
Theoretical Computer Science 28 (1984) 83-109
North-Holland

TEN YEARS OF HOARE'S LOGIC: A SURVEY­
PART II: NONDETERMINISM

Krzysztof R. APT
L.I. T.P., Universite Paris 7, 2, Place Jussieu, 75251 Paris, France

Communicated by M. Nivat
Received September 1982
Revised February 1983

83

Abstract. A survey of various results concerning the use of Hoare's logic in proving correctness
of nondeterministic programs is presented. Various proof systems together with the example
proofs are given and the corresponding soundness and completeness proofs of the systems are
discussed. Programs allowing bounded and countable nondeterminism are studied. Proof systems
deal with partial and total correctness, freedom of failure and the issue of fairness. The paper is
a continuation of Part I by Apt (1981), where various results concerning Hoare's approach to
proving correctness of sequential programs are presented.

Key words. Hoare 's logic, partial correctness, total correctness, soundness, completeness, bounded
nondeterminism, countable nondeterminism, freedom of failure, fairness.

1. Introduction

The purpose of this paper is to provide a systematic presentation of the use of
Hoare's logic to prove correctness of nondeterministic programs. This paper is a
continuation of [1] where we surveyed various results concerning the use of Hoare's
logic in proving correctness of deterministic programs.

Hoare's method of proving programs correct was introduced in [14]. Even though
it was originally proposed in a framework of sequential programs only, it soon
turned out that the method can be perfectly well applied to other classes of programs,
as well, in particular to the class of nondeterministic programs.

We discuss the issues in the framework of Dijkstra's nondeterministic programs
introduced in [7] and concentrate on the issues of soundness and completeness of
various proof systems.

This survey is divided into two parts dealing with bounded and countable nondeter­
minism in Sections 3 and 4, respectively. A program allows bounded nondeterminism
if at each moment in its execution at most a fixed in advance number of possibilities
can be pursued. If this number of possibilities can be countable, then we say that
the program allows countable nondeterminism.

0304-3975/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

84 K..R. Apt

In Section 2 we introduce the basic definitions. In Section 3 we discuss partial
and total correctness of Dijkstra's programs. The methods used are straightforward
generalizations of those which were introduced in the case of sequential programs
and discussed in [l, Section 2]. This should be 'Contrasted with the presentation in
Section 4 where total correctness of countably nondeterministic programs and total
correctness of programs under the assumption of fairness is discussed. Even though
the methods and techniques used there are appropriate generalizations of those
used in Section 3, various new insights are there needed. In Section 5 we attempt •
to assess Hoare's approach to sequential and nondeterministic programs. Finally,
in Section 6, bibliographical remarks are provided.

2. Preliminaries

Throughout this paper we fix an arbitrary first order language L with equality
containing two boolean constants true and false with obvious meaning. Its formulae
are called assertions and denoted by p, q, r. Simple variables are denoted by a, b,
x, y, z, expressions by s, t and quantifier-free formulae (Boolean expressions) by
the letter e; p[t/x] stands for a substitution oft for all free occurrences of x in p.

All classes of programs considered in this paper contain the skip statement, the
assignment statement x := t and are closed under the composition of programs '; '.

By a correctness formula we mean a construct of the form { p }S{ q} where p, q are
assertions and S is a program from a considered class. Correctness formulae are
denoted by the letter </J.

An interpretation of L consists of a non empty domain and assigns to each nonlogical
symbol of L a relation or function over its domain of appropriate arity and kind.
The letter J stands for an interpretation. Given an interpretation J by a state we
mean a function assigning to all variables of L values from the domain of interpreta­
tion. States are denoted by a, r. The notions of a value of an expression t in a state
a (written as a(t)) and truth of a formula pin a state a (written as F= 1p(a)) are
defined in the usual way. A formula p is true under J (written as F= 1 p) if F= 1 p(u)
holds for all states a.

We allow two special states l. reporting nontermination of a program and fail
reporting a failure in execution of a program. We have, by definition, ~ 1 p(l.),
~ ;p(fail) for all formulae p. We define [p]1 to be the set of all states u which satisfy
p under J (i.e., such that F= 1p(a) holds). Thus, by definition, for any p and J, .le [p]1

and fail e [p]1•

Finally, let Tr1 be the set of all assertions which are true under J.

3. Bounded nondeterminism

Denote by Yn the least class of programs such that, for all Boolean expressions
eh ... , em and Y1, ••• , Ym E Y,,,

if e1 ~ S1 D· ··Dern~ S,. fiE ff,.

Ten years of Hoare's logic, Part II 85

and
do e1-+ S1 D ... D em-+ Sm od E Sn.

This class of programs was introduced in [7] and further extensively studied in
[8] and various other papers. The Boolean expressions e; in the context of the if­
and do-constructs are called guards.

An intuitive meaning of the program if e1 -+ S1 o · · · o em-+ Sm fi is the following:
Choose nondeterministically a guard e; which evaluates to true and execute the
program S;. In the case when all guards ei. . .. , em evaluate to false, the program
fails, i.e., its execution improperly terminates. An intuitive meaning of the program
do e1-+ S1 o · · · o em-+ Sm od is: As long as at least one guard evaluates to true
repeatedly do the following: Choose any guard e; which evaluates to true and
execute the program S;. In the case of one guard only the construct do e1 -+

S1 o · · · o em-+ Sm od is thus equivalent to the usual construct while e 1 do S1 od.

3.1. Semantics of nondeterministic programs

Before we dwell on the issue of correctness of the programs from Y'n we define
their semantics. We follow here the approach of Hennessy and Plotkin [13], the
advantage of which is that it can be easily adopted to several other classes of
programs. This semantics is based on the consideration of a transition relation '-+'

between pairs (S, u) consisting of a program S and a state u. The intuitive meaning
of the relation

(Si. u)-+ (S2, T)

is the following: Executing S 1 one step in a state u can lead (nondeterministically)
to a state T with S2 being remainder of 5 1 still to be executed. It is convenient to
assume the empty program E. Then S2 is E if the considered step of S1 leads to
state T with S1 properly or improperly terminated. We assume that, for any S,

E;S=S;E=S.
Given an interpretation we define the above relation by the following clauses:

(i) (skip, u)-+ (E, a),
(ii) (x := t, u)-+ (E, T) where T(x) = u(t) and T(y) = u(y) for y~ x,

(iii) (if e1 -+ S1 o · · · o em-+ Sn fi, u)-+ (S;, a) if I= J e;(a),

(iv) (ife1 -+S1 D· · ·Dem-+Smfi, u)-+(E,fail) if 1=1 /\: 11e;(a),
(v) (do e1 -+S1D·. ·D em-+ Sm od, u)-+(S;; do e1-+ S1 D·. ·Dern-+ Sm od,u)

if I= A(u),

(vi) (do e1 -+ S, o · · · o em-+ Sm od, u)-+ (E, u) if I= J/\: 1 1e;(u),
(vii) if (51, u)-+ (S2 , T) then (S1 ; S, u)-+ (S2 ; S, r).
Let -+ * stand for the transitive, reflexive closure of -+.

We now introduce the following definitions.

Definition 3.1. (i) S can diverge from u if there exists an infinite sequence (S;, u;)
(i = 0, 1, ...) such that (S, u) = (S0 , u 0)-+ (S1, u 1)-+ · · · . Such a sequence is called an
infinite computation starting in (S, a).

86 K.R. Apt

(ii) S can fail from u if

(S,cr) *(51.fail) forsomeS1.

