
http://wrap.warwick.ac.uk/   

 
 

 
 
 
 
 
 
 
Original citation: 
Lehmann, D. J. (1976) Algebraic structures for transitive closure. Coventry, UK: 
Department of Computer Science. (Theory of Computation Report). CS-RR-010 
 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/46308      
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
A note on versions: 
The version presented in WRAP is the published version or, version of record, and may 
be cited as it appears here. 
 
For more information, please contact the WRAP Team at: publications@warwick.ac.uk  

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/46308
mailto:publications@warwick.ac.uk


The Univensity of Warwick

THEORY OF

COMPUIATION
REPORT

N0. t0

ALGEBRAIC STRUCTURES FOR TRANSITIVE CLOSURE

by

DANIEL J. LEHMANN

Department of Computer Science
Uni versi ty of l^larwi ck
COVENTRY
CV4 7AL
ENGLAND

FEBRUARY I975



Algebraic str:uctur"es fon tr"ansitive closure

Abstnact

Closed semi-:rings and the closune of matnices oven closed semi-r"ings

ane defined and studied.

Closed semi-::ings ane stnuctunes weaker than the str^uctunes studied by

Conway [3] and Aho, Hopcnoft and Ullman [1].

Examples of closed semi-rings and cl-osune 'ppenations are given, incJ.uding

the case of semi-nings on which the cfosune of an el-ement is not always

defined.

Two algor.ithms are pnoved to compute the cl-osune of a matr"ix oven any

closed semi-ning; the finst one based on Gauss-,Jordan el-irirfination is a

genenalization of algor:ithms by Wa:rshallo Floyd and l(feene; the second one

based on Gauss elimination has been studied by Tar.jan [ 11] and I 12] , fnom

the complexity point of view in a slightly diffenent framewonk.

Sinrple semi-nings, whene the cfosure openation for elementsiist$iitia],

ane defined and it is shown that the closune of an nln-matnix over a

simple semi-ring is the sum of its powens od degr"ee less than n.

Dijkstna serni-rings ane defined and it is shown that the rows of the

closur:e of a matnix ouen a Dijkstra semi-r"ing, can he computed by a

genenalized vension of Dijkstnars algonithm.
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f. Introduction

WanshalLrs algonithm for computing the tnansitive closure of a

Boolean matnix, Floydts al-gorithm fo:: minimum-cost paths, Kleenets pnoof

that every regulan language can be defined by a r"egulan expnession and

Gauss-Jordanrs method fon inver.ting ::eal matric€srmer.d{ffuAtt

intenpnetations of the same pnog:ram scheme ( with one counte:: and an
'l

anray). -

By prrcgnam scheme is meant a te::minating pnognan with fixed control- but

whene the sets oven which the var:iables (or some 6f them) take thein

val-ues and the meaning of the a1$ebnaic ope::ations isLlb|ft uninterprreted.

The pu::pose of this papen is to investigate the conditions of cor"rectness

fon thnee such schemes for: closure of matnices and to show a number" of

diffenent structunes in which they carr be usefully applied.

The proof of connectness wilt be of algebnaic t54pe and unden assumptions

weaken than those made in pnevious works ([1], l2), nf), and without

intnoducing infinite sums.

The feeling that the numenical pnoblem of inventing real- rnatrices was

closely rel-ated to some paths pr.oblems in graphs, has been pant of the
folkone of the subject for some time and has been recently expr.essed by

Gqndnan [ 0J, Backhcueand car,rd I zf and rar"jan I lr] ; this wonk shows that,
in a pnecise sense, both pnoblems are special cases of the same genena]

pnoblem and pnoposes generar argonithms which, when speciarized, neduce

to the methods mentioned above.
J_irf${D

* rt was pointed out to the authon by an anonymous nefenee that the

algorithm fon computing the transitive closu::e of a boo]ean matnix, generally

attributed to warshalI, had been previously described by B. Roy [1e.
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The main novelty of this wonk is the definition of the closune of matrix

by induction on the size of the rnatrix using a Cecomposition into sub-

matrices. ft is shown that such a definition implies the cl-assical

equation A:': = f + A.A:'r (f). In structures where (l) has more tharr one

sol-ution it is the authorts experience that it is always a simple task to
show equival-ence of the inductive definition usecl and of any othen reasonab-l.e

dcf.'-i+'i^- €^-ss.trr:rLrurl, rL,r,exampl_e bI means of l-east sol-utions to (t), when a suitable

or"der- can be defined. 
,,

2. Closed semi-rings

We shal-] consider. algebnas of the type {S, *, ., ,l , O, I} where S

is a set, *: SxS + S and .: SxS -) S+ar"e binary openations, *: S -+ S is
a unary operation, and OeS leS a::e constants.

+ wil-I be called additiono . multiplication and * closune.

In writing expnessions we shall choose the infix notation a*b fon +(arb),

a.b fon .(arb) and a:t for "t(a)), assume that closur.e has pneced.ence oven

the other operations and multiplication over additiOn.

Sornetimes we sha1l also abbrreviate a.b to a.b.

