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Abstnact. When selecting fnom, on sorting, a file stored on a

reao-only tape and the irrternal storage is nather linritedrseveral

!'asses o-f the inpr-rt tape may be requir,ed. h-e strrdy the relation

befween t}'re arnount of internal stor"age availabl-e and the number of

passes r:equirecl tc select the Kti] h.ghest of N inputs. We show,

:fc,.r'example, that to find the median irrtwc passes requires a.t
'l 

1

].east A(Nz) and at rnost O(N2 log N) in'i*rriai sto:-age. For
'i

1.;t:'r:babi1.i.stic nrr'tli,t,Js, O(il2) internal sloJ..rge is ne<.:essa:.y antJ.

r;':i..{-'ir:i.er:t fcr'a sing'rl pdss nrethocl which finrls Ltre rnerlian with

arbitr.ar,ily high pnoba):i Ii ty"

1" f ntr:r:ducti-on

As a paladig'matic study of effects cf interrral stor'age limitations

on J-arge-scale data-pr<;cessing tasks, we consider problens of searching

and iorr.:ng in da'ta stored on a one-way r"eadrcnly tape when tlre amount of

random*access wonking space is severeiy constrained. We shall <luantify

nather'ciose.l-y the relatiorr between the number. of passes oven the input

fil-e which are requir.ed for these tasks anri the amo'unt r:f' storage available

for a given size of the file" In sever.al cas€s the upper bounds are

demonstr.ated by new sampling algorithms of some practical interest "

'r this author was partial)y suppcrted by a SeniortVisiting feJlowship
frprn the Scrlgnqs Reseanch Council v,rhj-le vjsitine the U;riversitv of
Wan*ick.



In our computational moclel- the data is a sequence of N distinct

elements stored on a one-way nead-only tape. An element frrcm the tape

can be nead jnto one of S l-ocations of r"andom-access stonage. The

elenrents a:re from some totally ondered set (for example the real numbens)

and a binary comparison can be made at any time between any two elements

within ttie ranclom-acceas storage. Initially the storage is enrpty and

thc tape is placed with the reading hcad at the beginning,. Altcr each

pass the tape is r.ewound to this position with no r'eading permitted.

Notational note.

Fon functions of several- argurTrents we shall write f({) = O(g(X))

when fc > O such that lff[l| . 
".g(X) for: all X except those naturally

on explicitly excluded. We also use f = $?(g) for g = 0(f); and we use

f : 0(g) for f = o(g) and g = o(f).

fn sectjorr 2 we present nesults conce::ning the problem of sonting

the data, wher.e, in view of the linritations imposed by oun model., this

must be considered as the determination of the sor"ted onder nather than

any actual rearuangement. For P-pass algor.ithms we show that 0(N/P)

storage locations are necessary and suffieient.

The gneater part of this paper is occupied with the selection

pnoblem of retrieving for some given K, the Xth high"st among N input

elements. For" clarity and convenience we adopt a terrninology of

al-titude in nespect of the ondening, e.E. we use ter.ms such as "highestr',

"bel-owt' , rrlowe:l thanr'. The most interesting speciai case of this is

finding the median (i.e. when X = tN/21). By symmetry we may always

assume that K .< [N/2 l.

It is easy to show that K + I .Iocations ar.e necessary and sufficient

to retnieve the xth higt"st element (1 \< K.< [N/21) in a single pass.



Algor"ithms using this minimal storage are studied in [fJ, whene it is

shown that for the mediah only 0(t't) comparisons are needed, whereas

for K * a N, c fixed, o ( a " *, the retrieval of the xth high""t

requires 0(N.fog N) comparisons.

in cr:nt:"ast, a two-pass probabitistic metho,C using onfy O(N% )

stolage and 3N/2 + o(N) comparisons is plesented in IZl. I'laking use of

an internal randomizer, it finds the xth highest element with an

arbitnariJ-y gr"eat pnobability. which is independent of the order of the

inputs.