(iii) A finite sequence (S;,u;) (i=O,l, ... ,k) such that (5,~)=(So,_<ro)....,.
(s er ',. (·s ~) and s = E or crk =fail is called a computation startzng in I• l ! . · · __. k• v k k

(S, er) of length k. If er" ;p fail, then it is a non failing computation.

The following lemma will be needed later.

Lemma 3.2. Jf s cannot diverge from er, then there exists a natural number k such
that all computations starting in (S, er) are of length at most k.

Proof. Consider the set of all finite sequences (S, cr) =(So, cr)o....,. · · · (S,.,, cr,.)
ordered by the subsequence ordering. This set forms a finitely branching tree. If
the desired k did not exist, then this tree would be infinite. By Konig's lemma it
would then contain an infinite branch which contradicts the assumption. 0

We now define three types of semantics for the programs from ::In by putting

.tl[S](er) = { T / (S, a)-'>*(£, r)},

.l1"101[S](er) = v4t[SD((j') u {1. /Scan diverge from (j'}

and

Al,",[S](a) = .«wrmITSH a) u {fail IS can fail from er}.

All semantics depend on the interpretation J but we do not mention this depen­
dence hoping that no confusion will arise. The difference between them lies in the
way the ·negative' informations about the program are dealt with-either they are
dropped or they are explicitly mentioned.

3.2. Partial and total correctness

While studying correctness of programs we are interested in various properties
namely

(a) whether all proper states generated (or produced) by the program satisfy a
given post-condition,

(b) whether the program always terminates, and
(c) whether none of the executions of the program leads to a failure.
We are usually interested in executions starting in a state satisfying some initial

pre-condition. The above properties lead to various possible interpretations of the
correctness formulae {p}S{q}.

Let

Ten years of Hoare's logic, Part JI 87

We then define

I= 1,h{p}S{q} iff Jtth[S]([p]1) c;; [q];.

lnformally speaking, I= 1 {p} S {q} means that any properly terminating execution
of S starting in a.state satisfying pleads to a state satisfying q; I= J,wtoi{p}S{q} in
addition guarantees that any execution of S starting in a state satisfying p terminates
and I= 1,,m { p} S { q} guarantees that in addition no failure arise. If I= 1 { p} S { q} holds,
we say that the program S is partially correct under J; if I= 1,w10,{p} S {q} holds, we
say that the program Sis weakly totally correct under J and if l=,1,10,{p}S{q} holds,
we say that the program S is totally correct under J (all with respect top and q).

The notion of weak total correctness is rarely used and we shall not discuss it
extensively. The reasons for introducing it here will become clear in Section 4.

3.3. A proof system for partial correctness

We now present a formal system allowing us to deduce formally partial correctness
of programs from Y,,. Its axioms and proof rules are the following.

AXIOM 1: skip axiom

{p} skip {p}.

AxroM 2: assignment axiom

RULE3

RULE4

RULES

RULE6

{ p[t I x]} x := t { p}.

composition rule

{p}S1 {r}, {r}S2{q}

{p}S1 ;S2{q}

if-rule

{ p 11 e;} S;{ q}, i = 1, ... , m

do-rule

{p /\ ej}S;{p}, i = 1, ... , m

p is called a loop invariant.

consequence rule

p-.;.p1,{P1}S{q1},q1-.;.q
{ p} S{q}

K.R. Apt

We cal! this system N. For A being a set of assertions and a correct_ness
we write .A,_ ,...4> to denote the fact that there exists a proof of cp m N

,,,. lm:h u~e~ a~ as~umptions for the consequence rule assertions from A.

a proof in N

To illustrate the use of the proof system N we now provide the following example.
kt S stand for the following program:

do 2 x v 3 j x,.
if 21 x....,. x := x I 2 ; a := a + 1

; 3 i x,. x := x I 3 ; b := b + 1
:-4 i x -> x := x / 4 ; a := a + 2 fi

od

\~·here x, a. b are integer variables. This program computes the greatest powers of
2 and 3 which divide x. We now present a formal proof of this fact. More precisely
we prove

(I)

where 10 is the standard interpretation of the language of Peano arithmetic aug­
mented with the division operator and divisibility relation.

We present the proof in a 'top-down' fashion. We choose p=z=x · 2"·3" to
be the loop invariant. We now show

a = 0 11 b = 0 11 x = z -> p,

{p11(2lxv3[x)}Si{p} where 51 is the loop body,

p111(2jxv3lx)->z=x·2a.3b 111(2[xv3lx).

(2)

(3)

(4)

Note that (3) implies, by the do-rule, {p} S {p 11 1(2 I xv 3 Ix)} which together with
(2) and (4) implies (1) by the consequence. Both (2) and (4) are obvious.

To show (3) we have to show

{ p 1-(2 I x v 3 I x) 11 2 I x} x := x I 2 ; a := a + 1 { p},

{ P 11 (21 x v 3 I x l 113 I x} x := x I 3 ; b := b + 1 { p},

{ p 11 (21 x v 3 I x) 11 4 I x} x := x I 4 ; a := a + 2 { p}

and apply the if-rule.
·we now prove (5). By the assignment axiom

{ z = x · 2" • 1 · 3 b} a := a + 1 { p}

and

(5)

(6)

(7)

Ten years of Hoare's logic, Part II 89

so, by the composition rule,

{z = (x/2). za+l. 3b}x := x/2; a:= a+ 1 {p}

which by the consequence rule implies (5). Proofs of (6) and (7) are similar and
left to the reader.

Note. To ensure that the application of the division operator does not result in
producing non-integer values, we should actually use here the following assignment
rule in the case of division operation:

p[(a I b) Ix J -,)o b I a
{p[(a/ b)/ x]}x :=a/ b{pf

We leave it to the reader checking that the above proof remains correct when
this assignment rule is used.

3.5. Soundness of N

To justify the proofs in the system N one has to prove its soundness in the sense
of the following theorem which links provability of the correctness formulae with
their truth.

Theorem 3.3. For every interpretation J, set of assertions A and correctness formula
</> the following holds: If all assertions from A are true under J and Ar-N<f>, then</> is
true under J.

In other words if Tr1 f-N</>, then I= 1 </J.
We call a correctness formula valid if it is true under all interpretations J and a

proof rule sound if, for all interpretations J, the truth under J of its premises implies
the truth under I of its conclusion.

To prove the soundness of Nit is sufficient to show that all axioms of N are valid
and all proof rules of N are sound since the desired conclusion then follows by the
induction on the length of proofs. As an example proof we now show the soundness
of the do-rule.

Let S stand for do e1 -,)o S 1 o · · · o em -,)o Sm od. Fix an interpretation J and assume
that all the premises of the do-rule are true under J, i.e., that

.Al[S;]([p" e;]1) s; [p]1 for i = 1, ... , m. (8)

Let TE .-«[S]([p]1). Then, for some u E [p Ji, TE .-«[SD(u). By the definition of .JJ,

we have

(S, u0)-,)o* (S, u 1)-,)o* · · · -,)o * (S, u,)-,)o (E, u1)

where u = u 0, T = o-1 and, for all j = 0, ... , l- l, o-i E [ek)J and ui+I E .-«[Sk;](o-i) for
some ki E {l, ... , m} and o-1 E [/\~=I 1e;]1. We have o-0 E [p]1 and if, for some j E

{O, ... , l -1}, O'"j E [p]1, then, by (8), O"j+I E .-«[Sk;Il([p" ek)l] £;; [p Ji, i.e., O"j+I E [p]j.

