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Algebraic structures for transitive closure

Abstract

Closed semi-rings and the closure of matrices over closed semi-rings

are defined and studied.

Closed semi-rings are structures weaker than the structures studied by

Conway [3] and Aho, Hopercft and Ullman [1].

Examples of closed semi-rings and closure  pperations are given, including
the case of semi-rings on which the closure of an element is not always

defined.

Two algorithms are proved to compute the closure of a matrix over any
closed semi-ring; the first one based on Gauss-Jordan elimgnation is a
generalization of algorithms by Warshall, Floyd and Kleene; the second one
based on Gauss elimination has been studied by Tarjan[11] and [12], from

the complexity point of view in a slightly different framework.

Simple semi-rings, where the closure operation for elementsiistbrivaal,
are defined and it is shown that the closure of an n®n-matrix over a

simple semi-ring is the sum of its powers of degree less than n.

Dijkstra semi-rings are defined and it is shown that the rows of the
closure of a matrix ower a Dijkstra semi-ring, can be computed by a

generalized version of Dijkstra's algorithm.



1. Introduction

Warshall's algorithm for computing the transitive closure of a
Boolean matrix, Floyd's algorithm for minimum-cost paths, Kleene's proof
that every regular language can be defined by a regular expression and
Gauss-Jordan's method for inverting real matrices:ape: diffspent
interpretations of the same program scheme ( with one counter and an
array).

By program scheme is meant a terminating program with fixed control but
where the sets over which the variables (or some &f them) take their
values and the meaning of the alpebraic operations islzéft uninterpreted.
The purpose of this paper is to investigate the conditions of correctness
for three such schemes for closure of matrices and to show a number of
different structures in which they can be usefully applied.

The proof of correctness will be of algebraic type and under assumptions
weaker than those made in previous works ([1], [2], [3]), and without

introducing infinite sums, g

The feeling that the numerical problem of inverting real matrices was
closely related to some paths problems in graphs, has been part of the
folkore of the subject for some time and has been recently expressed by
Gondran [ 6], Backhcuseand Carré [2] and Tarjan [11] ; this work shows that,
in a precise sense, both problems are special cases of the same general
problem and proposes general algorithms which, when specialized, reduce

to the methods mentioned above.,
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It was pointed out to the author by an anonymous referee that the
algorithm for computing the transitive closure of a boolean matrix, generally

attributed to Warshall, had been previously described by B. Roy [19] .



The main novelty of this work is the definition of the closure of matrix

by induction on the size of the matrix using a decomposition into sub-
matrices, It is shown that such a definition implies the classical

equation A* = I + A,A% (1), In structures where (1) has more than one
solution it is the author's experience that it is always a simple task to
show equivalence of the inductive definition used and of any other reasonable
definition, for example by means of least solutions to (1), when a suitable

order can be defined.

2. Closed semi-rings

We shall consider algebras of the type {S, +, ., ®*, O, 1} where S
is a set, +: SXS > S and .: SxS -+ Stare binary operations, ®*: S + S is
a unary operation, and OeS 1eS are constants.
+ will be called addition, . multiplication and * closure.
In writing expressions we shall choose the infix notation a+b for +(a,b),
a.b for .(a,b) and a* for *(a)), assume that closure has precedence over
the other operations and multiplication over addition.

Sometimes we shall also abbreviate a.b to ab.

Definition: An algebra is called a closed semi-ring iff the following

equalities are identically true:

a) at(bt+c) = (atb)+c addition is associative
b) atb = bta addition is commutative
c) at+0 = a 0 is a unit for addition
d) a.(b.c) = (a.b).c multiplication is associative
e) a.l=1l.a=a 1 is a unit for multiplication
£)  a.(btec) = a.b+a.é
(btc).a = b.atc.a multiplication distributes over addition
g) a* = lta.a® = lta*,.a

- 2b -~



Note: We do not ask for commutativity of multiplication, for
io-pitempotencgidfradditieon €a%a,= a),
for (atb)®* = (a*b)*b*, (a.b)* = l+a.(b.a)*.b

or even for a.0 = 0.a = 0

It seems that axioms c) and e) asserting the existence of units for
addition and multiplication are not essential and could have been left
out had we chosen to axiomatize transitive closure proper (as opposed

to reflexive transitive closure) but the formulae would have been much
longer. It seems though that in certain interesting applications there

is no zero element (see [7] p.160 where zero is called one)

Matrix Operations

Operations similar to addition, multiplication and closure can be
defined on nxn matrices over a closed semi-ring, that make this set nearly

a closed semi-ring,

Let A and B be nxn matrices over a closed semi-ring S.