Definitioq: An algebr:a is cal1ed a closed seni-ring iff the following

equalities ane identical_ly tnue:

a) a+(b+c) = (a+b)+c addition is associative

b) a+b = b+a addition is commutative

c) a+O = a O is a unit for addition

d) a.(b.c) = (a.b).c rmltiplication is associative

e) a.I = l.a = a I is a unit for. mul_tiplication

f ) 6. (b+c) = a.b+a. c

(b+c) .3 : !. a+c. a mu.l-tiplication distr"ibutes over addition

g) a* = I*a.a:'s = l+a:t.a

-2b_



Note: We do not ask fon cornmutativity of multip.l-ication, fon

i . -;:pidenpgtercyddftaddit:i.oa (aod,= 
";,

for: (s1f ):! = (a*b )*brt , (".b ):l = l+a. (b. a)t .b

on even for a.0 = O.a : 0

It seems that axioms c) and e) assenting the existence of units for

addition and rnultiplication ane not essential- and could have been left

out had we chosen to axiomatize transitive c.l-osut?e pnoper (as opposed

to reflexive tnansitive cl-osu:re ) nut the formulae woul-d have been much

longen. It seems though that in certain inter:esting applications thene

is no zero element (see IZJ p.160 whene ze::o is cal]ed one)

Matrix Openations

openations similar: to addition, multiplication and closune can be

defined on nxn matnices over a closed semi-ning, that make this set nearlv
a cl-osed semi-ning.

Let A and B be nxn matnices oven a closed semi_ning S.

^-f--lA = Ia..l D - la -1

t_ ijJ i,je [r:nJ u - l]r:j i, je [1:nJ

Let us define

-3-
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The closune oper.atior: on matrices is defined inductively on the size of

the matnix by decomposing the matr.ix into four sub-matnices. The

definition is conrect because, as will be shovrn in the next panag::aph,

the size of the sub-matnices used in this decomposition does not bear

any relevance on the definition.

Definition of the closune of a txn matrix:

A:t= F,-g:'sg6rrpg:'c B,tcd;l fon A=E+DB*c
tl
Lt*on,. A:! J

$g3, It is not true in gene::al that thithflsfdaftrirition

gJs .r g:tg6fcpgr'.- .6n be neplaced by ig 1gg:'cp):t; howeven Conway lll

has shown that if thnee mone identities ane tnue in the cl-osed

semi-ning

a.O = O.a - 0 , (a.b)", = 1+ a.(b.a)*.b (which implies

our: g)) and 1a * 6)tl = (a?tb)?'s.a*, then the above

neplacement is possible and the conresponding identities for"

matrices hoId. This is probably so even if only the last tw@

identitie" "T assumed.

Conversel-y it is easy to see that the val-idity of the above

neplacement implies the last two identities in the pnesence of

the finst one.

Let us now define two matrices of constants:

If n=1 [a]'t:[a:t]

rf n > 1 and A = [B tl whene, for: some O < k e n :

L' EJ

B: kxk, C: kx(n-k)r D: (n-ft)xkn E: (n-k)x(n-k),

then

0r, = [tij]ir1.[t,rr] with "ij 
: o for i,je[l:nJ

rr, = [dij]iri.[:-,n] with otj = I^' ::l-:.1(! othenwise

-4-



It is easy to venify that the analog of identities a), b), c), d) and f)
hold fon matnices.

Note: tfie:aaalogue:r5fe)): A.Ir, = Irr.A = A does not ho]-d.

Connectn_ess of the inductive definiti-on of closune

Compl-etion of a pantials clo?ed semi-ninq,

Define a pantial closed semi-r:ing to be an algebna of ths 1l?.
described above, whene closune is only a pantial function and satisfying
a) ... f) abd g) wbebeven tle c&drsyne of a is defined. rf s is a partial
closed semi-::ing then sU{u} (whene uls is a new element and standa fon

undefined) canlrbe made a closed semi-ring by adding these definitions:
u+a:a+u=ur €t.u=u.€r=ur u:l=u add a?t=u if a* wasnot

pneviously defined.

SU{u} is ca]1ed the conpletion of S.

that the size of the sub-matnices involved in the definition

ant boils down to computing the cl_osune of a matr"ix with n6ne

es in two different wavs:

r-r-ll-l
leln c I la Blc Il-i lliI nlr F I ana ln EIF 

I
r r I T--'lle lu r I lc Hlr IL):LIJ

ing nine identities. The venification is tnivial using

ity and associativity of matr"ix addition, associativity of

tiplication and distributivity of matnil multiplication oven

Ltion.

lxiom g) is not used in this proof.

:at:'-on is cannied out in Appendix 1 of tgJ.

The pnoof tl

is inreleval

sub-matnicer

and ver"ifyir

commutativit

matnix multi

matr"ix addit

Note that ax

The venifica
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The careful neader now undenstands why the troubre was taken not to

include the identity a.0 = o.a = o in the rist of axioms and to deal

with identity matnices I' which ar"e not neal identities.

we shall now prove that the anarogue of axiorn g) hords fon matnices.

But first a lemma:

Lemma 1: If A and B ane nxn matrices over.t a closed semi-ning then:

1) (r +B).A=A+B.A
n

2) A(I +B)=A+A.8.n

Pnoof:

r-
ILIin
l"

+ B).Al .. . - x (6-.,. + b.,-)u,-* = I.a-.. r b,-..8.,r + [ (o + b_.,-)q-.
-_l lrl k=lrn ik kj ij -ii- i1 k=lrr'- 

-ik'-kj

k+i

= a.. + X b.. a..1l 
k= Irn f K lcl

And symmetnically for 2).

Iheo_rem 1: If A is a nxn matnix then:

A:k=f +A.Afs=J +A:'r.A

Bloof: The two equalities being symnetnic J-et us just prrcve the finst one.

By induction on n.

.If n=1A*:1+a.a*byg)

rf n>l suppose A = [U'l c:kxk
[_e FJ

with A = F + EC?ID, by definition:

Fo *. gfip6etggzt Cr"DAxlA* = l_r*pg*, a?r J

A.A* = Fa'. 1 ggJsp6:l5grl 1 ptr:lgg:t cc'*DA* + oal

I tan 1 5g:tp6rlgc:! + FAEcg, gg:'sp6:r + FAr!