K.R. Apt

Thu-.. for all j=O, l, aiE[p]1. In particular <r1C[p]1 ~hich means that TE

-,e] . This proves the truth under J of the conclusion of the do-rule and
' I I, ,I f h le

.,.,,._,,,., concludes the proof of the soundness o t e ru ·

3.6. Completeness 1~f Nin the sense of Cook

f d f Of system is completeness which A converse property to that o soun ness o a pro ..

links truth of the correctness formulae with their provability. Unfo~tunately a

converse implication to Theorem 3.3 can be proved on!~ for a special type of

interpretations J. This issue is discussed at length in [1, Sections 2.7 and 2.8~ where

we rder the reader for the details. We restrict ourselves here to presentmg the

apprnpriately adopted definitions without entering into any discussion of the results.

Define

post1 (p, S) = .tl[SD([p]1),

pre1 (S, q) = { o-: .tl[SD(a) s; [q]1 }.

Note that these sets are characterized by the following equivalences (the second

of them is just a rewording of the definition):

(9)

Let be a class of programs.

Call the language L expressive relative to J and 9"0 if fbr all assertions p and

programs SE .'f'0 there exists an assertion q which defines post.1 (p, S). If J is such

that L is expressive relative to J and Y0 , we write J E Exp(L, 9"0). It is worthwhile

to note that in the definition of expressiveness we can alternatively require definabil­
ity of pre.1 (S, q) instead of postJ (p, S) (see [1]).

Definition 3.4. A proof system G for Y 0 is complete in the sense of Cook if, for

every interpretation 1 E Exp(L, Y0) and every asserted program </> if 'r=.1</>, then
Tr11-(, et.>.

This definition of completeness is, as the name indicates, due to Cook [6].

Now, the proof system N for Y,, is complete in the sense of Cook. The proof

proceeds by the induction on the structure of the programs.

The only two nontrivial cases are these of composition and the do-construct.

H 1=, {p}S,; S2{q}, then clearly 'r= l {p}S1{r} and 'r= J {r}S2{q} where r defines

pre,1 (S2, q); so. by the induction hypotheses and the composition rule,

Tr, r-,.. { p}S,; S2{q}. If 'r= l { p}S{q }, where S =do e 1 -'> S 1 LJ· • ·Dem' Sm od, then we

must find a loop invariant r such that, for i = 1, ... , m, I= .1{r 11 e;}S;{r},F=
1
P"'' and

""1(r11 A;': 11e;)""' q. Then by the induction hypothesis and the consequence rule
Tv-." {p}S{q }.

Ten years of Hoare's logic, Part TI 91

We choose r to be an assertion defining pre1 (S, q). Then by (9) I= 1 {r}S{q} so
also I= 1 {r}if e;-+ S; o 1e;-+skipfi; S{q} for any i = 1, ... , m as, for all a-,

.Jtf [if e; -+ S; D 1e;-+skipfi; sn ((T) s;;; .Jtf [Sll((T)

clearly holds. Now, since r defines pre1 (S, q), then, as in the case treated above,
I= 1 {r} if e/-+ S;oie;-+ skip fi {r} from which I= 1 {r A e;}S;{r} follows. By (9) we have
I= 1P-+ r and I= 1 (r" /\. ';'.. 1 1e;) ~ q follows from the definition of r. This concludes
the proof.

3. 7. A proof system for total correctness

To prove total correctness of programs from Yn we must provide proof rules
ruling out possibility of failure and nontermination.

A possible failure in an execution of a program from Yn can be caused only by
the if-construct. Clearly the if-rule does not rule out a possibility of failure. However,
a small refinement of this rule suffices to prove the absence of failure. We only need
to ensure that at each moment when an if-statement is to be executed, at least one
of its guards evaluates to true. This is achieved by the following modification.

RULE 7 : if-rule II

p-+ V~=i e;, {p" e;} S;{q};=1. m

{p}ife1 -+S1 D· · ·Dem-+Smfi{q}°

A possible nontermination of an execution of a program from Yn can be caused
only by the do-construct and clearly the present do-rule does not rule out such a
possibility. The following modification of the do-rule suffices to prove termination
of each do-construct. This rule is due to [11] where a different formalism is used.

RULE 8 : do-rule II
m m

p(n) An> 0 ~ V e;, p(O)-+ /\. 1e;,
i=I i=I

{p(n) An> 0 A e;}S;{3m < np(m)}i=I. m

{3n p(n)}do e1 ~ S1 o · · · o em-+ Sm od{p(O)}"

Here p(n) is an assertion with a free variable n which does not appear in the
programs and ranges over natural numbers.

Let NT denote the proof system obtained from N by replacing the if- and do-rules
by their modified versions. This proof system is appropriate for proving total
correctness of programs from Yn.

To illustrate the use of the system we now indicate how to modify the proof given
in Section 3.4. to demonstrate the total correctness of the program there considered,
i.e., to prove (1) within NT.

We choose

p(n) = p A 3a1' bi> x 1(x = 2a1 ·3b, · x 1 A1(21x1 v3 I x 1) An= a 1 + b1).

92 K.RApt

The second component of p(n) states that n is the sum of powers of 2 and 3
which divide x.

We now have

a=OAb=OAx=z ~ 3np(n),

p(n)An>O ~ 2lxv3lx,

p(O)~-i(21 xv3lx),

{p(n) An> O}S1{3m < np(m)}

(10)

(11)

(12)

(13)

where the last correctness formula can be proved using the if-rule II since p(n) An>
0 ~ 2 Ix v 3 Ix v 4 Ix holds. The proof of (13) is a small modification of the proof of
(3) and is left to the reader. Now by do-rule II, (10) and (12) we obtain (1) as desired.

3. 8. Arithmetical soundness and completeness of NT

As explained in [l, Section 2.11] when trying to prove soundness of a proof for
total correctness one has to revise appropriately the notion of soundness. We follow
here the approach of Hare! [11] also adopted in [1]. We recall the introduced
definitions.

Let L be an assertion language and let L + be the minimal extension of L containing
the language Lp of Peano arithmetic and a unary relation nat(x). Call an interpreta­
tion J of L + arithmetical if its domain includes the set of natural numbers, J provides
the standard interpretation for Lp, and nat(x), is interpreted as the relation 'to be
a natural number'. Additionally, we require that there exists a formula p0 of L +

which, when interpreted under J, provides the ability to encode finite sequences of
elements from the domain of J into one element. (The last requirement is needed
only for the completeness proof.)

More formally, p0 satisfies the following condition for any natural number n,

where x, i, y are the free variables of p0 .

One of the examples of an arithmetical interpretation is of course 10 . It is important
to note that any interpretation of an assertion language L with an infinite domain
can be extended to an arithmetical interpretation of L +. Clearly, the proof system
NT is suitable only for assertion languages of the form L +, and an expression such
as p(n) is actually a shorthand for nat(n) A p(n).

We now say that a proof system G for total correctness is arithmetically sound
if, for all arithmetical interpretations J and asserted programs <fa, Tr1f- 0 </J implies
F= 1tot<f>·

It can be shown that the proof system NT is arithmetically sound. The case of
the if-rule II is easily handled. The proof of soundness of the do-rule II for the case
of arithmetical interpretations is in turn an easy modification of the proof of

Ten years of Hoare' s logic, Part ll 93

soundness of the do-rule where one simply parametrizes the invariant p. The proofs
of other cases are the same as before.

We say that a proof system G is arithmetically complete if, for all arithmetical
interpretations J and asserted programs </J, I= ; 10, <P implies Tr;f- 0 </J.

To show the arithmetical completeness of system NT we first introduce the
following notion:

pret; (S, q) = { u: At101[S] (u) <;;; [q]; } .

pret stands in the same relation to total correctness as pre does to partial correctness:
we have I= J,to1{p} S {q} iff [p]; <;;; pret; (S, q).