A= [%ii] i,jel1l:n] B = [Fiil i,jel1l:n]

Let us define
A+ B= Ja.. +b..]. .
[gJ ijji,jel1:n]

A,B = b a. b . .
[;;[l:n] ik g;] i,jell:n]



The closure operation on matrices is defined inductively on the size of

the matrix by decomposing the matrix into four sub-matrices. The

definition is correct because, as will be shown in the next paragraph,

the size of the sub-matrices used in this decomposition does not bear

any relevance on the definition.

Definition of the closure of a mxn matrix:

Note:

If n =1 [al® = [a*]

Ifn>1 and A = B C where, for some O < k € n :

D E

B : kxk, C : kx(n-k), D : (n-k)xk, E : (n-k)x(n-k),

then
A% = B® + B*CA%DB® BECA® for A = E + DB%C
AWpp* . A%
It is not true in general that thishisefdefiddsion

B* + B®*CA*DB* can be replaced by (B + CE*D)*; however Conway [1]
has shown that if three more identities are true in the closed
semi-ring

a.0 = 0ba =0, (a.b)* = 1 + a.(b.a)*.b (which implies

our g)) and (A + b)* = (a*b)*.a*, then the above
replacement is possible and the corresponding identities for
matrices hold. This is probably so even if only the last twe
identities are assumed.

Conversely it is easy to see that the validity of the above

replacement implies the last two identities in the presence of

the first one.

Let us now define two matrices of constants:

o, = [Cijji,je[l:n] with ci = 0 for i,jel1:n]
- . 1if i = 3

I = cede . =

n [Gljjl,jefl:n] with 6ij

0 otherwise



It is easy to verify that the analog of identities a), b), c), d) and f)
hold for matrices.

Note: the-analogue-é6fcg): A.In = In'A = A does not hold,

Correctness of the inductive definition of closure

The proof that the size of the sub-matrices involved in the definition
is irrelevant boils down to computing the closure of a matrix with néne

sub-matrices in two different ways:

- - - — -
A|lB ¢ | A BJ|cC
D|E F and D E|F
G| H I G H|I

L — l_ -

and verifying nine identities. The verification is trivial using
commutativity and associativity of matrix additionm, associativity of
matrix multiplication and distributivity of matrim multiplication over
matrix addition.

Note that axiom g) is not used in this proof,

The verification is carried out in Appendix 1 of [9].

Completion of a partiala closed semi-ring

Define a partial closed semi-ring to be an algebra of the type
described above, where closure is only a partial function and satisfying
a) ... f) and g) whehever the ckasyre of a is defined. If S is a partial
closed semi-ring then SU{u} (where u¢S is a new element and stands for
undefined) canlbe made a closed semi-ring by adding these definitions:
u+a = atu = u, d.,u = u.a = u, ut =y add a* = u if a* was not
previously defined.,

SY{u} is called the completion of S.



The careful reader now understands why the trouble was taken not to

include the identity a.0 = 0.a = O in the list of axioms and to deal

with identity matrices In which are not real identities.

We shall now prove

But first

Lemma 1:
1)
2)

Proof:

f{i + B).Al .
L__'n ~___J.

1

a lemma:

that the analogue of axiom g) holds for matrices.

If A and B are nxn matrices over a closed semi-ring then:

(In + B).,A = A + B.A

A (I + B)
n

A+ A,B.

z
>J k=1l,n

And symmetrically for 2).

Theorem 1:

If A is a nxn matrix then:

A% = I+ AA% = T 4 A% A
n n

(0 + bik)akj

Proof: The two equalities being symmetric let us just prove the first one.

By inducti

on on n.

Ifn=1 &% =1+ a.a* by g)
' _ e o
If n>1 suppose A = C : kxk
E F
With A = F + EC*D, by definition:
[—E* +. CEDARE CEDAS
A" = | A*ECH A%
N [CC* + CC*DA*EC* + DA®EC*  CC*DA* + DA%
EC* + ECYDASEC* + FAED®  EC*DA%* + FA%




But by the induction hypothesis:
% = % %= 3 %
c* = Ik + C.C* and A g & 84
By lemma 1:
DA*EC® + CCY*DA*EC* = (I, + CC*)DA*EC* = C*DA*ECH

DA* + CC*DA* = (Ik + CC*)DA* = C%pp%

EC* + EC*DA®EC* + FAYEC* = EC%* + AARECK = (I, + Aa%)ECH

ASE %

EC*DA* + FA* = Ap%

o HNART Ok STy A
Then I+ A.A% = I, + CC* + C*DA*EC C*DA
A*EC T+ b
S

= A* by the induction hypothesis.
Q-EoDo

Corollary 1: ALA* = A + AA%A = AZA

By Lemma 1 and Theorem 1

Corollary 2: A% = In + A + AA%A
By Theorem 1 and €orollary 1,
Corollary 3: B + AA*B = A*B and B + BA%A = BA®

By Lemma 1 and Theorem 1.

