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The batched static version of a searching problem asks for performing a given set 
of queries on a given set of objects. All queries are known in advance. The batched 
dynamic version of a searching problem is the following: given a sequence of 
insertions, deletions, and queries, perform them on an initially empty set. We will 
develop methods for solving batched static and batched dynamic versions of 
searching problems which are in particular applicable to decomposable searching 
problems. The techniques show that batched static (dynamic) versions of searching 
problems can often be solved more efficiently than by using known static (dynamic) 
data structures. In particular, a technique called “streaming” is described that 
reduces the space requirements considerably. The methods have also a number of 
applications on set problems. E.g., the k intersecting pairs in a set of n axis-parallel 
hyper-rectangles in d dimensions can be reported in 0 (n logd- ‘n + k) time using 
only O(n) space. 0 1985 Academic Press, Inc. 

1. INTR~DUCTI~N 

In the past few years, a lot of research has been done on solving searching 
problems. A searching problem is a problem in which a question (query) is 
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asked about a (query) object x with respect to a set of objects (often called 
points) V. A well-known example is the member searching problem in which 
we ask whether the query object x is in the set V. Numerous searching 
problems arise particularly in the area of “computational geometry” that 
deals with problems about sets of points, lines, etc., in multi-dimensional 
space. A prime example is the range searching problem: given a set of points 
V in d-dimensional space and an axis-parallel hyper-rectangle (i.e., a 
d-dimensional rectangle with sides parallel to the coordinate-axes) called a 
range, report all points in V that lie within the range. 

There are a number of different ways of solving searching problems. A 
static solution to a searching problem consists of a data structure to store the 
set of points (together with an algorithm to construct such a data structure) 
such that queries with different query objects can be answered. The ef- 
ficiency of such a data structure is measured by three quantities: the amount 
of time needed for building the structure, the amount of time required for 
performing a query, and the amount of storage required for storing the 
structure. A dynamic solution to a searching problem consists of a data 
structure that allows for queries, insertions of new objects in the set, and 
deletions of existing objects. The efficiency of a dynamic data structure is 
measured by the query time, the amount of time required for performing an 
insertion or deletion, and the amount of storage required. Recently, plenty 
of work has been devoted to the design of general methods for turning static 
solutions to searching problems into dynamic solutions by means of general 
techniques. (See Overmars [15] for an overview of the methods used.) 

In this paper we will consider two different ways of solving searching 
problems that appear in particular in an off-line (i.e., batched) environment. 
The batched static version of a searching problem is the following: given a 
set of points V and a set of n4 query objects xi,. . .,x, , perform these 
queries on V, i.e., for each xi compute the answer to the’ query with xi. 
Hence, we are not interested in keeping low the time required for individual 
queries but in minimizing the overall nmtime. We are not bound to a 
specific order of the queries nor is there a need to perform them one after 
the other. Starting with V and the entire set of queries, we are only 
interested in obtaining the set of answers in its totality. Clearly, the batched 
static version of a searching problem can be solved using a static data 
structure for the original problem, but in a number of cases one can do 
better. The batched dynamic uersion of a searching problem is the following: 
given a sequence of insertions, deletions, and queries, report all answers to 
the queries when the sequence of actions is performed (in the given order) 
on an initially empty set. We are again only interested in the overall 
runtime. Of course, the amount of storage used is a major concern too. 
There is no need for actually performing the updates and queries in the 
given order, as long as it is made certain that queries are performed for the 
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proper sets of points. Clearly, a dynamic data structure can be used for 
solving the batched dynamic problem, but often one can do better. The 
study of batched static and batched dynamic versions of searching problems 
is interesting not only for their use in an off-line environment. There are 
also numerous problems that can be formulated as batched (static or 
dynamic) versions of searching problems. A frequently considered example 
is the planar rectangle intersection problem that asks for all intersecting pairs 
in a set of axis-parallel rectangles in the plane. The intersecting pairs can be 
determined by solving the batched dynamic version of the interval intersec- 
tion searching problem (the problem that asks for all intervals in a set which 
intersect a query interval). 

We will give a number of general techniques which can be used for 
solving batched (static or dynamic) versions of searching problems. They are 
in particular applicable to decomposable searching problems. Let PR be a 
searching problem then we denote by PR(x, V) the answer for PR with 
respect to a set I/ and a query object X. 

DEFINITION. A searching problem PR is called decomposable if for any 
partition A U B of the set V and for each query object x 

PR(x,V) = q (PR(x,A),PR(x, B)) 

for some constant time computable operator 0. 

For example, the member searching problem is decomposable. When we 
known whether x is in A and whether x is in B we can compute in O(1) 
time whether x is in V = A U B using the or-function for 0. Numerous 
other searching problems are decomposable as well. The class of decom- 
posable searching problems was introduced by Bentley [l] who showed how 
static data structures for decomposable searching problems can be turned 
into efficient dynamic data structures by applying a general method. His 
work was generalized in a number of ways, resulting in a very general and, 
in some sense, optimal dynamization method for decomposable searching 
problems (see Overmars and van Leeuwen [16]). For decomposable search- 
ing problems there is no need for storing the set of objects in one massive 
data structure. One can split the set in a number of disjoint subsets and 
build a data structure for each of the subsets. The answer to a query for the 
total set can be derived from the answers to the same query for the subsets 
using the composition operator 0. 

In Section 2, we consider batched static solutions to searching problems. 
Some examples of batched static solutions to searching problems that are 
better than known static solutions will be given. In particular the plane-sweep 
technique (see, e.g., Shamos and Hoey [18] or Bentley and Wood [3]) will 
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turn out to be a powerful technique for solving batched static versions of a 
number of searching problems. This will be shown by applying the tech- 
nique to a problem posed by McCreight [12]. Next, a general method is 
described for solving the batched static version of decomposable searching 
problems for which only structures are known with a large discrepancy 
between query time and preprocessing time. We will show that such data 
structures can be transformed into structures in which the query- and 
building time are more “balanced” and that have much better perspectives 
for use in a batched environment. 

In Section 3, we are given a general method for solving the batched 
dynamic version of decomposable searching problems for which static data 
structures are known. One of the applications shows that the batched 
dynamic version of the nearest neighbor searching problem (that asks for a 
point in a set of points in the plane that is nearest to a given query point) 
can be solved in O(n log*n) time, where n is the length of the sequence of 
updates and queries. 

