
JOURNAL OF ALGORITHMS 6,515-542 (1985)

Batched Dynamic Solutions to Decomposable
Searching Problems*

HERBERTEDELSBRUNNER

institutes for Information Processing, Technical University of Graz, Schiesstattgasse 4’,
A -8010 Graz, ,Austria

AND

MARK H. OVERMAR.CG

Department of Computer Science, University of Utrecht, P.O. Box 80.012, 3508 TA
Utrecht, the Netherlands

Received June 6,1983; revised March 12,1984

The batched static version of a searching problem asks for performing a given set
of queries on a given set of objects. All queries are known in advance. The batched
dynamic version of a searching problem is the following: given a sequence of
insertions, deletions, and queries, perform them on an initially empty set. We will
develop methods for solving batched static and batched dynamic versions of
searching problems which are in particular applicable to decomposable searching
problems. The techniques show that batched static (dynamic) versions of searching
problems can often be solved more efficiently than by using known static (dynamic)
data structures. In particular, a technique called “streaming” is described that
reduces the space requirements considerably. The methods have also a number of
applications on set problems. E.g., the k intersecting pairs in a set of n axis-parallel
hyper-rectangles in d dimensions can be reported in 0 (n logd- ‘n + k) time using
only O(n) space. 0 1985 Academic Press, Inc.

1. INTR~DUCTI~N

In the past few years, a lot of research has been done on solving searching
problems. A searching problem is a problem in which a question (query) is

*Research reported in this paper was done while the second author visited the Technical
University of Graz. The first author was supported by the Austrian Fonds zur Foerderung der
Wissenschaftlichen Forschung. The second author was supported by the Netherlands Organiza-
tion for the Advancement of Pure Research (ZWO).

515
0196-6774/85 $3.00

Copyright 0 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved.

516 EDELSBRUNNER AND OVERMARS

asked about a (query) object x with respect to a set of objects (often called
points) V. A well-known example is the member searching problem in which
we ask whether the query object x is in the set V. Numerous searching
problems arise particularly in the area of “computational geometry” that
deals with problems about sets of points, lines, etc., in multi-dimensional
space. A prime example is the range searching problem: given a set of points
V in d-dimensional space and an axis-parallel hyper-rectangle (i.e., a
d-dimensional rectangle with sides parallel to the coordinate-axes) called a
range, report all points in V that lie within the range.

There are a number of different ways of solving searching problems. A
static solution to a searching problem consists of a data structure to store the
set of points (together with an algorithm to construct such a data structure)
such that queries with different query objects can be answered. The ef-
ficiency of such a data structure is measured by three quantities: the amount
of time needed for building the structure, the amount of time required for
performing a query, and the amount of storage required for storing the
structure. A dynamic solution to a searching problem consists of a data
structure that allows for queries, insertions of new objects in the set, and
deletions of existing objects. The efficiency of a dynamic data structure is
measured by the query time, the amount of time required for performing an
insertion or deletion, and the amount of storage required. Recently, plenty
of work has been devoted to the design of general methods for turning static
solutions to searching problems into dynamic solutions by means of general
techniques. (See Overmars [15] for an overview of the methods used.)

In this paper we will consider two different ways of solving searching
problems that appear in particular in an off-line (i.e., batched) environment.
The batched static version of a searching problem is the following: given a
set of points V and a set of n4 query objects xi,. . .,x, , perform these
queries on V, i.e., for each xi compute the answer to the’ query with xi.
Hence, we are not interested in keeping low the time required for individual
queries but in minimizing the overall nmtime. We are not bound to a
specific order of the queries nor is there a need to perform them one after
the other. Starting with V and the entire set of queries, we are only
interested in obtaining the set of answers in its totality. Clearly, the batched
static version of a searching problem can be solved using a static data
structure for the original problem, but in a number of cases one can do
better. The batched dynamic uersion of a searching problem is the following:
given a sequence of insertions, deletions, and queries, report all answers to
the queries when the sequence of actions is performed (in the given order)
on an initially empty set. We are again only interested in the overall
runtime. Of course, the amount of storage used is a major concern too.
There is no need for actually performing the updates and queries in the
given order, as long as it is made certain that queries are performed for the

SOLUTIONS TO DECOMPOSABLE PROBLEMS 517

proper sets of points. Clearly, a dynamic data structure can be used for
solving the batched dynamic problem, but often one can do better. The
study of batched static and batched dynamic versions of searching problems
is interesting not only for their use in an off-line environment. There are
also numerous problems that can be formulated as batched (static or
dynamic) versions of searching problems. A frequently considered example
is the planar rectangle intersection problem that asks for all intersecting pairs
in a set of axis-parallel rectangles in the plane. The intersecting pairs can be
determined by solving the batched dynamic version of the interval intersec-
tion searching problem (the problem that asks for all intervals in a set which
intersect a query interval).

We will give a number of general techniques which can be used for
solving batched (static or dynamic) versions of searching problems. They are
in particular applicable to decomposable searching problems. Let PR be a
searching problem then we denote by PR(x, V) the answer for PR with
respect to a set I/ and a query object X.

DEFINITION. A searching problem PR is called decomposable if for any
partition A U B of the set V and for each query object x

PR(x,V) = q (PR(x,A),PR(x, B))

for some constant time computable operator 0.

For example, the member searching problem is decomposable. When we
known whether x is in A and whether x is in B we can compute in O(1)
time whether x is in V = A U B using the or-function for 0. Numerous
other searching problems are decomposable as well. The class of decom-
posable searching problems was introduced by Bentley [l] who showed how
static data structures for decomposable searching problems can be turned
into efficient dynamic data structures by applying a general method. His
work was generalized in a number of ways, resulting in a very general and,
in some sense, optimal dynamization method for decomposable searching
problems (see Overmars and van Leeuwen [16]). For decomposable search-
ing problems there is no need for storing the set of objects in one massive
data structure. One can split the set in a number of disjoint subsets and
build a data structure for each of the subsets. The answer to a query for the
total set can be derived from the answers to the same query for the subsets
using the composition operator 0.

In Section 2, we consider batched static solutions to searching problems.
Some examples of batched static solutions to searching problems that are
better than known static solutions will be given. In particular the plane-sweep
technique (see, e.g., Shamos and Hoey [18] or Bentley and Wood [3]) will

518 EDELSBRUNNER AND OVERMARS

turn out to be a powerful technique for solving batched static versions of a
number of searching problems. This will be shown by applying the tech-
nique to a problem posed by McCreight [12]. Next, a general method is
described for solving the batched static version of decomposable searching
problems for which only structures are known with a large discrepancy
between query time and preprocessing time. We will show that such data
structures can be transformed into structures in which the query- and
building time are more “balanced” and that have much better perspectives
for use in a batched environment.

