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On the structure of free finite state machines

1. Introduction

As explained by Birkhoff and Lipson in [1], a finite state machine M

(without outputs) can be considered as an algebra with two "phyla":
S = set of states, I = input alphabet
and a single operator: T : S x I + S, the transition function of M.

Given M = (S,I) and a pair of integers (m,n) there is an associated

machine U n(M) freely generated as an algebra by states t

...t and
. m

1°°
input symbols el""’ev subject to the relations which hold within M.

Explicitly U_ n(M) = (1,3) where
N AER CHRNES

and each state iJl/d consists of an equivalence class of expressions of

the form
tiw(el,...,en) where 1 € i ¢ m, w e 3*
and tiw(el,...,en) and tjv(el,...,en) are equivalent if for all pairs
f .
of maps {tl,...,tm} 3> S and {el,...,en} £ I the relation:
f(ti) w(g(el),...,g(en)) = f(tj) v(g(el),...,g(en))

holds in M. The transition function then maps (tiw(el,...,en),ei) to

ti(w(el,...,en)ei).

Definition Using the notation introduced above, it will be convenient

to refer to a pair of maps f : {tl,...,tm} + S and g : {el,...,en} + I

as a phyla-preserving mapping from {tl,...,t .,en} to M or an

€.,..
m’ 1’

interpretation of {tl,...,tm,el,...,en} in M.




The proof of the following theorem is to be found in [1].

Theorem (i) Um n(M) is a finite state machine.
_ b ]

i i 1) 3 -
(ii) Um,n(M is generated by the m states tl, ’tm

and n input symbols e ...

1" n

(iii) If 7 denotes the canonical phyla-preserving map from

the set {t ..,tm,el,...,en} to U n(M), and 6 is any phyla-preserving

1°°

map from {tl,...,tm,el,...,en} to M, then there is an unique algebra
b

3

homomorphism ¢ : U n(M) + M such that 6 = ¢m.
1

(iv) U, n(M) is an epimorphic image of any other finite state
9

machine having property (iii).
Definition If ti w(el,...,en) and tj v(el,...,en) are equivalent in

U_ _(M), then
m,n

t, w(el,...,en) = tj v(el,...,en)

is a universal relation in M.

2. The case m 2 1

Theorem 1: For a machine M = (S,I) to have a universal relation of

the form
t; w(el,...,en) = tj v(el,...,en) with i # j

it is necessary and sufficient that for each input o in I there
should exist a state t(a) such that (a) t(a).a = t(a)
and (b) for each s in S there is

r(s)

a non-negative integer r(s) such that s.a = t(a)

Proof: Suppose that M has a universal relation U of the form

t; wie ,...,en) = tj v(el,...,en) for i # j.If a € I, there is a

1

submachine Ma = (S,a%) of M, which is a disjoint union of k machines

of the following type:



Since U holds under all interpretations (f,g) for which
g(ei) =qa for 1< i € n, it is clear that k = 1. Moreover, taking
interpretations (f,g) such that f(ti) = Dyo f(tj) = P, o for some
non-negative integer c¢ and g(ei)= o for 1 € i € n, it follows that

t(w) _ L(v)+c
P = po

in M for ¢ =0, 1, 2, ... . This establishes that Bh = E; so that

conditions (a) and (b) are satisfied with t(a) = p.

For the converse, suppose that given input o in I, there is a t(a)

for which conditions (a) and (b) hold. Then let r(a) = max r(s), and

seS
r = max r(a). It is clear that the relation sar = tar holds for all
ael
s,t in S and all o in I; that is, the relation tl xlr = t2 xlr holds

universally in M.

Corollary to Theorem 1l:

Unless a relation of the form tl xlr = t2 xlr holds universally

in the machine M, the finite state machine U n(M) is (up to isomorphism)
b

m disjoint copies of U, n(M).

s

3. Structure of U, _(M)
l,n

Definition Let K be a finite monoid generated by elements Xl,...,x .
—_— n

The machine M{K,X) associated with the monoid K generated by X has a

set of states K, input alphabet X = {xl,...,xn} and transition function
K x X + K defined by multiplication in K. The machine M(K,X) will be

called a monoid machine. If K is a group, then M(K,X) is a group machine

or Cayley diagram.