-6-



But by the induction hypothesis:

C* = fk + C.C:t arrd Ar" = In-J< f AA*

By lenrna 1:

p6:lggfs 1 3g*p6alggJs = (Iu + gg*)p6:rgg?t = CrsDArtEc*

DA* + gg:"'p4:! = (rk + cc*)D^rr = g*p4:t

ECrt + 5g'.tp4:!gg:t + FA:!EC,! : EC* 166:tggfs = (In_k n

: A?IEC*

gg:lp6:t+FA*=66:r

Then rr. + A.A:t = | 
tu + cc:k 1 g*p6rcgg:t g:tp6:t -1

I

I 
n'*ec r,r-k + AA't 

II n-K _l: 6r's by the induction hypothesis.

46:t )59:l

Q.8.0.

Corollanv l:

By

Corol]anv 2:

By

Corollanv 3:

By

A.Aai'=A+A.A:}A=A{rA

Lemma 1 and theonem I

A:!=I_+A+AA,'sA
n

Theorem I and eorollar"y I.

B + /iA'*g = A,:tg and B + BAtrA = BA?,..

Lemma l- and Theonem l.

3. Exarples of closed

Bool-ean semi-ring:

semi-nings

{ {0rf}, u, n, T, Oo I ] whene T(O) = T(t) = r
tr"ansitive and reflexiveThe closune of a Bo6lean matnix is its

closune.

A pnoof of that fact can be obtained eithen dir:ectly
induction on using par:agraph 5 on simple serni_nings.

{R U{+-} Mi-. + J r 'arr, t, Z, *-, O] whene R, is the set of+

nol-negative neal numbers

is a c.l-osed semi-ning wheee Z(a) = O aeR U{+-}-+-

-7 -
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The closune of a matnix over this semi-ning is the minimum-cost

matnix for the labelled gnaph yielded by the matnix.

{& J {+-, *J., l,tin-r.l,.jap, o-} whene ft is the 6et of
/'^

neal numbers and. arr =f c if a ) o

(--itaco

is a closed semi-ni:rg, if (+-) + (-o) - +o.

The closune of a matr.ix gives the minimum-cost matrix for. the

conresponding Iabelled graph, on -- when there ane paths of cost

as sma.l-1 as desined.

Similanly {Q t{+-, --}, Min, r, ,t, r-, O}

and {Z U{F, --}, Min, *, rt, f-, O} ane

closed semi-nings,

and so is

{BnU{+-, -*}, Max, *, Ot'*, O}

with .t= (n- if a > o

(otta=o
0n this last closed semi-ring the closur:e of a matnix gives the

maximum cost paths in the conresponding gnaphs or +- if ther"e ar.e

paths of unbounded cost.

{finU{+-}, Max, Minr--,,Or,_+-} whe:re -(a) = 1- is a closed semi-ning

and the cfosune of a matnix oven this i:ing gives the maxirnum_capacity

paths.

Mone genenally if L is a rattice with openations v and A and bottom (r0

and top (r) then {L, v, A, T, 1 T} with T(a) = r is a closed

semi-ning.

-0-



[P(X'isJ, U, . , 't. d, e] is a closed semi-::ing if

X is an alphabet, e the empty wond, . concatenation and

A.*= U A1
ieN

{RUtu}n +. . , s. O. l} is a closed semi-ning fon

"(u)=T* fona{t and t-*=u

and a+U=U+a=U U.a=aog=U and U*=U.
The same is tnue if R is replaced by 0.

In this c]-osed semi-r"ing, if a matrix A is such that A* does not contain

u then A* = (I-A)-1 (A does not contain u eithen), by theonem l-.
-'lA * may be computed by computing the crosune of r-A, at l-east if (1-6;*s

does not contain u.

unfontunately thene ane non-singulan matrices A such that (t-R;* uo""

contain u.

Sti11 if P is a penmutation matnix such that (I-pA)'t does not contain u

then

(r-pA)t = (pA)-l = 6-1 ,-1 and

(r-re1*'p = A-f, and the computation of A-1 may be neduced to that
of closure.

Conver"selYr if A is non-singulan there is a penmutation matnix p such

that PA can be invented by Gaussian elimination without pivoting. As

shall be seen laten Gaussian el-imination method without pivoting applied

on B computes (f-g)"r, then (t-pA)rl = (pA)-I and does not contain u.

-9-



{FrUro,*rlxt,lxx} is a closed. semi-ning if L is a complete 1attice with

zeno efement .t- (rUa=a ) and upper-oper:ation U,

F is the set of all functions: L -r L satisfying :

Q) f(UA) =U{r(a) | aeA } fo:: any AcL, Ard

U is aefined by (f!g)(x) = f(x)llg(x) with an obvious notational- arnbiguity,

o is function compositionrlxJ- the constant function bottorn and ),xx the identity,
and 't is defined by:

(3) f'(x) =U{rtC*) | i = o,t, } .

On this semi-ning the computation of the elosune of a matnj-x amor-yrts to

a global data ft_ow pnoblenr [TJ.

Ali- distr'ibutive g1obal data flow pnoblems can be tneated as tnansitive

closurre problems but non-distributive pr"oblems, whe:re (Z) is neplaced by

the weaker assumption that the ftrnctions of F ane monotone, do not seem to

fit into our fnamewonk.

-9b-



4. Wanshall-Floyd-Kleenets algonithrn.
Gaussdondan method.

An argonithm will now be pnesented, to compute the cl-osure of
a matr:ix.

liFLaleorithg (trol, IreJ, Isl , IB]]

Input: A=fe.l ..r
L tU arle t-I:nJ tij t s closed semi-ning

begin

1. for- each i, je[l:nJ do A^[i, j] <- Ati, jJ;
o

2. fol k:=I :Ep t until n do

3. €g! each irje[l:nJ ds

4. AkIi,j] * Ax_rti,JJi+r,1*+rIi,kl. ( on_rrn,k)r*An_atk,j];

5. fon each irjelI:nl do

6. R[iri] * 6r. + A,,f,iril;1lK
end I

Output: R[irj] fon i,je[1:nl

Note: 6-. in line 6 is 1 for: i = j and 0 otherwise.1l

This algonithm is a str"aightforwand tnanslation of Kleenets proof

that eveny regulan ranguage can be nepresented by a negula:: exp::ession.