The principal results obtained in this paper ar€ upper and lower

bounds which show the amount of storage requined by a P*pass detenministic

selection a3-gorithm to be rc.rughly N1/P. Other resuJts are that under

the rather strong assumption that all input orderings are equally likely'

for a single-pass .llgorittrr,r wittr a high expectation of selecting the
1

median, O(I,12) .l.ocations are necessary ancl sufficient.

2. Elementary nesul-ts.

liere, as thnoughout the papen, S denotes the numL,er of stonage

focations available. Since companisons can only be made within these

locations, we wili assume always that S 7 2. A naive sorting al-go:rithm

deter"mines in its finst pass the highest S*I elements of the input, and

their nelative order, and then in successive passes it ignores any

elements r.anked in pnevious passes in order to <ietermine tl:e ranks of

the next S-1 highest elements. This algonithm nequires only t(N-l)/(S-f)l

passes. We note that to t'ignore" previorrsly nanked elements requir"es

the retention of a lar.ge amount of inforrnation by the pnogram. A }a::ge

I'program memory" is inconsistent with our stonage limitation for any

practical apptication. ff we suppose tbat the ranking may be output as



it is being cletermj.ned then an al gonithm with very smal-l pnogram memory

nray be obtained at the cost of just one extra storage location. This

l-ocation is to hold the lowest element ranked so fan and each new data

element is companed wjth this to determine whether or not it should be

igrroned. Near.Iy all the algoritbms to be described will use this

technique in order" to nemain within the domain of practicality.

We give a sirnple lowen bound angument to establish the following

result.

Theorem I. The least storage requined by any P-pass sonting algonithm

0(N/P).fon N el-ements is

Pnoof. In view of the algonithm given above we requine only a lower

bound. Suppose that the or"dening of the data is such that lst, 3rd,

5th, highest elements are in the finst half of the tape, whereas

+L^ a-J lr+L A+L -*^ i- +lLrrE zrru, TLrr, vLrl , clc 1' url€ S€CoDd tralf . Since a val-id algorithm

nust at some time make a <linect comparison between the (2n-t)st and

+1-(2r)"'elements for r: = f: , LN/2J, either" the odd-nanked element

must be ca:r,r,ied in storage at some forward transition acncss the

midpoint of the tape or the even-ranked element must be retained during

some interrnediate rewind. If P passes ar?e used by an algonithn for this

case we can argue that

(zp-r)s > LN/2J

Hences>N/4P tr

3. Multi-pass algorithms

When S is more than

l>e des j glle(l cts f o.l lows . A t

for selection.

about (1og N)2- on efficient algorithm may

'tlre lregJ.trtrlng o.f e)dclr l)ct6ri il l)allI' o1 ,'-lt;mallt ti,

requir:ed element is guaranteed to lie, isJ:ilters, between which the



netained in the stonage, though their precise ranks may so far be

undetermined. At the stant of the algor"ithm we may pretend that rridealt'

elements repnesenting t- fulfil- this role. Duning the pass any elements

not between the filters are used merely to establish the exact nanks of

the filter.s. Fnom the remainder a suitably constructed sample is

netained from which a new pair of fil-tens is aelected.

Fcr. the initial pass the number of el-ements between the filters is

N, and for the final pass this is to be neduced to at rnost S-2 so that

all such elements can be retained for a final selection. With the

details of the al-gor"ithm we shall establish the following relation.

Lemma 1. If at most n elements lie between the filtens at the beginning

of a pass then for the fol-towing pass this number is O(n(log n)2/S).

A sirlpie estjmation from this lemriLa yields the next upper bound.

Theorem*2. A P-pass algorithrn which
1lD

requi res storage at most O (t';-'' . ( log

Outline of the algorithm.

Foi:' sonre f ixed s, a qample at

elements chosen from a ttpopulationtt

rh
selects the K-" highest of N elenents

1

N)2), and onl.y O(Nz.log lI) for P = 2.

level i wil-1 be a sorted set of s

i
of 2'. s elements acconding to the

following scherne.

