
JOURNAL OF ALGORITHMS 9,411-417 (1988)

Algorithms for Two Bottleneck
Optimization Problems

HAROLD N. GABOW*

Department of Computer Science, University of Colorado, Boulder, Colorado 80309

AND

ROBERT E. TARJAN*

Department of Computer Science, Princeton University, Princeton, New Jersey 08544
and A T& T Bell Laboratories, Murray Hill, New Jersey 07974

Received July 13,1987; accepted November 19.1987

A bottleneck optimization problem on a graph with edge costs is the problem of
fiudiig a subgraph of a certain kind that minim&es the maximum edge cost in the
subgraph. The bottleueck objective contrasts with the more common objective of
mhimizing the sum of edge costs. We propose fast algorithms for two bottleneck
optimization problems. For the problem of finding a bottleneck sparmiug tree in a
directed graph of n vertices and m edges, we propose an O(min(n log n + m,
m log* n))-time algorithm. For the bottleneck maximum cardinality matching prob-
lem we propose an O((n log n)‘12 ’ 7 m)-hme algorithm. 0 1988 Academic press, hf.

1. INTR~Du(~TI~N

Consider network optimization problems in which we are given a graph
with edge costs and asked to find a subgraph of a certain kind that
minimizes some function of the costs of the edges in the subgraph. The
usual objective function is the sum of the edge costs. Another natural

*Research partially supported by the National Science Foundation Grant MCS8302648.
+Research partially supported by the National Scieuce Foundation Gram DCR-8605962.

411
Ol%-6774/88 $3.00

Copvkbt 0 1988 by Academic Pms, Inc.
A” ri&.lts of reproduction in any form mscNcd.

412 GABOW AND TARJAN

objective function is the maximum of the edge costs. We shah call optimiza-
tion problems with the former objective function sum problems and prob-
lems with the latter, bottleneck problems.

Some bottleneck problems can be solved asymptotically more efficiently
than the corresponding sum problems. For example, Camerini [3] has
observed that a bottleneck spanning tree in an undirected graph with n
vertices and m edges can be computed in O(m) time. The best known time
bound to find a spanning tree nn ‘nimizing the sum of edge costs is
O(m logB(m, n)), where /3(m, n) = min{illog% I m/n} [9]. Here log*
is the iterated logarithm, defined by log(‘)x = x, log(‘+‘)x = loglog(‘)x,
log*x = min{ il log% < l} - .

In this note we present two results of this kind, for two problems
posed by the second author in a problems column [14]. For the problem
of finding a bottleneck sparming tree in a directed graph, we give an
O(min{ n log n + m, m log*n})-time algorithm. The best known bound for
finding a spanning tree minimizing the sum of edge costs is O(n log n + m)
[9]. For the problem of finding a bottleneck maximum cardinality matching
in an undirected graph, we give an O((n logn)‘/*m)-time algorithm. This
improves the O(n ‘/*m log n)-time algorithm of Bhat [l], which he stated
only for bipartite graphs. The best known bound for finding a minimum
total cost maximum cardinality matching depends on whether the problem
graph is bipartite or not. In the former case (the assignment problem), such
a matching can be computed in O(n*log n + nm) the [6], or in O(n”*m
log(nC)) time if all edge costs are integers of absolute value at most C [lo].
In the latter case, such a matching can be computed in O(n*log n +
nm log log log *,+n) time [8], or in O((na(m, n)log n)“*m log(&)) time if
all edge costs are integers of absolute value at most C, where a is a
functional inverse of Ackerman’s function [ll]. Whether there are even
better bounds for the two bottleneck problems we consider remains an open
question.

2. BOTTLENECK SPANNING TREES IN DIRECTED GRAPHS

Let G = (V, E) be a directed graph with n vertices and m edges. For
ease in stating time bounds we assume that m 2 n 2 2. Let s be a
distinguished root vertex of G and for each edge (u, w) let c(u, w) be a
real-valued cost. We consider the problem of finding a spanning tree rooted
at s (containing paths from s to all other vertices) whose maximum edge
cost is minimum. We call such a tree a bottleneck spanning tree.

Camerini [3] has proposed an O(m log n)-time algorithm for finding a
bottleneck spanning tree. We shall describe an O(min{ n log n + m,
m log*n})-time method.