Thanks to the provision for coding of finite sequences it can be shown that for
any arithmetical interpretation J there exists an assertion which defines pret1 (S, q).
This fact is not completely obvious as the definition of pret; (S, q) also mentions
(the nonexistence of) infinite sequences. This difficulty, however, can be resolved
by making use of Lemma 3.2 thanks to which we arrive at the following alternative
definition of pret1 (S, q) amenable to be coded:

pret1 (S, q) ={u: V'T[((S, u)-+ *(E, T))-+ I= 1q(T)]

and 3k13S0 , ••• , Sk+I> Uc» ... , ak+1

[S = S0 , u = u 0 A V'i~ k((S;, u;)-+ (S;+1> U;+1))]

and 13S' ((S, a)-+*(S', fail))}.

The completeness proof proceeds by induction on the structure of programs. The
only cases different from the corresponding ones in the completeness proof of N
are those of if- and do-constructs. Let J be an arithmetical interpretation.

If l=J.101{p}ife1-+S1 r1· • ·c1em-+Smfi{q}, then by definition 1=1 p-+V7=i e; and
I= ;,,01 { p A e;} S; { q} for i = 1 , ... , m. By the induction hypothesis Tr 1 f-NT{ p A e;} S;{q}
for i = 1, ... , m so, by if-rule II, Tr 1f-NT{p}if e1 -+ 5 1 o · · · o em-+ Sm fi{q }.

Assume now I= 1,10,{r} S {q} where S =do e1-+ S1 D · · • ll em-+ Sm od. Let n be a fresh
variable. Let now C be the following set of states:

pret1 (S, q) n{u: I= J nat(n)(u) A the longest computation
starting in (S, u) is of length k + 1,
where k = O"(n)}.

Thus uE C iff u(n) is a natural number, say k, such that all computations starting
in (S, u) properly terminate in a state satisfying q and the longest of these computa­
tions is of length k + 1. It can be shown that there exists an assertion p(n) which
defines C.

By definition of p(n) we now have I= 1P(n) An> 0-+ v~~ I e;, I= 1P(O)-+ /\~=I 1e;.
Also it can be easily shown that I= 1{ p(n) A n > 0 A e;} S; {3 m < n p(m)}. By induction
hypothesis and do-rule II we get

Tr1f-N1 {3n p(n)}do e1-+ S1 o · · ·CJ em-+ Sm od{p(O)}.

94 K.R.Apt

We now have by assumption [r]1 s;; pret1 (S, q) and so, by virtue of Lemma 3.2,
1= 1r~3np(n). Also 1= 1p(O)~q holds so by the consequence rule we get
Tr1l-NT{r} do e1 ~ S1D· • ·Dem ~Sm od {q}.

This concludes the proof.

3.9. Weak total correctness

In the above analysis we omitted the issue of weak total correctness. An appropri­
ate proof system to study this notion is clearly a weaker version of NT in which the
original if-rule is retained. We call this system WT. This system is clearly arithmeti­
cally sound and complete.

4. Countable nondeterminism

4.1. Bounded nondeterminism versus finite and countable nondeterminism

Up till now we have considered programs which allowed bounded nondeterminism
only. By this we mean that for each pair <S, er) where SE Yn the set {(S1, u 1): (S, a)~
(Si. u 1)} is finite and, moreover, its cardinality is bounded by a constant dependent
on S only. Informally it means that each program SE Yn gives rise in one computation
step to at most k different continuations where k depends on S only.

This property should be contrasted with that of finite nondeterminism which means
that the above set is always finite but its cardinality does not depend on S only. An
example of an instruction which leads to finite nondeterminism is x := ? :s;; y which
sets to x a value smaller or equal to y. Such an instruction has been considered in
[9]. (Of course, we assume here that the programs are interpreted under a standard
interpretation in natural numbers).

It should be noted, however, that finite nondeterminism can be reduced to a
bounded nondeterminism in the sense that x := ? :,,;; y is equivalent to a program
from f:fn. To see this, take for example the program

b :=true; x := 0 ; do b " x < y ~ x := x + 1 o b 11 x < y ~ b := false od.

Consequently the study of finite nondeterminism (in the above sense) can be reduced
to the study of bounded nondeterminism.

This is not the case any more with countable nondeterminism. By countable
nondeterminism we mean that the above defined set can be countably infinite. An
example of an instruction which leads to countable nondeterminism is the random
assignment x := ? which sets to x an arbitrary nonnegative integer.

It is obvious how to define the semantics .M,01[x := ?D of x := ? • We have
J.~.M,0t[x := ?D(u) for any u. We now claim that there is no program SE Yn such that
.M,01[x := ?D = .M,0 ,[S]. This immediately follows from the following corollary to
Lemma 3.2.

Ten years of Hoare's logic. Part II 95

Corollary 4.1. For any SEY,, and u if J_ e .M,0 ,[S](u), then .;tl,0 ,[S](u) is a finite set.

Thus countable nondeterminism cannot be reduced to bounded (or finite) non­
determinism. This indicates that to study total correctness of programs allowing
countable nondeterminism we have to develop essentially new proof rules, i.e.,
proof rules which cannot be derived from those of the proof system NT.

Note that this is not the case when dealing with the partial correctness of programs
allowing countable nondeterminism, as we have clearly

.M[x:= ?] = .M[b :=true; x := O; do b-'? x := x+ 1 ob-'? b :=false od].

(Here and elsewhere we ignore the fact that the values of the auxiliary variables
(here b) have been changed. It is easy to remedy this problem.)

Before we enter the proof-theoretic considerations of countable nondeterminism
we should perhaps explain why it is useful to study countable nondeterminism in
the first place. First, the instruction x := ? can be viewed as another version of a
more familiar read(x) instruction. Secondly, this instruction is particularly useful
when dealing with the assumption of fairness, which will be discussed later. Also it
allows to provide various neat characterizations of objects discussed in mathematical
logic (see, e.g., [12]).

4.2. A proof system for total correctness of countably nondeterministic programs

Consider now the class Yen of programs which differs from Y,, in that additionally
the instruction x :=? is allowed. We now present a proof system which allows us to
prove total correctness of programs from Yen· We add to the proof system NT the
following axiom:

AxroM 9: random assignment axiom
{p}x := ?{p}
provided x is not free in p

and replace do-rule II by its following generalization:

RULE 10: do-rule III

m m

p(a) 11 a> 0-'? V e;, p(O)-'? /\ 1e;,
i=l i=l

{p(a) f\ a> 0 f\ e;}S;{3,B < ap(,B)}, i = 1,. .. , m
{3a p(a)} do e1 ~ S 1 D • • • D em~ Sm od {p(O)}

where p(a) is an assertion with a free variable a which does not appear in the
programs and ranges over ordinals.

Call the resulting proof system CNT.

96 K.R. Apt

4.3. An example of a proof in CNT

As an example proof in CNT consider the following program:

S = do x = 0 ~ y := ? ; x := 1
ox>60Ay>O -7 y:=y-1

od.

I

We now wish to prove in CNT that S always terminates. More precisely, we I
prove in CNT the correctness formula {true}S{y = O}.

To this end we first specify the assertion language L. We assume that L contains
the language of Peano arithmetic and has two sorts: data (for program data-here
integer) and ord for ordinals. We assume a constant 0 of sort ord and a binary
predicate symbol < over ord. The variables a, f3 are of sort ord, all other variables
are of sort data.

In the course of the proof we shall have to convert values of sort data into values
of sort ord. To this purpose we assume a one-argument conversion function --:- of
sort (data, ord) converting integers into ordinals and a constant w of sort ord. We
have 'V x(i < w) as by convention x is of type data.

