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Monotonicity in Graph Searching 
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We give a new proof of the result, due to A. LaPaugh, that a graph may be 
optimally “searched” without clearing any edge twice. o 19~~ Academic PWS, IIIC. 

1. INTRODUCITON 

Let us regard a graph as a system of tunnels containing a (lucky, 
invisible, fast) fugitive. We desire to capture this fugitive by “searching” all 
edges of the graph, in a sequence of discrete steps, while using the fewest 
possible “guards.” This problem was introduced by Breisch [2] and 
Parsons [6]. In the version of graph searching considered in [51 (which we 
call edge-searching, using terminology from [3]) a search step consists of 
placing a guard at a vertex, or removing a guard from a vertex, or sliding a 
guard along an edge. Further, an edge (u, v} is cleared by sliding a guard 
from u to u, while shielding u from contaminated (that is, uncleared) 
edges with appropriately placed guards (for example, by keeping another 
guard at u). If, at any point in time, there is a path from a contaminated 
edge e to a cleared edge e’ that is not blocked by guards, e’ becomes 
instantaneously recontaminated and must be cleared again. Our objective 
is to reach a state in which all edges are simultaneously cleared, so that 
the maximum number of guards used at any step is minimized. Any 
strategy that achieves this result is called optimal, and the optimal number 
of guards is the edge-search number of the graph. 

LaPaugh [5] proved that there always exists an optimal strategy that is 
monotone (without recontamination). One implication of this important 
result is that there is an optimal strategy that terminates after a linear 
number of steps. 
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Kirousis and Papadimitriou [3, 41 introduced a variant of searching 
called node-searching. In this version an edge may be declared cleared as 
soon as there is a guard at each endpoint. By reducing node-searching to 
edge-searching, they proved that for node-searching there also exists a 
monotone optimal strategy. 

We introduce a new version of searching, called mixed, that combines 
features of both edge- and node-searching. In our version, an edge is 
cleared either by sliding or by placing guards at each end. We insist that at 
most one edge is cleared at any step, both for mixed- and node-searching 
(if placing a guard at a vertex simultaneously clears many edges, then we 
break up this process into several steps, each of which clears one of the 
edges, in arbitrary order). More precisely, a mixed-search in G is a 
sequence of pairs 

(intuitively, Zi is the set of vertices occupied by guards immediately before 
the (i + 11th step, and Aj is the set of clear edges) such that 

(i) for 0 I 1 I IZ, Ai c E(G) and Zi E V(G) 

(ii) for 0 I i I n, any vertex incident with an edge in Ai and with an 
edge in E(G) - A, belongs to Zi 

(iii) A, = fl, A,, = E(G) 

(iv) for 1 5 i I IZ, either 

(a) (placing new guards) Zi 2 Zi- i and Ai = Ai- 1, or 

(b) (removing guards) Zi z Zip i and Ai is the set of all edges e 
such that every path containing e and an edge of E(G) - AimI has an 
internal vertex in Zi, and in particular Ai E AimI, or 

(c) (node searching e) Zi = Zi-i, and Ai = AimI U (e) for some 
edge e E E(G) - AiP1 with both ends in Zi-i, or 

(d) (edge-searching e) Zi = (Zivl - {u)) U {u} for some u E Z,-i 
and u E V(G) - Zi-i, and there is an edge e E E(G) - Aiel with ends 
u, U, and every other edge incident with u belongs to AiPl, and Ai = AiP1 

U k). 

A node-search is defined similarly, except that (d) is deleted. To formalize 
an edge-search in this notation, we must permit Zi to be a multiset instead 
of a set, because it may be important that two guards occupy the same 
vertex (for perhaps one is about to slide along some edge, and the other 
will remain to prevent recontamination). With this modification (in partic- 
ular in (d), allowing other edges not in AimI to be incident with U, 
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provided that u is currently occupied by at least two guards, one of whom 
is about to slide to V) an edge-search is defined by deleting (c). 

We denote by es(G), ns(G), and ms(G) respectively, the edge-, node-, 
and mixed-search numbers of a graph G defined in the natural way. It 
follows easily that ms(G) I ns(G), es(G). 

Now given a graph G, let us construct graphs Ge and G” by replacing 
each edge of G by two edges in series, or two edges in parallel, respec- 
tively. Then it is not difficult to show that es(G) = ms(Ge), and ns(G) = 
ms(G”) (for completeness we prove the first equality in Section 3). 
Further, a monotone optimal mixed-search strategy on G” and G” can be 
converted to a monotone optimal edge- or node-search, respectively, in G. 
Hence our monotonicity result for mixed-searching will imply monotonic- 
ity for both edge- and node-searching, and hence implies the theorems of 
LaPaugh [5] and Kirousis and Papadimitriou [3, 41. We remark that a 
similar proof can be constructed directly for, say, edge-searching, but 
working with mixed-searching is not only more general but also easier. 