3. Examples of closed semi-rings

Boolean semi-ring: { {0,1}, v, A, T, 0, 1 } where T(0) = T(1) =1

The closure of a Bodlean matrix is its transitive and reflexive
closure.
A proof of that fact can be obtained either directly by

induction or using paragraph 5 on simple semi-rings.

{ﬁ+U{+”} > Min, +, Z, +o, 0}  where R+ is the set of

non-negative real numbers

is a closed semi-ring wheee Z(a) =0 aeR+U{+w}.

_.7_ . . e



The closure of a matrix over this semi-ring is the minimum-cost
matrix for the labelled graph yielded by the matrix.
{8V {+o, —=}, Min, +, ¥, 4+, 0} where R is the Set of

O0ifa=0

w if a < 0

real numbers and a* =é/

is a closed semi-ring, if (+») + (-®) = +o,
The closure of a matrix gives the minimum-cost matrix for the
corresponding labelled graph, or -» when there are paths of cost

as small as desired.

Similarly {Q ®{+w, -w}, Min, +, * +w, 0}
and {2 U4, ~w}, Min, +, *, +=, O} are
closed semi-rings,

and so is

{B+U{+w, ~w}, Max, +, @ ==, 0}

@ -
with 2 +o if g > 0
0ifa=0

On this last closed semi-ring the closure of a matrix gives the
maximum cost paths in the corresponding graphs or +« if there are

paths of unbounded cost.

{RJJ{+M}, Max, Min, «, O, +»} where »(a) = +» is a closed semi-ring

and the closure of a matrix over this ring gives the maximum-capacity

paths.

More generally if L is a lattice with operations V and A and bottom (L)
and top (T) then {L, Vv, A, T, 1 7} withT(a) = T is a closed

semi-ring.



{P(*), U, . , *, ¢, e} 1is a closed semi-ring if

I is an alphabet, ¢ the empty word, . concatenation and

{8 Y{ul, +, . , s, 0, 1} is a closed semi-ring for

—— for a 31 and 1% = u

s(a) 1-a

and a+t+u=u+asu wuw.azamu=-u and u
The same is true if & is replaced by C.

In this closed semi-ring, if a matrix A is such that A* does not contain
u then A* = (I—A)“l (A does not contain u either), by theorem 1.

A-_l may be computed by computing the closure of I-A, at least if (I-A)*
does not contain u.

Unfortunately there are non-singular matrices A such that (I-A)%* does
contain u.

Still if P is a permutation matrix such that (I-PA)* does not contain u
4then

(I-PA)* = (pA) % = a1 p71

and
a5 — a—l . -1
(I-PA)*P = A ~, and the computation of A may be reduced to that
of closure.
Conversely, if A is non-singular there is a permutation matrix P such
that PA can be inverted by Gaussian elimination without pivoting. As

shall be seen later Gaussian elimination method without pivoting applied

on B computes (I-B)*, then (I-PA)%* = (PA)--l and does not contain u,



{F,W,°,%,Ax1,Axx} is a closed semi-ring if L is a complete lattice with
zero element L (iMaza ) and upper-operation U,
F is the set of all functions: L - L satisfying :
(2) fUA) =U{f(a) | aeA } for any AcL, A#
U is defined by (flg)(x) = f(x)Mg(x) with an obvious notational ambiguity,
° is function composition,Axl the constant function bottom and Axx the identity,
and * is defined by:

0,1, «e. )} .

(3) £60 =Ml | 1
On this semi-ring the computation of the closure of a matrix amounts to
a global data flow problem [7].
All distributive global data flow problems can be treated as transitive
closure problems but non-distributive problems, where (2) is replaced by
the weaker assumption that the functions of F are monotone, do not seem to

fit into our framework.

~Qb-



L, Warshall-Floyd-Kleene's algorithm.
Gauss=Jordan method.

An algorithm will now be presented, to compute the closure of

a matrix,

WEK- algorithm ([101, [13], [5], [8])

Input: A = [?ii]i,je[l:n] a5 € § closed semi-ring

begin
1. for each i,jel1l:n] do Ao[i,j] « A[i,3];

2. for k:=1 step 1 until n do

3. for each i,jell:n] do

beo AL5,3) © AT 3Teep L6,k (Ak_l[k,k])ﬁ"Ak_l[k,j];
5. for each i,jell:n]l do

6. R[i,j] « Gij + Akﬁi,j];

1‘,

end

Output: R[i,j] for i,jell:n]
Note: aij in line 6 is 1 for i = j and O otherwise.

This algorithm is a straightforward translation of Kleene's proof
that every regular language can be represented by a regular expression.
Floyd's algorithm for minimum-cost paths in directed graphs is a
specialization of the above algorithm to the case where a® = 1 #aeS and
Warshall's algorithm for the transitive closure of Boolean matrices is
its specialization to the closed semi-ring {0,1},

The algorithm computes the "transitive" closure of A in An and its
"transitive and reflexive'" closure in B.
Its specialization to the closed semi-ring & U{u} is Gauss-Jordan method

for inverting matrices, without pivoting.

