
-- --

Nearly On Line Scheduling Of

Multiprocessor Systems With Memories*

Ten-Hwang Lai and Sartaj Sahni

University of Minnesota

Abstract

We show that no multiprocessor system that contains at least one processor with memory size

smaller than at least two other processors can be scheduled nearly on line to minimize the finish

time. An efficient nearly on line algorithm to minimize Cmax is developed for multiprocessor sys-

tems that do not satisfy the preceding requirement. Finally, we review the complexity of some

other scheduling problems for multiprocessor systems with memories.

Keywords and Phrases

Multiprocessor systems, memories, scheduling, nearly on line, Cmax, complexity, algorithm.

* The research reported here was supported, in part, by the Office of Naval Research under con-

tract N00014-80-C-0650.

1

-- --

2

1. Introduction

A uniform processor system with memories consists of a set of m, m ≥ 1, processors Pi, 1 ≤ i ≤ m.

A tuple (si, µi) is associated with each processor Pi. si is the speed of Pi and µi is its memory size.

When µ1 = µ2 = ... = µm, the processor system is referred to as a uniform processor system. A uni-

form processor system with memories in which s1 = s2 = ... = sm is also called an identical pro-

cessor system with memories. If both s1 = ... = sm and µ1 = µ2 = ... = µm the processor system is

simply a system of identical processors.

Let J = {J 1, J 2, ..., Jn}, be a set of n, n ≥ 1, independent jobs. With every job, Ji, a 4-tuple

(ti, mi, ri, di) is associated. ti , ti ≥ 0, is the processing requirement of job Ji. So, a processor with

a speed of sj would take ti/sj time to completely run job Ji. mi is Ji’s memory requirement. Ji can

be run (or processed) only on those processors that have a memory size no smaller than mi. ri is

Ji’s release time. The processing of Ji cannot begin until time ri. Finally, di is Ji’s due time. This

represents the time by which Ji’s processing should complete. If it does not, then Ji is tardy.

A feasible preemptive schedule, S, for job set J on the processor system P = {P1, P2, ..., Pm}

is an assignment of jobs to time slots on the processors such that:

(a) No job is processed before its release time.

(b) No job is processed by more than one processor at any given time.

(c) No job is assigned to a processor with memory size less than the job’s memory requirement.

(d) No processor processes more than one job at any time.

(e) The total processing assignment for each job equals its processing requirement.

If in addition to the above requirements, S is such that each job is processed continuously

from its start to its finish on the same processor, then S is a nonpreemptive schedule. The finish

time, fi, of Ji is the time at which the processing of Ji is completed. Note that fi is defined relative

to a schedule S. The length or finish time, Cmax(S), of schedule S is the least time by which all

jobs have been processed. So, Cmax(S) = maxi{fi}. The Cmax problem is that of finding a schedule

S that minimizes Cmax.

The lateness, Li, of job Ji in schedule S is fi − di. The maximum lateness, Lmax, of any job in

S is maxi{Li}. The Lmax problem is that of finding a schedule S with minimum Lmax.

Any algorithm that produces feasible preemptive schedules is called a scheduling algo-

rithm. A scheduling algorithm that generates schedules with minimum Cmax is an optimal

scheduling algorithm. A scheduling algorithm that generates the schedule from time 0 to time t

(for every t) only using information about jobs released before t is called an on line algorithm. If

in addition to knowning the jobs released before t, the algorithm also needs to know the next

release time (either t or following t), then the algorithm is nearly on line. A scheduling algorithm

that is not nearly on line is off line.

-- --

3

The Cmax problem is known to be NP-hard when S is required to be a nonpreemptive

schedule. This is true even for processor systems with m = 2, s1 = s2, µ1 = µ2 and job sets with r1

= r2 = ... = rn [5]. Hence, we shall be concerned primarily with schedules in which preemptions

are permitted.

For identical processor systems (i.e., s1 = s2 = ... = sm and µ1 = µ2 = ... = µm) there is an off

line algorithm with complexity O(nlogmn) that obtains schedules (if they exist) with a given Cmax

[11]. Bruno and Gonzalez [4] have developed an O(mn + nlogn) nearly on line algorithm that

obtains optimal schedules for identical processor systems.

