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Abstract. A survey of various results concerning the use of Hoare's logic in proving correctness 
of nondeterministic programs is presented. Various proof systems together with the example 
proofs are given and the corresponding soundness and completeness proofs of the systems are 
discussed. Programs allowing bounded and countable nondeterminism are studied. Proof systems 
deal with partial and total correctness, freedom of failure and the issue of fairness. The paper is 
a continuation of Part I by Apt (1981), where various results concerning Hoare's approach to 
proving correctness of sequential programs are presented. 
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1. Introduction 

The purpose of this paper is to provide a systematic presentation of the use of 
Hoare's logic to prove correctness of nondeterministic programs. This paper is a 
continuation of [1] where we surveyed various results concerning the use of Hoare's 
logic in proving correctness of deterministic programs. 

Hoare's method of proving programs correct was introduced in [14]. Even though 
it was originally proposed in a framework of sequential programs only, it soon 
turned out that the method can be perfectly well applied to other classes of programs, 
as well, in particular to the class of nondeterministic programs. 

We discuss the issues in the framework of Dijkstra's nondeterministic programs 
introduced in [7] and concentrate on the issues of soundness and completeness of 
various proof systems. 

This survey is divided into two parts dealing with bounded and countable nondeter­
minism in Sections 3 and 4, respectively. A program allows bounded nondeterminism 
if at each moment in its execution at most a fixed in advance number of possibilities 
can be pursued. If this number of possibilities can be countable, then we say that 
the program allows countable nondeterminism. 
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In Section 2 we introduce the basic definitions. In Section 3 we discuss partial 
and total correctness of Dijkstra's programs. The methods used are straightforward 
generalizations of those which were introduced in the case of sequential programs 
and discussed in [l, Section 2]. This should be 'Contrasted with the presentation in 
Section 4 where total correctness of countably nondeterministic programs and total 
correctness of programs under the assumption of fairness is discussed. Even though 
the methods and techniques used there are appropriate generalizations of those 
used in Section 3, various new insights are there needed. In Section 5 we attempt • 
to assess Hoare's approach to sequential and nondeterministic programs. Finally, 
in Section 6, bibliographical remarks are provided. 

2. Preliminaries 

Throughout this paper we fix an arbitrary first order language L with equality 
containing two boolean constants true and false with obvious meaning. Its formulae 
are called assertions and denoted by p, q, r. Simple variables are denoted by a, b, 
x, y, z, expressions by s, t and quantifier-free formulae (Boolean expressions) by 
the letter e; p[t/x] stands for a substitution oft for all free occurrences of x in p. 

All classes of programs considered in this paper contain the skip statement, the 
assignment statement x := t and are closed under the composition of programs '; '. 

By a correctness formula we mean a construct of the form { p }S{ q} where p, q are 
assertions and S is a program from a considered class. Correctness formulae are 
denoted by the letter </J. 

An interpretation of L consists of a non empty domain and assigns to each nonlogical 
symbol of L a relation or function over its domain of appropriate arity and kind. 
The letter J stands for an interpretation. Given an interpretation J by a state we 
mean a function assigning to all variables of L values from the domain of interpreta­
tion. States are denoted by a, r. The notions of a value of an expression t in a state 
a (written as a(t)) and truth of a formula pin a state a (written as F= 1p(a)) are 
defined in the usual way. A formula p is true under J (written as F= 1 p) if F= 1 p(u) 
holds for all states a. 

We allow two special states l. reporting nontermination of a program and fail 
reporting a failure in execution of a program. We have, by definition, ~ 1 p(l.), 
~ ;p(fail) for all formulae p. We define [p]1 to be the set of all states u which satisfy 
p under J (i.e., such that F= 1p(a) holds). Thus, by definition, for any p and J, .le [p]1 

and fail e [ p ]1• 

Finally, let Tr1 be the set of all assertions which are true under J. 

3. Bounded nondeterminism 

Denote by Yn the least class of programs such that, for all Boolean expressions 
eh ... , em and Y1, ••• , Ym E Y,,, 

if e1 ~ S1 D· ··Dern~ S,. fiE ff,. 
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and 
do e1-+ S1 D ... D em-+ Sm od E Sn. 

This class of programs was introduced in [7] and further extensively studied in 
[8] and various other papers. The Boolean expressions e; in the context of the if­
and do-constructs are called guards. 

An intuitive meaning of the program if e1 -+ S1 o · · · o em-+ Sm fi is the following: 
Choose nondeterministically a guard e; which evaluates to true and execute the 
program S;. In the case when all guards ei. . .. , em evaluate to false, the program 
fails, i.e., its execution improperly terminates. An intuitive meaning of the program 
do e1-+ S1 o · · · o em-+ Sm od is: As long as at least one guard evaluates to true 
repeatedly do the following: Choose any guard e; which evaluates to true and 
execute the program S;. In the case of one guard only the construct do e1 -+ 

S1 o · · · o em-+ Sm od is thus equivalent to the usual construct while e 1 do S1 od. 

3.1. Semantics of nondeterministic programs 

Before we dwell on the issue of correctness of the programs from Y'n we define 
their semantics. We follow here the approach of Hennessy and Plotkin [13], the 
advantage of which is that it can be easily adopted to several other classes of 
programs. This semantics is based on the consideration of a transition relation '-+' 

between pairs (S, u) consisting of a program S and a state u. The intuitive meaning 
of the relation 

(Si. u)-+ (S2, T) 

is the following: Executing S 1 one step in a state u can lead (nondeterministically) 
to a state T with S2 being remainder of 5 1 still to be executed. It is convenient to 
assume the empty program E. Then S2 is E if the considered step of S1 leads to 
state T with S1 properly or improperly terminated. We assume that, for any S, 

E;S=S;E=S. 
Given an interpretation we define the above relation by the following clauses: 

(i) (skip, u)-+ (E, a), 
(ii) (x := t, u)-+ (E, T) where T(x) = u(t) and T(y) = u(y) for y~ x, 

(iii) (if e1 -+ S1 o · · · o em-+ Sn fi, u)-+ (S;, a) if I= J e;( a), 

(iv) (ife1 -+S1 D· · ·Dem-+Smfi, u)-+(E,fail) if 1=1 /\: 11e;(a), 
(v) (do e1 -+S1D·. ·D em-+ Sm od, u)-+(S;; do e1-+ S1 D·. ·Dern-+ Sm od,u) 

if I= A(u), 

(vi) (do e1 -+ S, o · · · o em-+ Sm od, u)-+ (E, u) if I= J/\: 1 1e;(u), 
(vii) if (51, u)-+ (S2 , T) then (S1 ; S, u)-+ (S2 ; S, r). 
Let -+ * stand for the transitive, reflexive closure of -+. 

We now introduce the following definitions. 

Definition 3.1. (i) S can diverge from u if there exists an infinite sequence (S;, u;) 
(i = 0, 1, ... ) such that (S, u) = (S0 , u 0)-+ (S1, u 1)-+ · · · . Such a sequence is called an 
infinite computation starting in (S, a). 
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(ii) S can fail from u if 

(S,cr) ..... *(51.fail) forsomeS1. 