Theorem 2: (i) If M is a finite state machine, then, for n 2> 1, Ul n(M)
L]

is isomorphic to the menoid machine M(K,X), where K is the monoid freely

generated by X = {x ..,xn} subject to the relations:

1°°

v(x

WK, geeesX ) ceesX )
n n

1 1°

where tw(el,...,en) = tv(el,...,en)
is a universal relation in M.

(ii) Let K be a finite monoid generated by X = {xl,...,xn}

For M(K,X) to be isomorphic with Ul,n(M) for some finite state
machine M, it is necessary and sufficient that for each relation
w(xl,...,xn) = v(xl,...,xn) in K and each map f : {1,2,...,n}, the
relation W(Xf(l)""’xf(n)) = V(xf(l)”"’xf(n)) also holds in K.
If this condition is satisfied then Ul,n(M(K’X)) =M(K,X).

(iii) For U n(M) to be a group machine (n 2 1) it is

1,
necessary and sufficient that for some non-trivial w in 9%, a relation
of the form:

tw(el,...,en) =t
holds universally in M.

Definition When the necessary and sufficient conditions (stated in (ii)
above) for¥i(K,X) to be isomorphic with U n(M) for a finite state
s

machine M are satisfied, X is said to generate K universally or to

generate a universal presentation of K.

Proof: (i) The elements of Ul L, are equivalence classes of
3

expressions of the form:
tw(el,...,en)

where tw(el,...,en) and tv(el,...,en) are equivalent if
tw(el,...,en) = tv(el,...,en) is a universal relation in M, with

transition function defined by

(tw(el,...,en),ei)”* t(w(el,...,en)ei)

L



The map tw(el,...,en)‘*‘w(xl,...,xn) then clearly induces an

isomorphism Ul,n(M) = K,
(ii) Suppose M(K,X) = U n(M). Then if the relation
]
w(xl,...,x ) = v(xl, .,xn) holds in K then tw(el,...,en) = tv(el,...,en)

is a universal relation in M. Thus given any map f : {1,2,...,n}, the

relation

tW(ef(l)""’ef(n)) = tV(ef(l)""’ef(n))
holds universally in M, whence W(Xf(l)""’xf(n)) = V(Xf(l)""’xf(n))

in K.

Conversely, suppose that if w(xl,...,xn) = v(xl,...,xn) in XK and
. )
f is a map {1,2,...,n} ", then w(xf(l)""’xf(n)) = v(xf(l)""’xf(n))'
It follows that the relation tw(el,...,en) = tv(el,...,en) holds
universally in M(K,X). Conversely if tw(el,...,en) = tv(el,...,en) is a

universal relation in M(K,X) then certainly w(x -,xn)

l’..l

in K (interpreting t as 1, and e, as x. for i = 1,2,...,n). The

isomorphism

Ul,n(”KK’X)) = M(K,X)

follows from (i).

(iii) Let x -,X  generate U n(M) freely subject to the

12 1,

relations:

WK, 5.0.,% ) = v(x
n

1 "xn)

120"

where tw(el,...,en) tv(el,...,en)

. . . . . r
is a universal relation in M. Since Xy =1 for some r » 1, the

relation teir = t must hold universally in M for some r.
Conversely, suppose tw(el,...,en) = t holds universally in M, with
. . D
w non-trivial. Then given f : {1,2,...,n} the relation
) = 1 holds in N n(M). In particular, w(xi,...,xi) =1

WX qyo e o¥p(n) ,

. . . -1 s .
for each i, which proves the existence of X for each i, as w 1s non-

trivial.



Definition Let M = (S,I) be a finite state machine, and let F(S)
denote the semigroup of mappings S -+ S under compesition. For each a
in I, let T(a) be the map S + S in F(S). The map T extends naturally
to a semigroup homomorphism I* + F(S). The image of this homomorphism

is the syntactic monoid(X(M) of M.

Lemma: For eachn > 1, U n(M) and U nGﬂ(d(M), T(I))) are isomorphic.
H 3

1 1
Proof: Suppose that sw(al,...,an) = sv(al,...,an) for all s in S and all ay
in I. Then w(T(al),...,T(an)) and v(T(al),...,T(an)) represent the
same element of A(M), so that w(T(a,)se..,T(a)) = £v(T(a;) 5000 T(a )

for all f in ZQM) and all a; in I.

Conversely, if fw(T(al),...,T(an)) = fv(T(al),...,Tan)) for all
f in.ZkM) and all o, in I, then w(T(al),...,T(an)) = v(T(al),...,T(an))
i114J(M). Thus sw(al,...,an) = sv(al,...,an) in M for all s in S and

all o, in I.
i
This proves the required isomorphism.

