
http://wrap.warwick.ac.uk/

Original citation:
Paterson, Michael S. and Yao, F. F. (1990) Optimal binary space partitions for
orthogonal objects. University of Warwick. Department of Computer Science.
(Department of Computer Science Research Report). (Unpublished) CS-RR-158

Permanent WRAP url:
http://wrap.warwick.ac.uk/60853

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60853
mailto:publications@warwick.ac.uk

Research report 158 	

OPTIMAL BINARY SPACE PARTITIONS

FOR ORTHOGONAL OBJECTS

Michael S Paterson, F Frances Yao.

(RR158)

A binary space partition, or BSP, is a scheme for recursively dividing a configuration of objects by
hyperplanes until all objects are separated. BSPs are widely used in computer graphics as the underlying data
structure for computations such as real-time hidden-surface removal, ray tracing, and solid modelling. In these
applications, the computational cost is directly related to the size of the BSP, i.e., the total number of
fragments of the objects generated by the partition. Until recently, the question of minimizing the size of
BSPs for given inputs had been studied only empirically. We concentrate here on orthogonal objects, a case
which arises frequently in practice and deserves special attention. We construct BSPs of linear size for any set
of orthogonal line segments in the plane. In three dimensions, BSPs of size 0(nm) for any set of n mutually
orthogonal line segments or rectangles are constructed. These bounds are optimal and may be contrasted with
the Q(n2) bound for general polygonal objects in

Department of Computer Science
University of Warwick
Coventry CV4 7AL
United Kingdom
• Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto CA 94304
USA April 1990

Optimal Binary Space Partitions for Orthogonal

Objects

Michael S. Paterson * 	F. Frances Yao

Abstract

A binary space partition, or BSP, is a scheme for recursively dividing a configuration of
objects by hyperplanes until all objects are separated. BSPs are widely used in computer
graphics as the underlying data structure for computations such as real-time hidden-surface
removal, ray tracing, and solid modelling. In these applications, the computational cost is
directly related to the size of the BSP, i.e., the total number of fragments of the objects
generated by the partition. Until recently, the question of minimizing the size of BSPs for
given inputs had been studied only empirically. We concentrate here on orthogonal objects,
a case which arises frequently in practice and deserves special attention. We construct BSPs
of linear size for any set of orthogonal line segments in the plane. In three dimensions,

BSPs of size 0(n3/2) for any set of n mutually orthogonal line segments or rectangles are
constructed. These bounds are optimal and may be contrasted with the e(n2) bound for
general polygonal objects in le.

1 Introduction

For geometric problems where the input is a set of objects in the plane or in space, efficient

algorithms are often based on recursive partitioning. The input is divided into two parts by

splitting the objects with a line (in the 2-D case) or with a plane (in the 3-D case). The

two resulting sets are then divided recursively until finally subproblems of some trivial size are

obtained. Since each division may split some of the objects into two parts, the process described

above can lead to a proliferation of objects. For efficiency, the dividing cuts must be chosen

carefully so that fragmentation of the input objects is minimized.

The partitioning method described above was called a binary space partition (or BSP) by

Fuchs, Kedem and Naylor [3]. They used BSPs to solve hidden-surface removal with changing

'Department of Computer Science, University of Warwick, Coventry, CV4 7AL, England. The work was done
while this author was visiting Xerox Palo Alto Research Center. This author is supported by a Senior Fellowship
of the SERC and by the ESPRIT II BRA Program of the EC under contract 3075 (ALCONI).

*Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA

1

viewpoints. Other applications of BSPs have been discussed in [5], [7] and [9]. In these applica-

tions, the space and time bounds of the computations are proportional to the size of the BSPs

constructed. Questions of optimality for BSPs were first studied by Paterson and Yao [7]. It was

shown in [7] that the size of an optimal BSP for a general polygonal scene in R3 is 0(n2).

In this paper, we consider BSPs for orthogonal objects. These are useful in practice for

representing scenes such as architectural models that are naturally orthogonal, or orthogonal

approximations to more complex scenes. In two dimensions, we produce BSPs of linear size for

sets of orthogonal line segments. In three dimensions, we show how to construct BSPs of size

0(n3/2) for any set of n mutually orthogonal rectangles or line segments. The techniques used in

obtaining the 0(n3/2) partitions are quite different from those for the general (polygonal) case in

[4]. These bounds are optimal in the worst case. Our construction algorithm can be implemented

in time 0(n3/2).