- 10 -



" The repetytive statements used are of two types, the for statement

of ALGOL, and a for each statement indicating that the order in which

the

For

For

The

for

values are given is of no importance,
each i,jel1:n] is an abpreviation for
each (i,j) e [1:n] x [1:n] .,

algorithm uses n+l different matrices A (0<k <n)

simplicity. It is not difficult to write an equivalent algorithm

using only one such matrix, taking care that entries in the matrix are

not

changed before they are used.

We shall now proceed to proving that WFK-algorithm computes

closure of the input matrix A.

in R the



Notations: If C is a nxngmatrix let us define C to bér

[1,k1[5,8]
its submatrix consisting of rows i to k and columns j to f.

(1<i<k<n,1<j<<).
To simplify this notation the full interval [1:n] will be abbreviated

to . and the one element interval [i,i] to i.

Examples: Ai is the ith row of A

Aij is the element A[i,j]

In matrix notation the algorithm computes a sequence of nxn matrices

A(k) for 0 < k < n defined by:
a©) = 4
- - -1 )% - < <
A0 _ pGe-1) o Ge-1) s, (R-1) At for 1<k <n
k. kk ke
and the output R by:
R =14+ aM™
n
We shall now prove that A(n) = A + AA%,A, the proof not relying

on assumption g).

Theorem 2: For any kelo:n]

(k) = &
AT A A.[L€K3<A[l:k][l:k]) A1 .

(with the convention that A.[l:O]’ A[l:O],[l:O] and A[l:O]. should
just be ignored).
(n)

This obviously implies A = A+ A A%RA,

Proof: By induction on k.

For k = 0 A©) = 4,

-12 -



For k = £ + 1 (0€2<n-1)

a0 2 (), A% )y afh) (1)

by the preceding matrix-form of WEK-algorithm;
and by the induction hypothesis:

(2’) - E3
A=A+ A 1 Prrnie ) Ariie, (2)
Define B = Ary pqr1:e3® B 7 Arueey e Q7 Arpgaqe o
Then:
A 24 s B*Q
Kk .k d1:2]
(Q’) - 3
AT T ALY PBRAL o0
(2) _ .
Ao = Ag T BBRQ
. _ L) &
Define A = Akk = Ak,k + PB=®(Q

The respective positions of B, P and Q in A are illustrated by

columns
Fig. 1

Qrows | B Q
A - F

Rewriting (1) using (2) we get:

(k) - 3 % 3 t3
AT = A+ A 0B Ay t E.k ¥ A.[l:l]B‘ﬂ A% Ek t EB An:u]
(3)

- 13 -



But, by definition of the closure operation:

b &
A N B Q _ B* + B%#QA*PB%* B%“QA%

and

Ar1aa (Rriaxari:xg By,

b o b3 % % 3 % %
Ar1:py (BF ¥ BFRQASEEE) Apy g+ A ARPBYAL, g A [ BROARA
%
+ A.k A %(.
Comparing with (3) gives A(k) = A+ A A * A
LL1:k] [1:kJ[1:k] [1:x3,

Q.E.D.

Corollary (using g) again): R = A%

Proof: R=1 + alm) . I+ A+ AA*A and by
corollary 2 to Theorem 1:

R = A*.

5. Gauss method

Another algorithm shall now be introduced for computing the
closure of a matrix, the specialization of which to the semi-ring & U{u}

is Gauss algorithm for inverting real matrices (without pivoting).

Gauss algorithm:

Input: A = [aij]i,je[l:n] aijeS closed semi-ring

begin
1. for each i,je[1l:n] do Go[i,j] < Ali,3];

2. for k:=1 step 1 until n do

3. for each i,jel[k:n] x [1:n] do

- 14 -



A3

»
4, Gk[l,j] + Gk_l[l,]] + Gk_l[l,k]. Gk_l[k,k] Gk_l[k,j];
5. for each i,jell:n] do
6. B(1,31 « 6,[1,i];

7 for i:=n-1 step -1 until 1 do

8. for each j,kell:n] x [i+l:n] do
9. Bli,j] « BLi,j1 + G,[i,k] Blk,jl;

10. for each i,jel1:n] do
13. R'[4,3] « 6., + BL4,33;
end

Output: R'[i,j] for i,jell:n]

Remarks: The algorithm is a straightforward translation of Gauss

inversion method.

In the version presented above the use of memory space is very inefficient
but,as with WFK-algorithm, it can be reduced to one nxn matrix by

obvious changes.

The essential differences with WFK are that in statement 3 i puns only
from k to n instead of from 1 to n and that a second pass, upwards, takes

place after statement 7.