(iii) A finite sequence (S;,u;) (i=O,l, ... ,k) such that (5,~)=(So,_<ro)....,. 
(s er ' ....,. (·s ~ ) and s = E or crk =fail is called a computation startzng in I• l ! . · · __. k• v k k 

(S, er) of length k. If er" ;p fail, then it is a non failing computation. 

The following lemma will be needed later. 

Lemma 3.2. Jf s cannot diverge from er, then there exists a natural number k such 
that all computations starting in (S, er) are of length at most k. 

Proof. Consider the set of all finite sequences (S, cr) =(So, cr)o....,. · · · ..... (S,.,, cr,.) 
ordered by the subsequence ordering. This set forms a finitely branching tree. If 
the desired k did not exist, then this tree would be infinite. By Konig's lemma it 
would then contain an infinite branch which contradicts the assumption. 0 

We now define three types of semantics for the programs from ::In by putting 

.tl[S](er) = { T / (S, a)-'>*(£, r)}, 

.l1"101[S](er) = v4t[SD((j') u {1. /Scan diverge from (j'} 

and 

Al,",[ S](a) = .«wrmITSH a) u {fail IS can fail from er}. 

All semantics depend on the interpretation J but we do not mention this depen­
dence hoping that no confusion will arise. The difference between them lies in the 
way the ·negative' informations about the program are dealt with-either they are 
dropped or they are explicitly mentioned. 

3.2. Partial and total correctness 

While studying correctness of programs we are interested in various properties 
namely 

(a) whether all proper states generated (or produced) by the program satisfy a 
given post-condition, 

(b) whether the program always terminates, and 
(c) whether none of the executions of the program leads to a failure. 
We are usually interested in executions starting in a state satisfying some initial 

pre-condition. The above properties lead to various possible interpretations of the 
correctness formulae {p}S{q}. 

Let 
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We then define 

I= 1,h{p}S{q} iff Jtth[S]([p]1) c;; [q];. 

lnformally speaking, I= 1 {p} S {q} means that any properly terminating execution 
of S starting in a.state satisfying pleads to a state satisfying q; I= J,wtoi{p}S{q} in 
addition guarantees that any execution of S starting in a state satisfying p terminates 
and I= 1,,m { p} S { q} guarantees that in addition no failure arise. If I= 1 { p} S { q} holds, 
we say that the program S is partially correct under J; if I= 1,w10,{p} S {q} holds, we 
say that the program Sis weakly totally correct under J and if l=,1,10,{p}S{q} holds, 
we say that the program S is totally correct under J (all with respect top and q). 

The notion of weak total correctness is rarely used and we shall not discuss it 
extensively. The reasons for introducing it here will become clear in Section 4. 

3.3. A proof system for partial correctness 

We now present a formal system allowing us to deduce formally partial correctness 
of programs from Y,,. Its axioms and proof rules are the following. 

AXIOM 1: skip axiom 

{p} skip {p}. 

AxroM 2: assignment axiom 

RULE3 

RULE4 

RULES 

RULE6 

{ p[ t I x]} x := t { p}. 

composition rule 

{p}S1 {r}, {r}S2{q} 

{p}S1 ;S2{q} 

if-rule 

{ p 11 e;} S;{ q}, i = 1, ... , m 

do-rule 

{p /\ ej}S;{p}, i = 1, ... , m 

p is called a loop invariant. 

consequence rule 

p-.;.p1,{P1}S{q1},q1-.;.q 
{ p} S{q} 
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We cal! this system N. For A being a set of assertions and a correct_ness 
we write .A,_ ,...4> to denote the fact that there exists a proof of cp m N 

,,,. lm:h u~e~ a~ as~umptions for the consequence rule assertions from A. 

a proof in N 

To illustrate the use of the proof system N we now provide the following example. 
kt S stand for the following program: 

do 2 x v 3 j x ....,. 
if 21 x....,. x := x I 2 ; a := a + 1 

; 3 i x ....,. x := x I 3 ; b := b + 1 
:-4 i x -> x := x / 4 ; a := a + 2 fi 

od 

\~·here x, a. b are integer variables. This program computes the greatest powers of 
2 and 3 which divide x. We now present a formal proof of this fact. More precisely 
we prove 

(I) 

where 10 is the standard interpretation of the language of Peano arithmetic aug­
mented with the division operator and divisibility relation. 

We present the proof in a 'top-down' fashion. We choose p=z=x · 2"·3" to 
be the loop invariant. We now show 

a = 0 11 b = 0 11 x = z -> p, 

{p11(2lxv3[x)}Si{p} where 51 is the loop body, 

p111(2jxv3lx)->z=x·2a.3b 111(2[xv3lx). 

(2) 

(3) 

(4) 

Note that (3) implies, by the do-rule, {p} S {p 11 1(2 I xv 3 Ix)} which together with 
(2) and (4) implies (1) by the consequence. Both (2) and (4) are obvious. 

To show (3) we have to show 

{ p 1-( 2 I x v 3 I x) 11 2 I x} x := x I 2 ; a := a + 1 { p}, 

{ P 11 ( 21 x v 3 I x l 113 I x} x := x I 3 ; b := b + 1 { p}, 

{ p 11 ( 21 x v 3 I x) 11 4 I x} x := x I 4 ; a := a + 2 { p} 

and apply the if-rule. 
·we now prove (5). By the assignment axiom 

{ z = x · 2" • 1 · 3 b} a := a + 1 { p} 

and 

(5) 

(6) 

(7) 
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so, by the composition rule, 

{z = (x/2). za+l. 3b}x := x/2; a:= a+ 1 {p} 

which by the consequence rule implies (5). Proofs of (6) and (7) are similar and 
left to the reader. 

Note. To ensure that the application of the division operator does not result in 
producing non-integer values, we should actually use here the following assignment 
rule in the case of division operation: 

p[ (a I b) Ix J -,)o b I a 
{p[(a/ b)/ x]}x :=a/ b{pf 

We leave it to the reader checking that the above proof remains correct when 
this assignment rule is used. 

3.5. Soundness of N 

To justify the proofs in the system N one has to prove its soundness in the sense 
of the following theorem which links provability of the correctness formulae with 
their truth. 

Theorem 3.3. For every interpretation J, set of assertions A and correctness formula 
</> the following holds: If all assertions from A are true under J and Ar-N<f>, then</> is 
true under J. 

In other words if Tr1 f-N</>, then I= 1 </J. 
We call a correctness formula valid if it is true under all interpretations J and a 

proof rule sound if, for all interpretations J, the truth under J of its premises implies 
the truth under I of its conclusion. 

To prove the soundness of Nit is sufficient to show that all axioms of N are valid 
and all proof rules of N are sound since the desired conclusion then follows by the 
induction on the length of proofs. As an example proof we now show the soundness 
of the do-rule. 

