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0n the structu::e of free finite state nachines

1. Introduction

As explained by Birkhoff and Lipson in [f], a finite state machine M

(without outputs) can be considered as an algebra with two rrphylar':

S = set of states, I = input alphabet

and a single operaton: T : S x I -> S, the transitio'n fr:nction of M.

Given M: (Srf) and a pair of integer:s (mrn) thene is an associated

machine Urrn(M) fneely generated as etn algebra by states tlr...rt, and

input sJrnibols elr...,eo sr:bject to the nelations which hold within M.

E><pricitly ur,rr(M) = (1,3) whene

'3 = {"tr...r.r}

and each state in A eonsists of an equivalence cfass of expressions of

the fonm

t.w(ear...ren) where 1 -< i ( n, w e9*

and t.w(elr...rer,) and a.v(e10...r€n) are equivalent if for all pairs

of naps {tr,...,a*} I s .r,a {err... r"n} I r tn" reration:

f(ti) w(e(er),...,e(en)) = r(tr) v(s(er),...,g(err))

holds in M. The tnansition function then maps (trw(err...r"r)re.) to

t.(w(err... rerr)er).

Definition Using the notation intnoduced above, it will be convenient

to refen to a pai:: of maps f : {trr... rar} + S and g : {err... rerr} + I

as a phyla-pnesenving mapping f::om ttrr...rtnr€1r...ru.) to M on an

interpretation of {trr... etrr€lr... rerr} in M.



The pnoof of the following theonem is to be found in [f].

Theorem (i) U (M) is a finite state machine.
III rD

(ii) Ur,r(U) is generated by the m states t',...'tm

and n input symbols e'r...'en.

(iii) If r denotes the canonical phyla-presenving map fron

the set {trr... rtm'ef ,...oen} ao urrrr{t), ild 0 is any phyla-prese::rring

map from {t. r...,t-r€r r...:€-} to M, then thene is an r:nique algebr:aL; 'm-J-' 'n
homomorphism g t U*rrr{u; + M such that 0 = 0T.

(iv) urrrr(r) is an epimorphic image of any othe:r finite state

machine having pnoperty (iii).

Definition If t. w(e- ,... r€n) and 1. v(e., r... r"-) are equivalent in

U (u). ttren
III n I1

t. w(e,e...1€ ) = t, v(e.'...0e-)i J.' ' n I r- - n

is a universal relation in M.

2. The case m >.r I

Theorem 1: Fon a machine M = (SrI) to have a universal nelation of

the fonn

t. w(e,,... re-) = t- v(e, ,... 'e-) wittr i I :r I- ' n I -L- - n

it is necessar5r and sufficient that for each input o in I there

should exist a state t(a) such that (a) t(o).c = t(c)

and (b) for each s in S there is

a non-negative integer ::(s) such that s.o"(") = t(a)

Proof: Suppose that M has a univensal nelation U of the form

t, w(e.r...re-) = t.. v(e,o...re-) for: i I j.ff o e I, ther:e is ar .L- 'n I l- - n

submachine M-. = (Src*t) of M, which is a disjoint union of k machinesc

of the following tlpe:



lt.>.*..
*>-*>

Since U holds under all intenpretations (f,g) for which

s(er) =c forl<i5n, itis cfeanthatk =1. Moneoven, taking

interp,retations (f,g) such that f(ti) = Po, f(tj) - Po o for some

non-,negative integer c and s(er)= o for. I ( i -< n, it follows that

r(w) t(v)+c
Poo = Poo

in M for c = O , I, 2, ... This establishes that Ft = F, so that

conditions (a) and (b) are satisfied with t(a) = F.

For the converse, suppose that given input a in I, thene is a t(c)

for which conditions (a) and (b) nofa. Then let r(c) = max n(s), and
seS

r = max n(o). It is clear that the r.elation sor = to" hoLd" for al1
aelsF

s,t in S and aIl o in I; that is, the r"elation tI *1^ = t2 *I holds

universally in M.