We mention some applications of our results.

1) From a BSP of size 0(n3/2) representing an input scene, a correct visibility ordering for any

viewing position can be obtained in time 0(70/2) via a generalized in-order traversal of the BSP

tree (see [2]. [7]).

2) Given a rectangular polyhedron described by its n faces, one can generate a CSG (constructive-

solid-geometry) formula of size 0(n3/2) for the polyhedron (see [1], [7]).

3) For the art gallery problem (see O'Rourke [6]), 0(n3/2) guards are sufficient to cover the

interior of any rectangular polyhedron with n faces. This matches the ft(n3/2) lower bound given

by Seidel (see [6]).

For all three applications mentioned above, the best previous bounds were 0(n2) (for the

general polyhedral case).

The definitions and basic properties of BSPs are reviewed in the next section. In Section 3,

we show how to construct a partition of size 0(n) for any set of n mutually orthogonal line

segments in R2. In Section 4, we give a partition of size 0(n3/2) for orthogonal line segments in

R3, and apply this result in Section 5 to obtain an 0(h3/2) partition for any set of n mutually

orthogonal rectangles. Generalizations to higher dimensions are considered in Section 6, and we

conclude with some open problems in Section 7.

2 Preliminaries

In practice, a solid object in R3 is often represented by its boundary elements, i.e., by a set

of polygons approximating its surface. Thus, in the orthogonal formulation of our problem, we

take the input T to consist of a set of n rectangles in R3 with disjoint interiors and with edges

parallel to the axes. Since 'orthogonal rectangles' sounds odd, we coin a new term `orthothetic'

which literally means 'placed at right angles'. We thus refer to the input T as a configuration of

2

orthothetic rectangles. In the degenerate case, when each rectangle is a line segment (parallel to

one of the axes), we refer to 11 as a configuration of orthothetic line segments.

The concept of a binary space partition as described in the previous section is intuitively

clear; formal definitions of a BSP and the associated cost measures are given below.

H

H o

HUU 	
v

01 	H10 	v11

VUUU 	V 001 	v100 	v101

Figure 1.

A d-dimensional binary partition P is a recursive partition of d-dimensional Euclidean space,

Rd. defined by a set of hyperplanes. Let 7-(be a collection of (oriented) hyperplanes that are

organized as a binary tree and labelled accordingly as HA , Ho. H1, H00, H01,... (see Figure 1).

Then 7-t defines a binary partition P under which Rd is first partitioned by the root hyperplane

HA into two open half-spaces, HT, Hjf , and HA itself. Recursively, HA- and Ht are partitioned

by the subtrees rooted at Ho and Hi. respectively. We will refer to the hyperplanes Hi E

i E {0,1}-, as the cut hyperplanes (in particular, cut lines when d = 2 and cut planes when
d = 3) of the partition. For any node v of the tree we define R(v) to be the convex region which
is the intersection of all the open half-spaces defined at the (proper) ancestor nodes of v. The

components of the partition P then consist of R(v) for each leaf node v, and, for every internal

node v, the intersection of R(v) with H,,, the hyperplane at v.

Let r be a collection of facets, i.e., convex polytopes of dimension (d — 1) or less, in Rd. One-
dimensional facets are line segments and two-dimensional facets are convex polygons. A binary

partition P naturally induces a decomposition of r. For any node v of P, let r(v) denote the

collection of subfacets, r n R(v). For a given r, we shall be interested in binary partitions P of

Rd with the property that, at each leaf v, the set .r(v) is empty; we refer to such a P as a binary

space partition (or BSP) of r. We define the weight of an internal node v to be the number of

subfacets of r(v) that lie within H,,. The size, IP1, of a binary space partition of r is the total

weight of its internal nodes, which is also the total number of subfacets generated by P. The

partition complexity of r, denoted by p(r), is min{ IPI P is a binary space partition of r}.
Define pd(n) = max{P(r) I Irl = n, r c Rd}. In this paper we consider only orthothetic

configurations and define

pd(n) = max{p(F) 	= n, r c Rd and T orthothetic}.