Let S stand for do e1 -,)o S 1 o · · · o em -,)o Sm od. Fix an interpretation J and assume 
that all the premises of the do-rule are true under J, i.e., that 

.Al[S;]([p" e;]1 ) s; [p]1 for i = 1, ... , m. (8) 

Let TE .-«[S]([p ]1 ). Then, for some u E [p Ji, TE .-«[SD( u). By the definition of .JJ, 

we have 

(S, u0)-,)o* (S, u 1)-,)o* · · · -,)o * (S, u,)-,)o (E, u1) 

where u = u 0, T = o-1 and, for all j = 0, ... , l- l, o-i E [ ek)J and ui+I E .-«[Sk;](o-i) for 
some ki E {l, ... , m} and o-1 E [/\~=I 1e;]1. We have o-0 E [p]1 and if, for some j E 

{O, ... , l -1}, O'"j E [p ]1, then, by (8), O"j+I E .-«[Sk;Il([p" ek)l] £;; [p Ji, i.e., O"j+I E [p]j. 
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Thu-.. for all j=O, .... l, aiE[p]1. In particular <r1C[p]1 ~hich means that TE 

-,e] . This proves the truth under J of the conclusion of the do-rule and 
' I I, ,I f h le 

.,.,,._,,,., concludes the proof of the soundness o t e ru · 

3.6. Completeness 1~f Nin the sense of Cook 

f d f Of system is completeness which A converse property to that o soun ness o a pro .. 

links truth of the correctness formulae with their provability. Unfo~tunately a 

converse implication to Theorem 3.3 can be proved on!~ for a special type of 

interpretations J. This issue is discussed at length in [1, Sections 2.7 and 2.8~ where 

we rder the reader for the details. We restrict ourselves here to presentmg the 

apprnpriately adopted definitions without entering into any discussion of the results. 

Define 

post1 ( p, S) = .tl[SD([p ]1 ), 

pre1 (S, q) = { o-: .tl[SD( a) s; [q ]1 }. 

Note that these sets are characterized by the following equivalences (the second 

of them is just a rewording of the definition): 

(9) 

Let be a class of programs. 

Call the language L expressive relative to J and 9"0 if fbr all assertions p and 

programs SE .'f'0 there exists an assertion q which defines post.1 ( p, S). If J is such 

that L is expressive relative to J and Y0 , we write J E Exp(L, 9"0 ). It is worthwhile 

to note that in the definition of expressiveness we can alternatively require definabil­
ity of pre.1 (S, q) instead of postJ (p, S) (see [1]). 

Definition 3.4. A proof system G for Y 0 is complete in the sense of Cook if, for 

every interpretation 1 E Exp(L, Y0 ) and every asserted program </> if 'r=.1</>, then 
Tr11-(, et.>. 

This definition of completeness is, as the name indicates, due to Cook [6]. 

Now, the proof system N for Y,, is complete in the sense of Cook. The proof 

proceeds by the induction on the structure of the programs. 

The only two nontrivial cases are these of composition and the do-construct. 

H 1=, {p}S,; S2{q}, then clearly 'r= l {p}S1{r} and 'r= J {r}S2{q} where r defines 

pre,1 ( S2, q); so. by the induction hypotheses and the composition rule, 

Tr, r-,.. { p}S,; S2{q}. If 'r= l { p}S{q }, where S =do e 1 -'> S 1 LJ· • ·Dem' Sm od, then we 

must find a loop invariant r such that, for i = 1, ... , m, I= .1{r 11 e;}S;{r},F=
1 
P"'' and 

""1(r11 A;': 11e;)""' q. Then by the induction hypothesis and the consequence rule 
Tv-." {p}S{q }. 
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We choose r to be an assertion defining pre1 (S, q). Then by (9) I= 1 {r}S{q} so 
also I= 1 {r}if e;-+ S; o 1e;-+skipfi; S{q} for any i = 1, ... , m as, for all a-, 

.Jtf [if e; -+ S; D 1e;-+skipfi; sn ( (T) s;;; .Jtf [ Sll( (T) 

clearly holds. Now, since r defines pre1 (S, q), then, as in the case treated above, 
I= 1 {r} if e/-+ S;oie;-+ skip fi {r} from which I= 1 {r A e;}S;{r} follows. By (9) we have 
I= 1P-+ r and I= 1 (r" /\. ';'.. 1 1e;) ~ q follows from the definition of r. This concludes 
the proof. 

3. 7. A proof system for total correctness 

To prove total correctness of programs from Yn we must provide proof rules 
ruling out possibility of failure and nontermination. 

A possible failure in an execution of a program from Yn can be caused only by 
the if-construct. Clearly the if-rule does not rule out a possibility of failure. However, 
a small refinement of this rule suffices to prove the absence of failure. We only need 
to ensure that at each moment when an if-statement is to be executed, at least one 
of its guards evaluates to true. This is achieved by the following modification. 

RULE 7 : if-rule II 

p-+ V~=i e;, {p" e;} S;{q};=1. .... m 

{p}ife1 -+S1 D· · ·Dem-+Smfi{q}° 

A possible nontermination of an execution of a program from Yn can be caused 
only by the do-construct and clearly the present do-rule does not rule out such a 
possibility. The following modification of the do-rule suffices to prove termination 
of each do-construct. This rule is due to [11] where a different formalism is used. 

RULE 8 : do-rule II 
m m 

p(n) An> 0 ~ V e;, p(O)-+ /\. 1e;, 
i=I i=I 

{p(n) An> 0 A e;}S;{3m < np(m)}i=I. .... m 

{3n p(n)}do e1 ~ S1 o · · · o em-+ Sm od{p(O)}" 

Here p(n) is an assertion with a free variable n which does not appear in the 
programs and ranges over natural numbers. 

Let NT denote the proof system obtained from N by replacing the if- and do-rules 
by their modified versions. This proof system is appropriate for proving total 
correctness of programs from Yn. 

To illustrate the use of the system we now indicate how to modify the proof given 
in Section 3.4. to demonstrate the total correctness of the program there considered, 
i.e., to prove (1) within NT. 

We choose 

p(n) = p A 3a1' bi> x 1(x = 2a1 ·3b, · x 1 A1(21x1 v3 I x 1) An= a 1 + b1). 
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The second component of p(n) states that n is the sum of powers of 2 and 3 
which divide x. 

We now have 

a=OAb=OAx=z ~ 3np(n), 

p(n)An>O ~ 2lxv3lx, 

p(O)~-i(21 xv3lx), 

{p(n) An> O}S1{3m < np(m)} 

(10) 

(11) 

(12) 

(13) 

where the last correctness formula can be proved using the if-rule II since p(n) An> 
0 ~ 2 Ix v 3 Ix v 4 Ix holds. The proof of ( 13) is a small modification of the proof of 
(3) and is left to the reader. Now by do-rule II, (10) and (12) we obtain (1) as desired. 

3. 8. Arithmetical soundness and completeness of NT 

As explained in [l, Section 2.11] when trying to prove soundness of a proof for 
total correctness one has to revise appropriately the notion of soundness. We follow 
here the approach of Hare! [11] also adopted in [1]. We recall the introduced 
definitions. 

Let L be an assertion language and let L + be the minimal extension of L containing 
the language Lp of Peano arithmetic and a unary relation nat(x). Call an interpreta­
tion J of L + arithmetical if its domain includes the set of natural numbers, J provides 
the standard interpretation for Lp, and nat(x), is interpreted as the relation 'to be 
a natural number'. Additionally, we require that there exists a formula p0 of L + 

which, when interpreted under J, provides the ability to encode finite sequences of 
elements from the domain of J into one element. (The last requirement is needed 
only for the completeness proof.) 

More formally, p0 satisfies the following condition for any natural number n, 

where x, i, y are the free variables of p0 . 