In Section 4, we show how a technique, called “streaming,” can be used 
for reducing the space requirements for batched (static and dynamic) 
versions of searching problems. As a consequence, the batched static version 
of the d-dimensional rectangle intersection searching problem can be solved 
in 0( n logd-’ n + k’) time using O(n) storage, where k’ is the total number 
of answers. 

Section 5 shows how better results for the batched static version of a 
number of searching problems can be obtained by changing the query 
objects into set objects and the set objects into query objects and solving a 
kind of “reversed” problem. 

In Section 6 and 7 we given some extensions, conclusions, and directions 
for further research. Throughout this paper we use the following notations: 

(i) for a (static of dynamic) data structure S: 
n = the number of points in the structure, 

es(n)= the amount of time required for performing a query on S, 
Ps( n)= the amount of time required for building (preprocessing) S, 
U..(n)= the amount of time required to perform an update (insertion or 

deletion) on S, 
MS(n)= the amount of storage (memory) required for S. 

(ii) in the batched static case: 
n, = the number of set objects, 
n4= the number of queries, 
n=n,+n,, 

P”(n)= the amount of time required for solving the batched static 
version of a searching problem (where n s and n 4 are implicitly 
understood), 
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M”(n)= the amount of storage required for solving the batched static 
version of a searching problem. 

(iii) in the batched dynamic case: 
N= the number of updates, 
n 9 = the number of queries, 
n = N + n, (i.e., the length of the sequence of actions), 
m = the maximum number of points once present in the set, 

Pd(n)= the amount of time required for solving the batched dynamic 
version of a searching problem, 

Md( n)= the amount of storage required for solving the batched dy- 
namic version of a searching problem. 

To estimate bounds the following notations are used. Let G(n) and F(n) 
be two functions for integers n 2 0. 

(i) G(n) is said to be 0( F( n)) (notated as G(n) = 0( F( n))) if there 
exists a constant c such that G(n) < cF(n) for all but finitely many values 
of n, 

(ii) G(n) is said to be SI(F(n)) if there exists a constant c > 0 such 
that G(n) 2 c&n) for all but finitely many values of n, 

(iii) G(n) is said to be 8(F(n)) if there exist constants cr, c2 with 
cr > 0 such that qF(n) I G(n) I c,F(n) for all but finitely many values 
of n, 

(iv) G(n) is said to be o(F(n)) if for all constants c > 0, G(,n) I cF(n) 
for all but finitely many values of n. 

All bounds F(n) described above except for es(n) are assumed to be at 
least linear, that is, n = O(F(n)). Furthermore, all bounds F(n) state the 
requirements in worst-case and are assumed to be smooth, that is, F(8(n)) 
= @(F(n)). 

2. BATCHED STATIC SOLUTIONS 

Given a static data structure S for solving a searching problem PR, one 
can solve the batched static version of PR by, first, storing all points of the 
set in an instance of S and, next, performing all queries on the structure. 
This leads to a solution for the batched static version of PR with 

P”(n) = O(P&d + n4 - Qdn,)), 
M”(n) = O(Wn,)). 

However, one can do better for a number of searching problems. Consider 
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for example the 2dimensional rectangle containment problem: given a set V 
of orthogonal rectangles in the plane and another such rectangle x, report 
all rectangles in I/ that are contained in x. The best known static solution to 
the problem yields a query time of O(log3n + k), where k denotes the 
number of reported answers, a building time of O(n log3n) and uses 
O(n log3n) storage (see Lee and Wong [lo] or Edelsbrunner and Overmars 
[7]). Using this data structure for solving the batched static version of the 
rectangle containment searching problem yields 

P”(n) = O((ns + n,)log’n, + k’), 

M”(n) = 0( n,log3ns), 

where k’ denotes the total number of reported answers. Lee and Preparata 
[9] have shown that the problem that asks for all pairs of rectangles (rI, r2) 
in a set V such that rl is contained in r2, can be solved within time 
O(n log2n + k) using only O(n) storage (n = ]Vl). Their solution can easily 
be adapted to solving the problem of reporting all pairs of rectangles (rI, r2) 
such that rl is contained in r2, where rl is in a set VI and r2 is in another 
set V2. Choosing VI to be the set of rectangles and V, to be the set of query 
rectangles, this method solves the batched static version of the 2-dimen- 
sional rectangle containment searching problem with 

P”(n) = O((ns + n,)log2(n, + n4) + k’) = O(nlog’n + k’), 

M”(n) = O(n, + n4) = O(n). 

A technique that is often useful for solving the batched static version of 
2-dimensional searching problems (i.e., searching problems dealing with 
objects in the plane) is the so-called “plane-sweep” technique (see, e.g., 
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Shamos and Hoey [18], Bentley and Wood [3], or Nievergelt and Preparata 
[13]). As an example, consider the following searching problem (proposed 
by McCreight [ 121): given a set V of vertical line segments in the plane and a 
query point x, determine the leftmost segment s in V we encounter when 
moving x horizontally to the right (see Fig. 1). s is called the (immediate) 
obstacle of X. The batched static version of the problem is the following: 
given a set V, of n, vertical line segments and a set V, of n4 points, 
determine for each point x in V, the immediate obstacle in V,. To solve the 
problem, a vertical scan line 1 is moved from left to right over the plane. 
With I we keep a balanced search tree T that contains all points we have 
already passed but for which we did not pass the corresponding obstacle 
yet. T stores the points ordered with respect to the y coordinate (i.e., in 
vertical direction). See Fig. 2 for an illustration. When we pass a point we 
insert it into the tree. When we pass a line segment s = [ yr : y2] (where 
yr I y2 are the y coordinates of the endpoints) we search for all points in T 
with y coordinate in [yr : y2]. These are exactly the query points that have s 
as obstacle. Since T contains the points sorted in the vertical direction, 
O((k + 1) log n J tune suffices to determine the k points whose y coordi- 
nates are in [ yr : yz], and to delete them from T. To be able to locate the 
next point or line segment the scan line passes, we have to sort both sets V, 
and V, with respect to x coordinate. This takes O(n,log n, + n ,log n 4) 
time. Each point in V, is once inserted into T and at most once deleted. As 
the size of T is bounded by n4, the total amount of time required for 
inserting and deleting points is bounded by 0( n ,log n 9). For each segment 
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in Vi we have to perform a query which costs O(log n4) time per segment 
and per point determined. As each point in V2 is found at most once, the 
time for queries is bounded by O((n, + n,)log n4). One easily verifies that 
the amount of storage is bounded by O(n, + n4). Hence, we have 

P”(n) = o((ns + n,)logn, + nslogn,) = O(nlogn), 

M”(n) = o(n, + n4) = o(n). 

