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Abstract.

Any computation of Boolean matrix product by an acyclic network
using only the operations of binary conjunction and disjunction
requires at least IJK conjunctions and IJ(K-1) disjunctions for the
product of matrices of sizes I x K and K x J. Furthermore any two
such networks having these minimum numbers of operations are equivalent
using only the commutativity of both operations and the associativity

of disjunction,



1. Introduction.
The product of an I x K Boolean matrix A with a K x J Boolean

matrix B (I x K x J Boolean product) is the I x J matrix C defined by

We consider the computation of Boolean products by acyclic logical networks
with binary conjunctions (A-gates) and binary disjunctions (v-gates) as the
logic elements, These are called monotone networks because of the firoperties
of the basic elements. An example of a monhotone network for 1 x 2 x 1
product is given in figure 1. It has four inputs, Ay 3yp0 b}1, b21, and
one output, c,,. In general, for an I x K x J product there would be

IK + KJ inputs and IJ outputs.




0f course the form of the definition of matrix product sugges:. a
straightforward network with IJK A-gates, the results of which are combined
using IJ(K-1) v-gates. The principal results of this paper are that these
numbers are each minimal and that any minimal monotone network for Booiean
product is of such form. Several of the ideas for our proofs come from a
recent paper of Pratt [3], in which he proves an N3/2 lower bound on the

number of A-gates for N x N x N product.

These results are of particular interest in juxtaposition with the
construction described in [ 1] of (non-monotone) networks for NxNxN Boolean
product using A,v and complementation as basic elements which require only

log,7
2.(logN)1+E) such elements.

0(N

A corollary of eur results slightly extends some of the results
in [2] concerning the (min, +)-product of real matrices, i.e. 'minimum’
and '+' replace '+' and 'x' respectively in the usual definition of real
matrix product. This is because any (min, +) network for matrix product
becomes a network for Boolean product when each 'min' and each '+' is replaced

by 'v! and 'At respectively.

2. Notation and preliminaries,

From now on we use network to mean a monotone network which computes
I x Kx J Boolean matrix product for some fixed non-zero I,J,K. Each
'wire! or connecting arc of a network has naturally associated with it a
monotone Boolean function of the input variables. The functions associatea
with the pair of input wires to any gate we call its arguments and the
output function its result. We shall often use mere juxtaposition to denote
conjunction, e.g. 'a11 b11' for 'a11 A b]1', and for brevity write 1 for
true and 0 for false. A Boolean function is identified with the set of
argument values which yield the function value lEﬁEE" so we could write,
for example,

OZapy bz San Vb et
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We denote by U, the sequence of all input variables

(all,.u., arg byys-ens bKJ)’ and use X, Xy, Xpsees

to denote arbitrary elements of U. s,s',s1,sz,... will be used for
arbitrary monotone functions. Two elementary properties of monotone

functions are stated without proof.

P1., IIf s, Vv 52 2.x1 x, then Sy E.X] X, or s, D Xy %,

s, C Va.lV s, € V...V 5, & RS’
X X, then 12% X or s, =X v,

3. Refinement,

Extremely inefficient networks can be designed. The refining process
described in this section consists of applying local transformations to
networks in order to remove redundant gates whilst preserving its input/output
behaviour. For example, if Sy E_sz then an A-gate with arguments Siv Sy

can be eliminated since its result is merely Sy¢ This simplification, and

many others, can be expressed by this obvious duplication rule,

R1 : I f 9qs 9ps are gates (or an input and a gate) with the same function
and 9, does not precede 9, in the network then g, may be eliminated and

all connections to the output of 9, made to 9y instead.

It is convenient to allow the constants 0, 1, as inputs to a network, v

any use of these constants is clearly eliminable by applications of R?e

More interesting refinement rules depend on knowledge of the output
functions of the network. We introduce here this important notion of

specific refinement, A fairly simple transformation allows the remcval

from a function of terms which are 'useless'. For example, ‘aH v b§2 bzil



may be replaced by 'a11' since the term 'b12 sz’ cannot contribute

anything essential to the final result. We define a function (set),

Dross, which contains all such 'useless' terms,

Dross = ) a.. a.,., v V b.b ,., v Y a. b ..
L O B D U ) B A R I L
Sal
In the language of assignment statements for programs,
Rz : For any x € U, if xC s C xy Dross then s = x.

Note that the restriction of x to input variables is not necessary for the
correctness of R2, but just to ensure that the application of R2 el iminates

at least one gate.

The correctness of R2 may be easily established by following the effect
of the changes forward through the network. At each stage, only 'dross'

is removed,

The next set of specific refinements requires some justification. They
all identify functions which are so extensive that they can be replaced

by 1. For all i,j, we use c,, to denote the function V a. b, ..
ij K ik “kj

Lemma.

