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The set of minimal braids is co-NP-complete?
by
M.S. Paterson!

and
A.A. Razborov2

Abstract
Braids can be represented as two-dimensional diagrams showing the crossings of
strings or as words over the generators of a braid group. A minimal braid is one
with the fewest crossings (or the shortest words) among all possible representations
topologically equivalent to that braid. The main result of this paper is that the set of
minimal braids is co-NP-complete.
1. Introduction
Algorithmic problems in braid groups have received much attention since [Al]. An algorithm
for the word problem was given by Artin [A1][A2], and Garside solved the conjugacy problem
[G]. More recently, with the incréasing interest in complexity, these problems have been re-
examined with regard to efficiency. Artin's algorithm involves generating a canonical form of
length exponential in the length of the original word. Apparently the first polynomial-time

algorithm for the word problem results from recent work of Thurston [Th]. Whether there

exists a polynomial-time algorithm for the conjugacy problem seems to be unknown .

In his polynomial-time algorithm for the word problem Thurston produces a canonical form for
braid group elements whose length is quadratic in the length of the original word. Neither his
form nor Artin's one is a minimal word representing the given braid. This situation is not very
common in group theory; e.g., for free groups, HNN-extensions, free products and so on, the

known normal forms are minimal when the generators are chosen in a natural way.

The present paper provides some complexity intuition as to why such a form with 'nice'
properties cannot exist for braid groups (unless P#NP). We show that the set of minimal
braids is co-NP-complete. This implies that (again, unless P=NP) there is no polynomial

algorithm to produce a minimal representation of a given braid.
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Fellowship from the SERC of the UK. The first author is supported by a Senior Fellowship from the SERC.
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There are two quite different approaches to braid groups, geometric and algebraic (compare [A]
and [M]); each has some advantages and disadvantages. In this paper we follow an
intermediate course. We say as precisely as possible what should be calculated and how, but

the calculations themselves are omitted whenever the result is clear from geometric intuition.

2. Definitions and Maih Theorem

Throughout, letters q,r,..., z sfand for words over an alphabet, letters a,b,c,... for symbols
from this alphabet. Izl is the length of z, and A is the empty word. '=' stands for graphical
equality (i.e. as words), '=' for the equivalence of two words representing the same element in
a group. Sp is the symmetric group on n symbols. The notation uxvw is used to denote the

corresponding occurrence of the word v in the context uvw.

The group By of braids with n strings has the following representation:
Bn =(01,....,0n-1 | 0i0j = 0j0j for j > i+1, 6i0i+10j = Gj+10i0i+1, for 1 <i <n-2 ) (1)

The oj's are called the standard generators of Bp. A geometric picture of o; is given by:

X

Fig. 1
We shall sometimes refer to standard generators as positive crossings and to their inverses as
negative crossings. In the following development there is a special role for the initially leftmost
string of the braids, which we shall call the weft. The other strings will be called wires. The

problem we consider is presented in the style of Garey and Johnson [GJ].

Definition NON-MINIMAL BRAIDS ::
Instance: A braid group B, and a word w, in the standard generators of B.

Question: Is there a shorter word w' equivalentto w in B?
Main Theorem NON-MINIMAL BRAIDS is NP-complete.

Proof NON-MINIMAL BRAIDS is clearly in NP since the word problem for braids is
solvable in polynomial time [Th?].



To show that this set is NP-hard we will use instances representing the following set of braids

F=Urms>1 fm. Foreach rm, Frm S B14cm, where c is a parameter dependent on r and

m to be chosen just below. The strings of By,cny are partitioned into the weft (the leftmost
string), and m consecutive blocks of wires, to be called cables, consisting of ¢ wires each.
Each cable is labelled with a symbol from the alphabet X = {1,...,r}. It will be convenient to
refer to cables labelled with i as i-cables, and to their wires as i-wires. The weft traverses the
cables in s identical stages, each having r levels numbered .sequentially from 1 tor, and each

level consisting of t loops. We will choose these parameters as s = 8m2, ¢ = rms, and t=

mbc6,

For each loop in level j, the weft starts on the left and travels all the way to the right, passing
under i—cables where i< j, and over i—cables where i < J» then it returns passing under any

i—cable where i < j, and over any i—cable where i> J, thus enfolding precisely the j—cables.