Define p(a) by

p(a) = (x = 0 ~ a = w) A (x >6 0 ~ a ::::: y).

Intuitively speaking, for a state u, p(a)(u) holds if a is the smallest ordinal bigger
or equal to the number of possible iterations performed by the loop when starting
in u.

We now show that p(a) satisfies the premises of do-rule III, i.e., p(a) is a loop
invariant.

(1) We have p(a) " a > 0 ~ x = 0 v y > 0 ~ x ::::: 0 v (x >6 0 " y > 0).
(2) We have p(O)~x;60Ay=0~1(x=Ov(x~OAy>O)).
(3) We first show {p(a)" a> 0" x =O} y :=?; x :::::: 1 {3/3 < ap(f3)}.
By the assignment axiom we have

{3,8 <a p([3)[1/ x]} x := 1 {3,B <a p([3)}

so by the consequence rule

{'Vy 3{3 < ap(f3)[1/ x]} x := 1 {3[3 <a p(f3)}.

By the random assignment axiom and the composition rule we now get

{'Vy 3{3 < ap(f3) [1/ x]} y :=?; x := 1 {3[3 < ap(f3)}.

To complete the proof it now suffices to show that

p(a) A a> 0 Ax =0-7 'Vy3f3 < ap(/3)[1/ x]

is true. p(a) Ax= 0 implies a= w. So for any y put f3 = y: then f3 <a and p(f3) [1/ x]
holds.

Ten years of Hoare's logic, Part ll

Next we show

{p(a) f\ a >Of\ x #- 0 f\ y>O}y:= y-1{3,B < ap(,B)}.

By the assignment axiom and the consequence rule it suffices to show that

p(a) f\ a> 0 f\ x #- 0 f\ y > 0 -7 3,8 <a p(,B)[y- 1/ y]

is true. We have

p(a)/\ a> 0 f\ x #- 0 f\ y > 0 -7 a = y f\ y > 0 f\ x #- 0

-7a = y /\ y> 0 A 3z(z = y-1 t1p(z)[y-l/y])

-73,B < ap(,B)[y-1/y].

By do-rule III we now get

{3ap(a)} S {p(O)}.

97

Clearly both 3a p(a) and p(O) ~ y = 0 hold, so, by the consequence rule,
{true}S{y = O} holds.

To be precise we actually proved Tr11 1-cNT{true} S{y = O} where 11 is a standard
interpretation of the assertion language L.

4.4. Soundness and completeness of CNT

Before we dwell on the issue of soundness and completeness of CNT we have to

specify for which assertion languages and their interpretations CNT is an appropriate
proof system.

As in the previous section we assume that the assertion language L contains two
sorts: data and ord. As before we have a constant 0 of type ord and a binary

predicate symbol < over ord. Additionally we assume that L includes second order

variables of arbitrary arity and sort. The second order variables can be bound only

by the least fixed point operatorµ provided the bound variable occurs positively in

the considered formula. If the set variable a occurs positively in p(a, u 1, ••• , un)

and a(u 1 , ••• , Un) is a well formed formula, then µa(ui, ... , un).p is a well formed
formula. The free variables of µa(u 1, ••• , un).p are those of pother than a.

An interpretation J for this type of assertion language is an ordinary two-sorted

second order structure subject to the following conditions.

(1) The domain ldata of sort data is countable (to esure countable nondeter­

minism).
(2) The domain lord of sort ord is an initial segment of ordinals (to ensure a

proper interpretation of do-rule III).
(3) The domain lord contains all countable ordinals (needed for the completeness

proof).
(4) The constant 0 denotes the least ordinal and the predicate symbol< denotes

the strict ordering of the ordinals, restricted to lord·

98 K.R. Apt

(5) The set domain contains all sets of the appropriate kinds (to ensure the
existence of the fixed points considered below).

The truth of the formulae of L under interpretation J is defined in a standard
way. The only nonstandard case is when a formula is of the form µ,a.p. We then
put I= 1 µ,a(ui. ... un).p iff I= 1p[R/ a] where R is the least fixed point of the operator
{p} naturally induced by p:

Having defined the truth of the formulae of L we define the truth of the correctness
formulae in the usual way.

The following theorem proved in [3] explains why this type of assertion languages
and their interpretations is of interest.

Theorem 4.2. Let the assertion language L and its interpretation J satisfy the above
stated conditions. Then, for every correctness formula cf>, Tr1f-cNT<f> iff I=;</>.

This theorem states soundness and completeness of the proof system CNT.
The soundness proof is a simple generalization of the corresponding proof dealing

with system CNT. The completeness proof as usual proceeds by induction and only
the case of the do-loops requires an explanation. Suppose I= 1 {r}doe1 ~

S1 o· · ·Dem~Smod{q}.
The computations of the program S starting in a state a form an infinitely

branching tree. If S cannot diverge from a', then this tree is well founded. With
each such tree we can naturally assbciate a (possibility infinite) ordinal.

Similarly as in the completeness proof of the system NT consider the following
set of states:

pret1 (S,q)11 {a: S cannot diverge from a and the corresponding ordinal is a}

One can show that there exists an assertion p(a) which defines this set of states
within each interpretation here considered.

It is easy to see that p(a) satisfies the premises of RULE 10. By induction hypothesis
these premises are provable in CNT and hence the conclusion of the rule, as well.
Similarly as in Section 3.8bothI=1r~ 3ap(a) and I= 1 p(O) ~ q. By the consequence
rule we now get

as desired.
The use of ordinals in assertions perhaps requires a word of comment. It can be

shown that ordinals are indeed necessary, i.e., do-rule II is not sufficient here. For
example we cannot prove the correctness formula considered in Section 4.3 in a
proof system in which do-rule III is replaced by do-rule II. In case when the assertion

Ten years of Hoare's logic, Part JI 99

language L contains the language of Peano arithmetic and the domain of data values

ldata is N, the set of natural numbers, we can exactly estimate which ordinals are

needed for proofs in CNT. It turns out that exactly all recursive ordinals are needed.

(By a recursive ordinal we mean here an ordinal attached to a tree which can be

coded by a recursive set. For equivalent characterizations, see [21].)

4.5. Weak total correctness of countably nondeterministic programs

We conclude this discussion of countable nondeterminism by mentioning the

notion of weak total correctness of programs from Yen· This notion is defined

analogously as in Section 3.2.
Let CWT stand for a proof system which differs from CNT in that the original

if-rule (RULE 4) is used in it instead of RULE 7. Clearly this proof system is sound

and complete in the above sense with respect to the .;f,f,w10, semantics. This system

will be useful when dealing with the issue of fairness.

4.6. The issue of fairness

According to the usual semantics .;f,f,,01 the program b :=true; do b-'> skipo b :=

falseod does not always terminate because the computation in which the first guard
is always chosen is infinite. However, we can imagine restricted forms of interpreta­

tion of programs from Yn under which the above program will always terminate.

One of such interpretations is the one under the assumption of fairness. In the

context of programs from Yn this assumption states that in every infinite computa­

tion each guard which is infinitely often true is eventually chosen. Here a guard

is true if it evaluates to true at the moment the control in the program is just

before it.
This type of assumptions is particularly important when studying the behaviour

of parallel programs in the context of which fairness is a most general modeling of

the fact that the ratio of speeds between concurrent processors may be arbitrarily

large and varying but always finite. Study of the hypothesis of fairness in the context

of nondeterministic programs is partially motivated by the fact that parallel programs

can be modelled by nondeterministic programs.
We now formally define the semantics of programs from Y'n under the assumption

of fairness. Let g = (S0 , a 0)-'> (Si, a 1)-'> · · · be an infinite computation starting in

(S0 , a 0). We say that g is fair if it fulfills the following conditions:

(i) for each program S =if e1 _,. S 1 o · · · o em_,. Sm fi; S' and each i = 1, ... , m if

there are infinitely many j's for which (S, a) appears in g and I= 1 e;(ai), then there

are infinitely many j's among them such that the transition (S, a)-'> (S;; S', ai+ 1)

appears in g,
(ii) for each program S =do e1 _,. S1 o · · · u em-'> Sm od; S' and each i = 1, ... , m

if there are infinitely many j's for which (S, a) appears in g and I= A(ai), then there

are infinitely many j's among them such that the transition (S, ai)-'> (S;; S, ai+ 1)

appears in g.