3

► ►
► - -
► ►

►
►
► ►

_

R(v)

A simple yet useful device which prevents excessive fragmentation is the concept of a 'bounded

cut'. Assume that at some stage of a partition we have a region R(v) which is completely

separated by some facet A of F. In such a situation, an immediate partition of R(v) along A is

advantageous, since it does not cut through any elements of f(v), and it will prevent A fl R(v)

itself from ever being cut. We refer to such a cut by A as a bounded cut.

Figure 2.

3 Optimal Orthogonal Partitions

In this section we consider the case where I' consists of n horizontal or vertical segments in the

plane, and show that an 0(n) partition for I' can be found.

Let R = {(x,Y)ixo < x < xi, Yo < < yi} be a bounding rectangle for F, that is, all segments

of T lie within R. A segment s is said to be anchored on a side of R if one of the endpoints of s

lies on that side and the other endpoint in the interior of R. Let AL and AR denote the sets of
horizontal segments anchored on the sides (x = xo) and (x = x1) respectively. Similarly define

the sets, AB and AT, of vertical segments anchored at the bottom and top of R.

We define a T-decomposition of R as follows. Let s be a longest segment in AL, and suppose
line(s) intersects some segment of AB U AT. Let t be the first (i.e., leftmost) such segment.

\Ve decompose R into three rectangles, R1, R2, and R3, by first cutting R along line(t), and
then splitting the area to the left of t along line(s). Any anchored segment which is intersected

permits a bounded cut. The T-decomposition is completed by making all such bounded cuts.

(See Figure 3.) The following fact is easy to verify.

Fact. In a T-decomposition, the only anchored segments that are cut belong to AR, and all

bounded cuts occur in R3.

We shall define a partition for 11. by recursively applying T-decompositions. Before applying

the recursion, we may need to rotate the rectangles to ensure that each segment of r is cut

4

R 1

R2

Figure 3.

at most a constant number of times. To this end, we attach a label of 'green' or 'red' to each

anchored segment during the course of the partition to represent the status of that segment.

After the first cut of an unanchored segment, we will color one of the two resulting anchored

segments green and the other one red. When a green segment is cut, both subsegments will be

made red. (Figure 4.) We shall ensure that no red segment is ever cut and so each original

segment can be cut at most twice. A side of a rectangle R is considered green if all segments

anchored on that side are green.

nil • •
• rectimme-een

red red

Figure 4.

Lemma 1. Let R be a rectangle with a green side.

(i) After a cut which does not divide any anchored edge, each resulting rectangle has a green

edge.

(ii) If the side (x = x1) of R is green, then after a T-decomposition, each of R1, R2 and R3 has

at least one side which is green.

Proof.

(i) At least one of the resulting rectangles inherits a green side from the original rectangle.

We ensure that the cut edge is green for the other rectangle by coloring its end of each cut

segment green.

(ii) For each (unanchored) segment cut by line(s), we color its upper part red and its lower

part green. Then the side of R1 defined by line(t) and the side of R2 defined by line(s) are

green. For each subrectangle of R3, its right side is still green.

5

We describe our partition algorithm recursively.

Orthogonal Partition Algorithm (OPA)

r is a set of segments, R is a bounding rectangle for 1", and R has a green side.

(i) If R is empty then we are finished.

(ii) If there is some segment s such that line(s) cuts no anchored segment, then partition R

along line(s), and recurse on the two resulting rectangles.

(iii) Otherwise, re-orient R if necessary so that its right side is green, and apply a T-

decomposition. Apply OPA recursively on the the resulting set of subrectangles.

Theorem 1. Algorithm OPA finds a partition of size 0(n) in 0(n log2 n) time.

Proof. By Lemma 1, the invariant that R has a green side is preserved. Since any original

segment is cut at most twice, the size of the resulting partition is at most 3n.

To analyze the running time of OPA, we first describe the data structures needed for carrying

out the T-decomposition on a rectangle R. Since separate, but symmetric, data structures will be

maintained for the set of horizontal segments and the set of vertical segments, we will concentrate

on the former case only. The set of horizontal segments is composed of AL and AR, the sets

of segments anchored on the left and on the right respectively, and UH, the set of unanchored

segments. We use separate data structures for these three sets. To represent AL (and AR,

similarly), we take the set V of right endpoints of segments in AL, and create 1) a search tree

S(AL) for the x-coordinates of V, and 2) a priority search tree Pr(AL) for V. The structure

Pr(AL) stores V as a search tree by y-value and maintains a priority queue of maximal values

of x. For the set UH, we will use a search tree S(UH) for its y-coordinates, and a segment tree

Seg(UH) with respect to its x-coordinates. (The set of segments stored at a node of Seg(UH) will

be ordered by y-coordinates.)