If P is a uniform processor system (i.e., µ1 = µ2 = ... = µm) and all jobs have the same release

time, minimum Cmax schedules can be obtained in O(n + mlogm) time using the algorithm of

Gonzalez and Sahni [6]. When the release time are not necessarily the same, the off line algo-

rithm of Sahni and Cho [12] may be used to obtain schedules (if they exist) with a given Cmax in

O(mn + nlogn) time. If a nearly on line algorithm is desired, the algorithm of [13] is nearly on

line and generates optimal schedules in O(m2n + mnlogn) time. The algorithms of [12] and [13]

generate schedules with O(mn) preemptions. There is another nearly on line algorithm for uni-

form processor systems. This is due to Labetoulle et al. [8] and generates optimal schedules with

O(n2) preemptions in O(n2) time.

The problem of scheduling systems of identical processors with memories has been studied

by Kafura and shen [7] and Lai and Sahni [9]. Kafura and Shen [7] develop an O(nlogm) (n ≥ m)

algorithm for the Cmax problem when all jobs have the same release time. Lai and Sahni [9] con-

sider the Lmax problem when all jobs have the same release time. The algorithm they develop has

complexity O(kn 2 + nlogn) where k is the number of distinct due times. Their algorithm can also

be used to solve the Cmax problem when the release times are not necessarily the same. When

used for this problem, their algorithm is off line and has the same complexity as for the Lmax prob-

lem except that now k is the number of distinct release times.

The general problem of scheduling systems of uniform processors with memories has been

studied by Lai and Sahni [10]. They obtain linear programming formulations for both the Cmax

and Lmax problems. The proposed algorithms are off line. In addition, they also develop low

order polynomial time algorithms for special classes of processor systems when all jobs have the

same release time.

In this paper, we examine the problem of obtaining nearly on line algorithms for uniform

processor systems with memories. We may partition the set of processors in a processor system

into two partitions A and B such that B contains all processors with the least memory and A con-

tains the remaining processors. I.e., if the memory sizes µ1 , µ2 , µ3 , µ4 , and µ5 of a five processor

system are 10, 20, 10, 15, and 10, respectively, then B = {P1, P3, P5} and A = {P2 , P4}. In sec-

tion 2, we show that whenever |A| ≥ 2, no nearly on line algorithm exists. In section 3, we

-- --

4

develop a fast nearly on line algorithm for the case |A| = 1. When |A| = 0, the processor system is

simply a uniform processor system and a nearly on line algorithm for such systems already exists

[8, 13]. Finally, in section 5 we review the complexity of some scheduling problems for systems

of processors with memories.

2. |A| ≥ 2

In this section, we show that whenever a uniform processor system contains at least two proces-

sors that have a memory size larger than the smallest memory size in the system, no nearly on

line algorithm is possible.

To get a flavor for the proof, we first establish this result for the processor system {P1, P2 ,

P3} with s1 = s2 = s3, and µ1 = µ2 > µ3. Suppose that four jobs are released at time 0. Their pro-

cessing times are 1, 1, 3, and 3 respectively. The memory requirements are µ1 , µ1, µ3, and µ3

respectively. The next release time is 1. The schedule from 0 to 1 must be constructed without

any knowledge of the jobs to be released at or after time 1. Let us consider two possible

schedules for this time interval. In the first of these, jobs 1 and 2 are the only jobs scheduled on

P1 and P2 from 0 to 1. Jobs 3 and 4 are used to utilize P3. The resulting schedule is as in Figure

1(a). In the second schedule (Figure 1(b)), jobs 1 and 2 are assigned to P1 to utilize all of P1’s

capacity from 0 to 1. Jobs 3 and 4 are assigned equally to P2 and P3.

Figure 1

-- --

5

Note that if only 1 job with processing requirement 1 and memory requirement µ1 is

released at time 1, then a schedule of length 3 can be obtained from Figure 1(b). This is optimal.

From the schedule of Figure 1(a), we can at best obtain a schedule of length 3.5. Furthermore, all

schedules of length 3 have the form of Figure 1(b) from 0 to 1. On the other hand, if two jobs,

each with a processing requirement of 5 and memory requirement of µ1 , are released at time 1,

then all schedules having a length of 6 have the form of Figure 1(a) from 0 to 1. This is the

optimal length. The best schedule that can be obtained from Figure 1(b) has a length of 6.5.