For all i #i', j#j', and all i', j'", and for all manotone functions s,

if s(u, a4 b1j v @

XS

b1.,) = Cujn then s(U, 1) = S

i1 ]

Proof.
Suppose the Lemma is false, then there is a valuation a on the

inputs such that, under w

Cilljll = S(U, ai1 b]_j v a‘|.| b1jl) = 0 but S(U, 1) = 1

-6 -



Let @ be a maximal such valuation, i.e., if any input value is changed
from 0 inoa to 1, the value of ci"j" changes from 0 to 1. Under «a,

we must have

a b}j v ai‘j b1j| = 0
Without loss of generality suppose a., = ¢ and either (i) 344 = 0,
or (if) bij' = 0. Since a is maximal, changing a,, to 1 changes ST
Therefore i = i" and b]J = 1. In case (i) we can deduce similarly
that i' = i" which yields a contradiction. In case (ii), we have on

the one hand that b = 1 and bU.I = 0, therefore j' # j'' , while on

]jll
the other hand changing bij’ to 1 changes Ci"j" , therefore j' = j".

This contradiction proves the Lemma O

Corollary 1.

1 = . C ]
If s(u, s') Ci"j" and a,, blj v.agy b1j' Cs
then s(U, 1) = Cinjn -
Proof.

By monotonicity [
Particular values for s' in applications will be

a;q vapgsbyvb
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Corollary 2.

(i) If s(u, a, blj voa, b]j) Cymjn then s(U, b1j) = Cinin

(Il) I f S(U, a“ b]j v a” b1j|) = Ci"j" then S(U’ ai’!) = Ci"j"

Proof.
For (i), there is a monotone function s' such that for all z,

s'(U, z) =s(U, za b Corollary 1 is applied with z = 3,V oaiey i

1j)-
similarly for (ii) O

Corollary 1 justifies the following refinement rules, where we

assume { # i' and j #* j' always

R3 : I f ajq v ai,1 Cs then s := 1
RG I f blj v bU' Cs then s := 1
R5 : If a; v b1j Cs then s := 1

iNn

R6 : ifa., b,, v 3, b

. s Cb,, then s := b,
it 1] J

1]

s C a then s := a

R7 : If a, b j v a,, b.., 0

il 1]

N

4, Outline of main proof.

A first approach might be to look for a 1-1 mapping from triples of
indices (i, j, k) to so-gates, since one might suppose there to be at least
one a-gate which 'essentially' computes a A bkj . However there seems
not to be any 'natural' such correspondence. An example like figure 1,
which allows no specific refinement, suggests some of the difficulties.
The proof we give here relies on finding such a mapping from Eiilf.(i’ i)
to a-gates, corresponding to the term a;q A b1j' These p-gates are then

2

eliminated after fixing the values of the inputs, a, = 1 for all i and



b1j = 0 for all j. The resulting network is a valid network for
I x {(K=1) x J Boolean product, so a new set of at least I x J a-gates
corresponding to the terms ajp A sz can be found, and so on. The

procedure for y-gates is similar. The arguments are greatly simplified by
assuming that the refinement rules have been applied wherever possible,

The mapping for a-gates is determined by defining for each i,j, a
predicate Qi’ on the functions associated with the wires of the network,

The set of initial occurrences of Qij’ denoted by I(Qij)’ consists of those

gates whose result satisfies Qij but neither of whose arguments satisfies
Qij' Qij is such that no input variable satisfies the predicate, but
¢, does. This guarantees that I(Qij) is non-empty. We further show
that the sets I(Qij) are disjoint for distinct (i,j), that I(Qij) contains

only a-~gates, and that the valuation a;, = 1, b1j = 0 allows all of

I(Qij) to be eliminated,

For y-gates, we have corresponding predicates Rij . Provided that
K> 1, the sets I(Rij) are disjoint, non-empty and contain only y-gates.

The same valuation allows these y~gates to be eliminated.

5. Lower Bounds,
Theorem 1.
Every (A,v)-network for T x K x J Boolean product contains at least

IJK a-gates and IJ (K-1). y~gates.

Proof.
We may suppose that the network has the minimal total number of
gates and therefore no non-trivial application of a refinement rule is

possible.