In Section 3, we are given a general method for solving the batched
dynamic version of decomposable searching problems for which static data
structures are known. One of the applications shows that the batched
dynamic version of the nearest neighbor searching problem (that asks for a
point in a set of points in the plane that is nearest to a given query point)
can be solved in O(n log*n) time, where n is the length of the sequence of
updates and queries.

In Section 4, we show how a technique, called “streaming,” can be used
for reducing the space requirements for batched (static and dynamic)
versions of searching problems. As a consequence, the batched static version
of the d-dimensional rectangle intersection searching problem can be solved
in 0(n logd-’ n + k’) time using O(n) storage, where k’ is the total number
of answers.

Section 5 shows how better results for the batched static version of a
number of searching problems can be obtained by changing the query
objects into set objects and the set objects into query objects and solving a
kind of “reversed” problem.

In Section 6 and 7 we given some extensions, conclusions, and directions
for further research. Throughout this paper we use the following notations:

(i) for a (static of dynamic) data structure S:
n = the number of points in the structure,

es(n)= the amount of time required for performing a query on S,
Ps(n)= the amount of time required for building (preprocessing) S,
U..(n)= the amount of time required to perform an update (insertion or

deletion) on S,
MS(n)= the amount of storage (memory) required for S.

(ii) in the batched static case:
n, = the number of set objects,
n4= the number of queries,
n=n,+n,,

P”(n)= the amount of time required for solving the batched static
version of a searching problem (where n s and n 4 are implicitly
understood),

SOLUTIONS TO DECOMPOSABLE PROBLEMS 519

M”(n)= the amount of storage required for solving the batched static
version of a searching problem.

(iii) in the batched dynamic case:
N= the number of updates,
n 9 = the number of queries,
n = N + n, (i.e., the length of the sequence of actions),
m = the maximum number of points once present in the set,

Pd(n)= the amount of time required for solving the batched dynamic
version of a searching problem,

Md(n)= the amount of storage required for solving the batched dy-
namic version of a searching problem.

To estimate bounds the following notations are used. Let G(n) and F(n)
be two functions for integers n 2 0.

(i) G(n) is said to be 0(F(n)) (notated as G(n) = 0(F(n))) if there
exists a constant c such that G(n) < cF(n) for all but finitely many values
of n,

(ii) G(n) is said to be SI(F(n)) if there exists a constant c > 0 such
that G(n) 2 c&n) for all but finitely many values of n,

(iii) G(n) is said to be 8(F(n)) if there exist constants cr, c2 with
cr > 0 such that qF(n) I G(n) I c,F(n) for all but finitely many values
of n,

(iv) G(n) is said to be o(F(n)) if for all constants c > 0, G(,n) I cF(n)
for all but finitely many values of n.

All bounds F(n) described above except for es(n) are assumed to be at
least linear, that is, n = O(F(n)). Furthermore, all bounds F(n) state the
requirements in worst-case and are assumed to be smooth, that is, F(8(n))
= @(F(n)).

2. BATCHED STATIC SOLUTIONS

Given a static data structure S for solving a searching problem PR, one
can solve the batched static version of PR by, first, storing all points of the
set in an instance of S and, next, performing all queries on the structure.
This leads to a solution for the batched static version of PR with

P”(n) = O(P&d + n4 - Qdn,)),
M”(n) = O(Wn,)).

However, one can do better for a number of searching problems. Consider

520 EDELSBRUNNER AND OVERMARS

for example the 2dimensional rectangle containment problem: given a set V
of orthogonal rectangles in the plane and another such rectangle x, report
all rectangles in I/ that are contained in x. The best known static solution to
the problem yields a query time of O(log3n + k), where k denotes the
number of reported answers, a building time of O(n log3n) and uses
O(n log3n) storage (see Lee and Wong [lo] or Edelsbrunner and Overmars
[7]). Using this data structure for solving the batched static version of the
rectangle containment searching problem yields

P”(n) = O((ns + n,)log’n, + k’),

M”(n) = 0(n,log3ns),

where k’ denotes the total number of reported answers. Lee and Preparata
[9] have shown that the problem that asks for all pairs of rectangles (rI, r2)
in a set V such that rl is contained in r2, can be solved within time
O(n log2n + k) using only O(n) storage (n =]Vl). Their solution can easily
be adapted to solving the problem of reporting all pairs of rectangles (rI, r2)
such that rl is contained in r2, where rl is in a set VI and r2 is in another
set V2. Choosing VI to be the set of rectangles and V, to be the set of query
rectangles, this method solves the batched static version of the 2-dimen-
sional rectangle containment searching problem with

P”(n) = O((ns + n,)log2(n, + n4) + k’) = O(nlog’n + k’),

M”(n) = O(n, + n4) = O(n).

A technique that is often useful for solving the batched static version of
2-dimensional searching problems (i.e., searching problems dealing with
objects in the plane) is the so-called “plane-sweep” technique (see, e.g.,

’ I

x
*-a m-w

i

8

II ’

FIGURE 1

SOLUTIONS TO DECOMPOSABLE PROBLEMS 521

I

*can
line

FIGURE 2

Shamos and Hoey [18], Bentley and Wood [3], or Nievergelt and Preparata
[13]). As an example, consider the following searching problem (proposed
by McCreight [121): given a set V of vertical line segments in the plane and a
query point x, determine the leftmost segment s in V we encounter when
moving x horizontally to the right (see Fig. 1). s is called the (immediate)
obstacle of X. The batched static version of the problem is the following:
given a set V, of n, vertical line segments and a set V, of n4 points,
determine for each point x in V, the immediate obstacle in V,. To solve the
problem, a vertical scan line 1 is moved from left to right over the plane.
With I we keep a balanced search tree T that contains all points we have
already passed but for which we did not pass the corresponding obstacle
yet. T stores the points ordered with respect to the y coordinate (i.e., in
vertical direction). See Fig. 2 for an illustration. When we pass a point we
insert it into the tree. When we pass a line segment s = [yr : y2] (where
yr I y2 are the y coordinates of the endpoints) we search for all points in T
with y coordinate in [yr : y2]. These are exactly the query points that have s
as obstacle. Since T contains the points sorted in the vertical direction,
O((k + 1) log n J tune suffices to determine the k points whose y coordi-
nates are in [yr : yz], and to delete them from T. To be able to locate the
next point or line segment the scan line passes, we have to sort both sets V,
and V, with respect to x coordinate. This takes O(n,log n, + n ,log n 4)
time. Each point in V, is once inserted into T and at most once deleted. As
the size of T is bounded by n4, the total amount of time required for
inserting and deleting points is bounded by 0(n ,log n 9). For each segment

522 EDELSBRUNNER AND OVERMARS

in Vi we have to perform a query which costs O(log n4) time per segment
and per point determined. As each point in V2 is found at most once, the
time for queries is bounded by O((n, + n,)log n4). One easily verifies that
the amount of storage is bounded by O(n, + n4). Hence, we have

P”(n) = o((ns + n,)logn, + nslogn,) = O(nlogn),

M”(n) = o(n, + n4) = o(n).