Batched static versions of numerous other (2dimensional) searching 
problems can also be solved using the plane-sweep technique. 

In practice, n4 is often 19(n,). Hence, when a static data structure S is 
used for solving the batched static version of a searching problem, it is 
important that the time needed for queries and the time needed for building 
the structure are “in balance,” that is, Ps(n,) is about the same as 
n,QS(n,). For a number of static data structures proposed in the literature, 
Ps(n,) is very large compared with Qs(n,). So, we had beter look for static 
solutions with better trade-offs, i.e., with a lower building time and a higher 
query time. For decomposable searching problems this can be achieved by 
applying a general transformation as we will show. The technique is adapted 
from Maurer and Ottman [ll]. 

For decomposable searching problems, the answer to a query for the total 
set can be computed in O(n,) time from the answers to the queries for the 
individual elements. Computing the answer to a query for one element 
clearly takes constant time (assuming that the problem is solvable). It 
follows that the batched static version of a decomposable searching problem 
can be solved with 

P”(n) = O(n, * n,), 

M”(n) = o(n,). 

In this way we reduce the building time to O(n,) (just to store the points of 
the set) at an increase of the query time to 0( n,). To obtain other trade-offs 
between query and building time of a static data structure we split the set in 
a number of almost equally sized disjoint subsets and build a static data 
structure for each subset. To perform a query all subsets are queried 
separately and the answers are combined using the composition operator q 
for the decomposable searching problem at hand. 

~EORBM 2.1. Given a static data structure S for a decomposable search- 
ing problem PR and some integer function f(n), with 1 I f(n) I n, there 
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exists a static data structure S’ for PR with 

Qsb) = @f(n). Q&/f(n)>, 

444 = O(f(n) * Mn/f(n)), 

444 = @f(n) * Jwn/fW). 

Proof. Split the set V in f(n) subsets of size at most [n/f(n)] and 
build an instance of S for each subset. The bounds follow trivially. 0 

COROLLARY 2.2. Given a static data structure S for a decomposable 
searching problem PR and some integer function f(n), with 1 I f(n) I n, the 
batched static version of PR can be solved with 

P”(n) = O(fh) %(n,/fb,)) + n4 *f(n,). Q&/f(n,))>, 

W4 = O(f (4 - &h/f (n,>)). 

Let us consider some applications of the presented technique. We will 
assume that n = &n,) = e(n,). 

Applications. (a) Fixed radius near neighbor searching. The fixed radius 
near neighbor searchingproblem asks for all elements of a set of points in the 
plane that he within some fixed distance e from a given query point. Bentley 
and Maurer [2] describe a static solution S for solving the problem with 

Q,(n) = O(logn + k) 

P,(n) = O(n3), 

M,(n) = O(n3), 

where k denotes the number of reported answers. (Preparata [17] states 
O(n*log n) bounds on the preprocessing time .and the amount of storage 
required but his bounds are not quite correct as he does not count time and 
storage required for storing partial answers.) The problem is clearly decom- 
posable. Hence, we can apply Theorem 2.1 and, choosing f(n) 
= [n2/3/log’/3n1, obtain a data structure S’ such that 

Q,b) = Ob 2/310g2’3n + k), 

PT(n) = 0( n5/310g2/3n), 

MS(n) = O(n5/310g24z). 

Using this structure we obtain a solution to the batched static version of the 
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fixed radius near neighbor searching problem with 

P”(n) = O(n5’3log?I + k’), 

M”(n) = o( n5’310g+z), 

where k’ denotes the total number of reported answers. 
(b) Half-planar range counting. The half-planar range counting problem 

asks for the number of elements of a set of points in the plane that he below 
(or above) a given query line. The problem can be solved using a slight 
modification of a structure of Edelsbrunner, Kirkpartrick, and Maurer [5] 
such that 

Q,(n) = O(bd9 

P,(n) = O(n*logn), 

M,(n) = O(n2). 

One easily verifies that the problem is decomposable. Applying Corollary 
2.2 with f(n) = [&I, we obtain a batched static solution to the problem 
with 

P”(n) = O(&logn), 

M”(n) = O(n&j. 

Theorem 2.1 (Corollary 2.2) can also be applied to data structures for 
numerous other decomposable searching problems, e.g., on structures for 
polygon retrieval [5,20], line segment intersection searching [5], and polygo- 
nal intersection searching [5]. For all these problems batched static solutions 
can be obtained with P”(n) = o(n’). 

3. A GENERAL BATCHED DYNAMIC SOLUTION 

Once we have a fully dynamic data structure S for a searching problem 
PR, the batched dynamic version of PR can be solved by performing the 
sequence of insertions, deletions, and queries in the right order on an 
initially empty instance of S. This clearly leads to a solution for the problem 
with 

P”(n) = O(n, . Q&d + N * V,(m)), 

Md(n) = O(MS(m)). 

From now on, we assume that only a static data structure S is available 
for solving PR and that PR is a decomposable searching problem. We will 
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show that in this case an efficient solution to the batched dynamic version 
of PR exists as well. In many cases, this solution is significantly more 
efficient than the one obtained by using a dynamic data structure. In 
addition, actual implementations of dynamic data structures tend to be 
rather involved while the solution to be described is less complicated. 