One of the examples of an arithmetical interpretation is of course 10 . It is important 
to note that any interpretation of an assertion language L with an infinite domain 
can be extended to an arithmetical interpretation of L +. Clearly, the proof system 
NT is suitable only for assertion languages of the form L +, and an expression such 
as p(n) is actually a shorthand for nat(n) A p(n). 

We now say that a proof system G for total correctness is arithmetically sound 
if, for all arithmetical interpretations J and asserted programs <fa, Tr1f- 0 </J implies 
F= 1tot<f>· 

It can be shown that the proof system NT is arithmetically sound. The case of 
the if-rule II is easily handled. The proof of soundness of the do-rule II for the case 
of arithmetical interpretations is in turn an easy modification of the proof of 
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soundness of the do-rule where one simply parametrizes the invariant p. The proofs 
of other cases are the same as before. 

We say that a proof system G is arithmetically complete if, for all arithmetical 
interpretations J and asserted programs </J, I= ; 10, <P implies Tr;f- 0 </J. 

To show the arithmetical completeness of system NT we first introduce the 
following notion: 

pret; ( S, q) = { u: At101[ S] ( u) <;;; [ q ]; } . 

pret stands in the same relation to total correctness as pre does to partial correctness: 
we have I= J,to1{p} S {q} iff [ p ]; <;;; pret; (S, q ). 

Thanks to the provision for coding of finite sequences it can be shown that for 
any arithmetical interpretation J there exists an assertion which defines pret1 (S, q). 
This fact is not completely obvious as the definition of pret; (S, q) also mentions 
(the nonexistence of) infinite sequences. This difficulty, however, can be resolved 
by making use of Lemma 3.2 thanks to which we arrive at the following alternative 
definition of pret1 (S, q) amenable to be coded: 

pret1 (S, q) ={u: V'T[((S, u)-+ *(E, T))-+ I= 1q( T)] 

and 3k13S0 , ••• , Sk+I> Uc» ... , ak+1 

[S = S0 , u = u 0 A V'i~ k((S;, u;)-+ (S;+1> U;+1))] 

and 13S' ((S, a)-+*(S', fail))}. 

The completeness proof proceeds by induction on the structure of programs. The 
only cases different from the corresponding ones in the completeness proof of N 
are those of if- and do-constructs. Let J be an arithmetical interpretation. 

If l=J.101{p}ife1-+S1 r1· • ·c1em-+Smfi{q}, then by definition 1=1 p-+V7=i e; and 
I= ;,,01 { p A e;} S; { q} for i = 1 , ... , m. By the induction hypothesis Tr 1 f-NT{ p A e;} S;{q} 
for i = 1, ... , m so, by if-rule II, Tr 1f-NT{p}if e1 -+ 5 1 o · · · o em-+ Sm fi{q }. 

Assume now I= 1,10,{r} S {q} where S =do e1-+ S1 D · · • ll em-+ Sm od. Let n be a fresh 
variable. Let now C be the following set of states: 

pret1 (S, q) n{u: I= J nat(n)(u) A the longest computation 
starting in (S, u) is of length k + 1, 
where k = O"( n )}. 

Thus uE C iff u(n) is a natural number, say k, such that all computations starting 
in (S, u) properly terminate in a state satisfying q and the longest of these computa­
tions is of length k + 1. It can be shown that there exists an assertion p(n) which 
defines C. 

By definition of p( n) we now have I= 1P( n) An> 0-+ v~~ I e;, I= 1P(O)-+ /\~=I 1e;. 
Also it can be easily shown that I= 1{ p( n) A n > 0 A e;} S; {3 m < n p( m)}. By induction 
hypothesis and do-rule II we get 

Tr1f-N1 {3n p( n)}do e1-+ S1 o · · ·CJ em-+ Sm od{p(O)}. 
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We now have by assumption [r]1 s;; pret1 (S, q) and so, by virtue of Lemma 3.2, 
1= 1r~3np(n). Also 1= 1p(O)~q holds so by the consequence rule we get 
Tr1l-NT{r} do e1 ~ S1D· • ·Dem ~Sm od {q}. 

This concludes the proof. 

3.9. Weak total correctness 

In the above analysis we omitted the issue of weak total correctness. An appropri­
ate proof system to study this notion is clearly a weaker version of NT in which the 
original if-rule is retained. We call this system WT. This system is clearly arithmeti­
cally sound and complete. 

4. Countable nondeterminism 

4.1. Bounded nondeterminism versus finite and countable nondeterminism 

Up till now we have considered programs which allowed bounded nondeterminism 
only. By this we mean that for each pair <S, er) where SE Yn the set {(S1, u 1): (S, a)~ 
(Si. u 1)} is finite and, moreover, its cardinality is bounded by a constant dependent 
on S only. Informally it means that each program SE Yn gives rise in one computation 
step to at most k different continuations where k depends on S only. 

This property should be contrasted with that of finite nondeterminism which means 
that the above set is always finite but its cardinality does not depend on S only. An 
example of an instruction which leads to finite nondeterminism is x := ? :s;; y which 
sets to x a value smaller or equal to y. Such an instruction has been considered in 
[9]. (Of course, we assume here that the programs are interpreted under a standard 
interpretation in natural numbers). 

It should be noted, however, that finite nondeterminism can be reduced to a 
bounded nondeterminism in the sense that x := ? :,,;; y is equivalent to a program 
from f:fn. To see this, take for example the program 

b :=true; x := 0 ; do b " x < y ~ x := x + 1 o b 11 x < y ~ b := false od. 

Consequently the study of finite nondeterminism (in the above sense) can be reduced 
to the study of bounded nondeterminism. 

This is not the case any more with countable nondeterminism. By countable 
nondeterminism we mean that the above defined set can be countably infinite. An 
example of an instruction which leads to countable nondeterminism is the random 
assignment x := ? which sets to x an arbitrary nonnegative integer. 

It is obvious how to define the semantics .M,01[ x := ?D of x := ? • We have 
J.~.M,0t[x := ?D(u) for any u. We now claim that there is no program SE Yn such that 
.M,01[x := ?D = .M,0 ,[S]. This immediately follows from the following corollary to 
Lemma 3.2. 
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Corollary 4.1. For any SEY,, and u if J_ e .M,0 ,[S](u), then .;tl,0 ,[S]( u) is a finite set. 

Thus countable nondeterminism cannot be reduced to bounded (or finite) non­
determinism. This indicates that to study total correctness of programs allowing 
countable nondeterminism we have to develop essentially new proof rules, i.e., 
proof rules which cannot be derived from those of the proof system NT. 

Note that this is not the case when dealing with the partial correctness of programs 
allowing countable nondeterminism, as we have clearly 

.M[x:= ?] = .M[b :=true; x := O; do b-'? x := x+ 1 ob-'? b :=false od]. 

(Here and elsewhere we ignore the fact that the values of the auxiliary variables 
(here b) have been changed. It is easy to remedy this problem.) 

Before we enter the proof-theoretic considerations of countable nondeterminism 
we should perhaps explain why it is useful to study countable nondeterminism in 
the first place. First, the instruction x := ? can be viewed as another version of a 
more familiar read(x) instruction. Secondly, this instruction is particularly useful 
when dealing with the assumption of fairness, which will be discussed later. Also it 
allows to provide various neat characterizations of objects discussed in mathematical 
logic (see, e.g., [12]). 