BOl-MZNBCK OPTIMIZATION PROBLEMS 413

To obtain an O(n log n + m) bound, we note that Dijkstra’s single-source
shortest path algorithm [4], if modified slightly, will compute a bottleneck
spanning tree. The algorithm grows a tree from the root s. It computes a
parent p(u) in the tree for each u # s. The algorithm maintains a collection
of vertices F that are candidates for inclusion in the tree. Each vertex
u E F has an associated cost c(u) for inclusion, which is the minimum cost
of an edge from a vertex already in the tree to u. Initially, F = {s } and
c(s) = - 00. The algorithm consists of repeating the following step n
times:

General Step. Select a vertex u E F with c(u) minimum and delete it
from F. For every edge (u, w), if w is neither in the tree nor in F, add w to
F and define c(w) = c(u, w) and p(w) = u; otherwise, if w is in F and
c(u, w) < c(w), replace c(w) by c(u, w) and define p(w) = u.

If a Fibonacci heap [6] is used to implement the frontier set F, this
algorithm runs in O(n log n + m) time.

For sparse graphs we can obtain a better bound of O(m log*n). For any
real number A, let G(X) = (V, {(u, w) E E]c(u, w) < A}), and let A* =
rnin{X]Vu E V there is a path in G(A) from s to Y}. To find a bottleneck
spanning tree it suffices to compute A*, since any spanning tree in G(X*) is
a bottleneck spanning tree for G, and a spanning tree in G(h*) can be
found in O(m) time.

We find A* by using repeated splitting to narrow the interval of possible
values of A. The number of intervals into which the current interval is split
is a function k(i) of the number of splits i that have taken place; as i
increases so does k(i). The algorithm maintains values A, and A, such that
A, I A* I A,. Initially A, is the minimum edge cost, A, is the maximum
edge cost, and i, a count of the number of iterations, is zero. The algorithm
consists of the following steps:

1. Replace i by i + 1. Let S, = {(u, w) E E]c(u, w) I A,} and Ei =
{(u, w) E EIX, < c(u, w) I A,}.

2. Partition El into k(i) subsets S,, S,, . . . , SkCij, each of size

1IEMdi)j or bW~(i% such that if (u, w) E Si and (x, y) E Si+i,
then c(u, w) zz c(x, y).

3. Find the minimum j such that Gj = (V, S, U S, U S, u * - - U Sj)

is such that all vertices are reachable from s.
4. If j = 0, let A* = A, and stop. Otherwise, replace A, and A,,

respectively, by the minimum cost and the maximum cost of an edge in Sj,
and go to Step 1.

The correctness of this algorithm is obvious. Steps 1 and 4 each take
O(m) time per iteration. Step 2 can be done by repeated median-finding:

414 GABOW AND TARJAN

split E, into a lower half and an upper half, then split each half into halves
and so on. (We shall choose k(i) to be a power of two.) Since median-find-
ing takes linear time [2,17], step 2 takes O(IEi [log k(i)) time per iteration.

Step 3 takes O(m) time using an incremental search. The search begins at
s and advances only along edges in S,,. If the search stops before all vertices
are reached, edges in S, become eligible for searching. In general, each time
the search stops without having reached all vertices, edges in the next set Sj
become eligible for searching. Implementation of such a search requires the
maintainance, for each vertex u, of an adjacency list A(u). Each vertex is in
one of three states: unlabeled, labeled, or scanned. Initially s is labeled, all
other vertices are unlabeled, j = 0, and A(u) = { w](u, w) E S,} for each
vertex u. The search consists of the following steps:

3.1. If some vertex is labeled, select a labeled vertex u, mark it
scanned, and go to step 3.2. Otherwise, if no vertex is unlabeled, stop.
Otherwise go to step 3.3.

3.2. For every vertex w E A(u), if w is unlabeled, mark it labeled.
Go to step 3.1.

3.3. Replace j by j + 1. For each edge (u, w) E Sj, if u is un-
labeled, add w to A(u); otherwise, if w is unlabeled, mark w labeled. Go to
step 3.1.

It remains to choose k(i) and to analyze the total running time of the
algorithm. We define k(1) = 2, k(i) = 2k(i-1) for i 2 1. This choice
guarantees that, in the ith iteration,]Er 1 = O(m/k(i - l)), which implies
that step 2 in the ith iteration takes O((m/k(i - 1))log k(i)) = O(m)
time. Thus the total time per iteration is O(m). The number of iterations is
O(log*n), giving an overall time bound of O(m log*n).