An instance of the batched dynamic version of a searching problem 
consists of a sequence of n actions act,, . . . , act,, where each action act, is 
either an insertion of a set object (that is assumed to be not yet present in 
the set), a deletion of a set object (that is assumed to be present) or a query 
with a query object. For an action act i we call i the moment at which the 
action is performed. For each point p that ever belongs to the set there is a 
moment i at which p is inserted and possibly another moment j at which it 
is deleted (i.e., act, is the insertion of p and acti is the deletion of p). When 
a point is reinserted at some later moment we treat it as a separate point. 
When p is not deleted we take j = n + 1. Hence with each set object p we 
can associate an interval [i : j] during which p is present. We call this 
interval the existence interval of p. As a running example consider the 
following sequence of actions (where INS( pi) denotes the insertion of pi, 
DEL( pi) denotes the deletion of pi and QRY( xi) denotes a query with 
object xi): 

act, = INS(p,) 
act, = IWP,) 
act 3 = IWP,) 
act, = QRY(x,) 
act, = DEL(P,) 
act, = QRY(x,) 

act 7 = INS( p4) 
act, = DEL(p,) 
act 9 = QRY(x,) 

act10 = IWP,) 
act,, = QRY(x,) 

Figure 3 shows the existence intervals of the points pl,. . . , ps. When we 
perform a query at some moment i (i.e., act i is a query) we perform it for 
those points that are present in the set at moment i, i.e., those points that 
are inserted before moment i and deleted after moment i. These are the 
points whose existence intervals contain i. For example, the query with x3 

'1' 
k- 

FIGURE 3 
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(action act,) in our example has to be performed on the points p3 and pd. 
Thus, before performing the actual query act,, we determine the points that 
are present at moment i, i.e., whose existence intervals contain i. This 
(pre-)query is called a point enclosure query. This problem can be solved 
using a segment tree. We will shortly describe this structure. For details see, 
e.g., Bentley and Wood [3] or van Leeuwen and Wood [19]. 

To store the existence intervals, the total time interval [l : n + l] is 
divided into so-called atomic segments that are the largest segments that do 
not contain a begin or endpoint of an existence interval in their interior. In 
other words, the atomic segments are the segments between consecutive 
begin and/or endpoints. In our example, the atomic segments are [l : 21, 
[2 : 31, [3 : 51, [5 : 71, [7 : 81, [8 : lo], and [lo : 121. These atomic segments 
correspond to the leaves of a balanced binary tree, such that the leaf of an 
atomic segment si is to the left of the leaf of an atomic segment s2, if and 
only if s1 is to the left of s2. Each internal node (Y corresponds to the total 
segment spanned by the leaves in the subtree rooted at (Y. In an ordinary 
segment tree each node (Y is associated with the list of all intervals that cover 
the segment corresponding to (Y but do not cover the segment corresponding 
to the father of (Y. In our application we store with a node CY the points 
whose existence intervals cover the segment corresponding to LY but do not 
cover the segment corresponding to the father of (Y. See Fig. 4 for the 
structure we get for our running example. The points associated with an 
internal node (Y are stored in an instance S, of the data structure S for the 

FIGURE 4 
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decomposable searching problem at hand. To perform a query with object x 
at moment i we search with i in the tree to locate the atomic segment i lies 
in. (Note that i never lies at the boundary of a segment.) The structures S, 
associated to the nodes (Y on the search path together contain each point 
present at moment i exactly once and contain only these points. Hence, we 
can solve the query by performing a query with x on each of these 
structures and combining the answers using the composition operator 17. 
This leads to the following result: 

THEOREM 3.1. Given a static data structure S for solving a decomposable 
searching problem PR, the batched dynamic version of PR can be solved such 
that 

Pd(n) = O(n, . 1ogN - Q,(m) + 1ogN * P,(N)), 

Md(n) = O(n, + 1ogN. M,(N)). 

Proof. Let us analyze the space requirements first. One easily verifies 
that at each level of the segment tree each point of the set occurs at most 
twice. As the number of points is bounded by N, it follows that the total 
amount of storage required for storing associated structures on one level is 
bounded by O(M,(N)) (because M, is assumed to be at least linear). As 
the depth of the segment tree is bounded by O(logN) and the tree itself 
uses only O(N) storage, the bound on the amount of storage required 
follows (we need O(n,) space for storing the queries). 

The amount of time required for solving the batched dynamic version of 
PR can be divided into two parts: the amount of time required for building 
the structure, and the amount of time required for performing the queries. 
Computing the existence intervals of the points in the set can be done in 
0( n ~ + N log N) time. The construction of the segment tree (without the 
associated structures) takes O( N 1ogN) time and the amount of time 
needed for constructing the associated structures can be estimated by 
O( Ps( N)) per level of the tree by the same arguments as used for estimating 
the amount of storage required. As each associated structure contains at 
most m points, the time needed per query is bounded by O(logN . es(m)) 
and, hence, the total amount of time needed for performing queries is 
bounded by 0( n4 . log iV . Q,(m)). The bound on Pd follows. q 

In certain cases, the factor 1ogN in Theorem 3.1 needs not be paid. 
Exploiting the fact that the number of leaves descending from a node at is 
an upperbound on the number of points associated to OL, one easily verifies 

Pd(n)= O(n;Q,(N)+logN-P,(N)) when Qs(n)= !2(n’) for some 
c > 0, 
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Pd(n)= U(n;1ogN~Q,(m)+P,(N)) when P,(n) = fi(nl+‘) for some 
6 > 0, 

Pd(n)= O(n,-Q,(N)+ P,(N)) when es(n) = S2(n’) and P,(n)= 
tJ(d+’ ) for some c > 0, and 

Md(n)= O(n, + M,(N)) when M,(n) = a(n’+‘) for some E > 0. 

For some decomposable searching problems, the amount of time needed 
for constructing the segment tree together with the associated structures can 
be improved by presorting the points. This method is particularly useful if 
the presorting improves the time required to construct an instance of S. 

It is not strictly necessary to have a static data structure S available. We 
can also use the method described for solving the batched dynamic version 
of a decomposable searching problem when only a batched static solution is 
known. To this end we perform all queries simultaneously. For each internal 
node we-collect all queries that have to be performed on the associated set 
of points and next solve the searching problem batched statically. This idea 
is exploited in the next section. 

Let us now look at some applications of Theorem 3.1. For simplicity, we 
assumed that n = e(n,) = 8(N) = e(m). 

Applications. (a) Nearest neighbor searching. Given a set of points in 
the plane, the nearest neighbor searchingproblem asks for the point in the set 
nearest to a query point x (using the Euclidean metric). The best dynamic 
data structure currently known for the problem achieves a query time of 
O(d+), an insertion time of of O(log n) and a deletion time of 
0(,/z), using O(n log log n) storage (see Overmars and van Leeuwen 
[16]). Using this dynamic data structure for solving the batched dynamic 
version of the nearest neighbor searching problem, we obtain 

P(n) = O(q/G), 

Md(n) = O(nloglogn). 