Corollarv to Theorem I:

Unless a :relation of the form

in the machine M, the finite state

m dis joint copies of U., .(M).
- t^.

h

t, x.^ = t^ x,^ holds universallY
II-ZL

machine U- -(M) is (up to isomorphisn)
III rfl

3. Structune of U., (M)
n

Definition tet K be a finite nonoid gene::ated by elernena" *l'...'xn.

The machine?1t(K,X) ryiated *ith the ttpno has a

set of states K, input alphabet X = {xlr...rxn} and transition function

K x X + K defined by nultiptication in K. The machinellt(X,X) will be

called a nonoid machine. If K is a group, then ln(Krx) is a group machine

on Cay1ey diagrag.



Theorem 2: (i) ff M is a finite state nachine, then, for n )' 1r Utrrr(lt)

is isornor:phic to the ncnoid machine Dt(frX), where K is the monoid freely

genenated. by X = txrr...,*r) subject to the::elations:

w(xrr... r*r) = v(xtr... rXn)

whene tw(err... r"rr) = tv(err... r"rr)

is a r:niversal r:elation in M.

(ii) Let K be a finite monoid generated by X: txtr"'r*n)

fon'!(KrX) to be isomorphic with Utrrr(M) for some finite state

machine M, it is necessary and sufficient that for each nelation

w(xl-r...n*r) = v(xrr...,,*r) in K and each map f : {rr2r" 'rn}-, the

r:elation r("r(r)r...rxg(nr) = v(xr(r)r...'*f(n)) also holds in K.

If this condition is satisfied then Ul,n(m(K,X)) =m(K,X)'

(iii) For Ur,rr(lt) to be a grouP nachine (n ) 1) it is

necessany and sufficient that for some non-trivial w in 9*, a relation

of the form:

tw(err...ren) = t

holds univensalJ-Y in M.

Definition When the necessary and sufficient conditions (stated in (ii)

above) fortt(K,X) to be isomonphic with urrn(t) for a finite state

machine M ane satisfied, X is said to genenate K universally on to

senerate a universal pnesentation of K.

Pnoof : (i) The elements of U.' -r, "o" 
equivalence classes of

expressions of the fonm:

tw(err... ren)

where tw(err... r"rr) and tv(err... ren) ane equivaient if

tw(etr... rur) = tv(er:... r"r) is a universal nelation in M, with

transition function defined bY

(tw(err. ..,€n) r"r)t* t(w(et,. .. rerr)er)

lr



The map tw(err. .. 'en)'* w(xlr. . . ,*n) then clearly induces em

isomorphism Urrr,(M) = K.

(ii) Suppose ln(K,x) = ur,n(M). Then if the reration

w(xrr...r*r) = v(xar...rxn) holds in K then tw(err...r€n) = tv(elr"'r"r)

is a qnivensal nelation in M. Thus given any map f : {Ir2r...rni? an"

nelation

tw(er,1),...,er(r,)) = tv(er,r),.. .,er(rr))

holds universally in M, whence "(*f(f) r. . . ,xf(n; ) = v(xr(f)'. . . ,*f(n))

Conversely, suppose that if w(xrr...r*rr) - v(xr'...'xn) in K and

f is a map { r,2,...,np, then w(xr(l),...,xf(n)) = v(xr,l),...,*r(n)).

It follows that the relation tw(err...r"r,) - tv(err...ren) holds

universally in ?t(x,x). Convensely if tw(er,. . . ,€n) = tv(err. . . ,err) is a

univensal relation in ?t(KrX) then certainly w(xr,... ,trr) - v(xrr' ' ' ,xn)

in K (interpreting t as l, and e,. as x. fon i = Ir2r...rD). The

isomorphism

ur,n(tl(K,x) ) = 7(.(r,x)

follows fr"om (i).

(iii) Let xrr...,xn generate Ut,rr(lt) freely subject to the

nelations:

w(xrr...'xn) = v(x'r... rxn)

where tw(.1r... r"r) - tv(etr"'ren)

is a universal 'elation in M' since *ro = 1 for some r'2 1' the

t1relation te.' = t must hold universally in M for some r.

