Theoretical Computer Science 26 (1983) 225-231 225
North-Holland

NOTE

DETERMINISM IN PARALLEL SYSTEMS*

Vaclav RAJLICH

Department of Computer and Communication Sciences, University of Michigan, Ann Arbor,
MI 48109, U.S.A.

Communicated by M. Nivat
Received July 1982

Abstract. In this paper, generalizations to systems which are not persistent, that is, systems
where an cvent can, possibly infinitely, be postponed, arc dealt with. The techniques that are
used are an application of the ones published by Boasson and Nivat { 1980).

The main result of this paper can be looked upon as a criterion for determining a determinism
in systems, and is fully compatible with H -graphs (Pratt, 1976) and similar definitions of systems.

1. Introduction

One of the important problems in parallel systems is the problem of determinisni.
The determinism in persistent systems was investigated in [3, 5]. In this paper we
deal with a generalization to the systems which are not persistent, i.e., systems
where an event can be postponed, possibly infinitely. The systems of this kind were
also called ‘unfair systems’ or systems with ‘starvation to death’. The techniques
used here are an applica‘ ~n of the ones published in [1].

The paper defines a hierarchy of deterministic, locally deterministic, and strongly
locally deterministic systems and proves that they form a proper hierarchy. Parts
of the proof are based on a variant of Church-Rosser properties, as investigated
in [2] and other papers (sez [2] for a list of references).

Section 2 contains definitions of systems, traces, histories and related notions,
and Section 3 contains tne main result of the paper. The result can be viewed as
a criterion for determining a determinism in systems, and it is fully compatible with
H -graphs [4] and similar definitions of svsiems.

2. Systems
We shall start our formal exposition with the definition of systems.

* This research was supported in part by the National Science Foundation under Grant No. MCS-78
00763,

1304-3975/83.S3.00 © 1983, Elsevier Science Publishers B.V. (North-Holland)

226 V. Rajlich

Definition 2.1. Let L be a set of locations and V a set of values. Then s:L » V
will be called a state.

Remark. As usual, we shall assume functions to be subsets of Cartesian product
s < L x V such that

i) for every a € L, there exists a v € V such that (a, v)es,

(iiy if (a,v)es and (a,w)es, then v =w. Let L, <L, then denote by s|L, =
Ha,v){a,v)es and ae L }.
We say sta)=v iff (a,v)e€s.

Definition 2.2. Let L be a set of locations, V a set of values. Then e is a virtual

crent iff e =(e;.er) (denoted e, =>er) and there exists an L,<= L such that
¢r:Ly-»V, ep:Ly-> V. Then ey, er are called left and right side of virtual event e,

respectively. Denote Dome ={ae L :e;(a)#erla)}.

Definition 2.3. A system is a quadruple (L, V, s,, E) where L is a set of locations,
Voasetof values, s,:1 » V the original state, and E a set of virtual events.

The state of the system undergoes changes, as described in the following
definitions.

Defnition 2.4. Let ¢ be a state and ¢ a virtual event such that ¢; =s. Then define
a new state 1 =(s - ¢V Jeg and (s, 0 is called actual event. The relationship of s.
¢ and r will be denoted as s ¢ =1, If ¢, - :, we also say e is schedi''ed in s.

Definition 2.5. Let § =(L, V., E) be a system. State s is reachable in system S
HT ¢ = ¢, or there exists a reachable state r and an ¢ € E such that 1 - ¢ =s.

Traces are a tool for description of the ‘dynamics’ of the system. They are
sequences (finite or infinite) of virtual events which consecutively happened in the
system. Formally, they are described in the following definitions.

Definition 2.6. et A be an alphabet, then a finite nonempiy word is a function
wiilo. . n}-A where n = 1. An infinite word is a function w :{1,2,...}> A, and
empty word A =, Word is either a finite, infinite or empty word. The length of a
word 'w!is equal to 0, n and @ for empty, finite and infinite words, respectively.
Prefix of word w oof length no(denoted) is defined in the following way: for
i ow o =woand forn <<w|, ,w = wi{l, ..., n}. Denote operation concatenation
in the followirg way: If both ¢:{l,....m}>A and w:{l,...,n}>A are finite
words, then e - wisafunctione - w:{l,....m+n}>Asothate - wi{l.....m}=1r
and. for every 1 for which T=/=n, ¢ - wti-++m)=w(i). For the empty word A,
A w o ow A s I we s infinite, then for every oow e =w e {1 mb= A
is finite, and w infinite, then ¢ - w is an infinite word., v - w:{1,2,...}> A so that
row [mb=r andforevery i =1, ¢ - w(i+m)=w(i.