On the other hand, a static data structure for the nearest neighbor searching 
problem is known with es(n) = O(logn), Ps(n) = O(n logn), and M,(n) 
= O(n) (see Kirkpatrick [S]). Applying Theorem 3.1 to this structure we 
obtain a batched dynamic solution with 

P”(n) = O( n log*n), 

Md(n) = O(nlogn). 

(b) Fixed radious near neighbor searching. As shown in Section 2, a 
static data structure for the fixed radius near neighbor searching problem 
exists with es(n) = O(n2/310g2/3n + k), P,(n) = O(n5/310g2/3n), and 
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M,(n) = O( 125’s10g2’s n). Applying Theorem 3.1 to this structure we obtain 
a batched dynamic solution to the fixed radius near neighbor searching 
problem with 

Pd(n) = O(n5’310g2’%I + k’), 

Md( n) = o( n5’310g%). 

Hence, we obtain exactly the same bounds for the batched dynamic as for 
the batched static version. 

(c) Half-planar range counting. As shown in Section 2, a static solution 
to the half-planar range counting problem exists with es(n) = O(& logn), 
P,(n) = o( n& logn), and M,(n) = 0( &). Applying Theorem 3.1 we 
obtain a batched dynamic solution to the problem with 

Pd(n) = O(n&logn), 

Md(n) = 0(&i). 

4. STREAMING 

In this section we will describe a technique, called “streaming,” for 
reducing the amount of storage required for solving batched (static or 
dynamic) versions of searching problems. The idea of streaming is the 
following. Rather than performing the queries one after the other on the 
data structure used, we perform them simultaneously. This is possible 
because all queries are known beforehand. To this end the data structure is 
traversed only once and hence, there is no need to have the complete 
structure available at the moment we start performing queries. At any stage 
of the process of performing the queries we only need that part of the data 
structure we are working on, i.e., the part the queries have come to. Hence, 
while performing the queries we build parts of the structure we need and 
discard parts that we do not need anymore. We will first consider the 
application of streaming to batched static solutions for decomposable 
searching problems. 

Theorem 2.1 showed a simple technique for “balancing” the query time 
and building time of data structures for decomposable searching problems, 
by splitting the set of n points in f(n) subset and building a structure for 
each subset. When such a structure is used for solving the batched static 
version of a searching problem, there is no need for constructing all f(n) 
structures in advance. We can proceed as follows. Build the first structure, 
compute the answers to the queries on this structure, store these partial 
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answers, and discard the first structure. Next, build the second structure, 
perform the queries, and combine the answers with the stored answers using 
the composition operator 0. Repeat this for all f(n) structures. It follows 
that at each moment there is at most one structure available. This reduces 
the storage requirements considerably. On the other hand, we have to store 
partial answers. Let the answer to a query for a set of n points take A(n) 
storage. The technique described leads to the following result: 

THEOREM 4.1. Given a static data structure S for a decomposable search- 
ing problem PR and an integer function f(n) with 1 s f(n) I n, the batched 
static version of PR can be solved such that 

P”(n) = o(f(n,) %(n,/fh>) + n4 -f(n,) * Qdn,/fh)))~ 

M”(n) = O(n, + M,(n,/f(n,)) + n4 * 4nJ). 

For a number of searching problems there is no need for storing partial 
answers. For example, in the range searching problem we can immediately 
report answers found. In such cases one can take A( n,) = 1. (We always 
need n4 storage to store the query objects.) 

Let us consider some applications, again assuming that n = 0( nq) = 
Qn,). 

Applications. (a) Fixed radius near neighbor searching. Taking f(n) 
= [ n */3/log’/3n 1 in Th eorem 4.1, we obtain a solution to the batched static 
version of the fixed radius near neighbor searching problem with 

P”(n) = O(nJ;;logn), 

M”(n) = O(n). 

(b) Half-planar range counting. Applying Theorem 4.1 to the half- 
planar range counting problem with f(n) = I\/;;], we obtain a batched 
static solution to the problem with 

P”(n) = O(nJ;; logn), 

M”(n) = O(n). 

Streaming can also be used for reducing the space requirements when 
using other types of data structures for solving the batched static version of 
searching problems. This will be demonstrated on a structure for range 
searching. We will first consider the 2dimensionaI case. A static data 
structure S is known with es(n) = O(logn + k), P,(n) = O(n log n) and 
M,(n) = O(n log n) (see Willard [21]). It immediately yields a batched 
static solution with P”(n) = O(n log n, + k’) and MS(n) = O(n,log n,). 
We will show how streaming can be used to reduce the space requirements 
to O(n). 
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Let V, be the set of points and let V4 be the set of query ranges. We order 
the points in V, with respect to their y coordinates and order the ranges in 
V4 with respect to the y coordinates of their lower borders. The algorithm is 
best described by the following recursive procedure: 

procedure RANGE (set of points V,, set of ranges V,); 
Step 1: Determine a vertical line I that splits the set V, of points into 

two nearly equal-sized subsets V$’ and VsR of points to the left 
and to the right of I, respectively. 

Step 2: Determine the following subsets of V4: 
vt*: contains all ranges whose x intervals (i.e., projection on 

the x axis) contain all x values of points in VsL. 
Vt: contains all ranges that lie partially to the left of I but are 

not contained in VqL*. 
VR*: similar to VqL* but for VsR. 
V:: similar to V: but for VsR. 

(Note that a range might come in more than one subset.) 
Step 3: Determine for each range in Vy the points in VsL it contains. 

Do the same for Vt* and V,“. These actions can be done 
efficiently as the sets are ordered in a convenient way. 
Details will be described below. 

Step 4: Call recursively RANGE(I/,L, VL) and 
RANGE( yR, I,$). 

end of RANGE; 

LEMMA 4.2. A point p lying in a range r is reported exactly once for that 
range. 

Proof. During the splitting of V, there is a moment at which the x 
interval of r contains all x values of the points in the subset p is in. At this 
recursive call of RANGE p will be reported. Assume w.1.o.g. that p is in 
VsL. As r is in Vk it cannot be in VqL. Hence, p is not reported later again 
for range r. 0 

LEMMA 4.2 shows that the algorithm works correctly. To estimate the 
amount of time and storage required we make the following observations: 

OBSERVATION 1. At each moment, a point is in precisely one V, set. A 
range is always in at most three sets of ranges. 