It is clear how to write the corresponding word in the standard generators; we denote this by

x(q), where q=aj...am € M and ga; is the label of the i'th cable.
The special word wo = wo(q), such that wo(q) = x(q), describes the following wiring layout:

@) Each I—cable is passed over the other cables and accumulated in a block on the left, then the
2—cables are passed over the remaining cables and accumulated in a block to the right of the 1-
block, and so on. In this process, no cables with the same labels ever cross each other and the
cables are sorted into numerical order by label using right-over-left transpositions of cables.
The weft remains on the extreme left.

(ii) The weft is brought-under the 1-block, then wrapped around the whole block as a coil
with t-1 turns leaving the block on the right. The weft continues, making a similar coil around
the 2-block, and so on for each block in turn, finally returning over all the cables. This whole
sequence is repeated s times.

(iii) The cable crossings of part (i) are now reversed, using left-over-right transpositions, to

restore the original ordering of the cables.



If K transpositions of cables are needed to sort the cables in part (i) then, since a cable
crossing uses c2 wire crossings, we have:

Iwgl = 2Kc2 + 2tmcs.
Suppose the minimal number of cable crossings to arrange the cables iflto n labelled blocks
cofresponding to some ordering of X is K, and consider the word w' corresponding to-the

following layout.

(1) Arrange the cables into blocks using K'c2 wire crossings. The procedure here is similar to
that in the standard word, except that the blocks are ordered according to the given ordering of
Z, and in each crossing the wire with the label which is earlier in this ordering is taken over that
with the later label.

(ii) Visit the blocks in numerical 01.'der to make the coils, finishing at the left. This requires at
most (r+1+2t_)mcs crossings.

(iii) Restore the original order of the cables by reversing the crossings used in (i).

If K'<K, then since ¢ =rms, we have:
Iw'l € 2K'c2 + (r+1+2t)mes < 2Kc2 + 2tmcs

and the special word is not minimal.

If K'=K then length(w') > 2Kc2 + 2tmcs = length(wo) and the special word is no longer

than w'.

Figure 2 shows w(213123213), except that we have used s =2 for clarity. This word is not

minimal since it is better to arrange the cables in the pattern '222111333' for coiling.
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We want to see under what conditions the special word is minimal.

Definition The number of inversions of a string q = aj...am € TM with respect to T is
defined as:

invig m = (i) 1i<j and m(a) > nap)l.
Note that inv(q, &) is just the minimal number of transpositions required to permute q in

accord with T, and inv(q, 7t) < m(m—l)/Z

Theorem 1 Let w be a word such that w =x(q). Then:

(i) w hasatleast 2tmcs positive crossings between the weft and wires;
(ii) if the length of w is minimal then there exists some permutation © of X such that

w has at least 2c2.inv(qg, &) crossings between the wires.

To preserve the momentum of the proof we defer to the next section the proof of Theorem 1 and

the precise algebraic definitions corresponding to its geometric notions.

If w is a minimal word corresponding to. qe€ XZMand m is a permutation as assured by
Theorem 1(ii), then Iwl is at least 2tmcs + 2c2.inv(q, 7). Hence wq is of minimal length if

and only if the identity permutation is a value of ® which minimizes inv(q, ).

To complete our proof we show that the following problem, SNMP (Sorting does Not

Minimally Partition), is NP-complete.

Definition SNMP ::
Instance: q € ¥ where X = {1,...r}.
Question: Is there a permutation ® of [1, ...,r] such that inv(q,m) < inv(q,l), where 1

is the identity permutation.
Theorem 2 SNMP is NP-complete.

Proof It is clearly in NP. We show it to be NP-hard by a chain of reductions.



A very similar problem, GROUPING BY SWAPPING, was shown NP-complete by T.D.
Howell (unpublished manuscript, 1977, referred to in [GJ]), but we require here a stronger
result.

It is a straightforward strengthening of Cook's Theorem that 3SAT remains NP-complete even
when the input formula is always accompanied by some assignment which satisfies all but one
of the clauses. This follows from the observation that any nondeterministic polynomial-time
Turing machine can be modified to accept the same set in the same time but also to have a
standard terminating rejection computation. Under suitable convéntions the latter computation

transforms to an assignment satisfying all but one of the clauses.
Our next step is to show the NP-hardness of the following set.

NON-MINIMAL FEEDBACK ARC SET ::
Instance: A directed graph G, and a subset S of arcs of G such that each circuit in G
contains some arc of S,i.e. S is a feedback arc set.