It is evident that a universal relation of the form

tw(e,s...,e ) = tv(e ,...,e_) holds in a monoid machine M(K,X) if and
1 m m

1’
only if w(xl,...,xm) = v(xl,...,xm) for all x; in X. This result will
be used in the proof of the next theorem, which describes a simple

method for constructing U m(M) when M is a monoid machine.

1,
Theerem 3: Let K be a finite monoid generated by X = {xl,...,xm}.
Let X* be the set of rows of the n by mn array whose columns are the
elements of X°. Then X* has n elements Xl,...
n

submonoid K* of K" , and Ul n(ﬂ(K,X)) and M(K* ,X*) are isomorphic.
-]

’Xn’ which generate a

Proof: Suppose that w(yl,...,yn) = v(yl,...,yn) in K for all interpretations

of Yysewes¥y in X. Then the identity w(yl,...,yn) = v(yl,...,yn)

necessarily holds in K%



Conversely w(X .,Xn) = v(Xl,...,Xn) in K* entails

1o
w(yl,...,yn) = v(yl,...,yn) for all interpretations of SETERR A in X,
each interpretation corresponding to a projection of the identity

W(Xl""’xn) = v(Xl,...,Xn) onto a single component.

L, Illustrative Examples
Example 1:

Let M be the machine having three states, and input alphabet

{a,b}, as indicated below:

3

(This machine is considered by Birkhoff and Lipson in [1]).

For this machine M,AX(M) is the subsemigroup of maps {1,2,3}

generated by a, b where

a(l) =2, al2) =3, a(3) =2
and B(1) =1, B(2) =2, B(3) =1
The syntactic monoid then consists of five maps viz. 1, a, b, EQ, ab,
e . . -3 = 2 = == = 2= =
and the additional relations a =a, b =b, b.a=za, ab=b,

=52 = 3° hold.

The machine M= m(A(M) , {a,b}) is:

% b

|
N
|



The free machine U, 2("0 = U. (M) is now the semigroup machine associated
b}

1,2
with the subsemigroup of,K(M)u generated by
A = (3,a,b,b) and B = (a,b,a,b)

It has @ elements viz.:

1, A, B, A% = (32,32,'15,3), Bzz(az,b,'éz,b),
AB = (32,35,3,5), BAB = (a,ab,a2,b)
BA = (32,3,35,D) and BA® = (a,a’,ab,b)

AB & S BAB =AB"

- VL4
Y ‘ l N7 A

N
Y

BA™

(Note that there is an errcr in the representation of U n(M) given by

]
Birkhoff and Lipson in [1], and that a similar error occurs in [2]}. The
relation AB2 = BA2 does not hold universally in M as the diagrams in [1]

and [2] suggest).

Example 2:
Let N be the machine with 3 states, and input alphabet {a, b},

as represented below:




In this case,,A(N) is the subgroup of the semigroup of maps {1,2,3}
consisting of all permutations, with generatorslg = (23), b = (123).
The machine M(A&(N), {a,b}) is then a Cayley diagram for the symmetric

group S, viz:

77

By the previous results, U, 2(M) = Ul 2(m) is the group machine
H] L4

u —_————
associated with the subgroup of 83 generated by A = (a,a,b,b,) and

B = (a,b,a,b) generated by A = (a,a,b,b) and B = ( ,b,a,b). Since
(AB)2 = (1,1,1,b), and it can be shown that (a,a,b) and (a,b,a) generate

the subgroup of Cl x 8 2 consisting of triples (c,p,q) such that pq and c

3

are permutations of the same parity, it follows that U/ 2(M) is (up to
L]

isomorphism) the group machine M(G,X) where G = Sy % 84 % C, and

X = {(2,b,b), (b,a,b)}. This result would be difficult to obtain by the

direct method for computing U; 2(M) described in [11].
b

5. Monoids with a universal presentation

It has been shown in the previous section that every free finite
state machine is of the form M(S,X) where S is a finite monoid, and X
{xl,. . ,xn} is a set of generators for S. In this section, necessary
conditions on S and X for M(S,X) to be a free finite state machine are
described. TFor instance, it is evident that if X generates S universally
then the set of relations between Xpoeee X holding in S is invariant under
any permutation of {1,2,...,n}. This fact is relevant for the interpretation

of the results and proofs of this section.