Conversely, suppose tw(ear... ,en) = t holds universally in M' with
6r

w non-t::ivia1. Then given f : {i-r2r... ,n}- the nelation

t(*r(l)0...,xf(n)) = f holds in Ut,rr(t'l). In particula::, w(xrr"':xi) = I

for each i, which proves the existence of *,.-t fo" each i, aS w is non-

trivial.



Definition Let M = (S,I) be a finite state machine, and fet F(S)

denote the senignoup of mappings S + S under composition. For each c

in I, Iet T(c) be the map S + S in F(S). The map T extends naturally

to a semigroup homomorphism I* + F(S). The image of this homomor"phisn

is the syntactic monoid l<*> of M.

Lenma:

Pnoof:

in I. Then

same el-ement

fo:: all f in

Let X?t be

elements

submonoid

Pr.oof: Suppose

of YI r"':Yn

necessar"ily

For each n > 1o ulrrr(M) and urrrr(ft({(u), T(r))) ane isomorphic.

Suppose that sw(o1r,.. ror,) = sv(crr... rcn) fon all s in S and al-I a.

w(T(ar) o. . . ,T(on)) and v(T(or),. . . ,T(orr)) represent the

orl(u), so that fw(T(or),...,T(crn)) = fv(t(cr),...,T(arr))

&u) arra all o- in r.

Conversely, if fw(T(or),...rT(crr)) = fv(t(ol)r...rTcr,)) fon all
r in &u) and all a. in r, then w(r(cr),...,T(orr)) = v(T(al_),...,T(cn))

it,/Cul. Thus sw(or,...,on) - sv(orr...ron) in M fon alr s in s and

all o. in I.
t_

This proves the requir,ed isomorphism.

It is evident that a univensal relation of the forrn

tw(err...rem) = tv(err...,ern) holds in a monoid machinett(xrX) if and

only if w(xar...r*r) - v(xr,...r*r) fon al-l xt in x. This result will-

be used in the proof of the next theorem, which describes a simple

method for. constr.ucting Ut,*(U) when M is a rnonoid nachine.

Theonem 3: Let K be a finite monoid genenated by X: {xrr...r*r}.

the set of rows of the n by mn arltay whose colurns are the

of f. Then Xfc has n elements X1r...rXn, which generate a
ll

K* of Km , and Ut,r.(tn{11,X)) and 716rt,Xfc) ane isomonphic.

that w(yar...,yrr) = v(ylr...,yrr) in K fon aII interpretations

in X. Then the identity r(yfr...,yn) = v(yrr...,yrr)

hol-ds in Kr'r,



conversel-y w(Xrr...,Xr) = v(xrr... rXn) in KJ' entails

*(ylr...ryn) = v(Yrr...,Yr,) for al-I interpretations of ylr...rYn in X,

each interpretation corresponding to a projectj.on of the identity

w(xrr... rrr) = v(xrr... rXrr) onto a single cornponent.

4. Illustrative Examples

ExamI>Ie 1:

Let M be the machine having three states, and input alphabet

{a,bi, as indicated below:

(fUs machine is considened by Binkhoff and Lipson in [1]).

For this machine rq, ^J(rq) is the subsemigroup of maps t1r2o3

generated by a, b whene

E(r) = z, Eczl - 3, Etgl = )

arrdEcrl 31, 5'tzla2t 5(g)=r
The s5mtactic monoid then consists of five maps viz.

_c _n
and the additional relations a" = a, b- = b, b.a =

-caba = a- hold.

The machine lfL= /ntjCu) , {;,5} ) is:

p

1a,

=5,

1,

a,

E, F,
_T
AD

;t,



The fnee machine U, ^(ft) = U., .r(t'l) is now the semigroup machine associated
LsZ LtL

with the su-bsemigroup of dtulu generated by

a = (i,"55) ana s = CE5,IJ)

It has 9 elements viz.:
o -t J) -- 9 -t -4 -1o A, B, A' = (a'rE'rbrb), B'=(a-rbra-rb),

eg = (E2,ilr.$), BAB = (",-ub,*r5)

se = (E2,E,-.d,5) and BA2 = (E,-.2,-"1,5-l

The nesufting semignoup machine is:

AB BnA:AB'

8A-

(Note that thene is an eruor in the::epresentation of Urrr.(lt) given by

Birkhoff and Lipson in [1], and that a similan error occurs in [2]. The

nelation AB2 = BA2 does not hold universally in M as the diagnams in tll

and [21 suggest).