Question: Is there a feedback arc set S' with ISl <ISI ?
Lemma 1 NON-MINIMAL FEEDBACK ARC SET is NP-complete.

Proof For any instance, F, of 3SAT with v variables and c¢ clauses we define a
corresponding directed graph, Gg. Gr has 4vc vertices, ayi, by, Au,i and By for
lsusv, 1<i<c. There are arcs (ay,i, bui), (Aui, Bui)s (buis Auj)s Bui, ay,j) for all

I<usv, 1<i<c, 1<j<c together with some further arcs corresponding to each clause.

We shall think of the arcs (ay,i, bu,i), (Aui, Buj) as corresponding to the potential
occurrence of literals xﬁ and —xy respectively in- the i'th clause. It can be verified that the
only feedback arc sets of minimal size for the graph defined so far consist of the union over all
u, 1<u<v, of either all the arcs corresponding to x, or all those corresponding to —x,. Thus
there is a natural correspondence between these potential feedback sets and assignments to the
variables. However Gg has in addition, for each clause C;, 1<i<c, three arcs which connect
the arcs corresponding to the literals of C; into a circuit. For.cxample if C; = {x3,—x4, X6}

the three arcs are (b3, A4,i), (B4, a6) and (be j, a3 i).



When one of the potential feedback sets described above is removed, the only possible circuits
remaining in G are some 6-circuits corresponding to clauses. If the potential feedback set
chosen corresponds to a satisfying assignment to F then all of these circuits will be broken. In
this case we have a minimal feedback arc set of size cv. If there is no such satisfying
assignment then at least one further arc must be removed. When we are given an assignment
satisfying all but one of the clauses, at most one extra arc needs to be removed. Thus for those
instances (GF, S) where S corresponds to an assignment satisfying all but one clause of F,

the satisfiability of F is equivalent to the non-minimality of S. O{Lemma1}

We cc;mplete the proof that SNMP is NP-complete by reducing NON-MINIMAL
FEEDBACK ARC SET to SNMP. Let G =(V, A) and suppose (G, S) is an instance of
NON-MINIMAL FEEDBACK ARC SET. Since S is a feedback arc set for G, the vertex set
V can be ordered so that every arc in A-S is a 'forward arc, i.e. of the form (a, b) where a
<b in this ordering. Without loss of generality suppose that V = {1,...,r} where the natural
ordering provides such an ordering. We construct a word WG,s over the alphabet V such

that sorting wg,s with respectto V provides a minimal-transposition partitioning if and only if

S is a minimal size set of feedback arcs.

Consider first an arbitrary palindrome, P, over V. It is easy to see that the partition of P with
respect to any permutation of V requires exactly the same number of transpositions. If P is
now modified by interchanging one pair of adjacent symbols, say ij is changed to ji, then any
permutation of V where i precedes j will require two more transpositions than the others. A
similar observation holds when several such interchanges are made. We therefore construct

wG,s as follows.

Suppose that A = {ay, ..., ap}. For 1<j<p, letr €j=uv and Ej=vu where aj=(u, v).
Then:

WG,S = €1€2...epep...e2€1
which is palindromic except for transpositions corresponding to each arc of A. Let q be the

number of transpositions required to partition the palindromic string  e1€2...6pEp...E2E;. As



observed above q is independent of the ordering chosen for the partition. For any
permutation © of V,let back(G, ©) = {(n(i), ®()) € Ali>j}. Then
inv(wg,s, T) = q - |Al + 2lback(G, m)I.

He'hce,
(G, S) € NON-MINIMAL FEEDBACK ARC SET

<=> 3 7 such that |back(G, nt)l < ISl

<=> 3w such that inv(wgs, T) < inv(wggs, 1)

<=> wG,s € SNMP.  [(Theorem 2)

This also completes the proof of the Main Theorem. 0 (Main Theorem)

3. Proving Theorem 1.

We first collect some well-known g.éneral definitions and facts about braid groups which will be
used in the proof.

The mapping #: {G1,...,0n-1}— Sp, defined by

“oi# = (i,i+1), 2

can be extended to a homomorphism #: Bh—S,. The kernel of # is denoted by 4.
Geometrically, x* is the permutation on strings realized by a braid x, and 4, is the subgroup
of those braids which ultimately return the strings to their initial order. Given an occurrence
usaxv of aletter a from the alphabet {o7,...,0n-1}*! in a word uav, denote by x(uxaxv) the

initial indices of the (unordered) pair of strings that cross at uasv. Formally, if a = oxt! then

X(uraxv) = {(u#)-1(k), (u¥)-1(k+D)).