4.2. A proof system for total correctness of countably nondeterministic programs 

Consider now the class Yen of programs which differs from Y,, in that additionally 
the instruction x :=? is allowed. We now present a proof system which allows us to 
prove total correctness of programs from Yen· We add to the proof system NT the 
following axiom: 

AxroM 9: random assignment axiom 
{p}x := ?{p} 
provided x is not free in p 

and replace do-rule II by its following generalization: 

RULE 10: do-rule III 

m m 

p( a) 11 a> 0-'? V e;, p(O)-'? /\ 1e;, 
i=l i=l 

{p(a) f\ a> 0 f\ e;}S;{3,B < ap(,B)}, i = 1,. .. , m 
{3a p(a)} do e1 ~ S 1 D • • • D em~ Sm od {p(O)} 

where p( a) is an assertion with a free variable a which does not appear in the 
programs and ranges over ordinals. 

Call the resulting proof system CNT. 
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4.3. An example of a proof in CNT 

As an example proof in CNT consider the following program: 

S = do x = 0 ~ y := ? ; x := 1 
ox>60Ay>O -7 y:=y-1 

od. 

I 

We now wish to prove in CNT that S always terminates. More precisely, we I 
prove in CNT the correctness formula {true}S{y = O}. 

To this end we first specify the assertion language L. We assume that L contains 
the language of Peano arithmetic and has two sorts: data (for program data-here 
integer) and ord for ordinals. We assume a constant 0 of sort ord and a binary 
predicate symbol < over ord. The variables a, f3 are of sort ord, all other variables 
are of sort data. 

In the course of the proof we shall have to convert values of sort data into values 
of sort ord. To this purpose we assume a one-argument conversion function --:- of 
sort (data, ord) converting integers into ordinals and a constant w of sort ord. We 
have 'V x(i < w) as by convention x is of type data. 

Define p(a) by 

p( a) = ( x = 0 ~ a = w) A ( x >6 0 ~ a ::::: y). 

Intuitively speaking, for a state u, p(a )(u) holds if a is the smallest ordinal bigger 
or equal to the number of possible iterations performed by the loop when starting 
in u. 

We now show that p( a) satisfies the premises of do-rule III, i.e., p( a) is a loop 
invariant. 

( 1) We have p( a) " a > 0 ~ x = 0 v y > 0 ~ x ::::: 0 v ( x >6 0 " y > 0). 
(2) We have p(O)~x;60Ay=0~1(x=Ov(x~OAy>O)). 
(3) We first show {p(a)" a> 0" x =O} y :=?; x :::::: 1 {3/3 < ap(f3)}. 
By the assignment axiom we have 

{3,8 <a p([3)[1/ x ]} x := 1 {3,B <a p([3)} 

so by the consequence rule 

{'Vy 3{3 < ap(f3)[1/ x]} x := 1 {3[3 <a p(f3)}. 

By the random assignment axiom and the composition rule we now get 

{'Vy 3{3 < ap(f3) [1/ x]} y :=?; x := 1 {3[3 < ap(f3)}. 

To complete the proof it now suffices to show that 

p(a) A a> 0 Ax =0-7 'Vy3f3 < ap(/3)[1/ x] 

is true. p(a) Ax= 0 implies a= w. So for any y put f3 = y: then f3 <a and p(f3) [1/ x] 
holds. 
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Next we show 

{p(a) f\ a >Of\ x #- 0 f\ y>O}y:= y-1{3,B < ap(,B)}. 

By the assignment axiom and the consequence rule it suffices to show that 

p( a) f\ a> 0 f\ x #- 0 f\ y > 0 -7 3,8 <a p(,B )[y- 1/ y] 

is true. We have 

p( a)/\ a> 0 f\ x #- 0 f\ y > 0 -7 a = y f\ y > 0 f\ x #- 0 

-7a = y /\ y> 0 A 3z(z = y-1 t1p(z)[y-l/y]) 

-73,B < ap(,B)[y-1/y]. 

By do-rule III we now get 

{3ap(a)} S {p(O)}. 
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Clearly both 3a p( a) and p(O) ~ y = 0 hold, so, by the consequence rule, 
{true}S{y = O} holds. 

To be precise we actually proved Tr11 1-cNT{true} S{y = O} where 11 is a standard 
interpretation of the assertion language L. 

4.4. Soundness and completeness of CNT 

Before we dwell on the issue of soundness and completeness of CNT we have to 

specify for which assertion languages and their interpretations CNT is an appropriate 
proof system. 

As in the previous section we assume that the assertion language L contains two 
sorts: data and ord. As before we have a constant 0 of type ord and a binary 

predicate symbol < over ord. Additionally we assume that L includes second order 

variables of arbitrary arity and sort. The second order variables can be bound only 

by the least fixed point operatorµ provided the bound variable occurs positively in 

the considered formula. If the set variable a occurs positively in p(a, u 1, ••• , un) 

and a(u 1 , ••• , Un) is a well formed formula, then µa(ui, ... , un).p is a well formed 
formula. The free variables of µa(u 1, ••• , un).p are those of pother than a. 

An interpretation J for this type of assertion language is an ordinary two-sorted 

second order structure subject to the following conditions. 

(1) The domain ldata of sort data is countable (to esure countable nondeter­

minism). 
(2) The domain lord of sort ord is an initial segment of ordinals (to ensure a 

proper interpretation of do-rule III). 
(3) The domain lord contains all countable ordinals (needed for the completeness 

proof). 
(4) The constant 0 denotes the least ordinal and the predicate symbol< denotes 

the strict ordering of the ordinals, restricted to lord· 
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(5) The set domain contains all sets of the appropriate kinds (to ensure the 
existence of the fixed points considered below). 

The truth of the formulae of L under interpretation J is defined in a standard 
way. The only nonstandard case is when a formula is of the form µ,a.p. We then 
put I= 1 µ,a(ui. ... un).p iff I= 1p[R/ a] where R is the least fixed point of the operator 
{p} naturally induced by p: 

Having defined the truth of the formulae of L we define the truth of the correctness 
formulae in the usual way. 

The following theorem proved in [3] explains why this type of assertion languages 
and their interpretations is of interest. 

Theorem 4.2. Let the assertion language L and its interpretation J satisfy the above 
stated conditions. Then, for every correctness formula cf>, Tr1f-cNT<f> iff I=;</>. 

This theorem states soundness and completeness of the proof system CNT. 
The soundness proof is a simple generalization of the corresponding proof dealing 

with system CNT. The completeness proof as usual proceeds by induction and only 
the case of the do-loops requires an explanation. Suppose I= 1 {r}doe1 ~ 

S1 o· · ·Dem~Smod{q}. 
The computations of the program S starting in a state a form an infinitely 

branching tree. If S cannot diverge from a', then this tree is well founded. With 
each such tree we can naturally assbciate a (possibility infinite) ordinal. 

Similarly as in the completeness proof of the system NT consider the following 
set of states: 

pret1 (S,q)11 {a: S cannot diverge from a and the corresponding ordinal is a} 

One can show that there exists an assertion p( a) which defines this set of states 
within each interpretation here considered. 