To carry out a T-decomposition, we first find the segment s by searching S(AL), and then

find the segment t by searching Pr(AT) and Pr(AB).

The partition by line(t) is carried out as follows. We search S(AR) and Seg(UH) to find the

segments intersected by line(t). Those segments of AR that are intersected by line(t) define the

bounded cuts for R3; they are deleted from the set AR for R3, and added to the set AR for R2 .

Those segments of UH that are cut by line(t) are added to the set AR for R2, and also to the set

AL for R3. The search tree and the priority search tree associated with AR for R2 (and also those

with AL for R3) are then rebuilt. The remaining uncut segments of UH are split into two sets,

to the left and to the right of line(t), respectively, with their associated search tree and segment

tree extracted from those of UH. Finally, each remaining tree structure of R, except for those

representing AL, is split into two subtrees as a result of the partition by line(t). The partition

6

by line(s) is performed in a similar way; it is somewhat simpler since only segments of Uv can
be cut by line(s), and the data structures associated with AT and AB are unaffected by the cut.

We now analyze the running time of Algorithm OPA. Since each recursive call removes at

least one subsegment from further consideration, the total number of calls is 0(n) by Lemma 1.
The cost of step (i) of the algorithm is 0(1), while the test in step (ii) can be done in 0(log n)

time by finding the required information from the priority search trees associated with the four

bounding edges of R. We next consider the total cost over all recursive calls for performing the

T-decompositions in step (iii). It is easy to account for the cost of most operations by allowing

0(logn) time for the generation and removal of each subsegment in the course of the partition.

The only operation whose cost cannot be accounted for this way is the splitting of the segments

trees "along the grain", that is, the splitting of Seg(Uv) by line(s) and the splitting of Seg(UH)

by line(s). By maintaining sorted order for all segments stored at the same node of a segment

tree (and also using the search tree associated with the set), we can carry out the splitting

operation in time 0((mi + 1) log m), if an original segment tree for m segments is divided into

two subtrees for m1 and m2 segments, with m1 +m2 = m and m1 < m2. The recurrence relation

f (m) < f (ml) + f (m2) + cm1 log m has a solution f (m) < cm log2 m. We thus conclude that

Algorithm OPA has a total running time of 0(n log2 n). 	 ❑

Corollary 1. p2(n) = 0(n).

4 Partitions of Orthothetic Lines

A configuration r in R3, consisting of pi line segments parallel to the xi-axis for i = 1,2,3,
is said to have type t(F)_ (\Pi, P2, P3) and size E(r) = p1 + p2 p3. Our design of an efficient

BSP for F makes crucial use of the parameter II(F) = p1p2p37 referred to as the measure of F.

We shall use the following simple lemma.

Lemma 2. If ai, bi are non-negative reals for 1 < i < r, then

min{III .tai, 11:7=1bi} <1IIL1(ai 	bi).

Proof.

<

=IIi cfiTi

< illi(ai bi). 0

An i-cut (1 < i < 3) is a partition of F by a plane perpendicular to the xi-axis into two

subconfigurations P, r" with t(F') = (pc.,p2,p3) and t(F") = (pc' ,14,14). We will have pi <

pi, p'i' < pi, p, + py < p; and p'k + pk < pk, where 	j, k} = {1, 2, 3}. At least one of the two

final inequalities is strict if we choose a cutting plane which contains some line segment.

7

Lemma 3. Given a configuration f with m(f) > 0, for any i there is an i-cut producing .1"'
and f" such that max{II(P),mr")} < 1110).

Proof. Suppose the cutting plane is 'xi = c', oriented so that t(P) increases with c. Choose
a maximum c such that II(p) < In(l). We may assume that the i-cut passes through some
segment so p'i p'ipik < 11(r) < papi — p.7)(pk — pit). The right side is the measure of P when c

is increased slightly. Therefore (p; — pil)(pk — Pit) > 1pipk. It follows from Lemma 2 with r = 2

that p7 g: < ITRipk. The last inequality proves the Lemma. 	 ❑

For the partitioning of rectangles in the next section, we will need to cycle through the three
coordinates rather than choose an arbitrary direction to cut at each step. Therefore we present
a line-partitioning algorithm which proceeds in 'rounds'. A round is a sequence of up to three

cuts corresponding to distinct values of i, where each cut satisfies the inequality of Lemma 3. An
S-round, S C {1,2, 3}, is a round consisting of ISI cuts with indices given by the elements of S

in any order.