Batched static versions of numerous other (2dimensional) searching
problems can also be solved using the plane-sweep technique.

In practice, n4 is often 19(n,). Hence, when a static data structure S is
used for solving the batched static version of a searching problem, it is
important that the time needed for queries and the time needed for building
the structure are “in balance,” that is, Ps(n,) is about the same as
n,QS(n,). For a number of static data structures proposed in the literature,
Ps(n,) is very large compared with Qs(n,). So, we had beter look for static
solutions with better trade-offs, i.e., with a lower building time and a higher
query time. For decomposable searching problems this can be achieved by
applying a general transformation as we will show. The technique is adapted
from Maurer and Ottman [ll].

For decomposable searching problems, the answer to a query for the total
set can be computed in O(n,) time from the answers to the queries for the
individual elements. Computing the answer to a query for one element
clearly takes constant time (assuming that the problem is solvable). It
follows that the batched static version of a decomposable searching problem
can be solved with

P”(n) = O(n, * n,),

M”(n) = o(n,).

In this way we reduce the building time to O(n,) (just to store the points of
the set) at an increase of the query time to 0(n,). To obtain other trade-offs
between query and building time of a static data structure we split the set in
a number of almost equally sized disjoint subsets and build a static data
structure for each subset. To perform a query all subsets are queried
separately and the answers are combined using the composition operator q
for the decomposable searching problem at hand.

~EORBM 2.1. Given a static data structure S for a decomposable search-
ing problem PR and some integer function f(n), with 1 I f(n) I n, there

SOLUTIONS TO DECOMPOSABLE PROBLEMS 523

exists a static data structure S’ for PR with

Qsb) = @f(n). Q&/f(n)>,

444 = O(f(n) * Mn/f(n)),

444 = @f(n) * Jwn/fW).

Proof. Split the set V in f(n) subsets of size at most [n/f(n)] and
build an instance of S for each subset. The bounds follow trivially. 0

COROLLARY 2.2. Given a static data structure S for a decomposable
searching problem PR and some integer function f(n), with 1 I f(n) I n, the
batched static version of PR can be solved with

P”(n) = O(fh) %(n,/fb,)) + n4 *f(n,). Q&/f(n,))>,

W4 = O(f (4 - &h/f (n,>)).

Let us consider some applications of the presented technique. We will
assume that n = &n,) = e(n,).

Applications. (a) Fixed radius near neighbor searching. The fixed radius
near neighbor searchingproblem asks for all elements of a set of points in the
plane that he within some fixed distance e from a given query point. Bentley
and Maurer [2] describe a static solution S for solving the problem with

Q,(n) = O(logn + k)

P,(n) = O(n3),

M,(n) = O(n3),

where k denotes the number of reported answers. (Preparata [17] states
O(n*log n) bounds on the preprocessing time .and the amount of storage
required but his bounds are not quite correct as he does not count time and
storage required for storing partial answers.) The problem is clearly decom-
posable. Hence, we can apply Theorem 2.1 and, choosing f(n)
= [n2/3/log’/3n1, obtain a data structure S’ such that

Q,b) = Ob 2/310g2’3n + k),

PT(n) = 0(n5/310g2/3n),

MS(n) = O(n5/310g24z).

Using this structure we obtain a solution to the batched static version of the

524 EDELSBRUNNER AND OVERMARS

fixed radius near neighbor searching problem with

P”(n) = O(n5’3log?I + k’),

M”(n) = o(n5’310g+z),

where k’ denotes the total number of reported answers.
(b) Half-planar range counting. The half-planar range counting problem

asks for the number of elements of a set of points in the plane that he below
(or above) a given query line. The problem can be solved using a slight
modification of a structure of Edelsbrunner, Kirkpartrick, and Maurer [5]
such that

Q,(n) = O(bd9

P,(n) = O(n*logn),

M,(n) = O(n2).

One easily verifies that the problem is decomposable. Applying Corollary
2.2 with f(n) = [&I, we obtain a batched static solution to the problem
with

P”(n) = O(&logn),

M”(n) = O(n&j.

Theorem 2.1 (Corollary 2.2) can also be applied to data structures for
numerous other decomposable searching problems, e.g., on structures for
polygon retrieval [5,20], line segment intersection searching [5], and polygo-
nal intersection searching [5]. For all these problems batched static solutions
can be obtained with P”(n) = o(n’).

3. A GENERAL BATCHED DYNAMIC SOLUTION

Once we have a fully dynamic data structure S for a searching problem
PR, the batched dynamic version of PR can be solved by performing the
sequence of insertions, deletions, and queries in the right order on an
initially empty instance of S. This clearly leads to a solution for the problem
with

P”(n) = O(n, . Q&d + N * V,(m)),

Md(n) = O(MS(m)).

From now on, we assume that only a static data structure S is available
for solving PR and that PR is a decomposable searching problem. We will

SOLUTIONS TO DECOMPOSABLE PROBLEMS 525

show that in this case an efficient solution to the batched dynamic version
of PR exists as well. In many cases, this solution is significantly more
efficient than the one obtained by using a dynamic data structure. In
addition, actual implementations of dynamic data structures tend to be
rather involved while the solution to be described is less complicated.

An instance of the batched dynamic version of a searching problem
consists of a sequence of n actions act,, . . . , act,, where each action act, is
either an insertion of a set object (that is assumed to be not yet present in
the set), a deletion of a set object (that is assumed to be present) or a query
with a query object. For an action act i we call i the moment at which the
action is performed. For each point p that ever belongs to the set there is a
moment i at which p is inserted and possibly another moment j at which it
is deleted (i.e., act, is the insertion of p and acti is the deletion of p). When
a point is reinserted at some later moment we treat it as a separate point.
When p is not deleted we take j = n + 1. Hence with each set object p we
can associate an interval [i : j] during which p is present. We call this
interval the existence interval of p. As a running example consider the
following sequence of actions (where INS(pi) denotes the insertion of pi,
DEL(pi) denotes the deletion of pi and QRY(xi) denotes a query with
object xi):

act, = INS(p,)
act, = IWP,)
act 3 = IWP,)
act, = QRY(x,)
act, = DEL(P,)
act, = QRY(x,)

act 7 = INS(p4)
act, = DEL(p,)
act 9 = QRY(x,)

act10 = IWP,)
act,, = QRY(x,)

Figure 3 shows the existence intervals of the points pl,. . . , ps. When we
perform a query at some moment i (i.e., act i is a query) we perform it for
those points that are present in the set at moment i, i.e., those points that
are inserted before moment i and deleted after moment i. These are the
points whose existence intervals contain i. For example, the query with x3

'1'
k-

FIGURE 3

526 EDELSBRUNNER AND OVERMARS

(action act,) in our example has to be performed on the points p3 and pd.
Thus, before performing the actual query act,, we determine the points that
are present at moment i, i.e., whose existence intervals contain i. This
(pre-)query is called a point enclosure query. This problem can be solved
using a segment tree. We will shortly describe this structure. For details see,
e.g., Bentley and Wood [3] or van Leeuwen and Wood [19].

