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Abstract.

Any computation of Boolean matrix product by an acycl ic network

using only the operations of binary conjunction and disjunction

requires at least IJK conJunctions and IJ(f-t) disjunctions for the

product of matrices of slzes I x K and K x J. Furthernore any two

such networks having these minimum numbers of operations are equivalent

using only the comrutativity of both operations and the associativity

of disjunction.
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1. Introduction.

The product of an I x

matrixB(rxfxJBoolean

K Boolean matrix

product) is the

withaKxJBoolean

x J nutr'ix C def ined by

A

c..t) "it 
nbti for i=1,..., I;j=1,...,J"

We consider the computation of Boolean products by acycllc loglcal networks

wi th bi na ry conj unct ions (n-gates) and b i na ry d i sj unct ions (r'-gates) as :he

logic elements. These are cal led rnonotone networks because of the $ropertie!,

of the basic elements. An example of a fipnotone network for 1 x ] x 1

product is given in f igure 1. lt has four inputs, all , a12, bll, b?1, atrC

one output, 
"l 1. ['n general, for an I x K x J product there would be

IK + KJ inputs and IJ outputs.

K

=v
k=1
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0f course the form of the definition of rnatrix product suggesi-r a

straightforward network with IJK ^-gates, the results of which are combineC

using IJ(K-1) v-gates. The principal results of this paper are that rhese

numbers are each minimal and that any minimal monotone network for Br:oleon

product is of such form. Several of the ideas for our proofs come from a

recent paper of Pratt [ ]l , in wh ich he proves an HJrl2 lower bouncl on the

number of ^-gates for N x N x N product.

Theae results are of particular interest in juxtaposition with the

construction described in I t] of (non-rnonotone) nen^prks for NxNxN Boolean

product using nrv and comPlementation as basic elements which require only
I og.7 1!=

0(N '.(logN)'*) such elements.

A corollary of our results slightly extends some of the results

in [ 2] concerning the (min, +)-product of real matrices, i.e. 'minimuml

and'+rreplacer+rand'xtrespectively in the usual definition of real

matrix product. This is because any (min, +) network for matrix product

becomes a network for Boolean product when each rminrand eachr+' is replaced

bY'vt and tAl-J resPectivelY.

2. Notation and prel iminaries.

From now on we use g15g! to mean a monotone nettalork which computes

I x K x J Boolean matrix product for some fixed non-zero I,J'K. Each

rwirer or connecting arc of a network has naturally associated with it o

monotone Boolean function of the input variables. The functions associatec

with the pair of input wires to any gate we cal I its arqurnents and the

output function its Ig{!. We shal I often use mere juxtaposition to denaie

conjiunction, e.g. t"1l bll' for t"1l n b11', and for brevity write ! for

trug and 0 for false. A Boolean function is identified with the set of

argument values which yield the function value '!!gt' so we could wnite,

for example,

c all 9att v blt S l'
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l./e denote by U, the sequence of al I input variables

(a., ,, ,..., "rK, 
b11r."., br..l ), and use xr xl t x2t,"

to denote arbitrary elements of U. s15trtlrt'r... will be used for

arbitrary monotone functions. Two elementary properties of .monotone

functions are stated without proof.

Pl. lf rlurz?xl*2 then tl3*l*z or tz?*l"?

P2. lf rl 12 a *l u...ut then tt 3 *l v...vxk or t: i *t v" 'v{,

3. Ref i nement.

Extremely inefficient networks can be designed. The fefinigg Process

described in this section consists of applying local transformations to

networks in order to remove redundant gates whi lst preserving its input/out'iut

behaviour. For example, if tt S tZ then an A-gate with arguments sl, u2"

can be el iminated since its result is rnerely s1 . This simpl if ication, and

manyothers'canbeexpressedbythisobviou'j@,Il&,

Rl : lf g1, g2, are gates (or an input and a gate) with the same functiorr

and g, does not precede g, in the netuprk then g, may be el iminatec arnd

all connections to the output of g, rEde to gt instead'