Since, the nature of the jobs to be released at time 1 is not known in advance, there is no

way to determine the form of the schedule from 0 to 1 in order to guarantee a schedule with

minimum Cmax. Hence, there is no nearly on line algorithm for the processor system constructed

above.

Theorem 1: Let {P1 , P2, ..., Pm}, m ≥ 2, be an arbitrary system of m processors with memory sizes

µ1, µ2, ..., µm, and speeds s1, s2, ..., sm, respectively. Let µ = mini{µi}; A = {j | µj > µ}; and B = {j |

µj = µ}. If |A| ≥ 2, then there is no nearly on line algorithm that minimizes Cmax for this processor

system.

Proof: Without loss of generality, we may assume that 1, 2 ε A and 3 ε B; s2 ≤ s1 ≤ sj for all j, j ε

A - {1, 2}; and that s3 ≤ sj for all j, j ε B. So, P1 and P2 are the two slowest processors with

memory larger than µ and P3 is the slowest processor with memory equal to µ.

Let ∆1 = s2/s1; ∆2 = (s2/s1)2; and f = 1 + (1 + ∆1 + ∆2)(1 + s2/s3). Define the m - 3 jobs Ji, 4 ≤

i ≤ m such that ti = sif and mi = µi. Assume that these jobs are released at time 0. Let R denote

the set of remaining jobs released at or after time 0. Assume that the optimal schedule for R ∪

{Ji | 4 ≤ i ≤ m} has Cmax = f. It should be clear that if R contains no job with memory requirement

larger than min{µ1, µ2}, then there is no advantage to having a schedule in which jobs from R are

scheduled on P4, P5, ..., Pm. So, we may assume that the jobs Ji, 4 ≤ i ≤ m, in J are scheduled to

fully utilize P4, P5, ..., Pm and that P1, P2, P3 are fully available for R. Hence, we need only con-

cern ourselves with job set R and processors P1, P2, and P3 .

Now suppose that R contains 6 jobs with t 1 = s1, t2 = s2, t3 = (1 + ∆1 + ∆2)s3, t4 = (1 + ∆1 +

∆2)s2 + s3, t5 = [(t 3 + t 4)/s3 - 1]s1, and t 6 = [(t3 + t 4)/s3 - 1]s2. Assume that m1 = m2 = m5 = m6 =

min {µ1, µ2}; m3 = m4 = µ; jobs 1, 2, 3, and 4 are released at 0; and jobs 5 and 6 are released at 1.

All schedules with finish time f have the form given in Figure 2(a).

Next, suppose that R contains 8 jobs with the first four being as before. Let ∆3 = (1 + ∆1 +

∆2)s2/s3 and let t 5 = ∆2s1 , t6 = (1 + ∆3)s1, t7 = (1 + ∆3)s2, and t8 = ∆3s3. Assume that m5 = min

{µ1 , µ2}; m6 = m7 = m8 = µ; job 5 is released at time 1; and jobs 6, 7, and 8 are released at time 1

+ ∆1 + ∆2 . A minimum Cmax schedule for this set of 8 jobs is given in Figure 2(b). This schedule

-- --

6

Figure 2

has length f. It is easily verified that there is no schedule for this set of 8 jobs that both has a

finish time of f and in which jobs 1 and 2 are scheduled as in Figure 2(a). To see this, observe

that t5/s1 = ∆2 < ∆1 + ∆2 and t 5/s2 = ∆2s1 /s2 = ∆1 < ∆1 + ∆2 . Hence, no matter how job 5 is

scheduled on P1 and P2 from 1 to 1 + ∆1 + ∆2 (Figure 2(c)), there must be intervals in which both

-- --

7

P1 and P2 are idle. Simultaneous idle times on P1, P2 , and P3 cannot be filled up by jobs 3 and 4

alone. Hence, no matter how jobs 3, 4, and 5 are scheduled on P1 , P2, and P3 from 1 to 1 + ∆1 +

∆2 (in Figure 2(c)), there must be some idle time. Consequently the overall schedule length must

exceed f.

Since at time 0, there is no way to distinguish between the two job sets of the previous

paragraphs, there is no nearly on line algorithm for the given processor system that minimizes

Cmax.

3. |A| < 2

When |A| = 0, all processors have the same memory size and the nearly on line algorithm of

Sahni and Cho [13] may be used to minimize Cmax. So, we need only consider the case |A| = 1.