3)
i ]
7
;-__ )
" .
X(uxa*v) = (i, j}
A\’
Fig. 3

Given I ¢ {l,...,r} and a word x we define a new word KUi(x) in IIl — 1 generators.

Geometrically, py(x) is the result of 'dissolving' all strings not belonging to I. To give an



algebraic definition, we first introduce a mapping 07, on occurrences of the form uxGytlsy
and taking values in the set {01,...,011-1, A}, defined by:
B1(uroKEsv) = Ogt if Y(urort+v) c 1, (C))
= A otherwise,

where q is the number of those i for which 1<i<k and (u*)"1(i) e L

Geometrically, it is the crossing obtained from ux+o tlev by deleting strings numbered by
{1,...,r}\L; if at least one string forming uxoytlv is deleted then this crossing is destroyed
and the resultis A. Now 6 can be extended to arbitrary occurrences by:

O1(u*aj...ap*v) = ngign O1(uaj...aj.1*aj*aj41...apVv).
Finally set

HI(x) = O1(xxx). : | G

The following three facts are clear from the geometry and can be checked by calculation.
Fact1l x=y implies py(x) =pu(y). O

Therefore Wy can be regarded as a mapping from By to By

Fact2 py restrictedto 4, isa group homomorphism from 4, to 4. O

Fact3 01 and y 'commute!, i.e., if X (uxoxé*v) c 1 then:
X (B1(xux0okEv)*B1(urCyE+v)+O(uoKEFV))

coincides with ¥(uxoyé+v) renumbered relativeto I. O
We need also three particular facts about the group B3.

Lemma 2 Let x bea word over {01,02}*1 such that x = (61022061)d in B3 for some d.
If x contains a subword G¢® where € € {1,2}, then x contains at least (e-2) negative

occurrences.

Proof We shall exploit the fact that the structure of B3 (unlike larger braid groups) is very
clear. Indeed, applying the automorphism

o1=A4A1a2, g3 =24, (a=o01loy], A=020109)

10



%o the presentation (1) with n =3, we see that in the new generators B3 has the form
B3=(AalA2=3a3),
i.e., B3 is a free product with amalgam (see e.g. [LS]). Each element y € B3 has a uniquely
determined normal form:
y = AZPa€0AqBIA. . 281 AgEr,
where €9,6r € {0,1,2} and €l,...€r-1 € {1,2}. For instance,
O1=A4a, 63=2A, 011 =a2A, 0ol =Aa?, and x = A2d(Aa2Aa2)d

exhibit the normal forms.

Any word in {A,A"1,a} (i.e. with only positive occurrences of a) can be reduced to its normal
form by successive operations of transferring an occurrence of A*2 to the left end, cancellation
of A with A-l, and a-replacement, where a3 is replaced by A-2. For any such word z,

define w(z) to be the number of occurrences of a in z. Note that, for the normal forms given

above,

w(Aa) = w(ad) = 1; w(a2A) = w(Aa2) =2 and w(A2d(Aa2Aa2)d) = 44.

Let g be the total number of negative crossings in x. Using the obvious homomorphism n:
B3—( Z,+), given by M(61) =1(02) = 1, we find that the number of positive crossings must
be 4d+g. Substituting the normal forms for 61, 62, 61! and 65! in X, we obtain a longer
(possibly reducible) word x' with w(x') =4d+3g. x' contains a subword (aA)e-1a, from the
image of the subword ©¢®. But the reduced normal form of x' (=x) contains a's only in
occurrences of a2, hence all the e single occurrences of a in x' must be either cancelled or
consolidated when going from x' to its normal form. Therefore in doing so, one needs at least
(e-2) a—cancellations. However, any such cancellation decreases the value of w by three, so

the total number of cancellations does not exceed g. This completes the proof. O(Lemma2)

The following claim is proved in a similar way. We count occurrences of a2 in x' rather than

of single a's.

Lemma 3 Let x be a word over {61,062}*! such that x = (61622t612t-1)S or x =
(612-1072t51)S for some t,s. If x contains a positive subword with e alternations between

o1 and o2, then x contains at least (e-2s)/3 negative occurrences.