Almost the same algorithm will solve the following problem: given two
vertices s and t in a directed graph with edge costs, find a path from s to t
that minimizes the maximum cost of an edge on the path (or, equivalently,
maxim&s the minimum cost). We call such a path a bottleneck shortest
path. This problem arises in the implementation of Edmonds and Karp’s
“maximum capacity augmentation” version of the Ford-Fulkerson maxi-
mum network flow algorithm [5]. The only change necessary in the al-
gorithm above is to stop the incremental search as soon as f is labeled. Thus
the bottleneck shortest path problem can be solved in O(min{ n log n + m,
m log*n >) time. If the graph is undirected, a variant of Camerini’s al-
gorithm [3] will compute a bottleneck shortest path in O(m) time, as
observed by Lesley Matheson (private communication, 1987).

BOTTLENECK OPTMIZATION PROBLEMS 415

If the edges are given in sorted order, a bottleneck shortest path tree can
be found in O(m) time. We merely run Step 3 of the above algorithm once,
with j = m and each Si containing a single edge.

3. &HmENBCK MAXIMUM CARDINALITY MATCHINGS

Let G = (V, E) be an undirected graph. G is bipartite if V can be
partitioned into two sets A and B such that every edge has one vertex in A
and one vertex in B. A matching is a subset of edges, no two sharing a
common vertex. A maximum-cadinality matching is a matching containing
as many edges as possible. Suppose G has a real-valued cost c(u, w) on
each edge (u, w). We consider the problem of finding a maximum-cardinal-
ity matching whose maximum edge cost is minimum. We call such a
matching a bottleneck matching. In the discussion to follow, we assume
some familiarity with standard augmenting path methods for finding a
maximum cardinality matching. (See e.g. [18].)

The bottleneck matching problem for the special case of bipartite graphs
(the bottleneck assignment problem) has been considered by Gross [13],
Garfinkel [12], and Bhat [l]. Garfiiel observes that a bottleneck assign-
ment can be computed by using an incremental search method to find
augmenting paths. Although Garfinkel gives no time bound, the resulting
algorithm can be seen to run in O(nm) time.

Bhat observes that a maximum cardinality matching algorithm in combi-
nation with binary search yields an 0(n’/*m log n>time algorithm for
computing a bottleneck matching. We describe the method below; then we
modify it to reduce the funning time to O(n log n)l’*m).

Algorithms for computing a maximum cardinal&y matching in 0(n’/*m)
time have been developed for the bipartite case by Hopcroft and Karp [15]
and for the general case by Micah and Vazirani [16]. These algorithms have
the important but often overlooked property that they can be used as
approximation algorithms in the following sense: if M* is a maximum
cardinality matching then in O(km) time for any k either algorithm will
compute a matching M such that 1 M* 1 - 1 MI < n/k. This property is the
key to our fast algorithm.

The first step in computing a bottleneck matching is to sort the edges by
cost. This takes O(m log n) time. Let e,, e,, . . . , e, be the edges, in nonde-
creasing order by cost. Using a maximum cardinality matching algorithm,
we compute I, the size of a maximum cardinality matching. Then we use
binary search to find the minimum value i* of i such that the graph
Gi = (V, Ei = {el, e,, . . . , e,}) contains a matching of size 1. To test whether
a guess i for i* is high or low, we use a maximum cardinality matching
subroutine. The total running time of this method is O(n’flm log n).

416 GABOW AND TAlUAN

We do better by using binary search to find a bottleneck matching that is
only approximately of maximum cardinality. For a parameter k (to be
chosen below), we compute a value i’ such that the graph GiJ has a
matching size at least I - n/k, and G,L, does not have a matching of size 1.
To test whether a guess i for i’ is high or low, we use the approximation
version of the Hopcroft-Karp algorithm (on a bipartite graph) or the
Micah-Vazirani algorithm (on a general graph). We compute a matching
M in Gi such that I&f] is within n/k of maximum. If]M] < I- n/k, then
the guess i is too low. The time to find i’ using this approach is 0(km log n).
This gives us not only a value for i’, but also a matching M of size at least
I - n/k, all of whose edges have cost at most c(ei,) I c(e,.).