In this case, the m processor system consists of m - 1 processors having the same memory size µ

and 1 processor with memory size larger than µ.

Let {P1, P2, ..., Pm} be an m processor system with |A| = 1. Assume that the processors

have been indexed such that s1 ≥ s2 ≥ ... ≥ sm and that Pk is the lone processor with memory size

larger than µ. We may arrive at a nearly on line scheduling algorithm, by first determining how

jobs with memory requirement larger than µ are to be scheduled.

Suppose that n jobs are to be scheduled and that their release times are r1, r2, ..., rn, respec-

tively. Let c 1, c 2, ..., cu be the distinct release times in the multiset {r1, r2 , ..., rn}. We assume

that c 1 < c 2 < c 3 < ... < cu. Let Ri denote the set of jobs with release time ci and having memory

requirement larger than µ. Let Si be the set of jobs with release time ci and memory requirement

µ. Let Ti be the sum of the processing requirements of the jobs in Ri. We shall show that there is

always a minimum Cmax schedule in which the jobs in Ri are scheduled from τi to δi = τi + Ti/sk,

where τi is as given below:

τi =

�� �
 max{ci, δi −1} i > 1
c 1 i = 1

(1)

Consider any minimum Cmax schedule for the given n jobs. Clearly, all jobs in
i =1
∪
u

Ri must be

scheduled on Pk. Suppose that the jobs in
i =1
∪
u

Ri are not scheduled as discussed above. Let r be

such that there are no preemptions in the interval (jr, (j+1)r) for any j. Further, no ci, τi, or δi is in

the interval (jr, (j+1)r) for any j. (Note that r does exist since all values we deal with are rational

numbers.) The time interval 0 to Cmax may be divided into intervals of length r. These intervals

will be called r-intervals. Let a be the least i such that the interval [τi, δi] has a job not in Ri

scheduled on Pk. Let b be the leftmost r-interval in [τa, δa] such that the job scheduled on Pk in

this interval is not in Ra. Let c be the leftmost r-interval to the right of [τa , δa] such that the job

-- --

8

Figure 3

scheduled on Pk in this interval is from Ra . (Note that no job in Ra can be scheduled to the left of

[τa, δa].) Figure 3 shows two possible situations for b and c. In the first (Figure 3(a)), both r-

intervals lie between two consecutive release times. In this case, we merely interchange the

scheduling assignments of the two r-intervals. The resulting schedule satisfies the release time

requirements. The second possibility is that at least one release time falls between the two r-

intervals (Figure 3(b)). In this case, a straightforward interchange of the two r-intervals could

result in some jobs being scheduled before their release times. Assume that at least one of the

jobs scheduled in the r-interval c has a release time greater than ci. In this case, the interchange

proceeds as follows. First interchange the jobs scheduled in the r-intervals b and c on Pk (jobs 1

and 2 of Figure 3(b)). If job 1 was not previously scheduled in c, no conflict is created and we

are done. If job 1 was already scheduled in c, a conflict is created. The earlier scheduling of 1 in

c is exchanged with the job scheduled on the same processor in b, i.e., job 3 of Figure 3(b). If job

-- --

9

3 was not already scheduled in c, we are done with the interchange. If it was, then the earlier

scheduling of 3 in c is exchanged with job 4 scheduled on the same processor in b. And so on.

This exchanging process is clearly finite and has the result of producing a new schedule that does

not violate any of the release time requirements.

By continuing in the way described above, the original schedule may be transformed into

another schedule that has the same Cmax and in which all jobs in Ri are scheduled on Pk from τi to

τi + Ti/sk, 1 ≤ i ≤ u. Scheduling jobs in Ri in this way is easily done on line.

Figure 4

Our nearly on line scheduling algorithm will construct the schedule in u phases. In phase i,

the schedule from ci to ci +1, 1 ≤ i < u, will be constructed. In phase u, the minimum Cmax is first

computed. Let this value be cu +1. Next, all remaining jobs are scheduled in the interval [cu ,

cu +1]. The scheduling in phase i is done by first computing τi using equation (1). Next, all jobs

released at ci and having memory requirement larger than µ are scheduled from τi to δi = τi + Ti/sk

on processor k. If δi ≥ ci +1, then Pk is not available for additional work in the interval [ci, ci +1]

and the schedule for the remaining processors is obtained using one phase of the nearly on line

algorithm of Sahni and Cho [13]. If δi < ci +1, then Pk is available for further processing from δi to

ci+1 (Figure 4(a)).