The advantage. of Gauss method is apparent when one may suppose that
O.a = a.0 = 0 (for all the a's which arise during the execution of the
algorithm) and when the input matrix A contains a large number of zeros.

In this case the zeros stay in longer in Gauss method than in WFK,

In 117 Tarjan,under assumptions close to ours but seemingly incomparable
with them, has shown that, with suitable data representation, Gauss method
may be implemented in a number of-basic steps (on a random access machine)
which ié almost linear in the number-of-non-zero entries in the inpgt matrix
for a large claps of matrices with restricted zero-non-zero structure. The
author is hopeful that this remains true under the present assumptions{when

a.0 = a.0=0). - 15 -



We shall now proceed to showing that the above algorithm computes in
R' the closure of the input matrix A. References will be made to the

notations used in the proof of correctness of WEK.

Clearly, in matrix notation, the first pass of the algorithm

(statements 1-4) computes of sequence of n+] matrices

G(o), G(l)...G(n) such that:
6@ =2 o, W2 AW a2 a9 s 1<k<n,
[k:n]
Then in statements 5-6 it computes a matrix B(o) such that
BéO) = Aik) for 1<k<n,
(o) B (1)_~
or more picturesquely B °/ = Al
(2)
Aa.
A(n)
Tte

Then in statements 7-9 the algorithm computes a sequence of row

(n) B(l)

vectors B seeey such that:
B(n) = gle) _ A(n) and
n. n.
— —
g (k+L)
(x) _ (o)
B =B 7+ By k+1:n] B(k+2)
5(n)
Theorem 3: For any k 1<k <n, B = Aén)
Proof: By backwards induction on k
For k =n 8™ = p™
n.
For k = 2-1
5 L p(0) | (o) [t
= Bt Belxe1in)
* T B(k+2)
g
—E(n) _J
= LK) (k) (n) . .
= Ak. + Ak[k+l:n]' A[k+l:n] . by the induction hypothesis.

- 16 =



Let us now consider a partition of A into sub-matrices

a=1B C such that B is kxk.
D E
Precisely: B = Arjaqmk:k] * © 7 Aryiirxelind
D = A[k+l:n][l:k]’ E = A[k+l:n][k+l:n]
By Theorem 2: A = A + A A ‘\ * A
y theorem <: - JL1:%] [l:k][l:kj/ [1:k]. °®
and A = & + aa%a.

or using the partition into sub-matrices:

_
J_ B ¢ + | BB [Boe3
o E D
% £
= | B+ BE*B  C+ BB®C if we define A = E + DB*C .
" | D + DB*B A

By Corollaries 1 and 3 to Theorem 1: B + BB*B = B*B A+ AA%A = A%A

C + BB*C = B%C and D + DB*B = DB%,

Consequently: —
B%B B*
A(k) ° d
B 1) N B e
A(n) = ARA = B* + B*CA*DB®*  B*CA* B C
_A*DB* A D E

because the definition of the closure of a matrix is independent of
the size of the sub-matrices chosen.

Then

(k) o %
Ay, F [%;.B Bkét]

(k) - o

k[k+1:ml - Bk.C

(n) = [ ASETIRE: o STy KX - LN R KX
A[k+l:n]._"[a DB*B + A®D A®DB*C + A%XE] = [A®*DB A%A]

- 17 -



Then:

gk 00,00 (n)

k. k[ k+1:n] [k+l:n].

[ . .
= % + B SDB* & B fA
Bk.B Bk.CA Bk.C + k.C

- g& B + B* CA%DR* Bﬁ CA*J

k k
But (n) :: :
A = P % LR % & %, B LD RS % %
Kk Bk.B + Bk.CA DB*B + Bﬂ.CA D Bk C + Bk.CA DB*C + Bk.CA %]
- B(k) QoE.Do

From that it follows that the output matrix R' is:

(1)
R' = It B = I + A(n)

M =A* °
E(n) n

6 Simple semi-rings

A class of closed semi-rings will now be defined in which the star
operation is simple to perform: a® = 1 for any aeS. A characterization
of the closure of a matrix over a simple semi-ring will be given that
relates the closure of a matrix to the sum of the labels of the elementary

paths between couples of nodes.

Simple semi-rings are exactly the Q-semi-rings of Yoeli T[141, and the
fundamental property below shows that our definition of closure is a correct
version of his not quite correct definition of the transmission matrix (not
qQuite correct because infinite sums are used without ever being properly

defined; similar carelessness is found in [1] and [2].).

-18 ~



The regular algebras of Carré and Backhouse are close to our simple semi-rings
(they do not assume a+l = 1 but assume a+a = a and a rule of inference); their
axiomatization makes an extensive use of the order: asb iff atb = b and this seems
to take us far away from linear algebra. The author does not know how to compare

the strength of the axioms for regular algebras and simple semi-rings.