The matching M can be augmented to form a bottleneck matching by
finding a bottleneck minimum augmenting path, augmenting M accord-
ingly, and repeating this at most n/k times. Each augmentation requires a
search for an augmenting path. Such a search can be done in O(m) time by
using a standard method for finding an augmenting path (as described for
example in [18] for general graphs) and making it incremental as in Section
2: we initialize i to be equal to i’, let the search advance only along edges in
Ei, and increase i by one each time the search terminates without finding
an augmenting path. The total time to augment M to form a bottleneck
matching is O(nm/k).

The overall time to find a bottleneck matching is 0(mk log n + rim/k).
Choosing k = (n/log n)“’ gives a time bound of 0(n log n)l12m).

The same technique gives a bound of O(n log n)l12m) for finding a
cardinality-k matching whose maximum edge cost is minimum, where k is
an input parameter. The bottleneck matching problem arises in approxi-
mate weighted matching and in efficient implementation of Christofides’
heuristic for the traveling salesman problem [7,11]. Our approach to
bottleneck matching can also be used in efficient algorithms for computing
the density and arboricity of a graph [19].

REFERENCES

1. K. V. S. BHAT, An O(n2,510g2n) time algorithm for the bottleneck assignment problem,
unpublished report, AT&T Bell Laboratories, Napiendle, IL, 1984.

2. M. BLUM, R. IUYD, V. plum, R. Rrvasr, AND R. TARJAN, Theoretical improvements in
algorithmic efficiency for network flow problems, J. Cornput. System Sci. 7 (1973),
448-461.

3. P. M. CAMEIUNI, The min-max spanning tree problem and some extensions, Z@orrx
Process. L&f. 7 (1978), 10-14.

4. E. W. DIJKSTU, A note on two problems in comxxion with graphs, Numer. Math. 1
(1959), 269-271.

5. J. ELMONDS AND R. M. m, Theoretical improvements in algorithmic efficiency for
network flow problems, J. Assoc. Cornput. Much. 19 (1972), 248-264.

BOTTLENECK OPTIMIZATION PROBLEMS 417

6. M. L. FREDMAN AND R. E. TARJAN, Fibonacci heaps and their uses in network optimiza-
tion, J. Assoc. Cotnpu~. Mach. 34 (1987), 596-615.

7. H. N. GABOW, A scaling algorithm for weighted matching on general graphs, in Proceed-
ings, 26th Annual IEEE Symp. on Found. of Comput. sci., 1985, pp. 90-100.

8. H. N. GABOW, Z. GALIL, AND T. SPENCER, Efficient implementation of graph algorithms
using contraction, in Proceedings, 25th Ammal IEEE Symp. on Found. of Comput. Sci.,
1984, pp. 347-357.

9. H. N. GABOW, Z. GAUL, T. SPENCER, and R. E Tarjan, Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs, Combinatorics 6 (1986),
109-122.

10. H. N. GABOW AND R. E. TARJAN, Faster scaling algorithms for network problems, SIAM
J. Comput., submitted; also Technical Report CSTR-111-87, Department of Computer
Science, Princeton University, Princeton, NJ, 1987.

11. H. N. GABOW AND R. E. TARJAN, unpublished manuscript, 1987.
12. R. S. GARFINKEL, An improved algorithm for the bottleneck assignment problem, Oper.

Res. 19 (1971), 1747-1750.
13. 0. GROSS, “The Bottleneck Assignment Problem,” P-1630, The Rand Corporation, Santa

Monica, CA, 1959.
14. L. J. GUIBAS (Ed.), Problems, J. Algorithms 6 (1985), 283-290.
15. J. E. HOPCROFT AND R. M. KARP, An n 5/2 algorithm for maximum matching in bipartite

graphs, SIAM J. Comput. 2 (1973), 225-231.
16. S. MICALI AND V. V. VAZIMNI, An O(fi + IEl algorithm for finding maximum

matching in general graphs, in Proceedings, 21st Annual IEEE Symp. on Found. of
Comput. Sci., 1980, pp. 17-27.

17. A. ~CH~NHAGE, M. PATERSON, AND N. PIPPENGER, Finding the median, J. Compur.
System Sci. 13 (1976), 184-199.

18. R. E. TARJAN, “Data Structures and Network Algorithms,” Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1983.

19. H. H. WESTERMANN, “Efficient Algorithms for Matroid Sums,” Ph.D. dissertation, De-
partment of Computer Science, University of Colorado, Boulder, CO, 1987.