It is worthwhile to note here that the order of the computations per- 
formed by the procedure RANGE is crucial. Already slight changes may 
violate Observation 1 and thus increase the space requirements. 

OBSERVATION 2. The splitting of V, (Step 1) can be done in time 0( IQ). 
The splitting of V, (Step 2) can be done in time O((V,( + IV,l). 
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OBSERVATION 3. The level of nesting of recursive calls is bounded by 
wag n,). 

LEMMA 4.3. Step 3 can be performed in O(n’) time (plus the number of 
reported answers), where n’ = IV,/ + IV,,“*1 + ) V,4”* I. 

Prooj: We will examine the actions taken for K’ and Vy only. As the x 
intervals of the ranges in Vq’* contain all x values of the points in VJ’, we 
are only interested in the y intervals and y values of the ranges and the 
points. Hence, we have to solve a l-dimensional range searching problem. 
Both VsL and Vq’* are ordered with respect to the y coordinate. The queries 
are performed during a simultaneous walk along both sets. Let rl be the 
first range in Vq’*. We walk along Vs’ until we find the first point pi that 
lies in or past rl. If pi lies in rl we report this point and following points (as 
answers to the query with rI) until we come to a point that lies past rl. In 
this way we find all points in V,” that lie in rI. Next we take r, and start the 
process at pi (preceding points can never lie in r2). In this way we continue 
with all ranges. One easily verifies that the amount of time required is 
bounded by 0( lVs’I + lV,“*l) plus the number of reported answers. Similar, 
we can perform the queries in VqR* on the points in CR in time 0( IVXRl + 
lv;*l>. 0 

It follows from Observations 2 and 3 and Lemma 4.3 that the total 
amount of time required for RANGE is bounded by 0(( n 4 + n,)log n, + 
k’), where k’ denotes the total number of reported answers. As the ordering 
of V, and V, takes O(n Jog n 4 + n Jog n ,), the batched static version of the 
2-dimensional range searching problem can be solved in time 0( n log n s + 
n ,log n 4 + k’). From Observation 1 it follows that the amount of storage 
required is bounded by O(n). 

To solve the batched static version of the d-dimensional range searching 
problem for d > 2 we use exactly the same procedure, except that we 
replace Step 3 by 

Step 3’: Solve the batched static version of the (d - 1)-dimensional 
range searching problem with the points in V,” ( VSR), restricted 
to their last d - 1 coordinates, as set of points and the ranges 
in Vk* (V,“‘), restricted to their last d - 1 coordinates, as set 
of query ranges. 

This easily leads to the following result: 

THEOREM 4.4. The batched static version of the d-dimensional range 
searching problem can be solved such that 

P”(n) = O(nlogd-‘n, + n,logn, + k’), 

M”(n) = O(n). 
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In essentially the same way one can apply streaming to the RI-tree of 
Edelsbrunner [4] (see also Edelsbrunner and Maurer [6]) to solve the 
batched static version of the d-dimensional rectangle intersection searching 
problem. It yields the following result: 

THEOREM 4.5. The batched static version of the d-dimensional rectangle 
intersection searching problem can be solved such that 

P”(n) = O{nlog’-‘n, + n,logn, + k’), 

M”(n) = O(n). 

One can use the batched static version of the rectangle intersection 
searching problem for solving the rectangle intersection problem, i.e., the 
problem of determining all intersecting pairs among a set I/ of n axis-paral- 
lel hyper-rectangles in d-dimensional space. To this end we take the 
rectangles in V both as set and as query objects. In this way each 
intersecting pair would be reported twice but one can easily take care that 
this will not happen. 

COROLLARY 4.6. The d-dimensional rectangle intersection problem can be 
solved in time 0( n logd-‘n + k) using O(n) space, where k is the number of 
reported intersecting pairs. 

This result improves the best known solutions for the problem (see, e.g., 
Edelsbrunner and Maurer [6]) that use O(n logd-*n) space. 

The idea of streaming can also be used for reducing the amount of space 
required for solving the batched dynamic version of decomposable search- 
ing problems. We essentially use the structure described in Section 3 but do 
not build the structure at once. The structure is rather built and destroyed 
node by node, performing all queries simultaneously. As an important 
side-benefit we only need a batched static solution for the decomposable 
searching problem rather than a static solution. 

Let V, denote the set of points and let with each point its existence 
interval be given. The endpoints of the existence intervals are sorted from 
left to right. Let Vq be the set of query objects and let with each query 
object the moment at which it is performed be given. We order V4 with 
respect to these moments. As we will perform queries simultaneously we 
have to store partial answers (although this may not be necessary for all 
decomposable searching problems). For this task we use an array ANSW 
that stores for each query object the answer for the part of the set examined 
up to now. Each time we compute the answer to a query for a part of the 
set, we combine it with the corresponding answer in ANSW using the 
composition operator 0. The algorithm is best described by the following 
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recursive procedure: 

procedure BATCHDYN (set of points V,, set of queries V,); 
Step 1: Determine a time moment t such that half of the time moments 

of queries in Vq is before t. Partition V4 into V$ and VqR such 
that Vj’ (V,“) contains the queries in V4 whose time moments 
are before (after) t. 

Step 2: Determine the following subsets of V,: 
l$L*: contains all points whose existence intervals contain 

KL: 
all time moments of queries in V;I”. 
contains all points, not in VsL*, whose existence 
intervals lie partially before t. 

KR*: similar to VL* but for V,“. 
KR: i similar to V, but for VqR. 

(Note that a point might come in more than one set.) 
Step 3: Solve the batched static version of the decomposable searching 

problem for KL* and VqL and for VsR* and VqR, combining the 
answers with the corresponding answers in ANSW. 

Step 4: Call recursively BATCHDYN (v,“, VL) and 
BATCHDYN ( KR, J+). 

end of BATCHDYN; 

Clearly, Steps 1 and 2 take 0( IV,] + IV,]) time and Step 3 takes O(P”(n’)) 
time where n’ = ]VsL* ] + ]f$R*( + ]VJ. One easily verifies that the depth of 
the recursion is bounded by O(log n J and (hence) that the total amount of 
time required is bounded by O(log n,Ps(n) + n4 log n4 + N log ne) plus 
0( N log N + n J for computing the existence intervals of the points and 
constructing the initial sets V, and V4. Beside the amount of storage required 
for ANSW, the algorithm takes O(M”(n) + n) = O(M”(n)) storage. 