Ftoydrs algorithm fon minimum-cost paths in dinected graphs is a

specialization of the above algorithm to the case where at! = I gaes and

Wanshal-lts algonithm fon the tnansitive closune of Boolean matr"ices is
its special-ization to the closed semi-ning {O11}.

The algonithm computes the tttransitivefr crosure of A in A. and its
rrtnansitive and neflexiverr closure in B.

Its specialization to the closed. semi-ring & U{u} is Gauss_Jond.an method

for inver"ting matnices, without pivoting.

-10-



The repetgtive statements used ane of two t54pes, the fo:r statement

of ALGOL, ild a fon each statenent indicating that the onder in which

the vafues are given is of no importance.

For each irje[t:n] is an ab$neviation fon

Fon each (irj ) e [1:n] x [l:n] .

The algorithm uses n+l diffenent matrices \ (0 < k < n)

for simplicity. It is not difficult to wnite an equivalent algonithm

using only one such matrix, taking care that entries in the mat:rix are

not changed befor"e theY ane used.

We shalf now proceed to pnoving that WFK-algonithm computes in R the

closune of the inprrt matrix A.

:11 *



Notgtions: If C is a nxn;matrix let us define atirt lt3rgl to ber

its submatnix consisting of rows i to k and columns j to.Q,.

(r < i <k <n, 1< j <.c, Gri).
To simplify this notation the fi:ll intenval [1:n] will- be abbreviated

to . and the one el_ement intenval [iri] to i.
.r-LExamples, Ai. is the i"' row of A

A_. j is the element At i o 
j l1l

In matrix notation the algonithm computes a sequence of nxn matr:ices
rk)A"" fon 0 < k ( n defined bv:

/^\
At"' = A

A(k) _ o(t-r, - ojX.tr. olX-t),',.u(k-r) fon 1( k ( n

and the output R by:

R = rr.,n A(t)

we shall now pnove th.t A(t) = A * A.Arr.A, the pnoof not nelying

on assumption g).

Theogem 2: Fon any ke[o:n]

A(k) - A + A.ir(r(r(orr,krtr:nJ" otr:kr 
.\/

(witn the convention that A.tr:ol, A[r:olr[1:oJ and Atr,o]. should

just be ignored).

This obviously implies o(n) - A + A ArrA.

Proof: By induction on k.
l/^ \

Fork=O A\"/=A-

-L2-



Fonk=t+1 (0<n(n-1)

A(k) = a(r) * affl) Gr!*))n At:) (r)

by the- pneceding natnix-fosn of WFK_algorithrn;
and by the induction h3pothesis:

o(l) - o * A.[1:.e,](otr-,rr-r:gr)'t A[t,.t,]. (2)

Define t = o[r:r][l:n]' t = Ak[t,l], Q = A[r,g]k

Then:
ltr \

l \- /

V

t,o \
A'-r

/a \

^ 
\1,/

J<k

Der.ine o = ofi)

The respective

- A. + PB:10
koK

positions o{ B, P and Q in A ane illustnated by

Fig. I

(- ro ws

F5. I

: A. +kk

=A'k*

=\.n

A R:!n".[]-:ol" *

tt','o[r,u].

PB*Q

A

Rewniting (t_)

e(k) = a

using (2) we get:

* A ". ^-B?t A---.Lt:.e,J- "[1:r]. - 
[.* 

n o.rr,urt'I ot' 
F. 

* ls"err,s]J

-13-
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But, by definition of t

(orr,r<t[]-:,.): ll\.--/L'
he closune operation:

= F- 
1 srsqd*PBr' u:tqaf

l.nrrn ^-l

--l fial
\d

/ '\rr
A.Ir,k] (otr,rrtr:rr ) A[r,k]. =

\/

A.[r,l] (Bal + 3*q4:lPBrs) utr:ll. * A.k A".'lB:lA[t,t]. * A.[r,g]B*QA'r\.

* O.k O,*\.

Companing with (3) gives A(k) - / \ o
A n A.tr:kl (Atrtrtir:tr/ A[1rk].

' a.t.o.

and

Coryl-l-ary (using g) again): R = Ar!

B$, R = f- + a(t) = I* + A + AArtA and bynn
concllary 2 to Theonem 1:

ft = 6:!'

5. Gauss method

Anothen argor"ithm shalr now be introduced fon computing the

closune of a matrix, the speeialization of which to the semi-ring e U{u}

is Gauss algonithm fon inver"ting neal matnices (without pivoting).

Gauss aleonithm:

fnput: A = [a. . ]i, je [I:nJ uij.t c]-osed semi-ning

begin

1. for each irjelt:n] do co[irj] <- A[ioj];

2. fg k:=1 ElSp 1 until n do

3. fon each i, je[k:n] x [1:n] do

-14-



4. ck[i, jJ <- G*-r[i, j] + .r-,_ii,-r. 
6--rrn,u)'* 

co-r[k, j1;

5. for each irje[l:nj @

6. B[irj] * G,[irj];a -'

J. fon i::n-l step -1 rgtif I do

8. fon each jrke[l:n] x [i+t:n] do

9. B[irj] * B[i,j] + c-.[irk] slkrj];

10. fon each irje[1:h] d-o-

13. RrlirjJ <- 6-. + B[i,j];
_LJ

Output: Rrtirjl for: irje[1:nl

&gel\g, The algonithm is a str:aightforward translation of Gauss

invension method.

