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Abstract. In this paper, generalizations to systems M hich are not persistent, that i\. systernc 
where an event can, possibly infinitelq, be postponed, are dealt with. The techniques that are 
used are an application of the ones published by Roasson and Nivat 1 1981)). 

The main result of this paper can be looked upon as a criterion for determining a determinism 
in systems. and is fully compatible with H-graphs (Pratt, 19761 and similar definitions of systems. 

1. Introduction 

One of the important problems in parallel systems is the problem oE determinism. 

The determinism in persistent systems was investigated in [3,5]. In this paper we 
deal with a generalization to the systems which are not persistent, i.e., systems 

where an event can be postponed, possibly infinitely. The systems of this kind were 

also called ‘unfair s_qstems’ or systems with ‘starvation to death’. The techniques 

used here are an applic& r-n of the ones published in [ 11. 

The paper defines a hierarchy of deterministic, locally deterministic, and strongly 
locally deterministic systems and proves that they form a proper hierxrchy. Parts 

of the proof are based on a variant of Church-Rosser properties, as investigated 

in [2] and ot;ler papers (se? [2] for a list of references). 

Section 2 contains d&initions of systems, traces, histories and related notions, 

and Section 3 contains tne main result of the paper. The result can btl viewed as 

a criterion for determining a determinism in systems, and it is fully compat;ble with 

H-graphs [41 and similar definitions of systems. 

2. Systems 

We shall start our formal exposition with the definition of systems. 

* This research was supported in part by the National Science Foundation under Grant ;1;0. MCS-78 

OlI76.3. 
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Definition 2.1. Let L be a set of locations and V a set of values. Then s : L + V 

will be called a state. 

Remark. As usual, we shall assume functions to be subsets of Cartesian product 

F c L x V such that 
pi I for every N E L, there exists a L* E V such Pat (a, L’) E s, 

tii I if (~1, c) E s and (n, W) ES, then c = I:*. Let L 1 c L, then denote by s If- 1 = 

!!a, c>i(a, C)ES and n EL]}. 

We say s(a) = c iff (a, c)Es. 

Definition 2.2. Let L be a set of locations, V a set of values. Then e is a z:irtrral 
vwtrt itf e = (P (. c,~) (denoted cl. 3 eK) and there exists an L1 cf. such that’ 

1’1 :Lp V, tJ[<:Ll -+ V. Then et , eR are called kft and right sine of virtual event c, 

rcspcctively. Denote Dom 6 = {n E L 1 : cl.(n 1 f eR(a )}. 

Definition 2.3. A s~~.st~z is a quadruple (I., V, .ro, E) where L is a set of locations, 

I’ ii set of values, s,, : I + V the ori,gitzni mm, and E a set of virtual events. 

of the system Tk! state 

definitions. 
undergoes changes, as described in the following 

Ikfhition 2.4. I,ct cr be a state and I’ a virtual event such that cl c s. Then detine 

;i nc& stare f = (.s - cl 1 !A’ R and (s. t) is called ccctrtcd cwrt. The relationship of s. 

(3 and t will he denoted as s * Y = t. If cl : ,‘. WC also say CJ is .W*IWL!P Vtl in s. 

Definition 2.5. Let S = (L, 1)‘. ,sll, E) tw a system. State s is redmhle in sbctem S 

itT t -- q,, or thcrc exists a reachable state t rmd an (7 E E such that t * c - .L 

I’r;tcc\ arc’ a tool for description of the ‘dynamics of the system. They are 

~‘quc’nc‘cs (fink or infinite) of virtual events which consecutively happened in the 

(tvstem. Formally, they are described in the following definitions. 
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Let u, v be words, then M is a prefix of v (denoted II s v) iff there exists a word 

1%’ such that u l MI = v. Words c, M* are called compatible (denoted v s Z= u’) if either 

c G u’ or w G C. Let L!(), Cl, ~‘2, . . . , c be words such that co c ~15 ~(2 s * l - s L’, then 

denote t‘ = limj+r c,. 

It should be noted that the infinite words and the corresponding topology were 

exten&vely studied in [l]. We will use the following lemma of Boasson and Nivat 

[l]: If I/‘(,dcl= ’ l , then there exists a urzique v such that v = lim,,, zqi. 

Definition 2.7. Let (L, v, so, E) be a system, then trace is defined in the following 

way: Let s be a reachable state, then (s! A) is an empty trace. If (s, u) is a trace 

and there exists an e E E such that e is scheduled in s . u, then (s, II - e) is a trace. 

Let (s, H,), (s, uz), . . . be a sequence of traces such that idI < uz 5 - - - , then 

(3, lim,,, 14,) is a trace. Trace (s, U) is complete iff s = so and either u is infinite or 

s l 14 is a terminal state, i.e., for no c E E, e is scheduled in s - u. If (s, ~4) is a trace 

and s is obvious from the context, then 14 will sometimes also be called trace. 

In the next definition, history is defined as a sequence of valut’s held at a location 

i1 E i!, . 

Definition 2.8. The history of n E L in trace (s, rr) (denoted tz (CI, (s, II))’ is defined 

in the following way: 
(i) For an empty irace, It (a, (s, A)! = S(CI 1. 

(ii) Suppose that FJ1 (a, (s, u)) is defined and event e E E is scheduled in r * II. 

Then we have the following two cases: 
(a) if II g Dom (1 (i.e., event Y does not affect the value in location II 1, then 

Iz(a, (s, 11 - c}) = h(t-2, (s. II)). 