To store the existence intervals, the total time interval [l : n + l] is
divided into so-called atomic segments that are the largest segments that do
not contain a begin or endpoint of an existence interval in their interior. In
other words, the atomic segments are the segments between consecutive
begin and/or endpoints. In our example, the atomic segments are [l : 21,
[2 : 31, [3 : 51, [5 : 71, [7 : 81, [8 : lo], and [lo : 121. These atomic segments
correspond to the leaves of a balanced binary tree, such that the leaf of an
atomic segment si is to the left of the leaf of an atomic segment s2, if and
only if s1 is to the left of s2. Each internal node (Y corresponds to the total
segment spanned by the leaves in the subtree rooted at (Y. In an ordinary
segment tree each node (Y is associated with the list of all intervals that cover
the segment corresponding to (Y but do not cover the segment corresponding
to the father of (Y. In our application we store with a node CY the points
whose existence intervals cover the segment corresponding to LY but do not
cover the segment corresponding to the father of (Y. See Fig. 4 for the
structure we get for our running example. The points associated with an
internal node (Y are stored in an instance S, of the data structure S for the

FIGURE 4

SOLUTIONS TO DECOMPOSABLE PROBLEMS 527

decomposable searching problem at hand. To perform a query with object x
at moment i we search with i in the tree to locate the atomic segment i lies
in. (Note that i never lies at the boundary of a segment.) The structures S,
associated to the nodes (Y on the search path together contain each point
present at moment i exactly once and contain only these points. Hence, we
can solve the query by performing a query with x on each of these
structures and combining the answers using the composition operator 17.
This leads to the following result:

THEOREM 3.1. Given a static data structure S for solving a decomposable
searching problem PR, the batched dynamic version of PR can be solved such
that

Pd(n) = O(n, . 1ogN - Q,(m) + 1ogN * P,(N)),

Md(n) = O(n, + 1ogN. M,(N)).

Proof. Let us analyze the space requirements first. One easily verifies
that at each level of the segment tree each point of the set occurs at most
twice. As the number of points is bounded by N, it follows that the total
amount of storage required for storing associated structures on one level is
bounded by O(M,(N)) (because M, is assumed to be at least linear). As
the depth of the segment tree is bounded by O(logN) and the tree itself
uses only O(N) storage, the bound on the amount of storage required
follows (we need O(n,) space for storing the queries).

The amount of time required for solving the batched dynamic version of
PR can be divided into two parts: the amount of time required for building
the structure, and the amount of time required for performing the queries.
Computing the existence intervals of the points in the set can be done in
0(n ~ + N log N) time. The construction of the segment tree (without the
associated structures) takes O(N 1ogN) time and the amount of time
needed for constructing the associated structures can be estimated by
O(Ps(N)) per level of the tree by the same arguments as used for estimating
the amount of storage required. As each associated structure contains at
most m points, the time needed per query is bounded by O(logN . es(m))
and, hence, the total amount of time needed for performing queries is
bounded by 0(n4 . log iV . Q,(m)). The bound on Pd follows. q

In certain cases, the factor 1ogN in Theorem 3.1 needs not be paid.
Exploiting the fact that the number of leaves descending from a node at is
an upperbound on the number of points associated to OL, one easily verifies

Pd(n)= O(n;Q,(N)+logN-P,(N)) when Qs(n)= !2(n’) for some
c > 0,

528 EDELSBRUNNER AND OVERMARS

Pd(n)= U(n;1ogN~Q,(m)+P,(N)) when P,(n) = fi(nl+‘) for some
6 > 0,

Pd(n)= O(n,-Q,(N)+ P,(N)) when es(n) = S2(n’) and P,(n)=
tJ(d+’) for some c > 0, and

Md(n)= O(n, + M,(N)) when M,(n) = a(n’+‘) for some E > 0.

For some decomposable searching problems, the amount of time needed
for constructing the segment tree together with the associated structures can
be improved by presorting the points. This method is particularly useful if
the presorting improves the time required to construct an instance of S.

It is not strictly necessary to have a static data structure S available. We
can also use the method described for solving the batched dynamic version
of a decomposable searching problem when only a batched static solution is
known. To this end we perform all queries simultaneously. For each internal
node we-collect all queries that have to be performed on the associated set
of points and next solve the searching problem batched statically. This idea
is exploited in the next section.

Let us now look at some applications of Theorem 3.1. For simplicity, we
assumed that n = e(n,) = 8(N) = e(m).

Applications. (a) Nearest neighbor searching. Given a set of points in
the plane, the nearest neighbor searchingproblem asks for the point in the set
nearest to a query point x (using the Euclidean metric). The best dynamic
data structure currently known for the problem achieves a query time of
O(d+), an insertion time of of O(log n) and a deletion time of
0(,/z), using O(n log log n) storage (see Overmars and van Leeuwen
[16]). Using this dynamic data structure for solving the batched dynamic
version of the nearest neighbor searching problem, we obtain

P(n) = O(q/G),

Md(n) = O(nloglogn).

On the other hand, a static data structure for the nearest neighbor searching
problem is known with es(n) = O(logn), Ps(n) = O(n logn), and M,(n)
= O(n) (see Kirkpatrick [S]). Applying Theorem 3.1 to this structure we
obtain a batched dynamic solution with

P”(n) = O(n log*n),

Md(n) = O(nlogn).

(b) Fixed radious near neighbor searching. As shown in Section 2, a
static data structure for the fixed radius near neighbor searching problem
exists with es(n) = O(n2/310g2/3n + k), P,(n) = O(n5/310g2/3n), and

SOLUTIONS TO DECOMPOSABLE PROBLEMS 529

M,(n) = O(125’s10g2’s n). Applying Theorem 3.1 to this structure we obtain
a batched dynamic solution to the fixed radius near neighbor searching
problem with

Pd(n) = O(n5’310g2’%I + k’),

Md(n) = o(n5’310g%).

Hence, we obtain exactly the same bounds for the batched dynamic as for
the batched static version.

(c) Half-planar range counting. As shown in Section 2, a static solution
to the half-planar range counting problem exists with es(n) = O(& logn),
P,(n) = o(n& logn), and M,(n) = 0(&). Applying Theorem 3.1 we
obtain a batched dynamic solution to the problem with

Pd(n) = O(n&logn),

Md(n) = 0(&i).