In the vension pnesented above the use of memony space is very inefficient

butras with lfFK-algonithm, it can be ned.uced to one nxn matrix bv

obvious changes.

The essential differences with WFK are that in statement 3 i unns only

fnorn k to n instead of fnom I to n and that a second pass, upwardso takes

place after statement 7.

The advantage, of Gauss method is appar:ent when one may suppose that

o.d = a.0 = o (fon al-I the ars which a::ise duning the execution of the

algonithm) and when the input matr.ix A contains a la:r'ge nurnben of zeros.

rn this case the zeros ptay in longen in Gauss method than in I{FK.

In tlll I Tarjanrunden assumptions cJose to ouns but seemingl-y incomparable

with them, has sbqwn that, with suitabLe data nepnesentatiirn, Gatss nethod

may be implemented. in a number: of-basic steps (on a paprdorn_aec6ss machine)

which is almost lingar in the numbqr-of-:4on-zeno entries in lhe inp$t matr"ix

f,on a lar"ge cl-aFq of matrices with rgstricted zero-non-zeno srnucture. The

author is hopeful that this nemains tnue unden the pnesent assrrnptions(when

a.o : a.o=o). - 15 -
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we shal-I now pnoceed to showing that the above argo::ithm computes in

Rr the closu:re of the input matrix A. Refenences will be made to the

notations used in the pnoof of correstness of I{FK.

C1ear1y, in matnix notation, the finst pass of the algonithm

(statements 1-4) computes of sequence of n*f m6frigss

^(o) ^(t-) - (n)
G " , G'-'. ..G "" such that:

e 
(o) 

= A(o) = A, c(1) _ a(1),

Then in statements 5-6 it computes a

njo)=ajk) fon r<k(r,-k. "k.

1^)
or mone pictunesquely B'"' =

ft \ fL)
and G"'' = Ait,r,: f""

nratnix B(o) such that

1<k(n.

[^l"lt-.1tl
ldt'll:l| ;(n) 1

Li"' -l
computes a sequence of nowThen in statements 7-9 the algonithn

vectors n(t)r...rB(1) 
"rr"h 

that:

r(") = r,ll) = o::) 
",d

o(t) _ o(o)- -k. JEt'"k[k+I:n]
^,n*rrlrJl
B(k+2) |

brn) 
J

r(u) = 4:)Theorem 3: Fon any k 1 ( k ( n,

Eg€, By backwands induction on k

Fonk=n r(n)-o(n)n.

Fon k = .t-l-

R(k)-o(o)*o(o)" "k. '"k[k+I:n]
-(t<+r).IJ

^ 
(k+2 )b

ir" r

^ 
(n)

^[k+1:n]
_ ^(k) .(r)- ^k. + Ak[k+I:n]. .by

-l_6-
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tet us now consider" a partition of A into sub-matr"ices

FnlA= f - | suchthatBiskxk.
tl E_i

Pnecisely: B = A[r:k][k:k]' c = A[t,t][k+1:n]'

o = o[nnr:n][I:k]' t = 
^[k*1:n][k+r:n]

By Theonem 2: A(k) - A + A.[r:t] (orrrklrr:k) n orr,nr. ,

andA(n)=A+AA*A. 
\ /

or using the partition into sub-matnices:
r- -'l r -r

A(k)_la cl * lnlB* rBcl
f_o eJ Lol
f-l

= | 
B + BBr',B C + BBtrC l tt we define A = E + DB*C 

"iJ+DB?IB a _J

By Corollaries l and 3 toTheoneml: B+ BB'}B = B?tB A+ AA:IA = 6:1tr

c + BB:IC = l:'sg and D + DB*B : plfs.

Consequently: f _-1

,i \ I BlsB BtrC I

A(K/ = lrrn ^_l 
r and

A(t) = tr,t6 = [i" + B*cA?tDBx 3'*g6,1'l [t .l
[l'tps*, ^,r J Lr r_.]

because the definition of the cl-osur"e of a matrix is independent of

the size of the sub-matrices chosen.

Then

otX] = F.' '*l
Iii-t '' I 

= Bi:. c

lr- \oitittrrl.='[h:tDB*B + A?'sD A*DB?tc + aa'E] = [AtrDB* A'lA]

-17-



R(k) _ a(k)- "k.

r
= lBrl BlurI K.

I

= lsi', etv
L_:'"

But,\
A,lt' = lnt s^ L*'

_(k)

Then:

Q.E.D.

6. Simple semi-rings

A class of closed semi-r:ings will- now be defined in which the star

openation is simple to perform: a* = 1 fon any aeS. A chanactenization

of the closure of a nntnix over a simple semi-r:ing wirl- be given that

relates the closur"e of a matrix to the sum of the l-abe1s of the elementary

paths between couples of nodes.

Simple ser,ri-rings are exactly the Q-semi-rings of Yoel_i '[1]*]o and the

fundamental propenty below shows that our definition of closure is a connect

version of his not quite cornect definition of the tnansrnission matrix (not

quite correct because infinite sums are used without ever being properly

defined; similar canelessness is found in [1] and t2l.).

* o(k) o(n)''^k[t+t:n] "Ik+]-:nl.