It is easy to see that p(a) satisfies the premises of RULE 10. By induction hypothesis 
these premises are provable in CNT and hence the conclusion of the rule, as well. 
Similarly as in Section 3.8bothI=1r~ 3ap(a) and I= 1 p(O) ~ q. By the consequence 
rule we now get 

as desired. 
The use of ordinals in assertions perhaps requires a word of comment. It can be 

shown that ordinals are indeed necessary, i.e., do-rule II is not sufficient here. For 
example we cannot prove the correctness formula considered in Section 4.3 in a 
proof system in which do-rule III is replaced by do-rule II. In case when the assertion 
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language L contains the language of Peano arithmetic and the domain of data values 

ldata is N, the set of natural numbers, we can exactly estimate which ordinals are 

needed for proofs in CNT. It turns out that exactly all recursive ordinals are needed. 

(By a recursive ordinal we mean here an ordinal attached to a tree which can be 

coded by a recursive set. For equivalent characterizations, see [21].) 

4.5. Weak total correctness of countably nondeterministic programs 

We conclude this discussion of countable nondeterminism by mentioning the 

notion of weak total correctness of programs from Yen· This notion is defined 

analogously as in Section 3.2. 
Let CWT stand for a proof system which differs from CNT in that the original 

if-rule (RULE 4) is used in it instead of RULE 7. Clearly this proof system is sound 

and complete in the above sense with respect to the .;f,f,w10, semantics. This system 

will be useful when dealing with the issue of fairness. 

4.6. The issue of fairness 

According to the usual semantics .;f,f,,01 the program b :=true; do b-'> skipo b := 

falseod does not always terminate because the computation in which the first guard 
is always chosen is infinite. However, we can imagine restricted forms of interpreta­

tion of programs from Yn under which the above program will always terminate. 

One of such interpretations is the one under the assumption of fairness. In the 

context of programs from Yn this assumption states that in every infinite computa­

tion each guard which is infinitely often true is eventually chosen. Here a guard 

is true if it evaluates to true at the moment the control in the program is just 

before it. 
This type of assumptions is particularly important when studying the behaviour 

of parallel programs in the context of which fairness is a most general modeling of 

the fact that the ratio of speeds between concurrent processors may be arbitrarily 

large and varying but always finite. Study of the hypothesis of fairness in the context 

of nondeterministic programs is partially motivated by the fact that parallel programs 

can be modelled by nondeterministic programs. 
We now formally define the semantics of programs from Y'n under the assumption 

of fairness. Let g = (S0 , a 0 )-'> (Si, a 1)-'> · · · be an infinite computation starting in 

(S0 , a 0 ). We say that g is fair if it fulfills the following conditions: 

(i) for each program S =if e1 _,. S 1 o · · · o em_,. Sm fi; S' and each i = 1, ... , m if 

there are infinitely many j's for which (S, a) appears in g and I= 1 e;(ai), then there 

are infinitely many j's among them such that the transition (S, a)-'> (S;; S', ai+ 1) 

appears in g, 
(ii) for each program S =do e1 _,. S1 o · · · u em-'> Sm od; S' and each i = 1, ... , m 

if there are infinitely many j's for which (S, a) appears in g and I= A(ai), then there 

are infinitely many j's among them such that the transition (S, ai)-'> (S;; S, ai+ 1) 

appears in g. 
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To avoid confusion resulting from the fact that various occurrences of S in ( do 
not need to correspond with the same program, we should actually label each 
statement with a unique label. It is clear how to perform this process and we leave 
it to the reader. 

We define two fair semantics for the programs from Yn by putting 

-«wtair[ sn ( u) = 

= ..U[SD(u) u {..LI there exists a fairinfinite computation starting in (S, a)}, 

-«1air[SD(o-)=-«wtair[STI(o-)u{failjS can fail from a}. 

Thus the difference between the semantics -«wtw .Jl,101 and -«w1ain -«rair respectively 
lies in the treament of infinite unfair computations. We assume that all finite 
computations are fair. 

We now define the notion of weak total correctness of the programs considered 
under the assumption of fairness by putting 

FJ,dp}S{q} iff .;f;f,h[STI([p]J)c:;;[q]J for hE{wfair,fair} 

where of course .«h[SD([p]J) =Uue[pJJ .Jl,h[SD(a). 
If f:: J,1air{p}S{q} O= J,wfair{p}S{q}) holds, then we say that S is totally (weakly 

totally) correct under the assumption of fairness with respect to p and q. Thus 
I= J,fair{p}S{q} holds iff each fair computation of S starting in a state satisfying p 
successfully terminates and the terminating state satisfies q. 

4. 7. A transformation enforcing fairness 

We now wish to present a proof system in which total correctness under the 
assumption of fairness can be proved. For didactic reasons instead of presenting 
the proof rules immediately, we rather explain how to derive them. To this purpose 
we first provide a transformation of a program SE Yn into a program S1a;, E Yen 
which realizes the assumption of fairness in the sense that non-failing computations 
of Srair coincide exactly with fair and non-failing computations of S. We proceed by 
the following successive steps: 

Step 1. Replace each subprogram do e1 ~ S 1 o · · · o em~ Sm od of S by 

m 

do V ei~ife1 ,S 1 D· · ·Dem'Smfiod. 
i=l 

Step 2. Replace each subprogram if e1 ' S1 o · · · o em' Sm fi of S by the following 
subprogram: 

for j:= 1 to m if ei then zi := zi - 1 ; 

if e1 " z1 =OA 'Vizi ;;;.:o~ z1 := ?; S1 o- · · 
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Step 3. Rename all variables z1, ••• , z,,. appropriately so that each if-construct 
has its 'own' set of these variables. 

Strictly speaking the program S1air does not belong to Yen as the if-then and the 
for-constructs are not assumed in the syntax. However, it is clear how to change it 
here into a sequence of the if-constructs. Note that in Step 1 we replaced each 
subprogram of S of the form of a do-loop by another subprogram which is equivalent 
to the original·one in the sense of the .Jfdrair semantics. 

Let us call the subprograms introduced in Step 2 the ifiair-constructs. The above 
transformation boils down to building into all if-constructs of S a fair scheduler in 
which the auxiliary variables Z; count down to a moment when the corresponding 
guard is selected. 

The following lemma relates S to Srair· 

Lemma 4.3. For any program SE«!',,, A1w1air[Sil = A1w101[S1airll· 

Proof. It suffices to prove the following facts: 
(a) If g is a fair non-failing computation of S, then an extension of it dealing with 

the auxiliary variables of Stair is a non-failing computation of Srair· 
(b) If g is a non-failing computation of Srain then its restriction to the computation 

steps dealing with S is a fair non-failing computation of S. 
Ad (a). We annotate the states in g by assigning in each of them values to all 

variables Z;. Given a state O) there are two cases. 
Case l. For no state erk ( k > j) the guard corresponding with Z; has been chosen. 
Then by the assumption of fairness this guard has only been finitely many times 

enabled when the control was there. We put cri(z;) to be equal 1 +the number of 
times the guard will still be enabled whenever the control will be there. 

Case 2. For some state erk (k > j) the guard corresponding with Z; has been 
chosen. We put ai(z;) to be equal 1 +the number of times the guard will still be 
enabled and not chosen whenever the control will be there. 