I.""'pl.z'

Let N be the machine with g states, and input alphabet ta, b),

as represented below:

Br\\ B



In this case, ;[t*l is the sr:bgr.oup of the semignoup of maps {1,2r3i

consisting of all permutations, with generaton" E = (23), I- = (123).

The machin. ln.(,d(U), {a,b}) is then a Cayley diagram for the s5rmnetnic

grouD S^ viz:
-.f

By the previous results, UI,2(M) = Ur_rrtld is the grouP machine

associated with the subgnoup of so4 B"n"nated by a = (ErEr5$,) ana

s = (E5,EF) generated by A = (a,arbrb) and B = (arbrarb). Since

(AB)2 = (I,t,f5)o and it can be shown that (E,EF) *a f.5'"1 generate

the subgrrcup of C., , S.2 "or,"i"ting of triples (crp,q) such that pq and c
l_J

are permutations of the same parity, it follows that Urr2(t't) is (up to

isornorphisn) the group machineln(erX) where G = 53 t 33 " C, and

x = {(?551, t!,u$lt. This result would be difficult to obtain by the

direct nethod for computing U., .,(M) descnibed in [I].

5. Monoids with a univensal presentation

It has been shown in the pnevious section that every free finite

state machine is of the formln(S'X) whene S is a finite nonoid, and X

{*r-, ..r*r} is a set of generators for S. In this section' necessary

conditions on S and X forltt(SrX) to be a free finite state machine are

described. Fon instance, it is evident that if X generates S r:niversally

then the set of nelations between xI,...,xn holding in S is inva::iant under"

any permutation of {t12,...rn}. This fact is relevant for the interpretation

of the results and proofs of this section.



Lemma 3: If the elements X1,...'xn generate the finite nronoid S

universafly, then either *1 = *2 = ... = xn or *1 '*2'"'rxn are

pai::wise distinct and generate S irredundantly.

Proof: Suppose that x, = w(xr,...r*r,). Let f be the map {1 ,2r"',

such that f(1) : 2 and f(i) = i for i > 2. Then xf(r) -'*2 =

w(xr( 2),... rxf(n)) = w(x2,...,xn) : xt:whence xr - x2 = *r,

Notation: Let P be a partition of {1 ,2,,..rn}. The rank of P (the

number of blocks in the partition P) wilt be denoted by o(P).

Theor:em 4: Let S be a finite monoid genenated universally by distinct

generators X1r...rXn. Fon each partition P let E(P) be the smallest

congruence on S such that x- and x. are congruent for all (i'j) in P

Then

(i) the map E is a join-presenving bijection from the lattice of

partitions of {I,2,...,n} (ordened by P . Q if P is a refinement of Q),

to the congruence lattice of S.

(ii) the quotient SA(P) is isomorphic with the subsemigrotP Sp(p)

of S generateC by xl,. . . ,xp(p).

Pro€: (ii) Let F be the monoid freely generated by et" " 'en'6)
Define p : {:-r2o...rn} by setting p(i) = smallest integer in the

block of P which contains i. There is a rmique monoid homonorphisrn

Q: F+Gsuchthat0(e1) =xp(i) fori =1,2r...'n. Since

w(xr,...oxn) = v(X1,...,*r) impries *(*n(1),...rxp(n)) = v(xn{t)'...'*p(r))

thene is a monoid honomorphism $t : G + G, induced by 0, such that

0t(w(Xl,. . . ,"r) ) = w(xp(1) ,. . . ,xn1n) ). Consider the equivalence nelation

E on S defined by x = y i.f and only if there exist w and v in F such

that w(>:lr... rxn) : xr v(xlr... r"r) = y and *(*n(t) r... r*n1rr1) =

t(*p(r) ,*p{r)). Clearly (i'j) e P implies (x'x.) e E, whilst it

is easy to show that Ker $' = E:E(P)' since E(P) is the smallest

congruence in which x, anC x. are equivalent whenever (i'j) e P' it

eht

l0



follows that Ker St = E(P). thus S/E(P) is isomor"phic to Im 0t, the

submonoid of S genenated ly {xn1l)r...,xp(n)}, and this set comprises

p(P) distinct elements.