+ B':' CA*DB* B3t C + Bil CA*A Ik. K. K. _-l

+ B.:'r CA*DB* Bis CA;lK.K.J

+ R:l n^:'.'np:!R r rl, -k.vd uu..! , -*.cA*D efl.c + B*.cAtrDB*a * uii.c^r'E]
l

From that it follows that the output matnix Rr is:
l- orr l-l r- \Rt = J + | :..1 - r + A\t'l = 6:t-n I i,(n)l n
tDl

J

-18' -



The r:egular algebr"as of Carrd and Backhouse ane cfose to or::: simple semi-rings

(they do not assume a+l = ] but assume a+a : a and a rule of infenence); their

axiomatization makes an e>itensive use of the onde::: a<b iff afb = b and this seems

to take us far" away fnom linear" algebra. The author" does not know how to compane

the stnength of the axiorns for regulan algebnas and simple semi-rings.

!S!ili!!gl: A cl-osed semi-ring is cal-l-ed sinnple iff, in addjtion to assur,pticris

ar ). . . g), the followjng is tnue

h) a+-l = .l .

A nrlnben of identities folIow, fon example: 1+ 1= l,

a+a:a, a*= 1, a+a.b=a+b.a=ar

a.b. + a"c.b = Et.b, C)oa = a.O : O.

The l-ast of these identities is pnoved byi O.it = O + Ooa: O(f + a) = 0.1 = 0.

-r_8b-



andB=

then

The next theorem will provide a link between closur"e of matrices

and labelled paths in a gnaph and be used to pnove as a Coroll3prr rh:+

oven simple semi-rings, closune behaves neasonably with respect to

interchanging at the same time nows and columns.

This l-ast result has already been pnoved in [3J by Conway (p.1I1) under

much weaker assumptions (though the whole proof has not been printed)

andasit is the only nesul-t of impontance for the next section, a:leader

familiar with Conwayfs nesults and uninterested in gr:aphs may skip to the

next section.

Fundamental EnoDentv of simple semi-rinss

If A = F.J. .:_rr -_-, is a nxn matr.ix over a simple semi-ningI rlllrl€Ll:nl

A/t : b.. rtr_l t-rJ€LI:nJ

I a., a, r_ ... d. , a.
m t^r- n1o2 Km-fK* K*J

rtr\ft... r,.mcr.!.rrr

k_ k alf distinct
I1...1ID

and Cirfepsnl frnm i and i -

A full pnoof is given in Appendix 2 of [9] and a brief summary will

only be given here.

S-kgtch_gf. thg Eogf..o.f- _t:tre. Iund.aLeltgt pr:ogertv,o.f -*nlglgse.mi-j:inqp_-

There is an obvious way to l-ook at a n>cr matrix as a labell-ed cornplete

directed graph on n vertices, and to attach a l-abel to afl directeci paths.

The fr:ndamental prapenty of simple semi-rings says that the (i,j) -ttt

element of the closune of a matrix A is the sump of the J_abel_s of all

elegrntarX paths fror,r i to j. The property can be prov-ed by using the

inducti-ve defilrition of A,i' or by using the fact that Ats may be computed

L-t,u.. - u.. t1l r-l

-19-



by WFK - algorithm. We choose the latter. It is enough to prove, wi,th the nctations
used. in Section 4 that fon ke[0,r,J, "(k) i= the surn of the 1abels of all non-e];pty

elementar5r paths f:rom i to j the intermediate ve::tfces of which ane in [1:k].
The assertion is p::oved by induction on k by simple algebnaic nanipulations.

Theonern 4: rf A is a nxn matrix over a simple semi-ning

Afr=r.+A+e2+...+An-I

lnrof: An el-ementar"y path has length l_ess on equal to n-I arrd the

labels of al-l- elementany paths of length l, are tenms in some element

of At.

Conver.sel-y a term in an element of A! (S<n) which is the label of a

non-elementary pa"Eh is absonbed by a tenm of Ak for: k<.t, which is the

labe] of a shorten el_ementarv path.

-19b-



Conol]arz: If B is the matnix obtained fnom A by interchanging nows i

and j and cofurnns i and j then B:l is obtained from A* by the same exchanges.

This is not true for a general closed semi-ning but Conway has shown

in [3] that it holds if the thnee following identities hold:

a.O = O.a= Or (a+b)'t = a'!(ba)"', (S)* = I+a(ba):'sb.

This implies that if ^ - [-t ^ln- |' "l then

[_r El

T;.,. rr.an.,. -l
A*'= 'a^ut'^ | rooA=B+CE:'sD.

|-!',ooT', .r g:'rptr:tg6l

7. Dijkstra semi-rings and Dijkstrars algonithm.

Definitio_Tr: A Dijkstr-a semi-ring is a simple serni-ning in which
f^i) a+b= )* on
(b\-

[o!": It is easy to see that a Dijkstra semi-ning is totally onder^ed

byther:el-ation: a)b iff a+b=a.

The addition is then a maximum oper"ation in the ordened set:

a + b : the maximum of a and b.

The cl-osune of a matnix over a Dijkstra semi-ring can be computed row

by now by the following algorithm.

D.ij k_strat s a.l-go:rlthm [4] :

Input: A = [ar*]irje[1:n] a... efments of a Dijkstra semi-ring ,J-J TJ

or e [:-: n]

-20-



beein*

1. 1*{on} i t

2. b[or]<-f;

3. for each ie[t:n] - {on} g9 b[i] * A[on, i];

4. fon each ke[2lnJ dg

5. find a je[I:n] - T such that b- = X b^;I .1,.[f :n]-T r-

6. r * ru{ji;
7. fon each ie[]_;nl - T do b[i] <- b[i] + btjl.Atjril;

end

Output: bIi] , ie[1:nJ

&ig: the output B = ibtill-.-.. ---, i" the o::th row of A:'r.]-€LI:NJ

Notice that statement 5 has a clear" rneaning in a Dijkst::a semi-ning

because of pnope::ty i).