It is convenient to allow the constants 0, l, as inputs to a network, i ';

any use of these constants is clearly eliminable by applications of i{r'

More !nteresting refinement rules depend on knowledge of the output

functions of the network. We introduce here this important notion of

specjf-ic ref inepeTt. A fai rly simple transformation al lows the renr-'va!

f rom a function of terms whlch are rugelessr. For example, '"r., u bi2 b2i'
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may be replaced by '"',1t since the term 'b12 b2,l ' cannot contribute

anything essential to the final result. We define a function (set),

Dross, which contains al I such ruseless' termso

Dross = 
(,,0)Y(i ,,k,) "ik "i'k' u 

(n,J)Y(0, ,j ,) 
oni bk' j' " ,Y-i "ik bt 

' j

l#k '

In the language of assignment statements for programs,

RZ: Forany x€U,if xcscxvDrossthen s :=x.

Note that the restriction of x to input variables is not necessery for ihe

correctness of Rr, but just to ensure that the application of R, el iminates

at least one gate"

The correctness of R, may be easily established by following the effect

of the changes forward through the network. At each stage, onlyrdrossl

i s removed.

The next set of specific refinernents requires some justification. They

al I identify functions which are so extensive that they can be replaced

by l. For all i,j, we use .ij to denote the function V a., b
[ 

-ik -kj'

Lernma.

For all i+ i', j * j', and all it', jrr, and for all rnonotone f,unctioi'is s,

if s(U, a,, b* V o: r, bn,,) = c,rr:rr then s(U, 1) = c;r:rl| | rJ | | rJ I J I J

P roof .

Suppose the Lemma is false, then there is a valuation a on the

inputs such that, under c

clrrlrr = s(U, 
"i1 btj u "l,t btj,) = 0 but s(U, l) = |

-6-



Let o be a maximal such valuation, i.e. if any input value is changed

from 0 in a to 1, the value of Ci,,',, changes from 0 to l. Under a,

we must nave

"i1 bti v ai'i b1j' = Q

l./itbout loss of generality suppose ail = 0 and either (i) 
"i,1 - 0,

or (ii1 bij, = 0. Since c is maximal, changing a.'' to 1 changes cr,rlrr

Therefore i = i'r and br. = 't . In case (i) we can deduce similarly

that ir = i" which yields a contradiction. ln case (ii;, we have on

the one hand that blj,, = 1 and blj, = 0, therefore i' { iil , rvhile on

the other hand changing btj, to 1 changes cirr;r, therefore j' = j".

This contradiction proves the Lemma tr

Corol lary 1 .

lf s(U, sr) = c1,,;,, and ail br- v.a,r', brrr 9st

then s(U, 1) = c;,,1, .

P roof .

By monoton i ci tY D

Part i cu lar val ues for s' i n appl icat ions wi I I be

"i1 v ai,l, b1j u b:j', ai1 u bljt
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Corol lary 2

(i) lf s(U, ai1 orj v ai,t btj) = c1,,1,, then s(U, blr) = c,,,i,,

(ii) lf s(u, ail btj u "it bt;,) = ci,,j,, then s(u, a.,) = c1,r1rr .

P roof .

For (i), there is a monotone function st such that for all z,

s'(U, z) = s(u, zn orj). corollary 1 is applied with z = til v "i,l ;

similarly for (ii) n

Corol lary I justifies the fol lowing refinement rules, where we

assume i + ir and i+ j' always

R3: lf "il u"i,l:s thens:=1

R4 : It Orj u btj'9t then s := 1

R5: lf "i,t ubtj 9s thens:=l

Corol lary 2 yields

R5 : lf "il b1, u "i,1 Orj 3 t. bl, then s := b.'.

R7 : lf.i1 btj u "it Orj':...i1 then s :' a.l

4. 0utl ine of main proof.