Let Gi, 1 ≤ i ≤ m, be m processors with the same memory size. Let σi(t) be the speed of Gi

at time t. {G1, G2, ..., Gm} is a generalized processor system (GPS) [12] iff each σi(t) is a nonde-

creasing function of time and σi(t) ≥ σi +1(t), 1 ≤ i < m for all t.

since the remaining jobs to be scheduled in [ci, ci +1] have the same memory requirement µ,

-- --

10

we may ignore the fact that Pk has a larger memory size. Hence, scheduling on the processor sys-

tem of Figure 4(a) is equivalent to scheduling on the GPS of Figure 4(b). σi(t) for Gi is defined as

below (we assume sm +1 = 0 for convenience):

σi(t) =

�� �
 si +1 , k ≤i ≤m and ci≤t ≤δi

si , [1≤i <k] or [k ≤i ≤m and δi≤t≤ci +1]
(2)

Suppose that at time ci there are r jobs from
j =1
∪
i

S j that have a nonzero remaining processing

requirement. Index these r jobs 1, 2, ..., r and let vi denote the remaining processing requirement

of job i. We assume that the indexing was done such that v 1 ≥ v 2 ≥ ... ≥ vr. We may determine if

all these jobs can be completed on the GPS of Figure 4(b) by using the following result from [12].

Theorem 2 [Sahni and Cho]: Let {G1, G2, ..., Gm} be a GPS and let σi(t) be the speed of Gi at

time t. Let {J 1, ..., Jn} be n jobs and let ti be the processing requirement of job Ji. Assume that t 1

≥ t 2 ≥ ... ≥ tn and that n ≥ m (if n < m we may introduce m - n jobs with zero processing require-

ments). Let Li =
j =1
Σ

i

t j, 1 ≤ i < m and Lm =
j =1
Σ
n

t j. The given n jobs can be scheduled on the given

GPS to complete by time d iff

Lk ≤
j=1
Σ
k

0
∫
d

 σj(t)dt , 1 ≤ k ≤ m (3)

If the vis and the GPS of Figure 4(b) satisfy (3) with
0
∫
d

replaced by
ci

∫
ci +1

, then all r jobs may be

scheduled to complete by ci+1 . If (3) is not satisfied, then we need to determine the amount wj, wj

≤ vj, of job j that is to be scheduled in [ci, ci +1]. These wjs can be obtained using the equalizing

rule given in [13]. This rule computes the wis in such a way that

(a) wj ≤ v j, 1 ≤ j ≤ r

(b) wj ≥ wj+1 , 1 ≤ j < r

(c) vj − wj ≥ vj +1 − wj +1 , 1 ≤ j < r

(d) Lq ≤
j =1
Σ
q

ci

∫
ci +1

σj(t)dt, 1 ≤ q ≤ m

where Lq =
j =1
Σ
q

wj, 1 ≤ q < m (if r < n then set wr +1 = wr +2 = ... = wn = 0) and Lm =
j =1
Σ
r

wj.

-- --

11

(e)
j =1
Σ
q

(vj − wj) is minimized subjected to the conditions (a) - (d) above for every q, 1 ≤ q ≤

min{m, r}.

Note that algorithm EQUAL of [13] computes the wis only for a system of uniform proces-

sors. It is, however, easily modified to do the same for the GPS of Figure 4(b). Furthermore,

lemmas 2.1, 2.2, 2.3, and Theorem 2.1 of [13] hold in the case of a GPS also (though in [13] the

proof is provided explicitly only for a uniform processor system). This guarantees the success of

our u phase scheduling algorithm.

All that remains is the computation of cu +1 . This is done using Theorem 2 with the tis being

the remaining processing times of the jobs at time cu . Given the simple nature of the GPS of Fig-

ure 4(b), the least δ’, δ´min, such that

Lk ≤
j =1
Σ
k

cu

∫
δu+δ´

σj(t)dt, 1 ≤ k ≤ m

is easily computed. The minimum Cmax is cu +1 = δu + δ´min.