Lemma 3: If the elements X X generate the finite monoid S

Ik

universally, then either xl = x2 T ... E xn or xl,x2,...,xn are

pairwise distinct and generate S irredundantly.

@,

1= w(x2,...,xn). Let f be the map {1,2,...,n}

such that £(1) = 2 and £(i) = 1 for i > 2. Then x.(,y = X, =

Proof: Suppose that x

X =z x, . ,whence x. = X, = ... ¥ X
X ) = R,

W(xe(pyaeeeaXg(n)) = WlEyseo 17 % n *

Notation: Let P be a partition of {1,2,...,n}. The rank of P (the

number of blocks in the partition P) will be denoted by p(P).

Theorem 4: Let S be a finite monoid generated universally by distinct

generators X TN For each partition P let E(P) be the smallest

1o
congruence on S such that Xy and xj are congruent for all (i,j) in P
Then

(1) the map E is a join-preserving bijection from the lattice of
partitions of {1,2,...,n} (ordered by P < Q if P is a refinement of Q),
to the congruence lattice of S.

(ii) the quotient S/E(P) is isomorphic with the subsemigroup Sp(P)

of S generated by x ""’Xp(P)°

Proof: (ii) Let F be the moncid freely generated by ERERE L
Define p : {1,2,...,n} by setting p(i) = smallest integer in the
block of P which contains i. There is a unique monoid homomorphism
¢ : F > G such that ¢(ei) = xp(i) for i = 1,2,...,n. Since
w(xl,...,xn) = v(xl,...,xn) implies w(xp(l)""’xp(n)) = V(Xp(l)""’xp(n))
there is a monoid homomorphism ¢' : G + G, induced by ¢, such that
' : .o ® @ . i i i
) (w(xl,...,xn)) w(xp(l), ’xp(n)) Consider the equivalence relation
E on S defined by x = y if and only if there exist w and v in F such
that w(xl,...,xn) = x, v(xl,...,xn) = y and w(xp(l)""’xp(n)) =
V(xp(l)""’xp(n))' Clearly (i,j) € P implies (xi,xj) € E, whilst it
is easy to show that Ker ¢' = E < E(P). Since E(P) is the smallest

congruence in which Xs and xj are equivalent whenever (i,j) € P, it

10



follows that Ker ¢' = E(P). Thus S/E(P) is isomorphic to Im ¢', the
submonoid of S generated by {xp(l)""’xp(n)}’ and this set comprises

p(P) distinct elements.

(i) If P is a refinement of Q, then certainly E(P) < E(Q).
Moreover P < Q ensures p(P) > p{Q), so S/E(P) and S/E(Q) are non-
isomorphic by (ii) and the previous lemma. Thus P < Q entails

E(P) < E(Q).
+*

Now E(P Vv Q) is the congruence generated by the relations xi = xj

for (i,j) € P v Q. Since P v Q is the smallest equivalence relation
which contains both P and Q, it follows that E(P v Q) = E(P u Q) = E(P) v E(Q),
showing that E is a join-preserving map.
Suppose that E(P) = E(Q). Then E(P) = E(P) vV E(Q) = E(P V Q). Since
PV Q32 P, this implies Q & P. Similarly P £ Q, so that E is a bijective
map .

Note: The map E is not in general a lattice homomorphism.

Let S be universally generated by Xpseeea¥os and suppose that Xy

(and thus each generator) has stem of length c and period t.

Suppose that w(el,...,en) and v(el,...,en) are elements of length
L(w) and 2(v) respectively in F, the monoid freely generated by

e FLEp If w(xl,...,xn) = v(x ..,xn) in S, then

1o 1°°
L(W) - W(Xl’“"xl) = V(X .,Xl) = x !r(V)

Xl 120 1

whence either
(1) L(w) = 2(v) < ¢
or (ii) min (&(w), 2(v)) > ¢

and t(w) 2(v) (mod t)

Given an element x in S, it is then consistent to define the length
of x as the unique number &(x) such that if w(xl,...,xn) = x then

2(x) = 2(w) (mod t) and 2(x) < ¢ + t.

11



Corollary: Let U be the partition of {1,2,...,n} consisting of a single

block. Then (x,y) € E(U) if and only if 2(x) = t(y).