Determinism in parallel systems 227

Let u, v be words, then u is a prefix of v (denoted « < v) iff there exists a word
w such that « - w = v. Words v, w are called compatible (denoted v < = w) if either
vs=worws=syp. Letuvy, vy, U2, ..., bewords suchthatvy<v,<v,= - <y, then
denote v =lim;.< v,

It should be noted that the infinite words and the corresponding topology were
extensively studied in [1]. We will use the following lemma of Boasson and Nivat
[(1): If vos <, then there exists a unique v such that v =lim,_ . v..

Definition 2.7. Let (L, v, sy, E) be a system, then trace is defined in the following
way: Let s be a reachable state, then (s, A) is an empty trace. If (s, u) is a trace
and there exists an e € E such that e is scheduled in s - u, then (s, u - ¢) is a trace.
Let (s, u;), (s,ua),... be a sequence of traces such that u,<u,<---, then
(s, im;_ x u;) is a trace. Trace (s, u) is complete iff s =5, and either u is infinite or
s u is a terminal state, i.e., for no e € E, e is scheduled in s - u. If (s, u) is a trace
and s is obvious from the context, then u will sometimes also be called trace.

In the next definition, history is defined as a sequence ot values held at a location
ael.

Definition 2.8. The history of a € L in trace (s, u) (denoted h(a, (s, u))" is defined
in the following way:
(1) For an empty irace, h(a, (s, A)) =sla).
{ii) Suppose that /(a, (s, u)) is defined and event e € E is scheduled in s - «.
Then we have the following two cases:
(a) if aeDom e (i.e., event e does not affect the value in location a), then
hia, (s, u - e))=hia,{s. u)).
(b) if a eDome, then hla,{s,u -e))=hia, (s, u)) erla) (i.c., the new value
will be added to the history).
Note: lfuy<wu-<---,then hta,{(s,up)) <= hla,(s,))<=,
() Letu,<wu.<---,then hia, (s, lim;.~ w;)) =lm,.. hia, (s, u;)).

We may state the following lemma.

Lemima 2.9. Forevery n < |h(a. (s, w))| there exists an m = n such that ,hia, (s, w)) =
fea, (s, ,aw)).

Proof. The proof follows by induction on m.

3. Determinism

This chapter contains several definitions of determinism in systems. Intuitively
speiking, a system is deterministic if no matter what the particular choice of

228 V. Rajlich

sequence of events, the histories of each location are compatible. In [3] a stronger
definition of determinism requiring uniqueness of the history for each location was
used. In this chapter we shall also develop several criteria for determining whether
a system is deterministic, which are strong local determinism and local determinism,
and we shall prove that strong local determinism, local determinism, and determin-
ism form a proper hierarchy.

Definition 3.1. Let (L, V, 5, E) be a system, and A =L be a subset of the set of
locations L. The system is deterministic on A iff for every a € A, every reachable
state s and every couple of complete traces {(so.u). (so,), fita,{(so.u))==
fiia, {so. t)).

Definition 3.2. Let (L, V, s, E) be a system, and A < L be a subset of the set of
locations L. The system is locally deterministic on A iff for every a € A and every
couple of finite traces u, v there exist traces «', v' such that hia, (s,u - u') =
hia, (s, v -t

Definition 3.3. L et (L, V, s, E) be a system. It is strongly locally deterministic on
A iff for every a € A, for every reachable state s and for all virtual events ¢, f
which arc scheduled in s, there exist traces x and v, where |v|<1, i(a,{s.e - x)) =
fita, (s, f ~yyands e -x =5 -f-y.

We may illustrate the definitions by the following lemmas.

Lemma 3.4. Let B = A, then S is deterministic (locally deterministic, strongly locally
deterministic) on A implies S is deterministic (locally deterministic, strongly locally
deterviinistic) on B.

Proof. Obvious.

Lemma 3.8, Let S =(L, V, s, E). Then the system is strongly locully deterministic
on L if for every a € L, for every reachable state s, and for all virtual events ¢, f which
are zcheduled in s, there exist traces x and v where lv|<1, hia,{s.e -x) =
fea, (s f- v '

Proof. The only thing we have te prove is that the assumptions of Lemma 3.5
imply s - ¢ - v =y - f-v. Note that, for every a € L, ita, {s. - v)) is finite, because
f-v s finite and Lemma 2.9 savs oa, (o f - v if - vio Denote by ria) the last
viiue of fiwac s f v Then r={a taniaell=y - f v =v-¢-x, which com-
pletes the proof.

The main result of the paper is the following theorem.
¥
Theorem 3.6. Ler S be a system, A a subset of all lecations. Then if S is strong!v
locally deterministic on A, then S is locallv deterministic on A and this implies S is
deterministic on A,

Determinism in parallel systems 229

Proof. (i) First we will prove that strong local determinizm implies local deter-
minism.