For all i, j, define

Q“.(s)""ail bUEZ_s 3 a”¢_s 3 buis

I(QU) is the set of initial occurrences of Qij as defined in section &,
Suppose gate g is in I(QU) with arguments s,, s,. If it is an y-gate

then a,, i Sy and b” i Sy since Qij (s1 v 52). Therefore a b‘J' 2 Sy
since = QU(s1). The same holds for s, and so by P1 in section 2,

a, b'lj g Sy vS, which contradicts Qij (s1 v sz). Therefore g must be
ana-gate. It Is now easy to show that a,, c s, and bU C s, or vice versa.
Without loss of generality, assume the former. Thus the valuation a, = 1

would allow the elimination by R1 of all gates in I(QU)'

Suppose g is in I(QU) N I(Q‘,J,), then either

Ol

a,, vb

Cs and buyai.1§_s2

i 1)’
If (i,j) # (i', j'), then at least one of R3, Ri, R5, is applicable in each
case, which contradicts the assumption of minimality. Thus the sets

I(QU) are disjoint.
If K> 1, for all i,j, define

Ryj ()=~ aj b SsCA vby, & sgbU

where A, = \ a
i e Tk

Suppose g is in I(R”) with arguments s,, s,. If it is an A-gate then

5 E A, v blj and s, 4 Ay v b1j since RU (s1 A 52) but

-'lRij (‘s,) and —.RU (sz). But P2 now implies that s, A 5, Z A v bu

which is a contradiction. Hence g is an v?gate, and so both Sys S, are

-10-



contained in Ai v b By P1, at least one of Sy» 5,, say Sq»

1j
contains a., b1j and so 5, 15 since ‘ﬁRij (s]). Thus the valuation

ij = 0 would allow the elimination of all gates in I(Rij)'

Cb

Suppose g is in I(Rij) N I(Ri'j')’ then s Sbyoa (Ai' v blj')’

1

» C - o,
since a., b1j € s,. Since Ri'j (s1 v 52), we have

and so j = j'

s, Z bU and therefore a1, bTJ' ;2_' s, because =R, ' (52) . Hence

b,. C . . ) . C Chbh,. . i i
iy 1 < s, So a4 le Voaig b1j s, ¢ b1J If 1 # i' then
from R6 we have 5, = bU . Since
C C
b1j < s1 v 52 < (Ai v b‘j) A (Ai v v b1j) < b1J. v Dross,

R2 implies that S, v s2 = blj » and so g can be eliminated by R1. This

contradiction shows that the sets I(Rij) are disjoint.

For all i,j, no input variable satisfies Qij or R..

» while c..
] ij

satisfies Qij and if K> 1 it also satisfies Rij' Thus if K> 1, all
the I(Qij) and I(Rij) are non-empty and if we fix a,y = 1 for all i
and b1j = 0 for all j, all the gates in I(Qij) and I(Rij) can be eliminated.
By disjointness, this is a total of at least IJ a-gates and IJ, \~gates.
The network which remains is a valid network for I x (K-1) x J Boolean
product since the function at the (i,j) output is now kY] a bkj .

[f K =1 then we eliminate at least IJ pA-gates by the valuation.

The theorem is therefore established by an inductive argument O

-‘]1-



6. Characterization of optimal networks,

Theorem 2,

Any network for I x K x J Boolean matrix product using the minimal
numbers of a-gates and v-gates, computes A A ‘bkj for ali i,j,k, directly

using IJK a-gates and then for each i,j, computes V 3 A bkj with K-1
k

v-gates using a total of IJ(K-1) y-gates. Thus any two minimal networks
are interconvertible using only the commutativity of. 5, and y and the

associativity of v .

Proof.

Suppose we have a network with the minimal numbers of a-gates
and v-gates, then only the gates in I(Qij) or I(Rij) for some i,]
can be eliminated by the valuation of a;, = 1 for all i and bjj =0
for all j. Therefore in particular a;, may appear as an argument only
in the gates of I(Qi'j) or I(Ri'j) for some i', j. The analysis
in the proof of Theorem 1 shows that the latter case is not possible,

and so a;, can be an argument of A-gates only, By the symmetries of

1

Boolean matrix product, irrespective of the structures we have
superimposed for the sake of our proofs, every input variable is an
argument of A-gates only. Now it is easy to show for such a network
that no gate has a result s with x Cs for an input x. Hence from
the proof of Theorem 1 we see that the A-gate of I(Qij) has arguments
and b

a » and therefore again by symmetry the IJK A-gates of a

il 1J

minimal network have argument pairs (aik’ b for all i, j, k. Since

kj)
the IJ final outputs must be computed directly from these IJK results
using IJ(K-1) v-gates the conclusion of the Theorem is now a trivial

deduction 0

-12-



7. Conclusion,

Several of the techniques used in these proofs may have wider
applications. Regarding the 'specific refinements', we find that knowing
certain properties of the output functions of a network allows us to make
unexpected local simplifications which would not be valid in general.

It would be interesting to khow whether this phenomenon extends to
non-monotone networks. The method of examining 'initial occurrences' of
suitably chosen predicates is very convenient where applicable. O0f course
the difficulty lies in choosing the right predicates, since they are not

intuitively obvious.

The results presented here give a satisfactory answer to questions
about the complexity of monotone networks for Boolean matrix product.
A closely related computation is to find the transitive closure of a
square Boolean matrix. The complexity is known to be of the same order
as that of matrix product but there is still a considerable gap between
the upper and lower bounds. | should expect a complete solution to this

problem to be very much harder to obtain.
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