4. STREAMING

In this section we will describe a technique, called “streaming,” for
reducing the amount of storage required for solving batched (static or
dynamic) versions of searching problems. The idea of streaming is the
following. Rather than performing the queries one after the other on the
data structure used, we perform them simultaneously. This is possible
because all queries are known beforehand. To this end the data structure is
traversed only once and hence, there is no need to have the complete
structure available at the moment we start performing queries. At any stage
of the process of performing the queries we only need that part of the data
structure we are working on, i.e., the part the queries have come to. Hence,
while performing the queries we build parts of the structure we need and
discard parts that we do not need anymore. We will first consider the
application of streaming to batched static solutions for decomposable
searching problems.

Theorem 2.1 showed a simple technique for “balancing” the query time
and building time of data structures for decomposable searching problems,
by splitting the set of n points in f(n) subset and building a structure for
each subset. When such a structure is used for solving the batched static
version of a searching problem, there is no need for constructing all f(n)
structures in advance. We can proceed as follows. Build the first structure,
compute the answers to the queries on this structure, store these partial

530 EDELSBRUNNER AND OVERMARS

answers, and discard the first structure. Next, build the second structure,
perform the queries, and combine the answers with the stored answers using
the composition operator 0. Repeat this for all f(n) structures. It follows
that at each moment there is at most one structure available. This reduces
the storage requirements considerably. On the other hand, we have to store
partial answers. Let the answer to a query for a set of n points take A(n)
storage. The technique described leads to the following result:

THEOREM 4.1. Given a static data structure S for a decomposable search-
ing problem PR and an integer function f(n) with 1 s f(n) I n, the batched
static version of PR can be solved such that

P”(n) = o(f(n,) %(n,/fh>) + n4 -f(n,) * Qdn,/fh)))~

M”(n) = O(n, + M,(n,/f(n,)) + n4 * 4nJ).

For a number of searching problems there is no need for storing partial
answers. For example, in the range searching problem we can immediately
report answers found. In such cases one can take A(n,) = 1. (We always
need n4 storage to store the query objects.)

Let us consider some applications, again assuming that n = 0(nq) =
Qn,).

Applications. (a) Fixed radius near neighbor searching. Taking f(n)
= [n */3/log’/3n 1 in Th eorem 4.1, we obtain a solution to the batched static
version of the fixed radius near neighbor searching problem with

P”(n) = O(nJ;;logn),

M”(n) = O(n).

(b) Half-planar range counting. Applying Theorem 4.1 to the half-
planar range counting problem with f(n) = I\/;;], we obtain a batched
static solution to the problem with

P”(n) = O(nJ;; logn),

M”(n) = O(n).

Streaming can also be used for reducing the space requirements when
using other types of data structures for solving the batched static version of
searching problems. This will be demonstrated on a structure for range
searching. We will first consider the 2dimensionaI case. A static data
structure S is known with es(n) = O(logn + k), P,(n) = O(n log n) and
M,(n) = O(n log n) (see Willard [21]). It immediately yields a batched
static solution with P”(n) = O(n log n, + k’) and MS(n) = O(n,log n,).
We will show how streaming can be used to reduce the space requirements
to O(n).

SOLUTIONS TO DECOMPOSABLE! PROBLEMS 531

Let V, be the set of points and let V4 be the set of query ranges. We order
the points in V, with respect to their y coordinates and order the ranges in
V4 with respect to the y coordinates of their lower borders. The algorithm is
best described by the following recursive procedure:

procedure RANGE (set of points V,, set of ranges V,);
Step 1: Determine a vertical line I that splits the set V, of points into

two nearly equal-sized subsets V$’ and VsR of points to the left
and to the right of I, respectively.

Step 2: Determine the following subsets of V4:
vt*: contains all ranges whose x intervals (i.e., projection on

the x axis) contain all x values of points in VsL.
Vt: contains all ranges that lie partially to the left of I but are

not contained in VqL*.
VR*: similar to VqL* but for VsR.
V:: similar to V: but for VsR.

(Note that a range might come in more than one subset.)
Step 3: Determine for each range in Vy the points in VsL it contains.

Do the same for Vt* and V,“. These actions can be done
efficiently as the sets are ordered in a convenient way.
Details will be described below.

Step 4: Call recursively RANGE(I/,L, VL) and
RANGE(yR, I,$).

end of RANGE;

LEMMA 4.2. A point p lying in a range r is reported exactly once for that
range.

Proof. During the splitting of V, there is a moment at which the x
interval of r contains all x values of the points in the subset p is in. At this
recursive call of RANGE p will be reported. Assume w.1.o.g. that p is in
VsL. As r is in Vk it cannot be in VqL. Hence, p is not reported later again
for range r. 0

LEMMA 4.2 shows that the algorithm works correctly. To estimate the
amount of time and storage required we make the following observations:

OBSERVATION 1. At each moment, a point is in precisely one V, set. A
range is always in at most three sets of ranges.

It is worthwhile to note here that the order of the computations per-
formed by the procedure RANGE is crucial. Already slight changes may
violate Observation 1 and thus increase the space requirements.

OBSERVATION 2. The splitting of V, (Step 1) can be done in time 0(IQ).
The splitting of V, (Step 2) can be done in time O((V,(+ IV,l).

532 EDELSBRUNNER AND OVERMARS

OBSERVATION 3. The level of nesting of recursive calls is bounded by
wag n,).

LEMMA 4.3. Step 3 can be performed in O(n’) time (plus the number of
reported answers), where n’ = IV,/ + IV,,“*1 +) V,4”* I.

Prooj: We will examine the actions taken for K’ and Vy only. As the x
intervals of the ranges in Vq’* contain all x values of the points in VJ’, we
are only interested in the y intervals and y values of the ranges and the
points. Hence, we have to solve a l-dimensional range searching problem.
Both VsL and Vq’* are ordered with respect to the y coordinate. The queries
are performed during a simultaneous walk along both sets. Let rl be the
first range in Vq’*. We walk along Vs’ until we find the first point pi that
lies in or past rl. If pi lies in rl we report this point and following points (as
answers to the query with rI) until we come to a point that lies past rl. In
this way we find all points in V,” that lie in rI. Next we take r, and start the
process at pi (preceding points can never lie in r2). In this way we continue
with all ranges. One easily verifies that the amount of time required is
bounded by 0(lVs’I + lV,“*l) plus the number of reported answers. Similar,
we can perform the queries in VqR* on the points in CR in time 0(IVXRl +
lv;*l>. 0

It follows from Observations 2 and 3 and Lemma 4.3 that the total
amount of time required for RANGE is bounded by 0((n 4 + n,)log n, +
k’), where k’ denotes the total number of reported answers. As the ordering
of V, and V, takes O(n Jog n 4 + n Jog n ,), the batched static version of the
2-dimensional range searching problem can be solved in time 0(n log n s +
n ,log n 4 + k’). From Observation 1 it follows that the amount of storage
required is bounded by O(n).