A first approach might be to look for a l-l lrrapping from triples of

indices (i, j, k) to n-gates, since one might suppose there to be at least

one A-gate which ressentiallyr computet "ik n btj . However there seems

not to be anyrnaturalrsuch corresPondence. An example like figure 1,

which al lows no specific refinement, suggests some of the difficul ties.

The proof we give here relies on finding such a maPping from Pairs (i' j)

to n-gates, corresponding to the term "il n blj. These n-gates are then

el imlnated after f lxlng the values of the Inputs, ail * 'l for al I i and

-8-



b,,= 0 for all j. The resulting network is a valid network for
rJ

f x (f-1) x J Boolean product, so a new set of at least I x J A-gates

corresponding to the terms "lZ n bZi can be found, and so on. The

procedure for y-gates is similar. The arguments are greatly simpl ified by

assuming that the refinement rules have been appl ied wherever possible.

The mapping for n-gates is determined by defining for each i,j, a

predicate Q.. on the functions associated with the wires of the network.
rJ

The set of .1gj!;{ occgrrencps ot Qir, denoted by I(aij), consists of those

gates whose result satisfies Q.. but neither of whose arguments satlsfies

Q,,. Q,, is such that no input variable satisfies the predicate, butIJ IJ

c,, does. This guarantees that I(Q,,) is non-empty. We further showIJ - IJ

that the sets r(Aij) are disjoint for distinct (i,j), that r(Aij) contains

only n-gates, and that the valuation a.,, - 1, blj = 0 allows all of

r(Q,.) to be el iminated.tJ

For y-gates, we have corresponding predicates R.- Provided that

K > 1, the sets I(R,,) are disjoint, non-empty and contain only y-gates.
tJ

The same valuation allows these y-gates to be eliminated.

5. Lower Bounds.

Theorem 1.

Every (n,v)-network for I x K x J Boolean product contains at least

IJK a-gates and IJ (K-l), \r.gates.

P roof.

We may suppose that the neturcrk has the minimal total number of

gates and therefot-.e no non-trivial appl ication of a ref inement rule is

possible.
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For all i, j, define

Q,r(s)->a.tbr.; Ss 6 
"i lft t bl:{"

I(qij) is the set of initial occurrences of q,j 
"t defined in section 4.

Suppose gate g ls In I(Q,r) with argr.rnents 51, t2. lf it 15 an. r6gate

then attl", and tr.l y' t., , since Q,, (s, v sr). Therefore a., brl E t.,,

slnce -r Q,r(sr). The sanre holds for s, and so by Pl in section 2,

"lt Or:/ sr. v s, urtrlch contradf cts Q,j (tt u t2). Thcrefore g must be

an A-gate. lt ls noul easy to show that "tt S tt and b1.; S 5Z or vice versa.

llithout loss of gcneral ity, assunre the former. Thus the valuation a.l = |

rould allov the cllmlnatlon by Rl of all gates in I(Q.J).

Suppose g is in r(Q11) n r(Qt 'J,), then elther

ait v "lt t S tl and bt; 
" 

bt.;t S tt

"' " 
btJ' S t, and btJ 

" "i't 9 t2

lf (l,j) ta (l', J')r then at least one of R3, Rl, R5, is appllcable in each

case, whlch contredlcts the assumption of minlmality. Thus the sets

r(Qij) are dlsJolnt.

lf K > l, for all f rJ, deflne

*,j (s) - a,.1 o,j S s gAi, brJ 6 
" 

y'rr.

where O, - 
J' 

atk

Suppose g is in f(R,r) with arguments sl, sZ. lf it is an 
^-gate 

then

tt / Ai " btJ and "rl At r btj since R,, (rt 
^ 

rz) but

- *,J (rr) and -RlJ (sr). But P2 now implies that s,, a srf A, 
" 

btj

which is a controdlctlon. Hcnce g is an v-gate, and so both sl, s2 are

or

- t0 -



contained in A. v btj By Pl, at least one of 11, 12, say sl,

contains a.., br- and so s1 : br j, since -*,j (tt). Thus the valuation

O., j = 0 woulld al Iow the el imination of all gates ln f (R,r).