Ad (b). By the construction of S1air the restriction of g to the computation steps 
dealing with S is a non-failing computation sequence for S. Suppose that this 
restriction is not a fair computation sequence. Then behind some point in this 
computation a guard would be infinitely many times enabled at the moment a 
control is there and yet never chosen. By the construction of Srair the variable Z; 

corresponding with this guard would become arbitrarily small. However, this is 
impossible because as soon as it becomes negative a failure will arise. D 

Corollary 4.4. Suppose that none of the auxiliary variables introduced in Srair occurs 

free in the assertions p and q. Then 

F J,wfair{p}S{q} ijf F J,wtot{p}Sfair{q}. 

Note that we cannot relate the semantics A11air and JU,01 in the sense of Lemma 
4.3 as for all Sand er we have failE A1rair[Sil(u). Consequently, using the above 
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transformation we cannot derive the proof rules for total correctness under the 
assumption of fairness directly. 

4. 8. A proof system dealing with fairness 

The above corollary indicates that in order to prove weak total correctness of S 
under the assumption of fairness it is sufficient to prove weak total correctness of S1air­

To prove weak total correctness of Sfair we can use the proof system CWT defined 
in Section 4.5. 

Assume now for a moment that only deterministic do-loops are allowed, i.e., 
do-loops of the form doe-+ Sod. Then the first step in the transformation discussed 
in the previous section is not needed and can be deleted. 

Consider now a proof of a correctness formula {p1}Sfadq1} in the system CWT. 
Due to the form of S1air any such proof can be transformed into a proof of the 
correctness formula {p1}S{q} provided we use the following transformed version 
of the if-rule: 

The hypothesis of this rule can be simplified if we 'adsorb' all assignments to the 
auxiliary variables into the assertion p and apply 'backwards' RULE 4. In such a 
way we obtain the following proof rule which exclusively deals with the if-construct 
and its original components. Here i ~ 0 is shorthand for z 1 ~ 0 A • • • A Zm ~ 0. 

RULE 11 : fair if-rule I 

{p[if eithen zi+l else zi/zi]i,..;[l/z;]A e;A i~O}S;{q};=i. ,m 

{p}ife1 -+S1D· · ·Dem-+ Smfi{q} 

We still have to deal with the problem of do-loops as we assumed above that 
only deterministic loops are allowed. For this purpose we have to go back to the 
transformation from the previous section. In Step 1 we replaced each do-loop by 
a program equivalent to it in the sense of the .Mwfair or .!llrair semantics. Therefore, 
a proof of weak total correctness under the assumption of fairness of the latter 
program constitutes a proof of weak total correctness under the assumption of 
fairness of the former one. Thanks to this observation we can derive the fair do-rule. 
It has the following form after some simplifications: 

RuLE 12: fair do-rule 
m m 

p(a) A a> 0-? V e;, p(O)-+ /\ --ie;, 
i=l i= 1 

{p(a) [if ei then zi+l else z/zi]i,..;[l/z;]Aa>OAe;Ai~O} 
S; 

{3,B < ap(/3)};=1, ... ,m 
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The assertion p(a) satisfies the same condition as in RULE 10. 
Summarizing, the proof system WFN for weak total correctness of programs from 

B'n under the assumption of fairness is obtained from the proof system N by replacing 
the if- and do-rules by the proof rules introduced above. Note that the random 
assignment axiom is not needed-we used it only to derive the final form of the 
new rules. 

The only purpose of introducing the transformation of S into Srair was to derive 
the new rules in a straightforward way. These rules deal with the original programs 
and not their transformed versions. 

4. 9. Soundness and completeness of WFN 

The following lemma provides a proof-theoretic counterpart of Corollary 4.4. 

Lemma 4.5. Suppose that none of the auxiliary variables introduced in Srair occurs 
free in the assertions p and q. Then 

This lemma can be easily justified on the basis of remarks provided in the previous 
section while introducing the new proof rules. 

Lemma 4.5 together with Corollary 4.4 reduces the question of soundness and 
completeness of WFN to that of CWT. But the latter system is sound and complete 
in the sense of Section 4.4. This shows that proof system FN is also sound and 
complete in the same sense. We only have to restrict additionally the class of allowed 
structures to those which in their data domain contain natural numbers. 

4.10. The correctness under the assumption of fairness 

Proof system WFN is appropriate for proving weak total correctness under the 
assumption of fairness. To ensure that additionally freedom of failure is guaranteed 
we proceed in the same way as before-we simply add to the premises of the fair 
if-rule I the assertion p--'; V~'::. 1 e;. 

We then obtain the following proof rule: 

RULE 13: fair if-rule II 

m 

P--'; Ve; 
i=l 

{p[if e1 then z1+1 else zj z1]1,,;[l/ z;] /\ e; /\ z ~ O} S; {q};= 1, .. ,m 

{p} if e1--'; S1 D • • • D em--'; Sm fi {q} 

Replacing in proof system WFN RULE 11 by RULE 13 we obtain a proof system 
appropriate for proving total correctness under the assumption of fairness. We call 
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this system FN. This system is sound and complete in the above sense w.r.t. the 
.!U1a;r semantics. 

Finally we comment on the use of ordinals in RULE 12. 
Similarly as in the case of proof system CNT exactly all recursive ordinals are 

here needed when the data domain consists of natural numbers. In [ 4] it is proved 
that even if we restrict ourselves to the class of programs disallowing nested 
nondeterminism, then still the same set of ordinals is needed for proofs carried out 
in system FN. 

4.11. An example of a proof in FN 

We conclude the discussion of fairness by presenting an example proof in FN. 
Consider the following program S: 

do x > 0 ~if true~ if b ~ x := x - 1 

od 

o b ~ b := false 

D I b~ skip fi 

o true -+ b := true fi 

We want to prove F= 10,ra,, {true} S {true}, i.e., that S always terminates under the 
assumption of fairness. 

To this purpose we have to find an assertion p(a) such that 

and 

p(a)11a>O -+ x>O, 

p(O)-+xo;;:;;O, 

3ap(a) 

{p(a) 11a>0 Ax> O}S'{3,8 <a p(,8)} 

(14) 

(15) 

(16) 

(17) 

where S' is the body of the do-loop. (Note that we use here the original do-rule 
(RULE 10) as the do-loop in question is deterministic. It is easy to see that the 
do-RULES 10 and 12 are equivalent in the case of deterministic do-loops.) 

Let p(a, b, c, d) = w 3 ·a+w 2 • b+w· c+d for any integers a, b, c, d where a> 0. 
Then p(a, b, c, d) is an ordinal. We define 

p(a) =a =ifx> 0 then p(x, z3, I-b, (b~ Zi. z2)) 

else 0. 

In the expression 1- b, true is interpreted as 1, false as O; b-+ z1, z2 stands for 
ifbthenz1 elsez2; the auxiliary variables z1 and z2 are associated with the outer 
guards and z3 , Z4 and z5 with the inner guards, respectively. 
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It is clear that (14)-(16) hold. To prove (17) we have to insure that in a fair 

computation the value of p decreases on each iteration of the loop. More formally 

we wish to apply the fair if-rule so we first have to prove the premises 

and 

as the first premise of the fair if-rule is obviously satisfied. Here 

Si= if b-? x := x-1 

ll b --? b := false 

01b-?skipfi. 