To solve the batched static version of the d-dimensional range searching
problem for d > 2 we use exactly the same procedure, except that we
replace Step 3 by

Step 3’: Solve the batched static version of the (d - 1)-dimensional
range searching problem with the points in V,” (VSR), restricted
to their last d - 1 coordinates, as set of points and the ranges
in Vk* (V,“‘), restricted to their last d - 1 coordinates, as set
of query ranges.

This easily leads to the following result:

THEOREM 4.4. The batched static version of the d-dimensional range
searching problem can be solved such that

P”(n) = O(nlogd-‘n, + n,logn, + k’),

M”(n) = O(n).

SOLUTIONS TO DECOMPOSABLE PROBLEMS 533

In essentially the same way one can apply streaming to the RI-tree of
Edelsbrunner [4] (see also Edelsbrunner and Maurer [6]) to solve the
batched static version of the d-dimensional rectangle intersection searching
problem. It yields the following result:

THEOREM 4.5. The batched static version of the d-dimensional rectangle
intersection searching problem can be solved such that

P”(n) = O{nlog’-‘n, + n,logn, + k’),

M”(n) = O(n).

One can use the batched static version of the rectangle intersection
searching problem for solving the rectangle intersection problem, i.e., the
problem of determining all intersecting pairs among a set I/ of n axis-paral-
lel hyper-rectangles in d-dimensional space. To this end we take the
rectangles in V both as set and as query objects. In this way each
intersecting pair would be reported twice but one can easily take care that
this will not happen.

COROLLARY 4.6. The d-dimensional rectangle intersection problem can be
solved in time 0(n logd-‘n + k) using O(n) space, where k is the number of
reported intersecting pairs.

This result improves the best known solutions for the problem (see, e.g.,
Edelsbrunner and Maurer [6]) that use O(n logd-*n) space.

The idea of streaming can also be used for reducing the amount of space
required for solving the batched dynamic version of decomposable search-
ing problems. We essentially use the structure described in Section 3 but do
not build the structure at once. The structure is rather built and destroyed
node by node, performing all queries simultaneously. As an important
side-benefit we only need a batched static solution for the decomposable
searching problem rather than a static solution.

Let V, denote the set of points and let with each point its existence
interval be given. The endpoints of the existence intervals are sorted from
left to right. Let Vq be the set of query objects and let with each query
object the moment at which it is performed be given. We order V4 with
respect to these moments. As we will perform queries simultaneously we
have to store partial answers (although this may not be necessary for all
decomposable searching problems). For this task we use an array ANSW
that stores for each query object the answer for the part of the set examined
up to now. Each time we compute the answer to a query for a part of the
set, we combine it with the corresponding answer in ANSW using the
composition operator 0. The algorithm is best described by the following

534 EDELSBRUNNER AND OVERMARS

recursive procedure:

procedure BATCHDYN (set of points V,, set of queries V,);
Step 1: Determine a time moment t such that half of the time moments

of queries in Vq is before t. Partition V4 into V$ and VqR such
that Vj’ (V,“) contains the queries in V4 whose time moments
are before (after) t.

Step 2: Determine the following subsets of V,:
l$L*: contains all points whose existence intervals contain

KL:
all time moments of queries in V;I”.
contains all points, not in VsL*, whose existence
intervals lie partially before t.

KR*: similar to VL* but for V,“.
KR: i similar to V, but for VqR.

(Note that a point might come in more than one set.)
Step 3: Solve the batched static version of the decomposable searching

problem for KL* and VqL and for VsR* and VqR, combining the
answers with the corresponding answers in ANSW.

Step 4: Call recursively BATCHDYN (v,“, VL) and
BATCHDYN (KR, J+).

end of BATCHDYN;

Clearly, Steps 1 and 2 take 0(IV,] + IV,]) time and Step 3 takes O(P”(n’))
time where n’ =]VsL*] +]f$R*(+]VJ. One easily verifies that the depth of
the recursion is bounded by O(log n J and (hence) that the total amount of
time required is bounded by O(log n,Ps(n) + n4 log n4 + N log ne) plus
0(N log N + n J for computing the existence intervals of the points and
constructing the initial sets V, and V4. Beside the amount of storage required
for ANSW, the algorithm takes O(M”(n) + n) = O(M”(n)) storage.

THEOREM 4.7. Given a batched static solution to a decomposable searching
problem PR, the batched dynamic version of PR can be solved such that

Pd(n) = O(P’(n)logn, + NlogN),

Md(n) = 0(W(n) + n4 - A(m)),

where A(m) denotes the amount of space required for storing the answer over a
set of m points.

One easily verifies that Pd(n) = O(P”(n)) when P”(n) = SJ(n’+‘) for
some c > 0.

Let us consider some applications. We assume that n = O(n,) = O(N) =
e(m).

Applications. (a) Nearest neighbor searching. Applying Theorem 4.7 to
the structure for nearest neighbor searching of Kirkpatrick [8] we obtain a

SOLUTIONS TO DECOMPOSABLE PROBLEMS 535

solution to the batched dynamic version of the nearest neighbor searching
problem with

Pd(n) = O(nlog%),

Md(n) = o(n).

(b) Range searching and rectangle intersections searching. Applying
Theorem 4.7 to the batched static solution for the d-dimensional range
searching problem given in Theorem 4.4 we obtain a batched dynamic
solution with

Pd(n) = O(nlogdn + k’),

Md(n) = o(n).

Applying Theorem 4.7 to Theorem 4.5 we obtain a batched dynamic
solution for the d-dimensional rectangle intersection searching problem with

P”(n) = O(nlogdn + k’),

Md(n) = O(n).

(c) Immediate obstacle searching problem. Applying Theorem 4.7 to
the batched static solution for the problem of McCreight [12] given in
Section 2, we obtain a batched dynamic solution with

P”(n) = O(nlog%),

Md(n) = O(n).