(i) If P is a nefinement of Q, then centainly E(P) c E(Q)'

Moreover P < Q ensures p(P) > p(Q), so S/E(P) and S/E(Q) a::e non-

isomorphic by (ii) and the previous lernma. Thus P < Q entails

n(P) c E(Q).
+

Now E(P v Q) is the congruence generated by the relations *i = *j

for (ioj) . P v Q. Since P v Q is the snallest eguivalence relation

which contains both P and Q' it forlows that E(P v Q) = E(P u Q) = E(P) v E(Q)'

showing that E is a join-prese::ving maP.

suppose that E(P) = E(Q). Then E(P) = E(P) v E(Q) = E(P v Q)' since

Pv QlP, this implies Q.. P. SimilarlyP( Q, sothatE is abijective

map.

Note: The map E is not in general a lattice hornomorphism.

Let S be r.niversally genenated by xl'... 'xn, and suPpose that xt

(and thus each generator) has stem of length c and period t.

Suppose that w(ear... r"rr) and v(err-..ren) ane elements of length

r(w) and [(v) nespectively in F, the rronoid freely generated by

el ,... r€n. If w(xrr... rxn) : v(xar... rxn) in S, then

r(w) , \ - --/-- -- \ - -- r(v)
*rot'' = w(xI ,...r*l) - rn(xl ,...rxl) - xl

whence eithen

( i) l(w) = l(v) < c

or (ii) min (g(w), r(v)) > c

and l(w) = r(v) (nrod t)

Given an element x in S, it is then consistent to define the length

of x as the unique nurnber t(x) such that if w(xrr..'r*r) : x then

x(v) = r(w) (mod t) and L(x) < c + t.

IL



CorollarSr: Let U be the partition of {1r2,...,n} consisting of a single

bIock. Then (xry) e E(U) if and only if l(x) = r(y).

@|, Let w(xr,...rxn) : x and v(xrr...r*r) = y. Then t(x) = r(y)

if and only if w(xr,...,x1) = v(x.,...,*1), and this is equivalent to

(x,y) e E(U) as observed in the proof of part (ii) of the theoncn.

6. Algebras with a universaf oresentation

Necessary conditions fon a finite monoid to possess a univensal

pr"esentation have alneady been descnibed. In this section, stronger

conditions ar€ derived for special varieties of monoid.

ltreorern 5: Let S be an upper semilattice with least element O (i.e. a

monoid (Srv) in which the binary operation v is cornmutative and

idernpotent and O is the identity element).

Tte generators Xl_r...rxn of S genenate a universal presentation

of S if and only if either "1 = *2 = ... : xn or xlr...rx' freely

generate S as an uppelr semilattice with zeno element.

Proof: The sufficiency of the stated conditions is clear. Accordingly,

it suffices to show that if a nelation of the fo::m

(U) V ". = V x. A,B c {I,2,...,n}
ieAli.Bl-

holds in S then either x. = x^ = = x, on A = B.Jzn

Assune without loss of gener:ality that a f O. Then if B = { the

nefation (U) is of the fonm

\-,.v^x.=Q1€A 1

whence x. :0 for all i in A, and x, ! X^ = ... = x- :0.1-!zn

L2



Suppose A, B both non-enpty, and let I = A n B, A = A \ I and

E'=B \ I. ffI=E'= 0 thenA =B. Otherwise assune without loss of
E-t

generality that a I O and let f: {1,2r...,n}-be such that

f(i) =Jf if i.T Since (U) is a universal relation,
[ 2 otherwise

V
ieA

\./*r(i) = 
X 

xr(i) atso holds in S. If I = $, this entails *r = *2,

whence*I=*2 =... =*rr. IfI +0, then*2u*l=xrwhen"" CO,

universality and commutativitY)