11



Proof Beginning as in the proof of Lemma 2, we obtain a (possibly reducible) word x/,
with w(x') = 4ts+3g, and x' = x. Each of the e occurrences of G102 or 02071 yields
directly or indirectly an adjacent pair of a's in x', but the normal form for x has just 2s
occurrences of a2. Since adjacencies between a's are only removed (at most three at a time)

by the replacement of a3 by A2 with the consequent reduction of w by three, we deduce that

e-2s <3g. O(Lemma3)
We need now a deeper fact about subwords of those words considered in Lemma 3.

Lemma 4 Let x be a word over {61, 62}*! such that x = (61622t612t'1)s or x =
(0121022t51)s for some t,s. If x contains a subword u with the following properties:
(i) the function % considered on all one-letter occurrences in u misses at least one of the
three possible values, i.e.,'. some pair does not cross within u, and
(ii) for some g€ (1,2}, u contains fewer than 2t occurrences of ogtl,

then x contains at least lul/4 -3t + 1 negative occurrences.

Proof Let x' be the word obtained from x by performing all 'free' cancellations, i.e.,
cancellations of ©¢"log or 6e0e"l. The image u' of u in x' possesses both properties (i)
and (ii), and Iu'l 2 lul - 2g where g is the number of negative occurrences in x. Moreover, u'
cannot contain any occurrences of the form 61816282618 or 028161820983, (§; e {-1,1)),

because these would contradict (i).

As in the proof of Lemmas 2 and 3, substitute the normal forms for o1*l and 65! in x' and
u. If x" and u" are the resulting words, the same arguments as before show that the total
number of a-replacements in x" when going to its normal form does not exceed g. But we
know that u' does not contain any occurrences of the forms oglog, 6g0:7!, o1tlootlg%]
or o1tlogtlor®l. It is easy to see that these are the only kinds of occurrence which could
result in a cancellation of a-syllables in u'. Therefore we have only consolidations between
a-syllables when going from u" to its normal form u", and, in particular, u™ contains at '

least lul/2 — g a-syllables. No more than g+2 of them can be affected within x". Therefore

u" and x

, the normal forms of u" and x", contain a common piece p with at least

12



lul/2-2g-2 a-syllables. Assuming that g< lul/4-3t-1, we find that p contains more than

6t-4 a-syllables.

But x" =x, and so x™ = A2¢A, for some e, where A is a subword of the periodic word
(aiA(aA)zt‘z)“. Therefore p contains at least 3 a-syllables of the form a2. Let p=
p1a2A(aA)?t-2a2A(aA)2t-2a2Apy. The middle occurrence of a2 in u™ resulted from an
occurrence of 6180529 or 0'250'_15 in u". Without loss of generality we can assume that it was
obtained from u1'+61%0,8+uy'. But then, to get the piece a2A(aA)2t2, we would require uy'
= 529(2t-2)u3', because any occurrence 629618 results in a2 in u;. So, u' (and therefore
also u) contains at least 2t occurrences of o7%l, and similarly for o1*l. This contradicts

(ii) and the Lemma is proved. O(Lemma 4)

For your convenience we repeat the statement of Theorem 1.

Theorem 1 Let w be a word such that w=x(q). Then:
(i) w has at least 2tmcs positive crossings between the weft and wires;
(ii) if the length of w is minimal then there exists some permutation © of X such that

w has at least 2c2.inv(q, ) crossings between the wires.

Proof of Theorem 1(i) It is evident that, for all i, K {weft,i)(x(q)) = o128 € By, (1)
implies that By = Z, and hence the (possibly reducible) word H{wefti} (W), equivalent to 121,
contains at least 2ts positive occurrences of oj. By (4), (5) all these occurrences came from
positive occurrences of the form usaxv with y(uxasv) = {weft, i}. Summing over all i, we
find that the number of positive occurrences uxaxv for which weft e X (uxa*v) is at least

2tmes.  O{Theorem 103)) -

Proof of Theorem 1(ii) Set n = mc. We have already seen that there exists a wq such

that wo =x(q) and Iwgl < n2 +2tsn, therefore
Iwl < n2 +2tsn. ©)
From (6) and Theorem 1(i), we obtain:

(number of negative occurrences in w) < n2. @)

13



Let T be the number of crossings between wires in different cables. We shall actually prove a
stronger result than that stated in Theorem 1(ii), namely that for some weX, T> 2c2inv(q,T).
Pick at random a system of representatives i1,...,i in the cables, one wire per cable. Then
the expectation of the total number of crossings among 1i1,....im is T/c2. Choose such a
system ij,...,im that the number of crossings is minimal and apply K{wefti,.. jm} to w. Then
our problem is reduced to fhe case ¢ =1 with the difference that H{weft,ii,....im} (W) can be non-
minimal. However (7) still hoids (with the original value of c) for K {wefti,....in} (W). So,

assume c=1 and a word w is given such that w=x(q) and (7) holds.