The actual scheduling of the wjs in any interval [ci, ci +1] may be done using the GPS

scheduling algorithm of [12]. Once again, since the GPS of Figure 4(b) is quite close to being a

uniform processor system (see Figure 4(a)), the scheduling of the wis may be done in a somewhat

simpler manner by extending the algorithm of Gonzalez and Sahni [6] to the processor system of

Figure 4(a).

5. Complexity Issues

Published research on the scheduling of multiprocessor systems with memories has been

exclusively concerned with the scheduling of independent jobs to minimize either Cmax or Lmax

([7], [9], and [10]). When precedence constraints may exist amongst the jobs, the Cmax problem

is NP-hard even when m = 2, s1 = s2 , all jobs require one unit of processing time, and the pre-

cedence constraint is as simple as a set of chains. This follows from the knowledge that the Cmax

problem with m = 2, unit processing times, chain precedence, and one resource of capacity 1 is

NP-hard [3]. To see this, observe that when one processor has a memory size larger than the

other (in a 2 processor system), memory is equivalent to a single resource of size 1 (the job run-

ning on the processor with larger memory is considered to be using the resource while the job

running on the other processor is not using the resource).

Another NP-hard result is a direct consequence of Blazewicz’s [1] result that when m = 2,

s1 = s2, µ1 = µ2 and a single resource with capacity 1 is available, the problem of minimizing the

mean flow time ((1/n)Σ fi) is NP-hard. From this result, we see that minimizing the mean flow

time when m = 2, µ1 > µ2, and s1 = s2 is NP-hard.

-- --

12

6. Conclusions

We have obtained a sharp boundary between the multiprocessor systems for which nearly on line

scheduling algorithms that minimize Cmax exist and those for which such algorithms do not exist.

A polynomial time nearly on line algorithm to minimize Cmax on those systems for which this is

possible has also been obtained. Finally, we have pointed out the similarity between multipro-

cessor systems with memories and those with a single resource of capacity one.

-- --

13

References

1. J. Blazewicz, "Mean flow time scheduling under resource constraints," Preliminary Report

19/77, Institute of Control Engineering, Poznan, Poland, 1977.

2. J. Blazewicz, "Scheduling with deadlines and resource constraints," Preliminary Report

PR-25/77, Institute of Control Engineering, Poznan, Poland, 1977.

3. J. Blazewicz, J.K. Lenstra, and A.H.G. Rinnooy Kan, "Scheduling subject to resource con-

straints: Classification and complexity," Report BW-127/80, Department of Operations

Research, Mathematical Center, Amsterdam, 1980.

4. J. Bruno and T. Gonzalez, "A New Algorithm for Preemptive Scheduling of Trees," JACM,

Vol. 27, No. 2, PP. 287-312, 1981.

5. M.R. Garey and D.S. Johnson, "Computer and intractability, a guide to the theory of NP-

completeness," W.H. Freeman and Co., San Francisco, 1979.

6. T. Gonzalez and S. sahni, "Preemptive scheduling of uniform processor sustems," JACM,

Vol. 25, 1978, PP. 92-101.

7. D.G. Kafura and V.Y. Shen, "Task scheduling on a multiprocessor system with independent

memories," SICOMP, Vol. 6, No. 1, 1977, PP. 167-187.

8. J. Labetoulle, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, "Preemptive scheduling

of uniform machines subject to release dates," Report BW99, Department of Operations

Research, Mathematical Center, Armsterdam, 1977.

9. T.H. Lai and S. Sahni, "Preemptive scheduling of a multiprocessor system with memories to

minimize Lmax," Report No. 81-20, Computer Science Dept., University of Minnesota, Min-

neapolis, 1981.

10. T.H. Lai and S. Sahni, "Preemptive scheduling of uniform processors with memory," Report

No. 82-5, Computer Science Dept., University of Minnesota, Minneapolis, 1981.

11. S. Sahni, "Preemptive scheduling with due dates," OP RES, Vol. 27, No. 5, 1979, PP. 925-

934.

12. S. Sahni and Y. Cho, "Scheduling independent tasks on a uniform processor system,"

JACM, Vol. 27, No. 3, 1980, PP. 550-563.

13. S. Sahni and Y. Cho, "Nearly on line scheduling of a uniform processor system with release

times," SICOMP, Vol. 8, No. 2, 1979, PP. 275-285.

-- --