Definition: A closed semi-ring is called simple iff, in addition to assunpticns

di...8), the following is true

h) atl = 1 .

"
[
-

A number of identities follow, for example: 1 + 1

at+ta=a, a*=1, a+a.b=a+ b.as=z

1
o
-

a.b. + a.c,b = a,b, 0C.a = a.0 = 0.

The last of these identities is proved by: 0O.a = 0+ O.,a = 0(1 + a) = 0.1 =

i -18b-



The next theorem will provide a link between closure of matrices
and labelled paths in a graph and be used to prove as a Corollary that,
over simple semi-rings, closure behaves reasonably with respect to

interchanging at the same time rows and columns.

This last result has already been proved in [3] by Conway (p.111) under
much weaker assumptions (though the whole proof has not been printed)

and as it is the only result of importance for the next section, a reader
familiar with Conway's results and uninterested in graphs may skip to the

next section.

Fundamental property of simple semi-rings

If A= [?ii]i,je[l:n] is a nxn matrix over a simple semi-ring

and B = A% = bij i,jell:n]

then b.. =6.. + h) a. a .
1] 1] m lkl klk2 km—lkm kmj
kl,...,kme[l:n]

k k all distinct
lyeeoa,

and different from i and j.

A full proof is given in Appendix 2 of [9] and a brief summary will

only be given here.

Sketch of the proof of the fundamental property of simple semi-rings

There is an obvious way to look at a nxn matrix as a labelled complete
directed graph on n vertices, and to attach a label to all directed paths.

The fundamental property of simple semi-rings says that the (i,j) -th
element of the closure of a matrix A is the Squ’of the labels of all
elementary paths from i to j. The property can be proved by using the

inductive definition of A% or by using the fact that A% may be computed
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by WFK - algorithm. We choose the latter. It is enough to prove, with the nctations
used in Section 4 that for kel0:n], a(k) is the sum of the labels of all non-enpty

-

elementary paths from I to j the Intermediate vertices of which are in [1:k].

The assertion is proved by induction on k by simple algebraic manipulations.

Theorem 4: If A is a nxn matrix over a simple semi-ring

AR =T+ A+ A% 4.4 a%1

Proof: An elementary path has length less or equal to n-1 and the

labels of all elementary paths of length % are terms in some element

of Az.

Conversely a term in an element of Az (2<n) which is the label of a
non-elementary path is absorbed by a term of Ak for k< which is the

label of a shorter elementary path.
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Corollary: If B is the matrix cbtained from A by interchanging rows i

and j and columns i and j then B* is obtained from A* by the same exchanges.

This is not true for a general closed semi-ring but Conway has shown
in [3] that it holds if the three following identities hold:

a.0 = 0.a =0, (a+Db)* = a*(ba)*, (ab)* = 1 + a(ba)*b.

This implies that if A= B C then
D E

A% = | BT BTCER for A = B + CE*D.

E:‘:DA:’:E:’: + E®DA%*CE®
i -

7. Dijkstra semi-rings and Dijkstra's algorithm.

Definition: A Dijkstra semi-ring is a simple semi-ring in which

i) a+b-= a or
b

Note: It is easy tc see that a Dijkstra semi-ring is totally ordered
by the relation: a 2b iff a+ b = a.

The addition is then a maximum operation in the ordered set:

a + b = the maximum of a and b.

The closure of a matrix over a Dijkstra semi-ring can be computed row

by row by the following algorithm,

Dijkstra's algorithm [4]:

Input: A = [aij]i,je[l:n] a4 elments of a Dijkstra semi-ring ,

or e[1l:n]
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begin
1. T « {or} ; .
2. b [or] « 1;
3. for each iell:n] - {or} do Db[i] « Alor, il;

L, for each ke[2in] do

5. find a jell:n] - T such that b. = z bl;
2el1:n]-T
6. T « TU{j}; ..
7. for each iell:n] - T do bli] « bl[il + bL[31.A[F,i];
end

OQutput: b{il , iell:nl]
. . . th &
Claim: the output B = [b[i]l], is the or " row of A%,
~Laim iell:n]

Notice that statement 5 has a clear meaning in a Dijkstra semi-ring

because of property i).

Proof of correctness:

By the corollary to Theorem 4 we may supoose that or = 1 and that 3

in statement 5 is equal to k. Then the algorithm computes a sequence of

p (1) (@)

I rows: » the last one being the output, such that:

(1) _
b - E Al[z:n]

(k+1) _ () (k) <k<n -
b =b o+ Db _Ek+l Ak+1[k+2:q] forl<k<n-1

. (x) .
where Ok is a row of k zeroes and bk+l is such that
n
béti = 1 plM)
2=k+1

The correctness of the algorithm. follows from
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Theorem 5: For any k 1<k<n

(k) = £
b = (a )1[l:k] [?£ A[l:k][k+l:ni}

where Ik is the identity matrix of size k.