*1=*1u*2 x2vxl=x2

Theorem 6: Let G be a finite Abe.l-ian group. The elements 81'...19'

of G are the generator"s of a univensal presentation if and only if

for some t and sorne d dividing t, the group G is freely genenated by

gLr...:g' subject to the relations:

Vi ,rt=t Ivi,j sisj : sjsi f 
(*)

Vi,j g.d = g*d )

@, The grrcup a tran ,1" no."entation on generators g1r...r8r, sr:bject

to the nelations (rt) is r:niversally pnesented on genenators 8I'... rgrrr

since the set of relations (*) is cl-osed under the application of any

3
function f : {I,2,...,n} - to the indices of the git".

convensely, suppose that g1r...rg' universally generate G and have

common order t. Then G has a free presentation on gl'...rgn with

relations

Vi Bit - 1

vi,j gigj = tjt,
nn-tt

and other relations of the forrn gi 1 = 1. Since gi- = gj'= I'
.: -1

there is a least number d such that g.d - gi (fon some, whence all



pairs of indices (i,j)). As gi - gj .nd g.d - gj ensure

_ Hcr(d,t) HcF(d,t) .* *.6-. - E-: \-' -', it must be that d divides t. If thetni,.nr!
relation n E, i=lholdsinG,then r E+(i)1=lforarr

i=l i=I r\4''
qnF

maps f z {l-r2,...rn}i fn particular, if n = X ". then g.,^ 3I,
i=1!*

11 r-Ft 
".t "1whence t divides r. Moreover, EI - E2 * : 1, showing that g, - = FZ'

and thus that d divides rr. By symmetrY, d divides n. for each i, so
n r'.

that the r^elation fr E; 1 
= f is a consequence of the set of nelations

i=1

d d-91 = gj for a-11 L ano l.

@,
G is an Abel-ian group unive::sally generated by elements 91r...r8r,

of orden t if and only if G and Ca t COn-l = <d,> t .8rt-I are isomorphic via

the napping { such that {(gr) = (d,f,...,1) and S(gr) = (c,f?:...11,811r...rI)* ith component

for i = 2r3,. .. ,n.

Pnoof: It is not difficult to show that the gnoup freely generated by 8tr...rgn

subject to the nelations (L) is indeed isononphic to C, * a.t-t via the

mapping {.

7. Groups with a univer"sal Lres_entation

Necessary and sufficient conditions for a finite Alelian group to

have a universal pnesentation ar"e given in Theoren 6. The nesults and

examples in this section re.l.ate to the hander (and unnesolved) problen

of deternining which finite non-Abelian groups admit a universaf

presentation.

The following result is a corollary to Theoren 6:

I4



Cor 2 to Thecrem 6:

Suppose that 8rr...,8r, genenate a unil'ensal presentation fon the

finite group G. Let G' be the commutator: subgroup of G. The inages

Efr...,E, of Bl_r...:fo genenate a univensal presentation of G/Gr. In

par^tieu1ar, G/Gt is isororphic with Ct t Cdt-l foo some positive integens

k and d where d divides k"

IIg€t The elements of G' ane pnoducts of commutatons. Thus if

*(glo...,grr) e Gf and f : {rr2r...,rr?rs any map, then

"(gf(t) o. . . ,Bf(n) )e G' . That is, the nelations imposed

by taking the quotient by Gr hold universally in G/Gr.

G/Gr (being a finite Abelian g::oup) is isornorphic with

The next nesult is the analogue for gnoups of Theorem 4.

Theorem 7: Let G be a finite group genenated r:niversally by distinct

generaton" 81,...,%. For each partition P, let N(P) be the normal

subgroup of G genenated by all eLements of the fonn grgr-1 such that

(i,j) e P.

Then

(i) the map N is a join-preserving bijection fnorn the lattice of

partitions of {1 ,2,,.. on} (ordered by r"efinernent) to the lattice of

normal subgnoups of G.

(ii) the quotient G/N(P) is isonorphic with the subgroup cp(p)

of G genenated by Bf,...rgo1p1r and G is isomonphic to a semi-dinect

product ot ao(r) *d N(P).