A sample at level O consists of the whole population of 2o.s elements

in sorted orden. A sample at level i + 1 is formed by taking two samples

at leve.I i fnom the first and second halves of the population, frthinning"

each by netai.ning only the second, fourth, sixth, ... elements fncm the

top in each, and then merging the two subsamples to forrn one sorted sample.

We shall show that a sample deserves its name in that it contains a

reasonably well spaced selection frorn the tota-l- order" of its population.

To this end consider the jth 
"fur"nt from the top in a sample at level i.

We denote by L-..r, M-. " respectively the feast, and most numbers of
].J -LJ



elements fnom its coruesponding population which can appear. str"ictly

above it in the total orden.

i
Lemma 2. L.. = j.2* _ L

1l 
i

M..=(i+j-1).2^1l

Pr"oof. Clearly, for 1.< j < s, L_- = M-, = j - l-. We use the-oJol
convention that tio = -1forall, i >0. For i>1, j )1, wemaythen

verify that

L.. = min {L. + L. + 1}fl ].-Irzp !-L)zq

p+q = j

P>o' q>o

and

M.. = max {M. t M }--ij "'--- '--i-1, 2p "i-1 , 2q+2'

p+q=j

p>o, e)o

Fnom these equations the nesult may be pnoved inductively. tr

For a population of size at most 2r.s frrcm which we wish to select
.th.. th ththe k"'highest we shall choose as new filtens, the u-" and v--'elements

of the final sample at leve1 r, where urv af.e the gr:eatest and least

integers nespectively such that

k-1>M =(:r+u-I)2r

and

k-1..L"r=v.2r-I
+l^

The k "' element must then be one of these elements or: lie between them in

the onden. The number of elements between them is at most

M -L -t=(L +r+(r-1)2r)-(M -r-(r-t)zr)-rtv ru rv ru
=2(n-1)zr+(1, -M +1)J'v ru
\< ( zr-t )zr

since L--. + f .< M .. + 2T by the extnemality of urv.llv ru



The maximr.m stor"age required is for a sub-sample (consisting of

even-positioned elements of a sampl-e) for each level berow the nth, fon

one "wonking samplet' and for: the pair of filtens. This is at most

rs/2 + s + 2. We choose s = [S/]ognT and r = flog(n/s)l so that rlr-.2F.s

and the stonage r:equined is at rnost S, when S is sufficiently large.

(we can assume s l a((tog n)2).) The population size nt for: the next

pass satisfies

n' .,< ( 2r-I)2r -< 4rn/s = o(n(log n)2/s)

and we have justified Lemma 1. The storage requir.ernent of the algonithm

can be reduced by a constant factor if samples are combi.ned five at a

time instead of two at a time.

Veny small storage

It is clean that the above algonithm requires S >, n((fog W)2).

For smaller values of S, one mlght employ the more practicaL of the

"so::ting" algonithms and terrnj.nate it aften f (K-f)/(S-2)1 passes.

This is the only algorithn we know for very smalJ storage which does

not nequine extensive progr"am memory. If we disregand pnactical

limitations arrd allow an algorithm to rernember an arbitr"ary arnount of

inforrnation about previous compar"isons, we can prove the following uppen

bound.

Theorem 3. For" 2 .< S S 0((Iog N)2), there is a class of selection

algorithms which use at most O((1og N)3/s) passes.

Proof. The algor:ithms simul-ate each pass of the algonithm of Theonem 2

by several passes with smaller storage. The cornpanisons penforrned in

one pass of the oniginal algorithm can be undenstood in cor:respondence

with a binary tree of height r. At the leaves are 2r level o sampres of

size s = lrog nl. At successive leve]s of the tnee pairs of adjacent



samples ane thinned and mer:ged until the finar sample at level r is

reached.