To prove ( 18) we once again wish to apply the fair if-rule. The premises to prove 
are 

x := x- l {3/3 < ap(f3)}, 

b :=false {3/3 < ap(/3)} 

and 

{ Pi[b--? Z; + 1, z;/ Z; ];= 3,-1[ 1/ z 5] A 1b A z 3 , Z 4 , z5 ~ O} skip {3/3 <a p(/3)} 

where 

Pi= (p(a) A a> 0" x > O)[z2 + 1/ z2][1/ z1]" z 1, z2 ~ 0. 

Note that the pre-assertion of (20) is equivalent to 

p(x, 1, 0, 1) =a" b" x> O" z~O. 

We have, by the assignment axiom, 

{ p ( X, 1, 0, 1 ) = a /\ b /\ X > 0 /\ Z ~ 0} 

x:= x-1 

{( p(x + l, 1, 0, 1) =a A b "x > 0" z ~ O) v p(O)} 

(20) 

(21) 

(22) 

which implies (20) by the consequence rule as the necessary implication is clearly 

true. 
To prove (21) note that the pre-assertion of (21) is equivalent to 

p(x, z3 + 1, 0, 1) =a A a> 0 A b A z ~ 0 A x > 0 
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which in turn implies the assertion 

Now by the assignment axiom and the consequence rule 

{q} b :=false {3/3 <a p(,B)} 

so (21) by the consequence rule. 
Finally, to prove (22) we note that 

implies 

which in turn implies 3/3 < ap(/3). Hence (22) holds by the skip axiom. 
Now, from (20)-(22) we get (18) by the fair if-rule. 
To prove (19) note that the pre-assertion of (19) is equivalent to 

p ( x, z 3, 1 - b, ( b ~ z 1 + 1, 1)) = a I\ a > 0 I\ x > 0 I\ z :;;;: 0 

which in turn implies the assertion 

r = 3 f3 < a ( p ( x, z 3 , 0, z 1 + 1 ) = f3 I\ x > 0 I\ z :;;;: 0). 

Now, by the assignment axiom and the consequence rule, {r} b := true{3,B < ap(,B)} 
so (19) by the consequence rule. 

We now proved both (18) and (19) and we get (17) by the fair if-rule. Expressions 
( 14 )-(17) imply by the do-rule {true} S {true} so by virtue of the soundness of system 
FNT we get F= 10.fair {true} S {true}. This concludes the proof. 

4.12. The issue of justice 

Another possible restricted interpretation of nondeterministic programs is the 
one under the assumption of justice. In the context of programs from :In this 
assumption states that in every infinite computation each guard which is true from 
some moment on is eventually chosen. Here, as before, a guard is true if it evaluates 
to true at the moment the control in the program is just before it. 

The assumption of justice can be treated in an analogous way as that of fairness. 
To obtain a transformation realizing justice we only need to replace in the transfor­
mation from Section 4. 7 the program from the first line in Step 2 by 

All other steps in the development of the proof rules for justice are the same as 
before and left to the reader. 
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As a final remark we would like to indicate that in the transformation from 
Section 4. 7 we can omit the conditions Z; = 0 from all of the guards, both for the 
case of fairness and justice. Clearly various other transformations also satisfy Lemma 
4.3. We chose here a transformation which leads to simplest proof rules dealing 
with fairness or justice. 

5. Conclusions 

In thi~ survey we showed how the issue of correctness of nondeterministic programs 
can be studied within the framework of Hoare's logic. It seems instructive to provide 
now a critical assessment of this approach. The remarks below apply both to this 
and previous part of the survey. 

The characteristic feature of all proof systems here considered is that they are 
syntax directed in the sense that the proof rules follow the syntax of the language 
constructs. This feature of proof systems makes the task of finding a correctness 
proof of a given program easier and more manageable. What is perhaps even more 
important is that these proof systems allow to develop programs together with the 
corresponding correctness proof. Dijkstra [8] provides several convincing examples 
of such an approach to program design even though he does not use the formalism 
adopted here. Also the completeness proofs are constructive and provide a heuristic 
which can be helpful when trying to find concrete proofs. 

It should be noted, however, that the proof systems studied here are not completely 
adequate for proving correctness of the programs in the sense required by the 
practical considerations. 

We considered here only one type of failure due to an evaluation of all guards 
of an if-construct to false. In practice, different types of failures can arise like 
overflow, underflow, stack overflow, division by zero, use of uninitialized variables 
etc. Most of these failures can be taken care of in a natural way by using appropriately 
strengthened axioms and proof rules (see, e.g., the note in Section 3.4). 

However, not all program properties can be taken care of in such a simple way. 
For example, the proof rules dealing with fairness are fairly complicated and certainly 
not easy to use. In the case of concurrent programs various other important 
properties and hypotheses (see, e.g., [19]) cannot be naturally expressed and 
axiomatized in Hoare-like logics either. 

Hoare's approach was originally concerned with input-output analysis of program 
behaviour, that is to say, the study of the relation between the input and output 
states. However, not all program properties are of this type. A finer analysis of the 
program behaviour requires a study of execution sequences (viz. the hypothesis of 
fairness) and Hoare's logic does not seem an appropriate tool for such a study any 
more. More appropriate framework for such an analysis seems to be temporal logic 
(see, e.g., [19]) which explicitly deals with the properties of sequences of states and 
not states only. 
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6. Bibliographical remarks 

The first treament of nondeterminism in the framework of Hoare's logic is due 
to Lauer [15] where a proof rule dealing with the or-construct (the meaning of the 
construct S1 orS2 is: execute either S1 or S2) is introduced. Correctness of nondeter­
ministic programs introduced in Section 3 is extensively studied in [8] using a 
different approach. AXIOMS 1 and 2 and proof RULES 3 and 6 are from Hoare [14]. 
RULES 4 and 5 are obvious modifications of the appropriate rules dealing with the 
deterministic versions of the constructs and introduced in [ 15] and [ 14 ], respectively. 
They appear for example in [5, p. 292]. 

Soundness and completeness proofs from Sections 3.5 and 3.6 are straightforward 
generalizations of the corresponding proofs dealing with deterministic versions of 
the programs and presented for example in [5, Section 3]. RuLE 7 is inspired by 
the discussion of clean behaviour of programs in [ 19]. The completeness proof from 
Section 3.8 is an appropriate modification of a corresponding proof from [11]. 

The notion of bounded nondeterminism is introduced in [8]. Countable nondeter­
minism is extensively studied in [3] and several related references can be found 
there. Corollary 4.1 is implicit in [8]. AXIOM 9 is from [11]. RuLE 10 is from [3] 
where a slightly different syntax is used. Sections 4.3 and 4.4 are based on [3], as 
well. The program from Section 4.3 is from [8]. 

The issue of fairness is discussed in several papers (see, for example, [19]). First 
proof rules dealing with fairness were proposed in [10, 17, 2]. In [16] a simplified 
completeness proof of a rule is given, which was introduced in [10]. Sections 4. 7-4.12 
are based on [ 4]. Transformations realizing fairness were first introduced in [2]. 
Other versions of such transformations are given and discussed in [ 18]. 

The program studied in Section 4.11 is due to S. Katz. First proof rules dealing 
with justice were proposed in [3, 17]. In [16] another proof rule for justice is given. 
In [17] arguments for introducing the hypotheses of justice and fairness when 
studying parallel programs are given. In [20] a thorough discussion of various 
possible formalizations of the assumption of fairness is given. 
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