If w contains at least m2 wire crossings then the result is proved. Otherwise, w contains a
piece u (w = puq) with no wire crossings within u such that lul > 2ts/m, because Iwl >
2tsm by Theorem 1(i) with ¢ = 1. To complete our proof it is sufficient to show that, for all

k, p* arranges the k—wires into a consecutive block, because we can then take the permutation

of the alphabet induced by p* as m.

Start by choosing a wire (say jo) such that the weft has at least 2ts/m?2 crossings with this wire

within u.

Claim If aj # aj, (1 £j < m) then within u the weft has at least 2t— 1 crossings with the

wire j.

Proof of Claim Apply K (weft,j,jo}- t0 the word w. We obtain a word of the form
(01022t6121)s or (012t1052ta)s. O {weft,j,jo) (P*u*q) satisfies property (i) of Lemma 4,
because j ‘and jo do not intersect within u. But by (7) the total number of negative
occurrences in {weft,jjo})(W) is less than n? and n? <ts/(2m2)—3t+1=t+ 1. So the
conclusion of Lemma 4 does not hold and therefore property (ii) must fail. Hence there are at
least 2t occurrences of o©¢tl in 0 (weft,j,jo) (P*u*q) for any e e {1,2}. Since
O (weft,jjo) (P*u*q) does not contain any (j,jo)—crossings, then if p#(jo) < p*(j), x of any
occurrences o1t!is {weft,jo}, otherwise X of any occurrence o5l is {weft, j}. The claim is

proved. Oclaim)

14



Assume now that k (1<k<r) is fixed. By the Claim and the observation that 2ts/m2 > 2t, we
can choose a k—wire i such that there are at least 2t crossingsin w between i and the weft.
By (7), there exists a segment v, where w = pujvuaq, containing at least 2n4 (=2t/n2)
crossings between the weft and wire i, and no negative crossings. We claim that p*, and
therefore (pup)* because there are no wire crossings within pxuxq, takes all the wires
associated with k toa consecutive block. Suppose not. Then there exists a k'-wire j inside

the k—block such that k'#k. Choose also in the k-block a k—wire i' such that j lies between

i and i'. Consider two cases.

CASE 1. There exists a subsegment v' of v, (w =p'v'q'), containing at least n2+2

crossings of the weft with 1, but no crossings of the weft with 1.

Since wires do not intersect each other within u, p(j) lies between p'#(i) and p'*(@), as it

was for p and puj. We now apply the mapping © = 0 (wefy, i, i’} to the word w and find that:
H{weft, i, i) (W) = 8(xwx) = (6102207)1S.

From our knowledge of p'sv'sq', the only possible crossings in ©(p'sv'»q') are between the

weft and wire i. Therefore O(p'*v'+q) = g8 where s>n2+2 and ee {1, 2}. This yields

a contradiction with (7) and Lemma 2.

CASE 2. There is no such subsegment as in Case 1. This implies that the sequence X of pairs
representing successive crossings of v contains at least 4n2—4 alternations of {weft, i} and
{weft, i'}. Since (pui)#(j) lies between (pu)*() and (pup)*@'), between any such
alternating pair in X there exists at least one occurrence of {weft, j}. So, there are at least
4n2 - 4 alternations of {weft, i} and {weft, j}. Applying the mapping K {weft, i, j}» we find
that: |
() MK{weft, i,j}(w) has atleast 4n2—4 alternations of 61,02
and (i) W{weft,i,j}(W)=(012t1092t01)S or (01072t012t1)s,

Because 4n2—4 > 3n2 + 2s, this contradicts Lemma 3.

This contradiction with the assumption that there exists a k'-wire lying within the k-block

shows that for any k, p* takes all the k—wires to a consecutive block. As observed above,
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this completes the proof of Theorem 1(ii) since the required permutation 7 is just that induced

by p*. O{(Theorem 1)}
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