint is as simple as a set of chains. This follows from the knowledge that the C 5,
problem with m = 2, unit processing times, chain precedence, and one resource of capacity 1 is
NP-hard [3]. To see this, observe that when one processor has a memory size larger than the
other (in a 2 processor system), memory is equivalent to a single resource of size 1 (the job run-
ning on the processor with larger memory is considered to be using the resource while the job
running on the other processor is not using the resource).

Another NP-hard result is a direct consequence of Blazewicz's [1] result that when m = 2,
S1 =Sy, U1 = Hp and a single resource with capacity 1 is available, the problem of minimizing the
mean flow time ((1/n)3 ;) is NP-hard. From this result, we see that minimizing the mean flow

timewhenm=2, u; > p,, ands; =s, isNP-hard.

12

6. Conclusions

We have obtained a sharp boundary between the multiprocessor systems for which nearly on line
scheduling algorithms that minimize C ., exist and those for which such algorithms do not exist.
A polynomial time nearly on line algorithm to minimize C ., on those systems for which thisis
possible has also been obtained. Finally, we have pointed out the similarity between multipro-
cessor systems with memories and those with a single resource of capacity one.

13

References

1

10.

11.

12.

13.

J. Blazewicz, "Mean flow time scheduling under resource constraints,” Preliminary Report
19/77, Ingtitute of Control Engineering, Poznan, Poland, 1977.

J. Blazewicz, "Scheduling with deadlines and resource constraints," Preliminary Report
PR-25/77, Ingtitute of Control Engineering, Poznan, Poland, 1977.

J. Blazewicz, JK. Lenstra, and A.H.G. Rinnooy Kan, "Scheduling subject to resource con-
straints: Classification and complexity,” Report BW-127/80, Department of Operations
Research, Mathematical Center, Amsterdam, 1980.

J. Bruno and T. Gonzalez, "A New Algorithm for Preemptive Scheduling of Trees," JACM,
Vol. 27, No. 2, PP. 287-312, 1981.

M.R. Garey and D.S. Johnson, "Computer and intractability, a guide to the theory of NP-
completeness," W.H. Freeman and Co., San Francisco, 1979.

T. Gonzalez and S. sahni, "Preemptive scheduling of uniform processor sustems,” JACM,
Vol. 25, 1978, PP. 92-101.

D.G. Kafuraand V.Y. Shen, "Task scheduling on a multiprocessor system with independent
memories,” SCOMP, Val. 6, No. 1, 1977, PP. 167-187.

J. Labetoulle, E.L. Lawler, JK. Lenstra, and A.H.G. Rinnooy Kan, "Preemptive scheduling
of uniform machines subject to release dates," Report BW99, Department of Operations
Research, Mathematical Center, Armsterdam, 1977.

T.H. La and S. Sahni, "Preemptive scheduling of a multiprocessor system with memoriesto
minimize L., Report No. 81-20, Computer Science Dept., University of Minnesota, Min-
neapolis, 1981.

T.H. La and S. Sahni, "Preemptive scheduling of uniform processors with memory," Report
No. 82-5, Computer Science Dept., University of Minnesota, Minneapolis, 1981.

S. Sahni, "Preemptive scheduling with due dates,"” OP RES, Val. 27, No. 5, 1979, PP. 925-
934.

S. Sahni and Y. Cho, "Scheduling independent tasks on a uniform processor system,"
JACM, Vol. 27, No. 3, 1980, PP. 550-563.

S. Sahni and Y. Cho, "Nearly on line scheduling of a uniform processor system with release
times," SCOMP, Val. 8, No. 2, 1979, PP. 275-285.