THEOREM 4.7. Given a batched static solution to a decomposable searching 
problem PR, the batched dynamic version of PR can be solved such that 

Pd(n) = O(P’(n)logn, + NlogN), 

Md(n) = 0( W(n) + n4 - A(m)), 

where A(m) denotes the amount of space required for storing the answer over a 
set of m points. 

One easily verifies that Pd(n) = O(P”(n)) when P”(n) = SJ(n’+‘) for 
some c > 0. 

Let us consider some applications. We assume that n = O(n,) = O(N) = 
e(m). 

Applications. (a) Nearest neighbor searching. Applying Theorem 4.7 to 
the structure for nearest neighbor searching of Kirkpatrick [8] we obtain a 
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solution to the batched dynamic version of the nearest neighbor searching 
problem with 

Pd(n) = O(nlog%), 

Md(n) = o(n). 

(b) Range searching and rectangle intersections searching. Applying 
Theorem 4.7 to the batched static solution for the d-dimensional range 
searching problem given in Theorem 4.4 we obtain a batched dynamic 
solution with 

Pd(n) = O(nlogdn + k’), 

Md(n) = o(n). 

Applying Theorem 4.7 to Theorem 4.5 we obtain a batched dynamic 
solution for the d-dimensional rectangle intersection searching problem with 

P”(n) = O(nlogdn + k’), 

Md(n) = O(n). 

(c) Immediate obstacle searching problem. Applying Theorem 4.7 to 
the batched static solution for the problem of McCreight [12] given in 
Section 2, we obtain a batched dynamic solution with 

P”(n) = O(nlog%), 

Md(n) = O(n). 

5. REVER.~INO SEARCHING PROBLEMS 

For a number of searching problems one can obtain efficient batched 
static or dynamic solutions by viewing the query objects as set objects and 
vice versa. We will demonstrate the idea by applying it to the triangular 
range searching problem. The triangular range searching problem is the 
following: given a set of points in the plane, report all points that lie witbin 
a given query triangle. Some data structures are known for the problem. 
Willard 1201 describes a solution with es(n) = O((n’w64 + k), P,(n) = 
0( n*), and M,(n) = 0( n log n), where k is the number of reported answers. 
Edelsbrunner, Kirkpatrick, and Maurer [5] solve the problem in es(n) = 
O(log n + k), P,(n) = 0( n’), and M,(n) = 0( n7). Both structures are 
quite inappropriate for solving the batched static version of the problem, 
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even when we apply Theorem 4.1. The batched static version can be 
formulated as follows: given a set of triangles and a set of points in the 
plane, report for each triangle the points it contains. In other words, report 
all pairs (triangle, point) with the point contained in the triangle. But to 
report these pairs we can as well ask for each point in what triangles it lies. 
Hence, we obtain the following searching problem: given a set of n triangles 
in the plane, report all triangles that contain a given query point. One can 
easily give a static solution for this problem with es(n) = O(logn + k). 
P,(n) = O(n3), and M,(n) = O(n3), based on a data structure for point 
location in a planar subdivision due to Kirkpatrick [8]. Applying Theorem 
4.1 with f(n) = \n2/3/10g1/3 n1 yields a batched static solution to the 
problem with 

P”(n) = o( n5’310g2’3n + k’), 

M”(n) = O(nlogn), 

assuming that n = e(n,) = Qn,), where k’ is the total number of reported 
answers. Hence, we can solve the batched static version of the triangular 
range searching problem within these bounds. Applying Theorem 4.7 we 
obtain a solution to the batched dynamic version of the problem such that 

Pd(n) = O(n5’310g2’3n + k’), 

Md(n) = O(nlogn). 

It is hard to give general constraints a problem should satisfy to be 
“reversible” (i.e., in which query and set objects can be interchanged). One 
class of problems that can be reversed is the class of so-called “set 
independent” problems. 

DEFINITION 5.1. A searching problem PR is called set independent if 
and only if there exist some function f(p) that maps points into answers 
and a relation R( p, x) between points and query objects such that for every 
query object and every set of points V, 

PRbd’) = {fb)l~ E Vand R(P,x)}. 

Hence, the answer to a set independent searching problem consists of a 
set of answers f(p) for those points p in V that satisfy the relation 
R( p, x). Whether f(p) is reported or not is independent of the other 
elements of the set. Clearly, a set independent problem is decomposable. 
Some examples of set independent problems are the range searching prob- 
lem, the rectangle intersection searching problem, the fixed radius near 
neighbor searching problem, and the triangular range searching problem 
described above. 



SOLUTIONS TO DECOMPOSABLE PROBLEMS 537 

THEOREM 5.2. A set independent searching problem PR is reversible. 

Proof. The answer to the batched static version of PR consists of a 
number of pairs (x, f(p)), where x is one of the query objects, p is a point 
in the set V, and R( p, x) holds. We can compute the pairs by solving for 
each p in V the searching problem PR’( p, V,), where V4 is the set of query 
objects and 

~R’(P&/,) = {(x,f(~))lx E vq and R(p,x)}. 

The interchange of set and query objects does not give better results for 
all set independent searching problems. An example for which we do get 
better results is the circular range searching problem. The circular range 
searching problem is the following: given a set of points in the plane, report 
those points that lie in a given query circle (of arbitrary size). The reversed 
problem asks for those circles in a set that contain a given query point. 
Using the planar point location algorithm of Preparata [17] this problem 
can be solved within es(n) = O(logn + k), P,(n) = O(n3), and M,(n) = 
O(n3). Applying Theorem 4.1 with f(n) = [n2’3/log”3n 1 we can solve the 
batched static version of this problem, and hence, the batched static version 
of the circular range searching problem within 

P”(n) = 0( n5/310g2/3n), 

M”(n) = O(nlogn), 

assuming that n = fl(n,) = e(n,). 

6. EXTENSIONS 

When the number of updates is not of the same order as the number of 
queries we can tune Theorem 3.1 and Theorem 4.7 to obtain better time 
bounds for the batched dynamic solution.. We will show how to improve 
Theorem 3.1. The results for Theorem 4.7 follow in a direct way. 