Proof: It suffices to show that a = ao,r) * N(P); the other results ar"e

interpretations of Theorem 4.

For i = !r2e...1rI let q(i) be the Least integer such that

(i,q(i)) e P. Let 0 : G + G be the group homonorphism such that

e(er) = gq(i) (c.f. proof of Theoren a (ii)). Then Ken0 = tt(P), and

ImO = <gq(t),,..,8q(n)r. Note that 81 = gq(i)(ge(i) t8i) e ImO.Ker"O

YPon gf '... ,%

By Theoren 6,

sorne c " c.t-f.to
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sothatG=Im0.Ken

ThusG=Im0?'sKer

E:<anple L:

As suggested bY

group Dn of onden 2n

onder 2, v!2. < xrY I

universally generated

e.

0.:

Moreover, if geKer0nlrn0, then 0(g) = g = 1.

cp(p) I'N(P)

pr.oof of the pnevious corollanyn the dihednal

a unive::sa1 presentation by two genenatons of

= y2 = (*y)t = f >. rn particurar sr(= Dr) is

a pair: of transtrnsitions.

Corolla::y I: If G has a universal presentation by generators 91".''8n

of common orden t then the efements of G of length O form a normal

subgroup N of G, and G = Q* fs 11.

pnoof: see the corollany to Theorem 4, and appty Theonem 7 (ii).

Corollany 2: If k >z 4, then the s5rmmetric gnouP S* has no univer"sal

presentation.

pnoof: Suppose Bl,...rgn a:re penmutations generating SU unive:rsally'

and let Blr...og' have conmon orden t. Since Sk = Ca * N fon some

nonmal subgroup N, it rnust be that N = \ and t = 2. on the other

hand, in view of Theorem 7 (i), n-< 2. But, if a grouP is generated

by two elements of ord.er 2 it is dihednal (see [4] p.49 Ex'I )'

8. Exarnples of gnoups with universal Dresentations

the

has

2x

by

Exanple 2:

Every finite Burnside group B(trn) (which is genenated by n efenents

xlr...rxn sr:bject to relations gt = I fon eveny g in B(trn))is univensally

generated by its canonical generating set.

The Burnside gnoup B(3,3) of order 2187 illustrates that the nap N

in Theorem 7 (and likewise the map E in Theonem 4) is not in general a

lattice homomorphism. As Cescnibed in [3Jn evey elernent of B(3,3) has

a r:nique repnesentation of the forrn:

l-o



ala4dob^btbrc
*1 *r' *r:t t*r,*r) t (*r,*3) (*r,*u) t (xt:xr'x,)

where o ( ai, bi, c -< 2. Let P be the partition (I2)(3) and Q the

partition (1)(23). The pantition P n q is (I)(2)(g) whence N(P ^ Q) = {fi
c .)

But (*Ir*2)'(xr,xr) (*2,*3)'e ll(p) n N(Q) (it neduces to l unden

adjunction of the nelation *1 = *2 ot x2 = *3) whence N(P) n N(Q) + N(P n q).

Exanple 3:

The g::oup Au is universally generated by x and y subject to the

nelations:
3=(*y)3= (rry2)2=t

diagram associated with this presentation is:

Exarnple 3:

The gnoup G of o::der 56 genenated by x and y subject to the

::elations
^^ZJIJxyxy =y>ryx =I

is universally generated by x and y, which are elements of order 7

(see [+l p.60). The semi-direct product decomposition of G nefenned
a

to in Corollary 2 to Theorem 7 exhibits G as C7 r' C;

x =y

The Cayley

I7



References

tll G. Birkhoff and .I.D. Lipson, Heterogeneous Algebras,
J. Combinatonial Theory 8(1970) ffs-tsa

12) G. Birkhoff and ,i.D. Lipson, IJniversal Algebna and Automata,
AMS Colloquiunr pr:blications in Pune Mathernatics
(Tarski Symposium 1974).

t3l M. Ha1l, The Theory of Groups,
New Yonk, Macmillan l-959.

t4l D.L. 'Johnson, Presentation of Groups,
LMS Lecture note senies No. 22, Cambridge tlnivensity Pness.

18