Pnoof of connectness:

By the corr:1lary to Theorem 4 we may supoose that or : r and that j

in statement 5 is equal to k. Then the algo::ithm computes a sequence of
- (1) . (n)n rows: b'-'...b""o the l-ast one being the output, such that:

*(r)_lT ^ 
_l

u - tf n_- .-rlL IL2 : nll

o(k+r)=b(k)nljkJ F 
_-l

n ok*r- l}*t Ar+rtr*z,r,1l fon 1 < k < n - 1

where on is a now of k zero€g and o,lll t" such that

bJkl = ; b(k)k+' .Q,=k+r I'

The connectness of the algor"ithm, follows from

-2L-



Theonem 5: For anv k l- ( k ( n

b(k) - (A,',)1[1:k] 
F- Atr,rltr.*r,"i

T -'o +lraj.la-+i.ty matf"iX Of SiZe k.-k t"

alently, u(k) = p,.,,_r,_,n, o[l]ororr:klrr+r:nf

Er; r'n/lrra+"i^- 
^n k.

whene

/ equlvt-
I

Dnn^t.r rvuf .

For k=f, b(r)-rEo.,r^.-.,1 = fio I
L rtz:nlJ l_ 

"lt2:nl

because (at")r, = I for any A.

For r<k(n: b(k-l)=;-o(t-r) .r,d
.Q,=k L

b(k) _ o(k-r) n o(t-r) I o. A. .. - _lK l_ K KLK+r:nt__l

llco-r) ,(k-r) .(k-r)^ I= 
[trtr.: 

o[t *t,.,]n bk ^k[k*tt"rj'

By the induction hypothesis:

*(k-t) _ *(t<-t ^ _*r"[k+]:nl - "[t:k-t] ^[t:k-t][k+1:n] arru

,(k) [(r-r) *(k-1) ^ -lD = 
lolrt:.r 

D[r,r] ^[r,r.]ik+r:nl

Tt is left fo nrove that:u" .y-

f a i \

L(K-4., - ,,^Dr- ,.^tt)--- r a
LJ-:KI I.LI:KI

Prr fha r'ndrr^+r'^-. hypOtheSiS: bDr Lrrs 'ruuu,,.., hypothesist oIfli]r,= (e,',)rrr:k_rl

and

*0<-r) _ | .(k-1)
"k uo'- 

.Q.:k

= o(t-r) * 
u=l*r 

o(t<-r) {'*'u) fon any corumn B

= ; b(k-r) , *(k-r) D

p.=t 
"L t o[k+]:nl b[k+]-:nl

_.(t<-r) .(k-r) s- uk * o[k+l,r,] [k+r:n]
6^-zz-



wemaychoose B / \'t= ( 
or*:nlrr:nl) 

[2:n]r_
./

A[ r,r-r] [k : n] (^r-:nt [k,r't \"
\ / 

1

the induction hypothesis.

then

_ b(k-l) bv
K

r(k-r)-*(k-r)I \,',bk * 
= oii.-r"i (ort:nlik:n1 ) because in a simple

\ / '1

semi-r"ing the diagonal of a closune matnix contains onlv ones.

By the conolla:ry to Theonem 4 it is clean that:

(a,t )rn = (6:t )rtr 
, t.rl

Q.E.D.

Notice that the hypothesis i) is not used at all in the proof of

connectness it only guarantees that statement 5 of the algor.ithm is
meaningful.
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Appendix I

Let us compute the closune of the squane rnatrix

l-e r .-l
P = In E Fl wheneArEandfanesquane

l. H 'lL_)

using two diffenent decompositions.

Decomposition 1:

- '1 f+

F. - 6;ts6fp6r,

loioo,,
L__-

for6r=f,1P6*3

o

F

IJ

E

[^fl *
ll=
Ln r-l

and

icHr F
tl

+

+

A = T+*I

= f +

A:tn,f :'cl" '"'r I-l
6'if 

I-.1

G IA:t

GA"E

A:lBdtDAtslC + H6IDA*C +

(r-r + cA,tB)61(F + DAr'e)

cA*B6"jF+H6isp.
II

Prt =

F' B'! c'l
ln' E, F, I

k' H'i ''-l
r, = Af

[Gr Hr ] = ^ite
[I p-l" rHr l; ; I = l^'fG(A'i +A':iB6?iDA:'s)

L

A+GAfs86,;, + l'{,HO*;lJ_ I a I_J

+ AfH6fDA:t

H = [:].[] ^r =
I
I

Il
A'tB6irA'i

[-r
t-'
I

lr
[o' r-l F rl'* l-oI l= | l+lLo'r:j Lo rJ |-1l

t-
f 
(a't + AtrB6lLDA:!)cl.i +
t-
L 

6tDAtsc^'i + efra'f

sl " l-c -l
| | la'+ tcHlp I lr I r

lr I

R-l"l
I.i"J
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At = d:! 1

ht _ A'!B6-i f [(A'l +

,qfs1tr:l +fA:'.'nA*n"I-" ''"1"" "^tt) -

A:tpA:!nl:! ) n A",B6iFt af tc(a,t

+ H6tDA'r l

[ (A,l + A*B6:iDAtr )

A?'sB6iDA,!)C f Ar,B6iFl At tcA.*B6t + H6.f l

+ 6:lFl A'i. te(a,', + A'lB6t'DA:!) 1g6i':pnf:lr- r l- -- -t-^' -

FI

=

Atr"1

A:k"1

tcA,tB6'i + Hof l

[H + Ce,iB]61+ 6'f tF + re'rcl At

Decomposition 2:

oz tB cl

DA*B

uA'" lJ GA:tB

62=r+GA'lc+(H+ + DA'!C) = A,cat3R)A?tfF-" "'"f"

-l
I

-l
I

I
r

I
J

F + DArlCl

] + GA"CJ

r + DA,rcl lT,-r + cAtc_l = l_r *
[-E +

=l-n*

BC

=ll :l . [:] A'r

1

:'.'( H
f '-'

o'i(r + DAt c)

+ eAf,B ) 61

nJ: (u +_I cAt,B )6t Afs(r e-

J.

l .r.