Proof: Let w(xl,...,xn) = x and v(xl,...,xn) = y. Then 2(x) = 2(y)

if and only if w(xl,...,xl) = v(xl,...,xl), and this is equivalent to

(x,y) € E(U) as observed in the proof of part (ii) of the theorem.

6. Algebras with a universal presentation

Necessary conditions for a finite monoid to possess a universal
presentation have already been described. In this section, stronger

conditions are derived for special varieties of monoid.

Theorem 5: Let S be an upper semilattice with least element O (i.e. a
monoid (S,v) in which the binary operation v is commutative and

idempotent and O is the identity element).

The generators x seresX of S generate a universal presentation

1

of S if and only if either x, = x, = ... = X, or x

1 5 EFL freely

1°°
generate S as an upper semilattice with zero element.
Proof: The sufficiency of the stated conditions is clear. Accordingly,

it suffices to show that if a relation of the form

w V x. = V Xy A,B < {1,2,...,n}
jea ieB
holds in S then either Xy T X, T ... T X O A = B.
Assume without loss of generality that A # ¢. Then if B = ¢ the

relation (U) is of the form

\/ X. =0
i

€A

He

whence x. = 0 for all 1 ir A, and x, = x, = ... = x_ = 0.
1 1 2 n

12



Suppose A, B both non-empty, and let I = An B, A = A\ I and

B=B\I. IfA=B-=¢ then A = B. Otherwise assume without loss of
- Ly

generality that A ¥ ¢ and let f : {1,2,...,n}” be such that
£(i) =1 if i€ Since (U) is a universal relation,

2 otherwise
\V/ X . ey = \V/ X, . also holds in S. If I = ¢, this entails x, = X,,
. £(1) . £(1) 1 2
i€A ieB
whence X, T %, = e TR IfI # ¢, then X, Vox =X, whence (by

universality and commutativity)

X, T X, VX, =%,V X =X, .

Theorem 6: Let G be a finite Abelian group. The elements 8o eo8y

of G are the generators of a universal presentation if and only if
for some t and some d dividing t, the group G is freely generated by

TR - subject to the relations:

Vi gi =1

vi,j g:85 = B4; (%)
. . d d

Vi,] gi = gj

Proof: The group G with free presentation on generators SRR -4 subject

to the relations (*) is universally presented on generators g;,....g .
since the set of relations (%) is closed under the application of any

function £ : {1,2,...,n} to the indices of the gi's.

Conversely, suppose that gl,...,gn universally generate G and have

common order t. Then G has a free presentation on ORRRRET - with

relations
J 3 t -
Vi gy = 1
Vi,] . =g,
1,] gigj g]gi
n r. t t
and other relations of the form 7 g; =1, Since g, ~ gj =1,
i=1l
. d d
there is a least number d such that g = gj (for some, whence all

13



. s t
pairs of indices (i,j)). As g. = gjt and gid = gjd ensure

i
N HCF(d,t) . g HCF(d’t), it must be that d divides t. If the

n %. n r,
relation 7® g, * = 1 holds in G, then m g_. . = 1 for all
. i . £(1i)
i=1 i=l
n r
maps f : {1,2,...,n}. In particular, if r = I r then g = 1,
i=1
r, Ty r, r,
whence t divides r. Moreover, g & = 1, showing that g =~ %8
and thus that d divides r;. By symmetry, d divides r. for each i, so
n r,
that the relation g; ‘z1i4sa consequence of the set of relations
i=l
g.d = g.d for all i and j.
1 ]
Cor.l:
G is an Abelian group universally generated by elements SRR -
of order t if and only if G and Ct xcdn—l = <> X <B>n- are isomorphic via

the mapping ¢ such that ¢(gl) = (a,1,...,1) and ¢(gi) = (aylyeeeslyBsl,ene,l)
ith component

for i = 2,3,...,n.

Proof: It is not difficult to show that the group freely generated by - EREENY -

subject to - the relations (*) is indeed isomorphic to C, x Cdn 1 via the

mapping ¢.

7. Groups with a universal presentation

Necessary and sufficient conditions for a finite Abelian group to
have a universal presentation are given in Theorem 6. The results and
examples in this section relate to the harder (and unresolved) problem
of determining which finite non-Abelian groups admit a universal

presentation.

The following result is a corollary to Theorem 6:

in



Cor 2 to Thecrem 6:

Suppose that gys- B generate a universal presentation for the
finite group G. Let G' be the commutator subgroup of G. The images
gi,...,g% of gys+-o8y generate a universal presentation of G/G'. Im

n~-1

particular, G/G' is isomorphic with Ct x Cd "~ for some positive integers

k and d where d divides k.