100 K.R. Apt

To avoid confusion resulting from the fact that various occurrences of S in (do
not need to correspond with the same program, we should actually label each
statement with a unique label. It is clear how to perform this process and we leave
it to the reader.

We define two fair semantics for the programs from Yn by putting

-«wtair[sn (u) =

= ..U[SD(u) u {..LI there exists a fairinfinite computation starting in (S, a)},

-«1air[SD(o-)=-«wtair[STI(o-)u{failjS can fail from a}.

Thus the difference between the semantics -«wtw .Jl,101 and -«w1ain -«rair respectively
lies in the treament of infinite unfair computations. We assume that all finite
computations are fair.

We now define the notion of weak total correctness of the programs considered
under the assumption of fairness by putting

FJ,dp}S{q} iff .;f;f,h[STI([p]J)c:;;[q]J for hE{wfair,fair}

where of course .«h[SD([p]J) =Uue[pJJ .Jl,h[SD(a).
If f:: J,1air{p}S{q} O= J,wfair{p}S{q}) holds, then we say that S is totally (weakly

totally) correct under the assumption of fairness with respect to p and q. Thus
I= J,fair{p}S{q} holds iff each fair computation of S starting in a state satisfying p
successfully terminates and the terminating state satisfies q.

4. 7. A transformation enforcing fairness

We now wish to present a proof system in which total correctness under the
assumption of fairness can be proved. For didactic reasons instead of presenting
the proof rules immediately, we rather explain how to derive them. To this purpose
we first provide a transformation of a program SE Yn into a program S1a;, E Yen
which realizes the assumption of fairness in the sense that non-failing computations
of Srair coincide exactly with fair and non-failing computations of S. We proceed by
the following successive steps:

Step 1. Replace each subprogram do e1 ~ S 1 o · · · o em~ Sm od of S by

m

do V ei~ife1 ,S 1 D· · ·Dem'Smfiod.
i=l

Step 2. Replace each subprogram if e1 ' S1 o · · · o em' Sm fi of S by the following
subprogram:

for j:= 1 to m if ei then zi := zi - 1 ;

if e1 " z1 =OA 'Vizi ;;;.:o~ z1 := ?; S1 o- · ·

Ten years of Hoare' s logic, Part II 101

Step 3. Rename all variables z1, ••• , z,,. appropriately so that each if-construct
has its 'own' set of these variables.

Strictly speaking the program S1air does not belong to Yen as the if-then and the
for-constructs are not assumed in the syntax. However, it is clear how to change it
here into a sequence of the if-constructs. Note that in Step 1 we replaced each
subprogram of S of the form of a do-loop by another subprogram which is equivalent
to the original·one in the sense of the .Jfdrair semantics.

Let us call the subprograms introduced in Step 2 the ifiair-constructs. The above
transformation boils down to building into all if-constructs of S a fair scheduler in
which the auxiliary variables Z; count down to a moment when the corresponding
guard is selected.

The following lemma relates S to Srair·

Lemma 4.3. For any program SE«!',,, A1w1air[Sil = A1w101[S1airll·

Proof. It suffices to prove the following facts:
(a) If g is a fair non-failing computation of S, then an extension of it dealing with

the auxiliary variables of Stair is a non-failing computation of Srair·
(b) If g is a non-failing computation of Srain then its restriction to the computation

steps dealing with S is a fair non-failing computation of S.
Ad (a). We annotate the states in g by assigning in each of them values to all

variables Z;. Given a state O) there are two cases.
Case l. For no state erk (k > j) the guard corresponding with Z; has been chosen.
Then by the assumption of fairness this guard has only been finitely many times

enabled when the control was there. We put cri(z;) to be equal 1 +the number of
times the guard will still be enabled whenever the control will be there.

Case 2. For some state erk (k > j) the guard corresponding with Z; has been
chosen. We put ai(z;) to be equal 1 +the number of times the guard will still be
enabled and not chosen whenever the control will be there.

Ad (b). By the construction of S1air the restriction of g to the computation steps
dealing with S is a non-failing computation sequence for S. Suppose that this
restriction is not a fair computation sequence. Then behind some point in this
computation a guard would be infinitely many times enabled at the moment a
control is there and yet never chosen. By the construction of Srair the variable Z;

corresponding with this guard would become arbitrarily small. However, this is
impossible because as soon as it becomes negative a failure will arise. D

Corollary 4.4. Suppose that none of the auxiliary variables introduced in Srair occurs

free in the assertions p and q. Then

F J,wfair{p}S{q} ijf F J,wtot{p}Sfair{q}.

Note that we cannot relate the semantics A11air and JU,01 in the sense of Lemma
4.3 as for all Sand er we have failE A1rair[Sil(u). Consequently, using the above

102 K.R. Apt

transformation we cannot derive the proof rules for total correctness under the
assumption of fairness directly.

4. 8. A proof system dealing with fairness

The above corollary indicates that in order to prove weak total correctness of S
under the assumption of fairness it is sufficient to prove weak total correctness of S1air­

To prove weak total correctness of Sfair we can use the proof system CWT defined
in Section 4.5.

Assume now for a moment that only deterministic do-loops are allowed, i.e.,
do-loops of the form doe-+ Sod. Then the first step in the transformation discussed
in the previous section is not needed and can be deleted.

Consider now a proof of a correctness formula {p1}Sfadq1} in the system CWT.
Due to the form of S1air any such proof can be transformed into a proof of the
correctness formula {p1}S{q} provided we use the following transformed version
of the if-rule:

The hypothesis of this rule can be simplified if we 'adsorb' all assignments to the
auxiliary variables into the assertion p and apply 'backwards' RULE 4. In such a
way we obtain the following proof rule which exclusively deals with the if-construct
and its original components. Here i ~ 0 is shorthand for z 1 ~ 0 A • • • A Zm ~ 0.

RULE 11 : fair if-rule I

{p[if eithen zi+l else zi/zi]i,..;[l/z;]A e;A i~O}S;{q};=i. ,m

{p}ife1 -+S1D· · ·Dem-+ Smfi{q}

We still have to deal with the problem of do-loops as we assumed above that
only deterministic loops are allowed. For this purpose we have to go back to the
transformation from the previous section. In Step 1 we replaced each do-loop by
a program equivalent to it in the sense of the .Mwfair or .!llrair semantics. Therefore,
a proof of weak total correctness under the assumption of fairness of the latter
program constitutes a proof of weak total correctness under the assumption of
fairness of the former one. Thanks to this observation we can derive the fair do-rule.
It has the following form after some simplifications:

RuLE 12: fair do-rule
m m

p(a) A a> 0-? V e;, p(O)-+ /\ --ie;,
i=l i= 1

{p(a) [if ei then zi+l else z/zi]i,..;[l/z;]Aa>OAe;Ai~O}
S;

{3,B < ap(/3)};=1, ... ,m

Ten years of Hoare's logic, Part II 103

The assertion p(a) satisfies the same condition as in RULE 10.
Summarizing, the proof system WFN for weak total correctness of programs from

B'n under the assumption of fairness is obtained from the proof system N by replacing
the if- and do-rules by the proof rules introduced above. Note that the random
assignment axiom is not needed-we used it only to derive the final form of the
new rules.