with storage s equal to s, all the operations at one lever of the

tree can be can:ried out in one pass, whereas with s > s, it is possibre

to execute 0("/s) levels at once. When S < s, a single level can be

completed in O("/S) pu"""". The sonting and menging openations are done

by the naive multi-pass sonting algonithm described in section 2, applied

simultaneously to each sample. The menory nequired by the pnognam to

recond the par"tial progress during such an operation would be intolelable

in pnactice. However in all cases where 2.< S < O((1og N)2) ttre total
/ ^\

number of passes to simulate one pass befone is a[(1og N)'). The total'\ s /
of passes for the selection pnoblem is therefone O((1og N)3/S). n

4. Lower bounds for rnulti-pass selection.

To show that the upper bounds derived in the pr'evious section ane

close to optimal- we hene present coryesponding lower" bounds. Our main

pnoof uses the idea of the rrAdversary" who, knowing the innennost workings

of our algorithm, devises an ordering of the input to confound it. He

may also supply us with any extra infonmation whatsoever, which cannot

of course adversely affect the perfonnance of the algonithn but is

designed to facil,itate the pnoof.

Theor"em 4. Any P*pass algorithm to determine the mediar,(or Kth highest

CI(N)) of N elements requires at least n(w1/P) storage

The minimum storage S fon a two-pass algor"ithm satisfies
't1

a(Nz) .( S s< o(Nz.log N)

for N/2 >. K =

locations.

Coroflary 1.

Proof. Immediate from Lemma I and Theonem 4. I



Corollary 2. Pnovided 1og S > n((log lt.log log N)z), the rnaximum

number" of passes requir"ed is log N/1og S f 0(1), while for

log log N = o(]og S) we have P - log N/log S.

Proof. Immediate frorn Ttreor.ems 2 and 4. fl

The p::oof of Theonem 4 foll-ows at once fnom the following Lemma

which establishes that aften one pass of any (median-finding) algor.ithm

using S locations there nemains to be done a computation at feast as

hand as finding the median for" an input of size approximatety N/2S.

Lenrma 3. For any S-loc:ation algorithm on I'l input eLements thene is

an ordering of the input tape so that after" the first pass there rs

a set X of inputs with the fcllowirrg pr,openties:

(i) no elernent of X remains in stonage,

(ii) no orderings between elements of X ane known,

(iii) the median of the original set is the median of X,

and (iv) X contains at least t N/(2S-f) J elements.

Pr.oof of Lerrrna. Withclut loss of generality the al-gor"ithm reads the

first S inputs into storage and decides which one to discand as the

(S+f)st input is nead. The Adversarlr ensures that this (S+1)st element

stands in the same relative order:ing with respect to the remaining S-1

elements in stor"age as the one it replaces. This st::ategy for the

Adversary is followed r"epeatedly, replacing each discarded element by

a new element which is effectively indistinguishable. For x : lN/(2S-1)J,

as the (Sx + l)st element is about to be readn at least one of the

storage l,ocations has had disca::ded from it a set X of at least x

elements between which no comparisons have been rnade and no orderings

can yet be deduced. It may be venified that the relative o:rdering of

the r.ernaining N - Sx elements may be designed so that the median

element is the median of X. n



Whilst the .:symptotic constant of I /Z in this lemma can be raised

to ln 2, and even highen, by a more r"efined argument, an upper linit

of this approach is manked by the trivial- algor"ithm, which inputs and

discards S at a tirne and leaves itincomDarablerr sets of size at most

l-N/S I .

5. Selection algonithms that I'nearly always" succeed.

If we make the assumption (not requir:ed in [Z]) ttrat al] input

onder"ings ane equally likely and we are willing to tolenate some small

pnobability, say 10-6, of faifune then the amount of storage r^equired

can be much reduced. For example a single-pass median algorithm finds
'l

O(N2) storage necessauy and sufficient.

Probabilistic algonithns fon selecting the median.