I

nn".c)A-i^:l

_l

TI

Ht

Fl

,f f;-1

AtrfH +*r'"

6i'( r +
J-

GA'!B )6i

le,tc )At

l
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DA'tc)At (H + cA*B)6'g'

Dt = tiof + o'1(r + DAetc) A'i (H + cA*B)6tl D + o,f(r 1p6rsg)1f6 4:'s

= 6:lp6:'s + of(r + DA*c) af (ea,r + (H+ eA,rs)ffDA*)

cf = A't (r+ cA*B)6fDA:'.' 1 4.f66r's

4:t 1 6:l

+ B6t(F

Er = 61! + 6,i(f +
J- ,L

l-o'l [n Itttl
L.:i = oi 

L. I A"'

n cta!

+ of(r + DA?tc) l'f tH + ea-'nlof) + axcA:f(H + ea,tB)6f

f,on + A,iB6tDA,',)c + a-*nofl( ,, r ear,B)61

+ DA*c)af + er,caf

rB cr 
^,: 

[t l A:,:' L.J

lt/rt + d,l(r n 01,,.) 
^t 

(H + cAr,B)61.) D + c^t(H + cA,rB)6.iDL\' ' _l /+ DAtsclale + cllJ 4*

t] :6:t1

A,kB{61

A",86-i +

A.*86,i(F

6fs 1 grk

TR' N

pl

=

nt -

At =

: {:'.'.r A?tB6tDA:! - o-[ruf(r + oon.l*.) 
^t (,r + cA,!B)6fr +.tr-

Companing the expnessions obtained fo:: the e]ements of p:t by both methods

one sees that they ane equivalent.
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Appendix 2

Befone we pr:oceed to the pnoof of the fundamentar propenty of

simple semi-rings some tenminolory is nequired.

A nxn matnix can be viewed as a labelled complete directed

gnaph on n vertices. "ij is the tabel of edge (irj).

To any path (ko, kr, k2r...rkm) fnom ko to k, in the graph can be

associated a unique label-r uk k_ -k_k-....at , 4
ool ^l^2 Km-2Km-r km-rkt

The label l- is associated with the empty path fnom ko to ko, fo:r all ko.

The fundamental- property of simpre semi-nings says that the (iri)-th

erement of the cl-osune of a matrix A is the sum of the rabel_s of al-l

el-eme.ntary paths from i to j.

Prpqf : we could use the inductive definition of A:'c but we prefen to

use WFK-a1go::ithm.

R = 6:t = l- + A(n) and it is left to shown

f n'l+L-+ -\"/ -LrrdL <1 ' ' - L -l--r- ...-I'- = the sum of thb labels ofLl m tk,--'-k_.
krr...rk,ne[l:nJ r m] al-r non-empty elementany

k. ;.. .k_ all distinct 
paths fi:om i to j -

r- m

and different fi:om i and j.

We shall- prove that fon any le [0:n]

-(s) _.ij = ; "rur_. 
. ..uri 

u;, "irr"(s,i,j )

r. k .f1.01 '
^1r...^meLI:&J

kIr.. .k, all distinct

and diffe::ent fnom i and i.

= the sum of the tabels of al-I non-empty el-ementa:ry paths

from i to j the intermediate ventices of which are in tr:.t].
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Fon t=o .1?) = d:; = sigma(oriri)11 ].t

For .Q, = h +1. By wFK-argonithm: .11, = "fl, - .fil ,fl,/-
because / -rit)\(";;l - 1'

By the induction hypothesis:

(l)uii' = signa (hri,j) + sigma (h,i,.{,).sigma (h, .t, j)

Let us consider signa (trirj): its terms are labels of non-empty

elementany paths fr:om i to j the intenmediate ventices of which are

in [t:h+]-l; of those the labels of the paths of which g = h+I is not

an interrnediate ventex ar"e terrns in sigma (hrirj) and the labels of the

paths of which n is an intermediate ve::tex are tenms in the pnoduct

sigma (hrirg).sigma (h'noi) because.Q, is visited only once in such an

elementany path.

Convensely all the tenns of sigma (hrirj) appean in signa (h+trirj);

suppose.rnr_...a*0. "nnr....h*rj is a term of sigma (hrirg).sigma (trrl,ri).

rf (irkl ,...rkmrgrhl ,...rhmrj) is an erementar"y path it appear:s in

sigma (l,riri) if it is not elementapy there is a ventex v which is
visited twice (and at least once as an intermediate node ):

v = k" = ha , v = i = h, on v : k" = j.

Let s be the smal-l-est integen such that k" is visited twice and let t be

the lar:gest integer such that ha = nj. Then (irk1r...rk"rht+l_n"..rj) is
a non-empty elementary path fnom i to j which does not go thnough .Q, and

its l-abel- appears in sigma (h 
o i , j ) .
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By the identities:

All- th'e terms appearing i.n sigma (hrirg). sigma (hrlrj) which ar"e not

in signa (Lrirj ) ane absorbed by ter"ms of sigma (h'ioi) and:

sigma ([,i,j) = signa (hoirj) + sigma (hrio.n).sigma (hr0,j)

and .11) = sigrra ([,i,j ) a.E.D.1-l

.tnr"'a"_rk* unana*r"'%rrj * "tnr-"'tkrn[.rh]"'1,,nri

= "rur"'"n"-.,-n" f 
* "n"u=*."'%.-r{ %.n.*r"'.hr,j

= .tnr"'"u"_r-n" "nananr_"'th*o j
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