The only purpose of introducing the transformation of S into Srair was to derive
the new rules in a straightforward way. These rules deal with the original programs
and not their transformed versions.

4. 9. Soundness and completeness of WFN

The following lemma provides a proof-theoretic counterpart of Corollary 4.4.

Lemma 4.5. Suppose that none of the auxiliary variables introduced in Srair occurs
free in the assertions p and q. Then

This lemma can be easily justified on the basis of remarks provided in the previous
section while introducing the new proof rules.

Lemma 4.5 together with Corollary 4.4 reduces the question of soundness and
completeness of WFN to that of CWT. But the latter system is sound and complete
in the sense of Section 4.4. This shows that proof system FN is also sound and
complete in the same sense. We only have to restrict additionally the class of allowed
structures to those which in their data domain contain natural numbers.

4.10. The correctness under the assumption of fairness

Proof system WFN is appropriate for proving weak total correctness under the
assumption of fairness. To ensure that additionally freedom of failure is guaranteed
we proceed in the same way as before-we simply add to the premises of the fair
if-rule I the assertion p--'; V~'::. 1 e;.

We then obtain the following proof rule:

RULE 13: fair if-rule II

m

P--'; Ve;
i=l

{p[if e1 then z1+1 else zj z1]1,,;[l/ z;] /\ e; /\ z ~ O} S; {q};= 1, .. ,m

{p} if e1--'; S1 D • • • D em--'; Sm fi {q}

Replacing in proof system WFN RULE 11 by RULE 13 we obtain a proof system
appropriate for proving total correctness under the assumption of fairness. We call

104 K.R. Apt

this system FN. This system is sound and complete in the above sense w.r.t. the
.!U1a;r semantics.

Finally we comment on the use of ordinals in RULE 12.
Similarly as in the case of proof system CNT exactly all recursive ordinals are

here needed when the data domain consists of natural numbers. In [4] it is proved
that even if we restrict ourselves to the class of programs disallowing nested
nondeterminism, then still the same set of ordinals is needed for proofs carried out
in system FN.

4.11. An example of a proof in FN

We conclude the discussion of fairness by presenting an example proof in FN.
Consider the following program S:

do x > 0 ~if true~ if b ~ x := x - 1

od

o b ~ b := false

D I b~ skip fi

o true -+ b := true fi

We want to prove F= 10,ra,, {true} S {true}, i.e., that S always terminates under the
assumption of fairness.

To this purpose we have to find an assertion p(a) such that

and

p(a)11a>O -+ x>O,

p(O)-+xo;;:;;O,

3ap(a)

{p(a) 11a>0 Ax> O}S'{3,8 <a p(,8)}

(14)

(15)

(16)

(17)

where S' is the body of the do-loop. (Note that we use here the original do-rule
(RULE 10) as the do-loop in question is deterministic. It is easy to see that the
do-RULES 10 and 12 are equivalent in the case of deterministic do-loops.)

Let p(a, b, c, d) = w 3 ·a+w 2 • b+w· c+d for any integers a, b, c, d where a> 0.
Then p(a, b, c, d) is an ordinal. We define

p(a) =a =ifx> 0 then p(x, z3, I-b, (b~ Zi. z2))

else 0.

In the expression 1- b, true is interpreted as 1, false as O; b-+ z1, z2 stands for
ifbthenz1 elsez2; the auxiliary variables z1 and z2 are associated with the outer
guards and z3 , Z4 and z5 with the inner guards, respectively.

Ten years of Hoare's logic, Part II 105

It is clear that (14)-(16) hold. To prove (17) we have to insure that in a fair

computation the value of p decreases on each iteration of the loop. More formally

we wish to apply the fair if-rule so we first have to prove the premises

and

as the first premise of the fair if-rule is obviously satisfied. Here

Si= if b-? x := x-1

ll b --? b := false

01b-?skipfi.

To prove (18) we once again wish to apply the fair if-rule. The premises to prove
are

x := x- l {3/3 < ap(f3)},

b :=false {3/3 < ap(/3)}

and

{ Pi[b--? Z; + 1, z;/ Z;];= 3,-1[1/ z 5] A 1b A z 3 , Z 4 , z5 ~ O} skip {3/3 <a p(/3)}

where

Pi= (p(a) A a> 0" x > O)[z2 + 1/ z2][1/ z1]" z 1, z2 ~ 0.

Note that the pre-assertion of (20) is equivalent to

p(x, 1, 0, 1) =a" b" x> O" z~O.

We have, by the assignment axiom,

{ p (X, 1, 0, 1) = a /\ b /\ X > 0 /\ Z ~ 0}

x:= x-1

{(p(x + l, 1, 0, 1) =a A b "x > 0" z ~ O) v p(O)}

(20)

(21)

(22)

which implies (20) by the consequence rule as the necessary implication is clearly

true.
To prove (21) note that the pre-assertion of (21) is equivalent to

p(x, z3 + 1, 0, 1) =a A a> 0 A b A z ~ 0 A x > 0

106 K.R. Apt

which in turn implies the assertion

Now by the assignment axiom and the consequence rule

{q} b :=false {3/3 <a p(,B)}

so (21) by the consequence rule.
Finally, to prove (22) we note that

implies

which in turn implies 3/3 < ap(/3). Hence (22) holds by the skip axiom.
Now, from (20)-(22) we get (18) by the fair if-rule.
To prove (19) note that the pre-assertion of (19) is equivalent to

p (x, z 3, 1 - b, (b ~ z 1 + 1, 1)) = a I\ a > 0 I\ x > 0 I\ z :;;;: 0

which in turn implies the assertion

r = 3 f3 < a (p (x, z 3 , 0, z 1 + 1) = f3 I\ x > 0 I\ z :;;;: 0).

Now, by the assignment axiom and the consequence rule, {r} b := true{3,B < ap(,B)}
so (19) by the consequence rule.

We now proved both (18) and (19) and we get (17) by the fair if-rule. Expressions
(14)-(17) imply by the do-rule {true} S {true} so by virtue of the soundness of system
FNT we get F= 10.fair {true} S {true}. This concludes the proof.

4.12. The issue of justice

Another possible restricted interpretation of nondeterministic programs is the
one under the assumption of justice. In the context of programs from :In this
assumption states that in every infinite computation each guard which is true from
some moment on is eventually chosen. Here, as before, a guard is true if it evaluates
to true at the moment the control in the program is just before it.

The assumption of justice can be treated in an analogous way as that of fairness.
To obtain a transformation realizing justice we only need to replace in the transfor­
mation from Section 4. 7 the program from the first line in Step 2 by

All other steps in the development of the proof rules for justice are the same as
before and left to the reader.

Ten years of Hoare' s logic, Part II 107

As a final remark we would like to indicate that in the transformation from
Section 4. 7 we can omit the conditions Z; = 0 from all of the guards, both for the
case of fairness and justice. Clearly various other transformations also satisfy Lemma
4.3. We chose here a transformation which leads to simplest proof rules dealing
with fairness or justice.

5. Conclusions

In thi~ survey we showed how the issue of correctness of nondeterministic programs
can be studied within the framework of Hoare's logic. It seems instructive to provide
now a critical assessment of this approach. The remarks below apply both to this
and previous part of the survey.