(The proof follows techniques of [2, Le.zuma 2.5].) Suppose § =(L, V, s, E) is
a system, A <L and S is strongly locally deterministic on A. Then we can prove
the following statement: Let ¢ be an event, v a finite trace and a € A. Then there
exist traces x' and v' where |y'|<1, s-e-x'=s-v-y', and hia, (s,e - x')) =
h(a, (s, v - y)). (The proof is by induction on |v].)

With this statement, we can prove local determinism. (The proof is by induction
on Jul.)

(ii) Now we will prove that the local determinism implies determinism. Suppose
S is locally deterministic in A, but not deterministic on A. Then there exist two
complete traces u#, v and a€A such that it is not true that
hia,{(so,)< =ha, (s, v)). Then there exists an m such that for all words =, z»

whtta, (so, ud) -z, # phia, (so. v)) 25, (%)

Hence, by Lemma 2.9 there exist &, n such that ,,i(a, (s, 1)) = hta, (s, 1)) and
mhia, {so,) =hia, {sy, .)). However, from the definition of local determinism
there exist traces n', ¢v' such that h(a, (so, xtt - u')) =hi(a, {so. .o - v')) which is a
contradiction with (¥).

The next two counter-examples will estavlish the facts that the hierarchy of
Theorem 3.6 is the proper one, i.e., that the implications cannot be replaced by
equivalences.

Example 3.7. This is an example of a system which is deterministic on A but not
locally deterministic on A.
Let

S=(L,V,syE) wherelL={a,b}, A=L, V={0,1},
so={(a, 0), (b,)},
E ={e,,¢:} wheree,=(a,0) = (a, 1),
ex={(a, 0), (b, 0)} = {(a, 1), (b, 1)}.

Then there are two complete traces (s,, 1) and (s, ¢.), where
hia, (so, e =<0, 1, hia,{(so, e2)) =(0, 1),
hib, (so.e1)) ={0), hib. (su, e2)) =40, 1),

hence the system is deterministic but not locally deterministic.

Example 3.8. This is an example of a system which is locally deterministic but not
strongly locally deterministic.

230 V. Rajlich

Let
S:'(L‘ v.Sn.E), Lz{a,b,('.d}, A=L, ‘«/={0, 1},

So= {(as 0)9 (b’ 0>a <C, 0)}5 E = {eh €, €3,€5,€s, eﬁ}’
where

e;=(a,0) = (a, 1), er=(,0 = (1),
e3={(a, 1), (b, 0} = {{a, 1), (b, D},
ea={(b, 1), (c, O} = {(b, 1), (c. D},
es={(b, 0),{c, D} = {(b, 1), {c, D},
eo={(a,0),¢b, 1)} = {a, 1), (b, 1}.

-

Then this system is locally deterministic, but not strongly locally deterministic.

In the following example, we shall give the illustration of a strongly locally
deterministic system for which A (a, (sy, u)) < =hla, (so, t)) (u and v are complete
traces) but hia, (so, 1)) # h{a, (so, v)). In another terminology it is an illustration of
a system which is unfair [3], or nonpersistent, or contains starvation to death.

Example 3.9. l.ct
S=(L,V.so E) where L ={a.b}, V={0, 1},
so={(a, 0), (b, O)},
E ={e, es ex, 03l wheree, =(a,0) = (a, 1), ex=(a, 1) = (a,0),
3=y b, ea=(h 1) = (b O),

Then the system is strongly locally deterministic. Consider the following two
complete traces:

H =€102C,1€2 ", U =304€383
Thcn

fla, (s, un=0,1,0,1,...) while ha, (so.) ={0).
References

17 L. Boasson and M. Nivat, Adherence of languages, J. Comput. Systems Sci. 20 {19801 295-309.

21 G. Huet, Confluent reductions: Abstract properties and applications to torm rewriting systems. J.
Assoc. Comput. Mach. 22 (1980) 797-821.

i3] R.M. Karp and R.E. Miller, Parallel program schemata, J. Comput. Svstems Sci. 3 (1969) 147-195.

Determinism in puraliel systems 231

[4] T. Pratt, Application of formal grammars and automata to programming language definition, in:
R.T. Yeh, ed., Applied Computation Theory (Prentice-Hall, Englewood Cliffs, NJ, 1976).

[5] V. Rajlich, Determinism in relational systems, in: V. Clause, H. Ehrig and G. Rosenberg, ed.,
Graph-Grammars and Their Application to Computer Science and Biology, Lecture Notes in Com-
puter Science 73 (Springer, Berlin, 1979) pp. 401-408.