5. REVER.~INO SEARCHING PROBLEMS

For a number of searching problems one can obtain efficient batched
static or dynamic solutions by viewing the query objects as set objects and
vice versa. We will demonstrate the idea by applying it to the triangular
range searching problem. The triangular range searching problem is the
following: given a set of points in the plane, report all points that lie witbin
a given query triangle. Some data structures are known for the problem.
Willard 1201 describes a solution with es(n) = O((n’w64 + k), P,(n) =
0(n*), and M,(n) = 0(n log n), where k is the number of reported answers.
Edelsbrunner, Kirkpatrick, and Maurer [5] solve the problem in es(n) =
O(log n + k), P,(n) = 0(n’), and M,(n) = 0(n7). Both structures are
quite inappropriate for solving the batched static version of the problem,

536 EDELSBRUNNER AND OVERMARS

even when we apply Theorem 4.1. The batched static version can be
formulated as follows: given a set of triangles and a set of points in the
plane, report for each triangle the points it contains. In other words, report
all pairs (triangle, point) with the point contained in the triangle. But to
report these pairs we can as well ask for each point in what triangles it lies.
Hence, we obtain the following searching problem: given a set of n triangles
in the plane, report all triangles that contain a given query point. One can
easily give a static solution for this problem with es(n) = O(logn + k).
P,(n) = O(n3), and M,(n) = O(n3), based on a data structure for point
location in a planar subdivision due to Kirkpatrick [8]. Applying Theorem
4.1 with f(n) = \n2/3/10g1/3 n1 yields a batched static solution to the
problem with

P”(n) = o(n5’310g2’3n + k’),

M”(n) = O(nlogn),

assuming that n = e(n,) = Qn,), where k’ is the total number of reported
answers. Hence, we can solve the batched static version of the triangular
range searching problem within these bounds. Applying Theorem 4.7 we
obtain a solution to the batched dynamic version of the problem such that

Pd(n) = O(n5’310g2’3n + k’),

Md(n) = O(nlogn).

It is hard to give general constraints a problem should satisfy to be
“reversible” (i.e., in which query and set objects can be interchanged). One
class of problems that can be reversed is the class of so-called “set
independent” problems.

DEFINITION 5.1. A searching problem PR is called set independent if
and only if there exist some function f(p) that maps points into answers
and a relation R(p, x) between points and query objects such that for every
query object and every set of points V,

PRbd’) = {fb)l~ E Vand R(P,x)}.

Hence, the answer to a set independent searching problem consists of a
set of answers f(p) for those points p in V that satisfy the relation
R(p, x). Whether f(p) is reported or not is independent of the other
elements of the set. Clearly, a set independent problem is decomposable.
Some examples of set independent problems are the range searching prob-
lem, the rectangle intersection searching problem, the fixed radius near
neighbor searching problem, and the triangular range searching problem
described above.

SOLUTIONS TO DECOMPOSABLE PROBLEMS 537

THEOREM 5.2. A set independent searching problem PR is reversible.

Proof. The answer to the batched static version of PR consists of a
number of pairs (x, f(p)), where x is one of the query objects, p is a point
in the set V, and R(p, x) holds. We can compute the pairs by solving for
each p in V the searching problem PR’(p, V,), where V4 is the set of query
objects and

~R’(P&/,) = {(x,f(~))lx E vq and R(p,x)}.

The interchange of set and query objects does not give better results for
all set independent searching problems. An example for which we do get
better results is the circular range searching problem. The circular range
searching problem is the following: given a set of points in the plane, report
those points that lie in a given query circle (of arbitrary size). The reversed
problem asks for those circles in a set that contain a given query point.
Using the planar point location algorithm of Preparata [17] this problem
can be solved within es(n) = O(logn + k), P,(n) = O(n3), and M,(n) =
O(n3). Applying Theorem 4.1 with f(n) = [n2’3/log”3n 1 we can solve the
batched static version of this problem, and hence, the batched static version
of the circular range searching problem within

P”(n) = 0(n5/310g2/3n),

M”(n) = O(nlogn),

assuming that n = fl(n,) = e(n,).

6. EXTENSIONS

When the number of updates is not of the same order as the number of
queries we can tune Theorem 3.1 and Theorem 4.7 to obtain better time
bounds for the batched dynamic solution.. We will show how to improve
Theorem 3.1. The results for Theorem 4.7 follow in a direct way.

Let us first describe an algorithm that works well when the number of
queries is considerably larger than the number of updates. Again we use an
augmented segment tree but rather than using a binary tree as underlying
structure a f(N)-ary tree is used, i.e., a tree in which each internal node has
f(N) sons for some integer function f depending on the number of updates.
To each internal node (Y we again associate an instance S, of the static
structure S containing all points whose existence intervals cover the whole
interval below a but not the whole interval below the father of (Y. The depth
of such a segment tree is clearly bounded by [log N/log f(N)l . One easily

538 EDELSBRUNNER AND OVERMARS

verifies that each point is contained in at most O(f(N)log N/iogf(N))
associated structures. Hence, the building time is bounded by

To query the structure we have to query at most log N/log f (N) associated
structures. Hence, each query takes at most

. log N . Q,(m) + log N

time (the extra log N comes in for querying the segment tree itself). So the
total amount of time required for performing queries is bounded by

*
1

logf(N) ’ n9
. 1ogN. Q,(m) + n,logN

One easily verifies that the amount of storage required is bounded by
0(f (N) . Ms(N)) per level, and hence, the total amount of storage required
is bounded by

. 1ogN * M,(N) + n4

(The extra n, comes in for storing the queries.) This leads to the following
refined version of Theorem 3.1:

THEOREM 6.1. Let f (n) be an integer function with 2 I f(n) I n. Given a
static data structure S for solving a decomposable searching problem PR, the
batched dynamic version of PR can be solved such that

Pd(n)=O ’
i loisf (N)

. n4 + log N - Q,(m) + n4 * log N

f(N)
+ bf (NJ

* 1ogN - P,(N) ,
i

P(n) = 0 f(N)
logf(N) .

1ogN - M,(N) + n4

Hence, at the cost of an increase of f (N)/log f (N) in the amount of time
required for building the structure we obtain a decrease with a factor
logf(N) in the amount of time required for performing the queries. As an
example, consider the nearest neighbor searching problem and assume that

SOLUTIONS TO DECOMPOSABLE PROBLEMS 539

n4 = N log N and m = N. Theorem 3.1 yields a solution to the batched
dynamic version with

P”(n) = 0(N log3N + N log2N) = 0(N log3N).

Using Theorem 6.1 with f(N) = log N we obtain a solution with

P”(PZ) = 0(N log3N/loglog N + N 1og’N + N log3N/loglog N)

= 0(N log3N/loglog N).

The fact that the amount of storage is increased is not relevant as it can be
reduced to O(M,(N)) using streaming.