The characteristic feature of all proof systems here considered is that they are
syntax directed in the sense that the proof rules follow the syntax of the language
constructs. This feature of proof systems makes the task of finding a correctness
proof of a given program easier and more manageable. What is perhaps even more
important is that these proof systems allow to develop programs together with the
corresponding correctness proof. Dijkstra [8] provides several convincing examples
of such an approach to program design even though he does not use the formalism
adopted here. Also the completeness proofs are constructive and provide a heuristic
which can be helpful when trying to find concrete proofs.

It should be noted, however, that the proof systems studied here are not completely
adequate for proving correctness of the programs in the sense required by the
practical considerations.

We considered here only one type of failure due to an evaluation of all guards
of an if-construct to false. In practice, different types of failures can arise like
overflow, underflow, stack overflow, division by zero, use of uninitialized variables
etc. Most of these failures can be taken care of in a natural way by using appropriately
strengthened axioms and proof rules (see, e.g., the note in Section 3.4).

However, not all program properties can be taken care of in such a simple way.
For example, the proof rules dealing with fairness are fairly complicated and certainly
not easy to use. In the case of concurrent programs various other important
properties and hypotheses (see, e.g., [19]) cannot be naturally expressed and
axiomatized in Hoare-like logics either.

Hoare's approach was originally concerned with input-output analysis of program
behaviour, that is to say, the study of the relation between the input and output
states. However, not all program properties are of this type. A finer analysis of the
program behaviour requires a study of execution sequences (viz. the hypothesis of
fairness) and Hoare's logic does not seem an appropriate tool for such a study any
more. More appropriate framework for such an analysis seems to be temporal logic
(see, e.g., [19]) which explicitly deals with the properties of sequences of states and
not states only.

108 K.R. Apt

6. Bibliographical remarks

The first treament of nondeterminism in the framework of Hoare's logic is due
to Lauer [15] where a proof rule dealing with the or-construct (the meaning of the
construct S1 orS2 is: execute either S1 or S2) is introduced. Correctness of nondeter­
ministic programs introduced in Section 3 is extensively studied in [8] using a
different approach. AXIOMS 1 and 2 and proof RULES 3 and 6 are from Hoare [14].
RULES 4 and 5 are obvious modifications of the appropriate rules dealing with the
deterministic versions of the constructs and introduced in [15] and [14], respectively.
They appear for example in [5, p. 292].

Soundness and completeness proofs from Sections 3.5 and 3.6 are straightforward
generalizations of the corresponding proofs dealing with deterministic versions of
the programs and presented for example in [5, Section 3]. RuLE 7 is inspired by
the discussion of clean behaviour of programs in [19]. The completeness proof from
Section 3.8 is an appropriate modification of a corresponding proof from [11].

The notion of bounded nondeterminism is introduced in [8]. Countable nondeter­
minism is extensively studied in [3] and several related references can be found
there. Corollary 4.1 is implicit in [8]. AXIOM 9 is from [11]. RuLE 10 is from [3]
where a slightly different syntax is used. Sections 4.3 and 4.4 are based on [3], as
well. The program from Section 4.3 is from [8].

The issue of fairness is discussed in several papers (see, for example, [19]). First
proof rules dealing with fairness were proposed in [10, 17, 2]. In [16] a simplified
completeness proof of a rule is given, which was introduced in [10]. Sections 4. 7-4.12
are based on [4]. Transformations realizing fairness were first introduced in [2].
Other versions of such transformations are given and discussed in [18].

The program studied in Section 4.11 is due to S. Katz. First proof rules dealing
with justice were proposed in [3, 17]. In [16] another proof rule for justice is given.
In [17] arguments for introducing the hypotheses of justice and fairness when
studying parallel programs are given. In [20] a thorough discussion of various
possible formalizations of the assumption of fairness is given.

Acknowledgment

We thank the referee for useful comments on the previous version of this paper.
S. Arun-Kumar suggested a simpler presentation of proof system FN.

References

[l] K.R. Apt, Ten years of Hoare's logic, a survey-Part I, TOP LAS 3 (4) (1981) 431-483.
[2] K.R. Apt and E.-R. Olderog, Proof rules and transformations dealing with fairness, Sci. Comput.

Programming 3 (1) (1983) 65-100. Extended abstract appeared in: Logic of Programs, Lecture
Notes in Computer Science 131 (Springer, New York, 1982) pp. 1-8.

Ten years of Hoare's logic, Part Il 109

[3] K.R. Apt and G.D. Plotkin, Countable nondeterminism and random assignment, Tech. Rept. 82-7,
L.l.T.P., Universite Paris 7, 1982; extended abstract appeared as: A Cook's tour of countable
nondeterminism, in: Proc. ICALP' 81, Lecture Notes in Computer Science 115 (Springer, Berlin,
1981) pp. 4 79-494.

[4] K.R. Apt, A. Pnueli and J. Stavi, Fair termination revisited-with delay, in: Proc. 2nd Conf on
Foundations of Software Technology and Theoretical Computer Science, Bangalore, India (1982)
pp. 146-170.

[5] J.W. De Bakker, Mathematical Theory of Program Correctness (Prentice-Hall, Englewood Cliffs,
NJ, 1980).

[6] S.A. Cook, Soundness and completeness of an axiom system for program verification, SIAM 1.
Comput. 7 (1) (1978) 70-90.

[7] E.W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs, Comm.
ACM 18 (8) (1975).

[8] E.W. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs, NJ, 1976).
[9] R.W. Floyd, Nondeterministic algorithms, J. ACM 14 (4) (1967) 636-644.

[10] 0. Griimberg, N. Francez, J.A. Makowsky and W.P. de Roever, A proof rule for fair termination
of guarded commands, in: J.W. de Bakker and J.C. van Vliet eds., Algorithmic Languages (IFIP,
North-Holland, Amsterdam, 1981) pp. 399-416.

[11] D. Hare!, First-order Dynamic Logic, Lecture Notes in Computer Science 68 (Springer, New York,
1979).

[12] D. Hare! and D. Kozen, A programming lanuage for the inductive sets, and applications, in: Proc.
ICALP'82, Lecture Notes in Computer Science 140 (Springer, Berlin, 1982) pp. 313-329.

[13] M.C.B. Hennessy and G.D. Plotkin, Full abstraction for a simple programming language, in: Proc.
8th Symp. on Mathematica/ Foundations of Computer Science, Lecture Notes in Computer Science
74 (Springer, New York, 1979) pp. 108-120.

[14] C.A.R. Hoare, An axiomatic basis for computer programming, Comm. ACM 12 (10) (1969)
576-580, 583.

[15] P.E. Lauer, Consistent formal theories of the semantics of programming languages, Tech. Rept.
TR. 25.121, IBM Lab. Vienna, 1971.

[16] D. Lehmann, Another proof for the completeness of a rule for the fair termination of guarded
commands and another rule for their just termination, Tech. Rept. IW 178-81, Mathematisch
Centrum, 1981.

[17] D. Lehmann, A. Pnueli and J. Stavi, Impartiality, justice and fairness: The ethics of concurrent
termination, Proc. ICALP'Bl, Lecture Notes in Computer Science 115 (Springer, Berlin, 1981)
pp. 264-277.

[18] D. Park, A predicate transformer for weak fair iteration, in: Proc. 6th IBM Symp. on Mathematical
Foundations of Computer Science, Hakone, Japan, 1981.

[19] A. Pnueli, The temporal semantics of concurrent programs, Theoret. Comput. Sci. 13 (1) (1981)
45-60.

[20] J.P. Queille and J. Sifakis, Fairness and related properties in transition systems-a temporal logic
to deal with fairness, Acta Inform. 19 (3) (1983) 195-220.

[21] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability (McGraw-Hill, New
York, 1967).