. L) [T (1)
(i equivalently: b " = [EA D101 k] b[l:k]A[l:k][k+l:niJ

Proof: By induction on k.

) 1) _ _
For k=1, b~ = l{E_AlEQ:niJ = [; Altzzni]

because (A*)ll = 1 for any A.

(k-1) _
bk, - )

(k) _ . (k-1) (k=1)
™7 =b * by [jok Ak[k+l:ni]

(k-1) (k-1) . b(k—l)
[1:k] {k+1:n] k

For 1 < k < n: and

b A

k[k+l:n]

By the induction hypothesis:

(k-1) - b(k-l
[k+l:n] = “[1:k-1]

(k) _ [, (k-1) (k-1) o
b - [;[1:k] b[l:k] A[l:k][k+l:n1j

A and

b [1:%x-11[k+1:n]

It is left to prove that:

(k-1) _

b[l:k] -

(B 111053

(k—l) -_ (A;V= )

By the induction hypothesis: b[l:k-l]_

101:k-17

and

n
JOe1) 3 (ke1)

k 2=k 2

(k-1) o (k-1
bk + I b2 ) (l+B2) for any column B

2=k+1

(k-1) (k-1)
K bz + b[k+l:n] B[k+l:n]

L

1"~ 3

(k-1) (k-1) B

= b
Kk * [k+1:n] [k+1:n]

- 22 _



ofa
w

We may choose B = [ A, .
</ (k:nJlk:n] [2:n]1

then

k-1 k-1 ) )
ﬁ ) Ek n% <f[k inllk: ni> because in a simple

semi-ring the diagonal of a closure matrix contains only ones.

By the corollary to Theorem 4 it is clear that:

B = 90 A[l:k—l][k:n]@k:n][k:n]) L
- 1 (k=1) . . .
= bk by the induction hypothesis.

Q.E.D.

Notice that the hypothesis i) is not used at all in the proof of

correctness it only guarantees that statement 5 of the algorithm

meaningful.

- 23 -
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Appendix 1

Let us compute the closure of the square matrix

C
P = D E F where A, E and I are square
H I

using two different decompositions,

Decomposition 1:

P = F
H I
A, = 1+rcH]|AB|T |C
1
D
J
AB| % A% + A*Bﬁ?DA* A*Bﬁ?
= for Gl = E + DA*B
DE GiDA" 61
and
= I GlA® + ANBSHDAS HDAT RGN 3 .
Al + G[A A BGlDA 1c + HélDA C + GA BGlF + H6l F
= I 4+ GA®C + (H + GA*B)G?(F + DA*C)
At B' C'
P = Dt ' P!
G'* H' I
I' = A%
[G'" H'] = A%*[G H] ABT] - A%G(A% +A*BS*DA®) + ARHSHDA®
1 DE 1 1 171 ?
HGATRSH SHES
AlG BSl + Al Gl:]
' 13 r &3 SRSHDAS B3 HRAS 7‘:—!
C - AB C A? - (A% + A BGlDA )CAl + A BGlFAl
P! DE F
SDANCOAR KEAS
—.GlDA CAl + 61FA1
A' B AB7" [ABTT Te ABT
= + A% [G H]
D' Et DE D E_A F DE
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Al = A% + A*BSIDA® + [(A* + A®BSYDA*)C + A®BSHF] 4% [G(A* + A*BODA*)

+ HE%DA*
i ]

! SRE E3 HRENDAS SREN b3 TRS% ES
B A*BS% + [(A* + A BGlDA )C + A BalF] A% eY:\ Bé% + Hsl]

o}
11

85 DA% +[61DA"C + GiF] Ai [G(A* + A BéiDAn) + HsiDAﬂ]

E'

P TPAT & b3 TRE® E3
61 + [GlDA C + &%F] Al [GA 61>+ HGl]

7 + &% [F + DA*C] A¥ [H + GA*BJ6¥

Decomposition 2:

>
"

A R BV USRS

H I ¢ |

E + DA*B F + DA%C N F + DA*C
© | H + cA*B I+ GA%C | ~ | H+ GA®B I + GA%C

I+ GA*C + (H + GA*B)&?(F + DA*C) = A

O
It

1

. §% + &% + B3 A A B3 % E3 3
o = ¥ Gl(F DA*C) 4% (H + 6 B)&% §%(F + DA clax

% (H E % b
AT (H + GA*B)6% iy

It A%

1

1 % (H ES %
H Al( + GA B)<Sl

Las |
t

= &% At t
Gl(F + D C)Al
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t = 8% E3 E3 % £3 £3
E 61 + Gl(F + DA C)Al (H + GA B)Gl