Constructing a BSP for r
Given r with t(f) = (p1,P2,P3), assume without loss of generality that pi > p2 > p3.

Provided that p3 > 0, let ui = Llogpi_11 for i = 1,2, 3, and define the (infinite) ternary sequence

cr E.: 0.00.10.2 	(2 3).1-.2 (i 2 3)00.

We use a to define a partition /3, of r, described in the form of a binary tree:

Stage 1. If the configuration at a node on the rth level (where the root is on the 0th level)
has nonzero measure, a 0.r-cut satisfying the inequality of Lemma 3 is made.

Stage 2. If the configuration at a node has measure zero, then for at least one of the axes,
say xi, there are no segments parallel to it. We separate the configuration as much as possible
with suitable i-cuts, and then apply optimal 2-D partitions as provided by Theorem 1.

Thus, in each path of the tree, the partition Pc, performs (a prefix of) a sequence of u2 — u3 {3}-
rounds, u1 — u2 {2, 3}-rounds, and arbitrarily many {1, 2, 3}-rounds until the measure has been
reduced to zero; the process is then finished off with optimal two-dimensional partitions.

Lemma 4. Let s(r,0-) be the total number of line segments generated by Stage 1 of Pa from
F. Then S(T,cr) = 0(VP1P2P3 Pi)•

Proof. Let w be the maximum number of {1, 2, 3}-rounds used in any branch of the partition
tree Pa. By Lemma 3, each cut reduces the measure by a factor of at least 4, hence the depth of
cutting is at most 1 + 2 log 11(r). If w > 0, we have

(u2 — u3) + 2(ui — u2) + 3(w — 1) <I log II(T)

'All logarithms here are to the base 2.

8

and hence

3w < 3 	log(PIP2P3) — 2tL1 u2 u3

< 5 +1 1°,g(P2P3iP1)
< 2(log(11p2p3/Pi))•

Thus w < max{0, 2(log(11p2p3/pi)). The total depth of 1-cuts, 2-cuts and 3-cuts is at most w,

ui — u2 w and u1 — u3 w respectively, so

S(P, 7) < 	(p1 2u1-u2
 p2 21,1--u3p3)

O(2w131)

°WP1P2P3 +

This proves the Lemma.

Theorem 2. For any configuration P of n orthothetic line segments in R3, a BSP of size 0(n3/2)

can be found in time 0(n3/2). In particular, p(1") = 0(1[11) E(P)). Furthermore there are

P for which p(P) = Si(N/II(F) E(P)).

Proof. We note that, in Stage 2 of Po., the configuration is separated into disjoint 2-D subcon-

figurations without cutting any segments, and the optimal 2-D partitions increase the total size

by at most a constant factor. The upper bound now follows from Lemma 4.

The partition P, can be constructed in time 0(n3/2). A naive algorithm is adequate to achieve

this time bound. A configuration F is represented by six sorted lists, Li; where i # j, 1 < i, j < 3.
The list Li; contains all the segments of r parallel to the xi-axis, sorted in increasing order of

xi-coordinates. To determine the proper i-cut, as described in Lemma 3, it is sufficient to step

through the pair of lists L ji, Lki in increasing xi-order until the appropriate balance point is

reached. The corresponding value of xi is then used for a cut plane. To construct representations

for the succeeding configurations F', 	a linear pass through the representation of F is sufficient.

Thus the time for performing an i-cut on F is linear in the size of F.

The total running time of our algorithm is therefore bounded by the sum of the configuration

sizes at all the nodes of the partitioning tree. Throughout the initial sequence of {3}-rounds and

{2. 3}-rounds (of length 0(log pi)), the pi segments parallel to the xl-axis are never cut and the

total number of subsegments generated is 0 (pi). Then for each {1,2, 3}-round performed. the

total number of subsegments at most doubles. The number of these rounds is 2 log(p2p3/pl)

0(1). Hence the total size summed over all rounds is

0(pi log + Vp1p2p3) = 0 (01(P) + E(P) log E(P)) = 0(n312).