Let us first describe an algorithm that works well when the number of 
queries is considerably larger than the number of updates. Again we use an 
augmented segment tree but rather than using a binary tree as underlying 
structure a f( N)-ary tree is used, i.e., a tree in which each internal node has 
f(N) sons for some integer function f depending on the number of updates. 
To each internal node (Y we again associate an instance S, of the static 
structure S containing all points whose existence intervals cover the whole 
interval below a but not the whole interval below the father of (Y. The depth 
of such a segment tree is clearly bounded by [log N/log f( N)l . One easily 
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verifies that each point is contained in at most O(f(N)log N/iogf(N)) 
associated structures. Hence, the building time is bounded by 

To query the structure we have to query at most log N/log f (N) associated 
structures. Hence, each query takes at most 

. log N . Q,(m) + log N 

time (the extra log N comes in for querying the segment tree itself). So the 
total amount of time required for performing queries is bounded by 

* 
1 

logf(N) ’ n9 
. 1ogN. Q,(m) + n,logN 

One easily verifies that the amount of storage required is bounded by 
0( f (N) . Ms( N)) per level, and hence, the total amount of storage required 
is bounded by 

. 1ogN * M,(N) + n4 

(The extra n, comes in for storing the queries.) This leads to the following 
refined version of Theorem 3.1: 

THEOREM 6.1. Let f (n) be an integer function with 2 I f(n) I n. Given a 
static data structure S for solving a decomposable searching problem PR, the 
batched dynamic version of PR can be solved such that 

Pd(n)=O ’ 
i loisf (N) 

. n4 + log N - Q,(m) + n4 * log N 

f(N) 
+ bf (NJ 

* 1ogN - P,(N) , 
i 

P(n) = 0 f(N) 
logf(N) . 

1ogN - M,(N) + n4 

Hence, at the cost of an increase of f (N)/log f (N) in the amount of time 
required for building the structure we obtain a decrease with a factor 
logf(N) in the amount of time required for performing the queries. As an 
example, consider the nearest neighbor searching problem and assume that 
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n4 = N log N and m = N. Theorem 3.1 yields a solution to the batched 
dynamic version with 

P”(n) = 0( N log3N + N log2N) = 0( N log3N). 

Using Theorem 6.1 with f(N) = log N we obtain a solution with 

P”( PZ) = 0( N log3N/loglog N + N 1og’N + N log3N/loglog N) 

= 0( N log3N/loglog N). 

The fact that the amount of storage is increased is not relevant as it can be 
reduced to O(M,(N)) using streaming. 

The following algorithm is especially appropriate when the number of 
updates is large compared with the number of queries. Again we use a 
f(N)-ary segment tree but we associate structures in a different way. Let 
son 19.. . , sonI be the sons of some internal node a. Rather than associat- 
ing a structure with each soni we construct structures $ (1 5 i I j < f(N) 
but not i = 1 and j = f(N)) that contain all points whose existence 
intervals cover all intervals below son,, . . . , sonj but not the intervals below 
other sons. These are O(f(N)2) structures. One easily verifies that at each 
level of the tree each point is in at most two associated structures. It follows 
that the building time per level is bounded by 0( Pa. N)) and hence, that the 
total building time is bounded by 

. 1ogN. P,(N) 

plus 0( N log N) for building the segment tree and computing the existence 
intervals. When we perform a query and the query-path goes through sonk, 
we have to perform a query on all structures Si, j with i I k and j r k. 
There can be 13(f(N)~) such structures. Hence, the total number of struc- 
tures we have to query is bounded by 

It follows that the total amount of time required for performing all queries 
is bounded by 

O 
f (Nj2 

logf(N) * nq 
+ IogN - Q&n) . 

1 

One easily verifies that at each level of the tree we need at most 0( M,( N)) 
storage. Hence, we can refine Theorem 3.1 to obtain: 
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THEOREM 6.2. Let f (n) be an integer function with 2 I f(n) < 6. Given 
a static data structure S for solving a decomposable searching problem PR, the 
batched dynamic version of PR can be solved such that 

P”(n) = 0 f (NJ* 
logf (N) 

* n4 . log N. Q,(m) 

1 
+ @f(N) 

. 1ogN. P,(N) + NlogN , 

* logNo M,(N) + n4 

Using streaming, the amount of storage required can be reduced to 
O(M,( N)). As an example consider again the nearest neighbor searching 
problem and let n4 = N/log N and m = N. Theorem 3.1 would yield a 
solution with 

log*N + 1ogN. NlogN = O(Nlog*N). 

Applying Theorem 6.2 with f(N) = dw, we obtain a solution with 

Pd(n) = 0 log N N .- 
log@p l%N 

. log*N 

1 + 
log&F 

- 1ogN. NlogN + NlogN 

= 0( N log*N/loglog N). 

7. CONCLUDING REMARKS 

We have given a number of techniques that can be used for solving 
batched static and batched dynamic versions of decomposable searching 
problems. In the batched static case, the plane-sweep technique proved to 
be a powerful instrument for solving a number of (planar geometrical) 
problems. A general transformation showed how data structures with a 
large difference between query and building time can be turned into 
structures with better trade-offs, leading to better time bounds when used in 
a batched environment. Next, it was shown how the batched dynamic 
version of a searching problem could be transformed into the addition of 
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inverse range restrictions to the batched static version of the original 
problem. It resulted in a general method for solving the batched dynamic 
version of decomposable searching problems that is applicable once a static 
(or batched static) solution to the problem is known. It was also shown that 
the space requirements of the method can be reduced considerably by 
performing all queries simultaneously and building only those parts of the 
data structure we are busy performing the queries on. We believe that this 
technique of “streaming” is applicable in numerous other problems as well. 
For example, it can be used (as shown in Section 4) to solve the d-dimen- 
sional rectangle intersection problem in time 0(n logd-in + k) using only 
0(n) storage, where n is the number of rectangles and k the number of 
reported intersecting pairs. It was also demonstrated how for a number of 
searching problems better results can be obtained by viewing set objects as 
query objects and vice versa. 

A number of open problems remain. In Section 6 we showed how 
different trade-offs can be obtained between the amount of time required 
for building the structure and the amount of time required for performing 
the queries. Other trade-offs might exist. No lowerbounds are known for the 
efficiency of the transformations. More over, we only considered decom- 
posable searching problems. General methods for solving batched versions 
for other classes of problems, e.g., the order decomposable set problems 
(Overmars [14]) might exist as well. 
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