The following algorithm is especially appropriate when the number of
updates is large compared with the number of queries. Again we use a
f(N)-ary segment tree but we associate structures in a different way. Let
son 19.. . , sonI be the sons of some internal node a. Rather than associat-
ing a structure with each soni we construct structures $ (1 5 i I j < f(N)
but not i = 1 and j = f(N)) that contain all points whose existence
intervals cover all intervals below son,, . . . , sonj but not the intervals below
other sons. These are O(f(N)2) structures. One easily verifies that at each
level of the tree each point is in at most two associated structures. It follows
that the building time per level is bounded by 0(Pa. N)) and hence, that the
total building time is bounded by

. 1ogN. P,(N)

plus 0(N log N) for building the segment tree and computing the existence
intervals. When we perform a query and the query-path goes through sonk,
we have to perform a query on all structures Si, j with i I k and j r k.
There can be 13(f(N)~) such structures. Hence, the total number of struc-
tures we have to query is bounded by

It follows that the total amount of time required for performing all queries
is bounded by

O
f (Nj2

logf(N) * nq
+ IogN - Q&n) .

1

One easily verifies that at each level of the tree we need at most 0(M,(N))
storage. Hence, we can refine Theorem 3.1 to obtain:

540 EDELSBRUNNER AND OVERMARS

THEOREM 6.2. Let f (n) be an integer function with 2 I f(n) < 6. Given
a static data structure S for solving a decomposable searching problem PR, the
batched dynamic version of PR can be solved such that

P”(n) = 0 f (NJ*
logf (N)

* n4 . log N. Q,(m)

1
+ @f(N)

. 1ogN. P,(N) + NlogN ,

* logNo M,(N) + n4

Using streaming, the amount of storage required can be reduced to
O(M,(N)). As an example consider again the nearest neighbor searching
problem and let n4 = N/log N and m = N. Theorem 3.1 would yield a
solution with

log*N + 1ogN. NlogN = O(Nlog*N).

Applying Theorem 6.2 with f(N) = dw, we obtain a solution with

Pd(n) = 0 log N N .-
log@p l%N

. log*N

1 +
log&F

- 1ogN. NlogN + NlogN

= 0(N log*N/loglog N).

7. CONCLUDING REMARKS

We have given a number of techniques that can be used for solving
batched static and batched dynamic versions of decomposable searching
problems. In the batched static case, the plane-sweep technique proved to
be a powerful instrument for solving a number of (planar geometrical)
problems. A general transformation showed how data structures with a
large difference between query and building time can be turned into
structures with better trade-offs, leading to better time bounds when used in
a batched environment. Next, it was shown how the batched dynamic
version of a searching problem could be transformed into the addition of

SOLUTIONS TO DECOMPOSABLE PROBLEMS 541

inverse range restrictions to the batched static version of the original
problem. It resulted in a general method for solving the batched dynamic
version of decomposable searching problems that is applicable once a static
(or batched static) solution to the problem is known. It was also shown that
the space requirements of the method can be reduced considerably by
performing all queries simultaneously and building only those parts of the
data structure we are busy performing the queries on. We believe that this
technique of “streaming” is applicable in numerous other problems as well.
For example, it can be used (as shown in Section 4) to solve the d-dimen-
sional rectangle intersection problem in time 0(n logd-in + k) using only
0(n) storage, where n is the number of rectangles and k the number of
reported intersecting pairs. It was also demonstrated how for a number of
searching problems better results can be obtained by viewing set objects as
query objects and vice versa.

A number of open problems remain. In Section 6 we showed how
different trade-offs can be obtained between the amount of time required
for building the structure and the amount of time required for performing
the queries. Other trade-offs might exist. No lowerbounds are known for the
efficiency of the transformations. More over, we only considered decom-
posable searching problems. General methods for solving batched versions
for other classes of problems, e.g., the order decomposable set problems
(Overmars [14]) might exist as well.

REFERENCES

1. J. L. BENTLEY, Decomposable searching problems, Inform. Process. Left. 8 (1979),
244-251.

2. J. L. BENTLEY AND H. A. MAURER, A note on Euclidean near neighbor searching in the
plane, Inform. Process. Lett. 8 (1979), 133-136.

3. J. L. BENTLEY AND D. WOOD, An optimal worst case algorithm for reporting intersections
of rectangles, IEEE Trans. Comput. C-29 (1980), 571-577.

4. H. EDELSBRUNNER, “Dynamic Data Structures for Orthogonal Intersection Queries,”
Report F59, Inst. f. Informationsverarbeitung, Technical University, Grsz, 1980.

5. H. EDELSBRUNNER, D. G. KIRKPATRICK, AND H. A. MAURJZR, Polygonal intersection
searching, Inform. Process. Len. 14 (1982), 74-79.

6. H. EDELSBRUNNER AND H. A. MAURER, On the intersection of orthogonal objects, Inform.
Process. I.&r. 13 (1981), 177-181.

7. H. EDELSBRUNNER AND M. H. OVERMARS, On the equivalence of some rectangle problems,
Inform. Process. Let?. 14 (1982), 124-127.

8. D. G. KIRKPATRICK, Optimal search in planar subdivisions, SIAM J. Comput. 12 (1983),
28-35.

9. D. T. LEE AND F. P. PREPARATA, An improved algorithm for the rectangle enclosure
problem, J. Algorithms 3 (1982). 218-224.

10. D. T. LEE AND C. K. WONG, Finding intersections of rectangles by range search, J.
Algorithms 2 (1981), 337-347.

542 EDELSBRUNNER AND OVERMARS

11. H. A. MAURER AND T. A. OTTMANN, Dynamic solutions of decomposable searching
problems, in “Discrete Structures and Algorithms,” (U. Pape, Ed.), pp. 17-24, Hanser,
Vienna, 1979.

12. E. MCCREIGHT, (problem 81-S), J. Algorithms 2 (1981). 314.
13. J. NIEVERGELT AND F. P. PREPARATA, Plane-sweep algorithms for intersecting geometric

figures, Comm. ACM 25 (1982). 739-747.
14. M. H. OVERMARS, Dyuamization of order decomposable set problems, J. Algorithms 2

(1981) 245-260.
15. M. H. OVERMARS, The design of dynamic data structures, Lect. Notes in Comput. Sci. Vol.

156, Springer Verlag, Heidelberg, 1983.
16. M. H. OVERMARS AND J. VAN LEEUWEN, Worst-case optimal insertion and deletion

methods for decomposable searching problems, Inform. Process. Z.&t. 12 (1981), 168-173.
17. F. P. PREPARATA, A new approach to planar point location, SIAM J. Comput. 10 (1981)

473-482.
18. M. I. SHAMOS AND D. HOEY, Geometric intersection problems, in “Proc. 17th Annual

IEEE Sympos. on Foundations of Computer Science,” 1976, pp. 208-215.
19. J. VAN LEEUWEN AND D. WOOD, The measure problem for rectangular ranges in d-space,

J. Algorithms 2 (1981), 282-300.
20. D. E. WILLARD, Polygon retrieval, SIAMJ. Compui. 11 (1982), 149-165.
21. D. E. WILLARD, New Data Structures for Orthogonal Queries, SIAM J. Comput. 14 (1985)

232-253.