The lower bound is shown by extending an example of Thurston [10], mentioned in [7]±. We

take a rectangular parallelepiped of size al x a2 x a3 in a three-dimensional grid, and connect

corresponding grid points on opposite faces of the parallelepiped with line segments. If we move

9

Figure 5.

the three families of lines slightly so that they become all disjoint, we obtain a configuration

P of type t(P) 	(pi,p2,p3) where pi = a2a3, p2 = a3a1, p3 = aia2. Figure 5 illustrates the

3 x 3 x 3 example of this. For clarity, the line segments are represented as rectangular rods.

It can be argued that any BSP for r must cut at least one of the three line segments in the

neighborhood of each of the aia2a3 grid points internal to the parallelepiped. Thus at least

aia2a3 (pi + /32 p3) = .Vpip2p3 + (pi p2 p3) segments will be generated by any BSP. o

5 Partitions of Orthothetic Rectangles

We shall represent each rectangle by the set of four segments comprising its boundary, and

apply the partitioning algorithm Pc, to this configuration of segments. The resulting partition is

almost a BSP for the set of rectangles also. Any subregion corresponding to a leaf of the BSP

contains no edge, but may contain subrectangles internal to some original rectangle. However,

all such subrectangles can be removed using bounded cuts.

It remains to analyze the sizes of these BSPs.

Lemma 5. Any orthothetic rectangle subjected to d rounds of cut (with bounded cuts taken

whenever possible) generates at most 3 • 2d+2 subrectangles.

Proof. Each round at most subdivides any rectangle into a 2 x 2 array of subrectangles. To

establish the Lemma we prove, by induction on d, a more detailed bound in which we take

account of how many edges of the rectangle are original edges, as opposed to cut edges created

by earlier cuts.

For 0 < g < 4 and d > 0, let F(g, d) be the maximum number of subrectangles, generated by

d rounds and bounded cuts, that originate from one rectangle with g original edges.

Claim.
F(g,d) < 3g(2d — 1) + 1

Proof of Claim. If d = 0 the result is trivial, while if g = 0 the rectangle may be removed with

a bounded cut. For d > 1,g > 1, we may suppose that the first round divides the rectangle into

10

4 rectangles with 91,92,93,94 original edges respectively, where Et_lgi < 2g. Hence

F'(9, d) < EiF(gi,d - 1)

< - 1) + 4 by induction

< 6g(2d-1 - 1) + 4

< 3g(2d - 1) + 1 since g > 1.

This proves the Claim, and hence the Lemma. 	 ❑

Theorem 3. For a set of n orthothetic rectangles, p(P) = 0(n3/2). In addition, if two of the
three classes of rectangles have at most b members (b > 0) then p(P) = 0(n\).

Proof. Suppose the number of rectangles of F perpendicular to the xi-axis is a, b, c for i = 1,2,3
respectively. If any of a, b, c is zero the result follows from the 2-D case. Otherwise we may

assume that 0 < a < b < c.

The type of f, represented by the perimeter edges is t(P) = (pi,p2,p3) = (2(b + c),2(a +

c), 2(a + b)). Hence pi = 0(c), p2 = 0(c), p3 = (b), p2/ p3 < cl b and pi /p2 < 2.

In applying the partitioning algorithm Pc to F, the numbers v, v', w of {3}-rounds, {2, 3}-
rounds and {1, 2, 3}-rounds respectively satisfy

v < log -
b

+ 1, v' <1, w < -
2

log b + 0(1).

Therefore, by using Lemma 5, it can be shown that the resulting BSP has size at most

0(b. 9v+v'+" C 2v1+") < 0(c-V-1)).

This inequality proves the Theorem. 	 ❑

Corollary 2. p3(n) = 0(n3/2). 	(The lower bound was proved in Theorem 2.)

6 Higher Dimensional Binary Space Partitions

We obtain analogous results in higher dimensions for configurations of orthothetic line seg-

ments, although we have not been able to extend these results to orthothetic hyper-rectangles

as in the three-dimensional case. In dimensions higher than three, it may be the case that some

region of a partition contains no edges, and yet the subconfiguration in it requires nontrivial

partitioning.

For higher dimensions, alternative definitions for a BSP may be proposed, depending on

the treatment of lower-dimensional subconfigurations. If we require that a BSP completely

decompose lower-dimensional subconfigurations, a different complexity function p* is obtained.