CM if 11 EDom<>, then 1~ (a, (s, II . r)) = iz (a, (s, II)) . (‘Rid J (i.e., the new value 

will be added to the history). 
4vm : If II, -G 142 s * * * , then It (n, (s, 14 I), 51 II (n, (s, ~2)) -g - - - . 

(iii) Let 11~ < 11: 5 - - - , then /~(a, (s, lim,,, u,)) = Jinl,4s h (n, (s, II,)). 

Wc may state the following lemma. 

Proof. The proof follows by induction on HI. 

3. Determinism 

This chapter contains several definitions of determinism in systems. Intuitively 
speilking, a system is deterministic if no matter what the particular choice of 



sequence of events, the histories of each location are compatible. In [3] a stronger 

definition of determinism requiring uniqueness of the history for each location was 

used. In this chapter we shall also develop several criteria for determining whether 
a system is deterministic, which are strong local determinism and local determinism, 

and we shall prove that strong local determinism, local determinism, and determin- 

ism form a proper hierarchy. 

Definition 3.1. Let (L, V, so, E) be a system, and A c L be a subset of the set of 
locations L. The system is detert~zitzistic otz A iff for every n E A, every reachable 

state s and every couple of complete traces (so, rr ), (so, P), II (a, (so, II)) s 3 

IrMf, CC,, c>J. 

Definition 3.2. Let (L, V, so, E) be a system, and A c L be a subset of the set of 
locations L. The system is locally deterministic err A iff for every a E A and every 

couple of finite traces U, c there exist traces II ‘, c’ such that h icr, (s, 11 s 14 ‘)I = 

ha, (s, c . c *)L 

Definition 3.3, Let (L, V, .sll, E) be a system. It is strongly locally determitzistic otz 

A iff for every a E A, for every reachable state s and for all virtual events C, f’ 

which arc scheduled in s, there exist tracts .Y and _v, where 1~ 1s 1, It (~1, (s, P . A-), = 
/I m, ls, f - y), and s . E - s = s - f - y. 

Wc may illustrate the definitions by the following Icmmas. 
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Proof. (i) First we will prove that strong local determmlsm implies local deter- 

minism. 

(The proof follows techniques of [2, Le.:*ma 2.51.) Suppose S = (L, V, so, E) is 

a system, A c L and S is strongly locally deterministic on A. Then we can prove 

the following statement: Let e be an event, I a finite trace and a E:A. Then there 

exist traces A’ ’ and y’ where ly’)sl, s *e l x’ =s.v l $, and h(a, (s, e 9 x’)) = 
h (a, (s, c l )I)). (The proof is by induction on 10 1.) 

With this statement, we can prove local determinism. (The proof is by induction 

on IulJ 
(ii) Now we will prove that the local determinism implies determinism. Suppose 

S is locally deterministic in A, but not deterministic on A. Then there exist two 

complete traces 14, c and acA such that it is not true that 

II (0, (St,, II ), < 2 11 (n, (s,,, P)). Then there exists an nr such that for all words 21, 27 

,,,I2 (a, (s(,, u)) -2 1 f ,,,I2 (a, (so, c)) -z2. i*r) 

Hence. by Lemma 2.9 there exist k, II such that ,,,h (a, is,,, II)) = 11 (n, (.sCj, ,J)) and 

,,A \a, (SO, c>> = 11 (a, (s (), ,J_+. However, from the definition of local determinism 

there exist traces IZ *, v ’ such that h (a, (so, ku - II I)) = h (a, (s+ ,,v 8 L’ ‘>, which is a 

contradiction with (+ A 

The next two counter-examples will estaijlish the facts that the hierarchy of 

Theorem 3.6 is the proper one, i.e., that the implications cannot be replaced by 

equivalences. 

Example 3.7. This is an elidmpk of a systc m which is deterministic on A but not 

locally deterministic on A. 
Let 

S = (L, V, slI, E) where L = {a, h}, A = L_, V = (0, l}, 

E = {Q, to?] where E] = (a, 0) * (6 1)3 

e2 = {(a, O>, (b, 0)) =+ {(a, 0, (6, 1 >I. 

Then there are two complete traces (So,, el) and (So,, s,), where 

I1 (a, (Sf,, c 1)) = <(J, 1;. I2 (a, (St,, 42)) = (0, I>, 

I? (17, (St,, e ,> 1 = NV, I2 tb. (so, e;l)) = (0, l), 

hence the system is deterministic but not locally deterministic. 

Example 3.8. This is an example of a system which is locally deterministic but not 
strongly locally deterministic. 



Let 

s = (L, v, So, EL L==(a,b,c,d), A=L, v ={O, l), 

where 

er=(a,O) 3 (a, l), 42 = k 0) * k, l), 

63 = ((a, I>, (h, 0)) * {(a, I>, @,1 >I, 

(‘4 = ((6, l), (c, 0)) 3 {(h, 1). k 1)). 

ef; = W, O>, k 1)) * {(by I>, k, 1 >L 

ch = {(a, (0, Gh 1>) * {(a, 0, (6, 1% . 

Then this system is locally deterministic, but not strongly locally deterministic. 

In the following example, we shall give the illustration of a strongly locally 

deterministic system for which h (a, (so, rr)) s 3 h (a, (sr,, c)) (u and c are complete 
traces) but h (a, (So,, II)) f h (a, (so, ~7)). In another terminology it is an illustration of 

a system which is unfair [3], or nonpersistent, or contains starvation to death. 

Example 3.9. Let 

S = (L, \‘, so, E) where L = {a. h), 1’ = (0, l}, 
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