2. CRUSADES 

Let G be a graph. If X c E(G) we let S(X) be the set of vertices which 
are endpoints of an edge in X and also of an edge in E(G) - X. Notice 
that S(X) = &T(G) - X). Also, 16 1 satisfies the submodular inequality 

IS(X f-l Y)I + IS( x u Y)I I IS( X)1 + IS( 

for any X, Y, because each vertex counted in the left-hand side is also 
counted at least as many times in the right-hand side. 

A cncsade in G is a sequence (X,,, Xi,. . . , X,,) of subsets of E(G), such 
that X0 = fl, X,, = E(G), and IX, - XjTll I 1 for 1 s i I n. The crusade 
uses I k guards if IS( I k for 0 5 i 5 n. 

(2.1) If ms(G) s k then there is a crusade in G zuing I k guards. 

Proof. Let (A,, ZJ,. . . , (A,, Z,) be a mixed-search in G with each 
lZ,l I k. Then each S(A,) L Zi and hence each l&4,)1 I k, and so 

u,, 4,. - - 7 A,) is a crusade in G using 5 k guards. 0 

The converse of (2.1) is true (with some exceptions) but not obvious, and 
is a corollary of our main result. The reason for using crusades is that it is 
very easy to prove a monotonicity result for them, as follows. A crusade 

WI), XI, * - * 3 X,) is progressive if X0 c Xi c * . * c X, and IX, - Xi_ r 1 
= 1 for 1 S i s n. 
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(2.2) Suppose that there is a crusade in G using I k guards. Then there 
is a progressive crusade in G using I k guards. 

proof. Choose a crusade <X0, X,, . . . , XJ using I k guards, such that 

(1) C,,i*,(lS(Xi>l + 1) b minimum 

and, subject to (11, 

(2) COsiI;nlXiJ is minimum. 

We shall show that (X0, XI,. . ., X,) is progressive. For choose j with 
lljln. 

(3) IXj - Xj-11 = 1. 

ForIXj -Xi-,1 I l,andifXj EXj-,then(X,,,X, ,..., Xi-r,Xj+r ,..., X,,> 
is a crusade contradicting (1). 

(4) IS(Xj-1 UXj)l 2 IS(Xj>l* 

For otherwise (X,, X,, . . . , Xi-r, Xi-r U Xi, Xi+ 1, . . . , X,) is a crusade 
contradicting (1). 

(5) Xj-1 C Xj* 

For from the submodularity of I6 I, we have that 

IS(xj-, n xj)l + IS(xj-, uxj)l S IS(xj-l)l + Is(xj)le 

From (41, it follows that 16(X,-r n Xi>1 I 16(X,-r)l. Hence 

(&,X1,.-, xj-29xj-1 nxj~xj,xj+l>*~~,x~) 

is a crusade using < k guards. From (21, IX,- r n Xjl 2 IXjl, and the 
claim follows. 

From (3) and (5) we deduce that (X,,, X,, . . . , XJ is progressive. q 

Actually (2.2) is a corollary of Theorem (3.2) of [7], but we have given 
the proof in full for completeness. 

(2.3) Let G be such that every vertex is incident with at least two edges. 
Let CX,, X,, . . . , X,,> be a progressive crusade in G using 5 k guards, and 
for 1zzi5nZetXi-Xi-1 = {eJ. Then there is a monotone mixed-search 
of G using I k guards, such that the edges of G are searched in the or&r 

e,, e,, . . . , e,. 

proof: We construct the mixed-search inductively. Suppose then that 
1 5 j 5, n, and we have succeeded in clearing edges e,, . . . , ej-r in order, 
in such a way that no other edges have been cleared yet. Let A be the set 
of all vertices v E V(G) such that every edge incident with v is in X,-r. 
Certainly each vertex in SCXj- r) is currently occupied by a guard, because 
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it is incident both with a clear and with a contaminated edge. Remove all 
other guards (no recontamination occurs). Since ej e Xi-i, it has no end 
in A. Let N be the set of ends of ej. If IN U 8(X,-i)\ < k, we may place 
new guards on the ends of ej and declare it cleared. We assume then that 
JN U ~(Xj_,)l > k. Since IS(Xj_l)I s k it follows that N e S(Xj_,). 
Choose u E N - 6(X,-i). Moreover, N - 6(X,-i) G 8(X,), because ev- 
ery vertex of G is incident with r 2 edges; it follows that S(Xj- i) g S(Xj). 
Choose u E 6(X,-i) - S(Xj). Then u E N, and ej has ends u, u and u is 
incident with no edge in E(G) - X,-l except ej. Thus, we can clear ej by 
sliding the guard at u along ej to u. 0 

A proof can also be given in terms of our formal definition of a mixed 
search as a sequence (A,, Z,), . . . , (A,, ZJ, but it is rather opaque, and 
we prefer the “informal” proof given. 