Suppose g is in r(R,j) n r(Ri,j,), then rt S btj n (Ai, v b1;,),

and so j = jr since a.., Orj S rr. Since R,r1 (sl v sr), we have

tz/bt- and therefore a,r., Orj/t, because --,Ri,j (sr). Hence

"i,1 otjStt. soa,., bllu 
"i,1 o.,jSttSbtj lf i+i' then

from R5 we have s., = brj Since

otj S tt v s, S (A, v b,r) n (Ai, u btj) Si u.,, v Dross,

R2 implies that rl, u t2 = o'j , and so g can be eliminated by Rl. This

contradiction shows that the sets I(Rij) are disjoint.

For al I i, j, no input variable satisf ies Q,j or Ri; , tuhile c. .

satisfies Q.- and if K > 1 it also satisfies R... Thus if K > l, all

the I(qij) and I(Rij) are non-empty and if we f ix a,,, = '! for al I i

and brj = 0 for all j, all the gates in I(Q.r) and f(Rij) can be eliminated.

By disjointness, this is a total of at least rJ,n-gates and rJ, lrgates.

The network which remains is a valid network for I x (f-t; x J Boolean

product since the function at the (i,j) output t. no" 
J, "il bt l

lf K = 1 then we eliminate at least IJ a-gates by the valuation.

The theorem is therefore establ ished by an inductive argurnent tr
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6. Characterization of optimal networks.

Theorem 2"

Any network for I x K x J Boolean matrix product using the minimal

numbers of n-gates and v-gatesr computet "ikn'btj for all i,j,k, directly

using IJK 1-gates and then for each i,j, computes Y ",n n bki with K-l
K-

y-gates using a total of IJ(K-l) v-gates. Thus any two minimal networks

are interconvertible uslng only the commutativity of. land y and the

associat ivity of v .

P roof .

Suppose we have a network with the minimal numbers of n-gates

and v-gates, then onlv the gates in I(qij) or r(Rij) for some irj
can be eliminated by the valuation of a., = I for all i and Otj - 0

for all j. Therefore in particular a., may appear as an argument only

in the gates of I(Qi ,i) or r(Ri,j) for some i,, j. The analysis

in the proof of Theorem I shows that the latter case is not possible,

and so a,., can be an argurnent of A-gates only. By the symrnetries of

Boolean matrix product, irrespective of the structures we have

superimposed for the sake of our proofsr gl€U, input varlable is an

argument of n-gates only. Nor,r it is easy to show for such a network

that no gate has a result s with x c s for an input x. Hence from

the proof of Theorem I we see that the 
^-gate 

of I(Q.-) has arguments

air and b1;r dfld therefore again by symmetry the IJK n-gates of arr lJ

minimal network have argument pairs (a,U, bnr) for all i, j, k. Since

the IJ final outputs must be computed directly from these IJK results

using IJ(K-l) v-gates the conclusion of the Theorem is now a trivial
deduct ion tr
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7. Concl usion.

Several of the techniques used in these proofs may have wider

appl ications. Regarding the rspecific refinements', we find that knowina

certain properties of the output functions of a network allows us to make

unexpected local simpl ifications which would not be val id in general.

It would be interestlng to know whether this phenomenon extends to

non-monotone networks, The method of examining rinitial occurrencesr of

suitably chosen predicates is very convenient where appl icable. 0f course

the difficulty I ies in choosing the right predicates, since they are not

intuitively obvious.

The results presented here give a satisfactory answer to questions

about the complexity of monotone networks for Boolean matrix product.

A closely related computation is to find the transitive closure of a

square Boolean matrix. The complexity is known to be of the same order

as that of matrix product but there is still a considerable gap between

the upper and lower bounds. I should expect a complete solution to this

problem to be very much harder to obtain.

&3.ry]€!.ss!..
Michael Fischer has been of great help in clarifying several proofs.
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