Proof: The elements of C' are products of commutators. Thus if
¥)
w(gl,...,gn)\e G' and f : {1,2,...,n} is any map, then
' . . .
w(gf(l)""’gf(n))e G'. That is, the relations imposed upon -APTR -8
by taking the quotient by G' hold universally in G/G'. By Theorem 6,

G/G' (being a finite Abelian group) is isomorphic with some Ct x Cdn_l.

The next result is the analogue for groups of Theorem u4.

Theorem 7: Let G be a finite group generated universally by distinct
generators By v By For each partition P, let N(P) be the normal
subgroup of G generated by all elements of the form gigj-l such that
(i,j) € P.

Then

(i) the map N is a join-preserving bijection from the lattice of
partitions of {1,2,...,n} (ordered by refinement) to the lattice of
normal subgroups of C.

(ii) the quotient G/N(P) is isomorphic with the subgroup Gp(P)
of G generated by gl,...,gp(P), and G is isomorphic to a semi-direct

N(P).
product of Gp(P) and N(P)

Proof: It suffices to show that G = G (

o(P) % N(P); the other results are

interpretations of Theorem 4.

For i = 1,2,...,n let q(i) be the least integer such that
(i,q(i)) € P. Let 6 : G+ G be the group homomorphism such that
e(gi) = Bq(1) (c.f. proof of Theorem 4 (ii)). Then Ker6é = N(P), and

- - -1
Imo = <gq(l),...,gq(n)>. Note that g; = gq(i)(gq(i) gi) € Im6.Kerd

15



so that G = Im6.Ker 6. Moreover, if geKerenIme, then 6(g) = g = 1.

= H ~ % N
Thus G = Im 6 * Ker 8 Cp(P) (P)

Corollary 1: If G has a universal presentation by generators g1+ 8,
of common order t then the elements of G of length O form a normal

subgroup N of G, and G = Ct % N.

Proof: See the corollary to Theorem 4, and apply Theorem 7 (ii).

Corollary 2: If k > 4, then the symmetric group Sk has no universal

presentation.

Proof: Suppose B1s-+e8, are permutations generating Sk universally,
and let gl,...,gn have common order t. Since Sk = Ct * N for some
normal subgroup N, it must be that N = Ak and t = 2. On the other
hand, in view of Theorem 7 (i), n « 2. But, if a group is generated

by two elements of order 2 it is dihedral (see [%] p.43 Ex.l ).

8. Examples of groups with universal presentations

Example 1:
As suggested by the proof of the previous corollary, the dihedral

group Dn of order 2n has a universal preSentation by two generators of

)n

it

<

H
~

order 2, viz. < X,y | X2 = 1 >. In particular 83(= DS) is

universally generated by a pair of transpositioms.

Example 2:

Every finite Burnside group B(t,n) (which is generated by n elements
 SERERTLN subject to relations gt z 1 for every g in B(t,n))is universally
generated by its canonical generating set.

The Burnside group B(3,3) of order 2187 illustrates that the map N
in Theorem 7 (and likewise the map E in Theorem 4) is not in general a

lattice homomorphism. As described in [3], evey element of B(3,3) has

a unique representation of the form:

16



a a a b b b ¢

3 3 2 1
(Xl,x2) (Xl’XS) (XQ’XS) (Xl’x2’x3)

where O < a;» bi’ c £ 2. Let P be the partition (12)(3) and Q the

partition (1)(23). The partition P A Q is (1)(2)(3) whence N(P A Q) = {1}

. But (xl,x2)2 (x ) (X°’X3)2 e N(P) n N(Q) (it reduces to 1 under

1°%3
adjunction of the relation X, = X, or %) = xs) whence N(P) n N(Q) % N(P A Q).
Example 3:

The group AL+ is universally generated by x and y subject to the

relations:

X3 - y3 - (xy)3 - (xy2)2 =1

The Cayley diagram associated with this presentation is:
'

v

AN

Example U:
The group G of order 56 generated by x and y subject to the
relations
2 3 _ 2 3 _
Xy xy =yxyx =1
is universally generated by x and y, which are elements of order 7
(see 4] p.60). The semi-direct product decomposition of G referred

to in Corollary 2 to Theorem 7 exhibits G as Cq * Cg
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