We deduce: 

(2.4) Zf there is a mixed-search of G using I k guards, then there is a 
monotone mixed-search using I k guards. 

proof. We may assume that G has no isolated vertices. Let G’ be 
obtained from G by adding a loop at each vertex; then ms(G’) = ms(G) I 
k. By (2.1) there is a crusade in G’ using I k guards. By (2.2) there is a 
progressive crusade in G’ using I k guards. By (2.3) there is a monotone 
mixed-search in G’ using < k guards. Hence there is such a mixed-search 
in G, as required. 0 

In summary, we have shown 

(2.5) Let G be such that every vertex is incident with at least two edges. 
For k 2 0, the following are equivalent: 

(i) ms(G) I k 

(ii) there is a crusade in G using 5 k guards 

(iii) there is a progressive crusade in G using I k guards 

(iv) there is a monotone mixed-search in G using I k guards. 

In particular, the converse of (2.1) holds if G has minimum degree 2 2. 
It does not always hold without this condition. For example, in general a 
caterpillar (a tree where the vertices of degree > 1 form a path) has 
mixed-search number 2 and yet has a crusade with only one guard. 

3. EDGE- AND NODE-SEARCHING 

We claimed in Section 1 that LaPaugh’s theorem on edge-searching and 
the Kirousis-Papadimitriou theorem on node-searching both follow from 



244 BIENSTOCK AND SEYMOUR 

(2.4). We show the former as follows. Let G” be obtained from G by 
replacing each edge by two edges in series. To show that there is a 
monotone edge-search of G using es(G) guards, it suffices, in view of 
(2.4), to show that es(G) 2 ms(G”), and that a monotone mixed-search of 
G” yields a monotone edge-search of G. We begin with 

(3.1) es(G”) I es(G), and a monotone edge-search of G” can be con- 
verted to a monotone edge-search of G using the same number of guards. 

ProoF Clearly es(Ge) I es(G), for any edge-search of G can be con- 
verted easily to an edge-search of G”. (In fact equality holds, but we do 
not need that). Now G” has two edges in series for each edge f of G; let 
these edges be f’, f” say. Let H be obtained from G” by contracting all 
the edges f” (f E E(G)); then H is isomorphic to G. Each vertex v of H 
is obtained from G” by identifying a subset C, of vertices of G”, under 
contraction. Given an edge-search of G”, we convert it to an edge-search 
of H by the rule that: if at the ith step guard s is at vertex u E V(Ge), 
then at the ith step of the new search, guard s is at vertex v E VU!), 
where u E C,. This satisfies our requirements. 0 

We deduce from (3.1) that ms(G”) _< es(G), for certainly ms(G”) I 
es(Ge). To prove that a monotone mixed-search of G” can be converted to 
a monotone edge-search of G, it suffices in view of (3.1) to prove the 
following (for then we may apply (3.2) to Ge). 

(3.2) Let G be such that every edge has an end incident with precisely 
one other edge. Then a monotone mixed-search of G using I k guards can 
be converted to a monotone edge-search of G using I k guards. 

Proof. Let us choose a monotone mixed-search using I k guards, 
such that as many edges as possible are cleared by sliding. Suppose, for a 
contradiction, that some edge f is not cleared by sliding. Let f be cleared 
in the ith step; thus, immediately before the ith step there are guards at 
both ends u, v of f. Let v be incident with a unique other edge g. We 
shall replace the ith step of the search by three other steps, as follows. If g 
is still contaminated immediately before the ith step, we shall clear f by: 
remove the guard from v and place him at u; and then slide him along f 
to v. If g is clear immediately before the ith step, we shall clear f by: 
slide the guard at v along f to u; then remove him from u and place him 
at v. In either case we search f by sliding, and can continue the 
mixed-search as before. This contradicts the choice of the mixed-search. It 
follows that every edge is cleared by sliding, as required. • I 

From (3.1), (3.2), and (2.41, we deduce LaPaugh’s theorem. One can 
deduce the Kirousis-Papadimitriou theorem similarly. A direct proof of 
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the latter is given in [l]. A monotonicity theorem for another searching 
problem (cornering a fugitive that we can see) is given in [8]. 
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