Whether or not such complete decomposition is appropriate depends of course on the particular

application. In three dimensions, the difference between p and p* is not significant since, by

11

Theorem 1, a two-dimensional configuration occurring in F(v) fl Ht, at some node v can be
completely partitioned with at most a linear increase in its size. Theorem 4 shows that if F is a
d-dimensional configuration of n orthothetic line segments then p(F) = 0(ndl(")). However, if
F contains a configuration such as that of Figure 5 lying in a three-dimensional subspace, then
clearly p*(F) = li(n3/2).

Theorem 4. For a configuration F of orthothetic line segments in d dimensions

P(r) = O ((11(r))7 ., + E(r)) .

There are F for which

P(r) = 	+ E(r))

Proof. We assume that p1 > • • > pd, and let ui = Llog2 pii. If pd = 0 then F is contained in
some finite set of xd-hyperplanes and p(F) = E(r) by definition of p(r). Otherwise, we use a
sequence of rounds of cuts as before. The defining index sequence is

a = 	(d4 drd-2-Ud-1 	CZ a . Lou, , -u2 a 2 • dr°.

Let w be the maximum number of {1, • d}-rounds encountered in any path of the partition
tree. By a generalisation of Lemma 3, each cut generates two subconfigurations with measure
decreased by a factor of at least 2'1, hence if w > 0 we must have

log II(/) > (d —1)((ud_i — ud) 2(ud_2 — ud-1) + • • 	(d — 1)(u1 — u2) + d(w — 1))

= (d —1)(d(w ui — 1) — ELl ui)

> (d — 1)(d(w + log pi — 2) — log II(F)).

Therefore, if w > 0 then

log H(r) > (d — 1)(d log pi + w — 2).

Since

S(11, a) < 	(pi + P22u1—u2 + P32" + • • • + Pd 2u1')
< 2wpad,

it follows from (*) that

S(F, a) = 0 (((E(r)) 	-I- pi) d)

= 0 ((11(r)) r + E(r))

for fixed d.

The lower bound is proved by an example based on an al x a2 x • • • x ad parallelepiped.
analogous to that in the proof of Theorem 2. Let A = II;ai. Then pi = A/ a= for all i, and
H(r) = A'. Since at least one cut is needed in the vicinity of each grid point, we have

P(r) .> A + E(F) = ((H(T))711" + E(r)) .

(*)

12

7 Open Problems

We mention two directions in which our present results might be generalized.

1. Extend Theorem 4 from line segments to k-facets for 2 < k < d; that is, find efficient BSPs

for higher dimensional facets in Rd for d> 4 and establish corresponding lower bounds.

2. Prove an analogue of Theorem 1 for planar configurations consisting of three or more families

of parallel line segments, and consider similar generalizations in higher dimensions.

References

[1] D. Dobkin, L. Guibas, J. Hershberger and J. Snoeyink, "An efficient algorithm for finding

the CSG representation of a simple polygon", Computer Graphics 22, 1988, 31-40.

[2] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.

[3] H. Fuchs, Z. Kedem and B. Naylor, "On visible surface generation by a priori tree struc-

tures", Computer Graphics (SIGGRAPH '80 Conference Proceedings), 124-133.

[4] E. McCreight, "Priority Search Trees", SIAM J. Cornput. 14, 1985, 257-276.

[5] B. Naylor, "A priori based techniques for determining visibility priority for 3-d scenes-. Ph.
D. dissertation, Univ. of Texas at Dallas, 1981.

[6] J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford Univ. Press, 1987.

[7] M. Paterson and F. Yao, "Binary partitions with applications to hidden-surface removal

and solid modelling", Xerox PARC Technical Report CSL-89-6 (also to appear in Discrete

& Computational Geometry). An earlier version [7]+ appeared in Proceedings of the Fifth

Annual AC.11/1 Symposium on Computational Geometry, Saarbruchen, West Germany, June

1989, pp. 23-32.

[8] D. Peterson, "Halfspace representations of extrusions, solids of revolution, and pyramids",

SANDIA Report SAND84-0572, Sandia National Laboratories, 1984.

[9] W. Thibault and B. Naylor, "Set operations on polyhedra using binary space partitioning

trees", Computer Graphics 21, 1987, 153-162.

[10] W. Thurston, privat6 communication.

13