D! D
| =% |g | A

t = t3 E3 E3 & E3 & E3 t3 E3 &3
D ([61 + Gl(F + DA*C) Al (H+ ca B)Gl] D + Gl(F + DA C)AlG A
= SEDAS B3 t3 b3 L3 t3 SDAS
GlDA + Gl(F + DA*C) Al (GA* + (H+ GA B)GiDA )
1 = A% JAS TDAT SCAN
G Al (H+ GA B)GlDA + AlGA

[B' Cc'] = A*[B c]ag

t o= AR £ & % E e % KOAS & %
B A B<;l + Gl(F + DA*C) Al (H + GA B)Gl + A CAl(H + GA B)Gl
= A%BSS L HBREADAT RB&* A:L . % ]
A*BSY + ] (A + A¥BSIDA*)C + A*BOIF § (H+ GA*B)&%
CY = A%B&®R % T4 ABOAR
A*B l(F + DA C)Al A CAl
At =

LS A*[B c] A [D] A%
2 G

A% + p% B(gf + S%(F + DAC) A% (H + GA*B)G%) D + CA¥(H + GA*B)S%D

1

& + & b o (3
+ BGl(F DA c)Al + CA;é] A

A* + A*BG%DA* + A% (ﬁsi(P + DA*C)+?) Ai (1H + GA*B)ain + é) A%

Comparing the expressions cbtained for the elements of P# by both methods

one sees that they are equivalent,
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Appendix 2

Before we proceed to the proof of the fundamental property of

simple semi-rings some terminology is required.

A nxn matrix can be viewed as a labelled complete directed

graph on n vertices. aij is the label of edge (i,j).
To any path (ko, kl, k2,...,km) from,ko to km in the graph can be

associated a unique label: a a -
: kokl kle' km—2km—l akm—lkm

The label 1 is associated with the empty path from kO to ko, for all ko.

The fundamental property of simple semi-rings says that the (i,3)-th

element of the closure of a matrix A is the sum of the labels of all
elementary paths from i to j.
Proof: We could use the inductive definition of A% but we prefer to

use WFK-algorithm,

(n)

R = A% = In + A and it is left to show
h (n) _
that aij = z Bpp eredy T the sum of thée labels of
m ] ms
kl""’kmetl:nj J all non-empty elementary

paths from i to 7.

k km all distinct

l,o.-

and different from i and j.
We shall prove that for any £e[0:n]

(2) _ . -
a..’ = pX a. ...a = sigma(2,1,3)
13 ik .
m 1 mj def

kl,...kme[l:zj
kl,...km all distinct

and different from i and j.

= the sum of the labels of all non-empty elementary paths

from i to j the intermediate vertices of which are in [1:2].
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ag?) = a,. = sigma (0,i,J)

For 2 =0 .
1] 1]

L) _ (h) + a(h) a(h)
i T 25 ie* %3

(h)\ _
because (aZJL = 1.

By the induction hypothesis:

h +1., By WFK-algorithm: ai

For 2

2’ -
aij) = sigma (h,i,j) + sigma (h,i,%2).sigma (h, 2,3)

Let us consider sigma (2,i,j): its terms are labels of non-empty
elementary paths from i to j the intermediate vertices of which are

in [1:h+1]; of those the labels of the paths of which g = h+l is not
an intermediate vertex are terms in sigma (h,i,j) and the labels of the
paths of which £ is an intermediate vertex are terms in the product
sigma (h,i,2).sigma (h,%,j) because & is visited only once in such an

elementary path.

Conversely all the terms of sigma (h,i,j) appear in sigma (h+1,i,j);

suppose aikl'°'akm2' a!ml...ahm’j is a term of sigma (h,i,2).sigma (h,%,3).

If (i,kl,...,km,z,hl,...,hm,j) is an elementary path it appears in

sigma (2,i,j) if it is not elementary there is a vertex v which is
visited twice (and at least once as an intermediate node):

v=k =nh . v:j_:ht Orv:kszj‘

Let s be the smallest integer such that ks is visited twice and let t be
the largest integer such that ht = kj. Then (i’kl""’ks’ht+l""’j) is
a non-empty elementary path from i to j which does not go through %2 and

its label appears in sigma (h,i,j).
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By the identities:

R N s N N L SR B % "'akmzazhl"'ahm,j

1 s-1 g T t+l m 1
= a — l+ a oo eeed .
: h h
ST S [:- LRI N j} LI NS
= 3. s sl a o0 d .
ey "7 kg gRg BBy Bped

A1l the terms appearing in sigma (h,i,%2). sigma (h,%,3) which are not

in sigma (2,i,j) are absorbed by terms of sigma (h,i,j) and:

sigma (2,i,3j) = sigma (h,i,j) + sigma (h,i,%).sigma (h,%,3)

%)

5 = sigma (£,1,3) Q.E.D,

and ag
i
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