Fon a suitable choice of stor.age size S, the algorithm maintains in

storage for as long as it can S-l elements whose ranks among those

read thus far are consecutive arrd as close to the current median as

possible. To this end it keeps two counts I{ and L, botb lnitlally zera'

of the numbers of elements which have so far been discarded above and

below, r,espectivety, the consecutive segment netained. Under oun

assumption of equal likelihood, the probability that a new element read

ties above all those retained is precisely (H + l)/(fi + S + L). In

this case the efement must be discarded and H incremented by one. The

case where it lies below the retained segrnent is sirnilar. With

probability (s - 2)/c1 + s + L), the new element can be inserted

strictly within the segment and either the highest or lowest of those

retained. is chosen for. discanding accor^ding as H < L or H >- L r"espectively.

At the end of the tape the median has been retained and deterrnined

provided. H + I r< tN/21 -< N - L. we have only to estimate the size of s

10



required to guarantee this result with high probability. The progress

of the algorithm can be viewed as a random rnal-k of the integer variable

D = H-L starting fnom the origin. It can be venified that fon

O < lnl < S*1 the probability that lnl is r,educed at the next step is

at least one half, and furthermore the condition that the median is found

is equivafent to lOl < S-1. For" any € > O, there is a constant C such

that durjng the first CS2 ste;'s of a nanciorn walk about the origlin, with

egual pnobabilities of a step to the right on left, the probability of

the::andom vaniable attaining magnitude S-1 is at most € (see [3]).

Since the random wa.l-k for oun algorithm is mor"e biased towands the o::igin

oven the negion of interest the same result holds.

The algorithm described can be used as the basis of a multi-pass

algo:rithm in the following way. For suitably chosen constants Cl 
'C2,

dependjng on €, the probability that the median of the whole input

set lies between the extreme elements of the segment netained aften C1S2

steps is very high. From this point on, for the remainder of the pass'

the same S-1 el.ements are netained in stonage and thein ::anks are found

by comparisons with the rest of the input. If one of the retained elements

is the median, the algorithm terminates; if not, the number of elenents

sharing the same ttgaptt as the median with respect to the stoned elements

can be shown to be at most C2N/52 with high probability. This set of

elements satisfy the sarne assumption as to randomness as the initial- set

and so the same pnocedure may be used for furthen passes. Hence:

Theonem 5. Fon

with p:robability

any € > O, P 2 I there is a P-pass median-finding algorithm

of fail-ure at most e which uses only o(N1/2P) stonage.

I1



Lower bound for probabilistic algonithns.

Theonem 6. Thene is an e > 0, such that any one-pass algonithm which

finds the median with prrcbability of failune l-ess than e requires at
1

l-east CI(Nz) stor^age.

Proof. Consider the situation after [N/21 elements have been read. The

probability is at least hal-f that the median is one of these, but only S

of them can have been netained. The most likely candidates are towands

the niddle but the straightforwand estimation of a h54pergeornet:ric

distr:ibution [ 3] shows that fon a subset of size S of these elements to

contain the median with probability above one quarten nequires
1

s >, a(N2 ). n

Co:rollany. Fon a single-pass algo::ithm which nearly always finds the
'l

median, O(Nz) l-ocations are necessary and sufficient.

6. Conclusions.

Oun aim has been to determine the pnecise computational requinements

f6r specific tasks of selecting fr.om, or sorting, data presented on a r"ead

only input tape under a r"egime of limited intermal storage. We present

new algorithms of some practical interest as well as lower bound proofs

which exptoit the joint constraints on internal storage and access to

input data.

Our main algor^ithm for selection uses a novel sampling technique

ancl cein be impJ-emented easily to nequine only about N(3P/2 + log S)

comparisons in all. The upper and lower bounds on stonage differ only

by a factor of or"der. (1og n)2 and give a clear: idea of the tr:ade-off

relation between the number of passes and the amount of storage necluined.

T2



The picture we have in the probabilistic case is much less cornplete.

Theorem G is neadily extensible to give a lower bound of

log1og N - log1og S - O(1) passes if we nequire that the only information

netained fr"om one pass to the next is a pair of filtens and their nanks.

It seems likeIy that the uppen bound may be reduced to about this value

but analysis of the algor.ithms we considered has so far pnoved intnactable.
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