

Edinburgh Research Explorer

Calculi for Synchrony and Asynchrony

Citation for published version:
Milner, R 1983, 'Calculi for Synchrony and Asynchrony', Theoretical Computer Science, vol. 25, pp. 267-
310. https://doi.org/10.1016/0304-3975(83)90114-7

Digital Object Identifier (DOI):
10.1016/0304-3975(83)90114-7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1016/0304-3975(83)90114-7
https://doi.org/10.1016/0304-3975(83)90114-7
https://www.research.ed.ac.uk/en/publications/687cb0bf-4345-41fc-b001-f7a6dd6df488

2. TUTORIAL PAPERS

Using algebra for concurrency : some approaches

Robin Milner

Edinburgh University, September 1983

Introduction

A prominent feature of any algebra is that its expressions, by their

form, either exhibit the structure of the objects which they represent, or

exhibit the way in which those objects were built, or could be built, or

may be viewed. Often indeed an object does not possess structure, but we

impose structure upon it by our view of it - and thereby understand it

better. A rectangular array of numbers, for example, is not of itself a

row of columns, nor is it a column of rows; these are views which we

impose upon it, and any linear expression of such an array will impose some

such biassed view.

So it is no accident that algebra is useful in understanding complex

distributed systems; for such systems must have many parts (else they would

not be complex), and a structured view is essential in understanding something

with many parts.

In designing an algebra for distributed systems, we are first faced

with an inherent difficulty; the connectivity of the components is not in

general tree-like, whereas the structure of an algebraic expression is

always tree-like. It follows that the connectivity of a system is not

expressible merely by the form of an expression. However, the analysis of

an expression into subexpressions will express the analysis of the system

into subsystems - and the expression will often be chosen in such a way that

the subsystems which are thus identified are physically meaningful, and

possess properties from which properties of the complete system follow

naturally.

A more detailed problem for the algebra is: what is the nature of the

connecting links between subsystems of a distributed system? In a system

such as the following

do the arcs represent directed channels carrying data from one node to

another, in which case do they have any memory capacity? Or do they

represent simply the contiguity of the objects represented by the

connected nodes - an interface across which they exchange an immediate

interaction? And in either case does the forked arc from B to A and

C carry a communication between B and both A and C, or does it signify

that a single communication occurs between either B and A o__rr B and C but

not both?

One modest purpose of this paper is to show that precise answers

to these questions can indeed be given by choosing one algebra or another,

and that the different choices differ markedly. In section 2 we look at

an algebra in which the arcs represent unbounded queues of data elements.

In sections 3 - 6 we look at more primitive (but more general) models in

which the arcs are immediate interfaces; in this case the queues of

section 2 would themselves be represented by nodes of a particular nature.

Another - not so modest - purpose is to illustrate in each case that algebraic

proofs of system properties can indeed be carried out. We have no space

either to treat complex examples or to show the full richness of the

algebraic theories concerned. Instead, we hope that readers will

find interest in the significance and importance of the fundamental

choices in building an algebraic model - namely, fixing the nature of

the objects, and fixing the basic operators by which a rich enough

class of objects can be built.

In the final section 7, we comment very briefly upon the relation

between algebra and other theoretical tools for analysing concurrent

systems.

2. P_~ipelining : Kahn networks

A particularly simple and attractive form of concurrency is provided

by the Data flow idea which arose first from the work of Jack Dennis at

MIT and his group, but was first put on an algebraic footing by Gilles Kahn

first at Stanford and then at IRIA (now INRIA) near Paris.

Simple networks are considered in which each node receives a

(possibly infinite) sequence of values along each of zero or more input

lines, and delivers such a sequence along zero or more output lines. If

an output line serves more than one succeeding node, then its values go to

all of them. There may be loops in the network, and typically some lines

are designated as inputs and outputs of the entire network. An example is

shown below, in which the nodes are uninterpreted

Sy
(w)

Now in this network, the node F 2 may be interpreted as a function of two

input sequences, yielding one output sequence; the other nodes similarly.

The question is: given the functions FI,F 2 and F3, how may we

express the function represented by the entire network, which takes input

sequences x and y and yields output sequence z ? The answer is gained

simply by introducing an unknown w standing for the sequence of values

which travel along the single arc which loops back form F 2 to F 1 . For

then the output of F 1 is Fl(w,y) - a sequence - and this is fed into F2~

so that w satisfies the equation

10

w = F2(x,Fl(w,y))

and it can be shown that under simple conditions there is a unique

solution to this equation - though depending on F 1 and F 2 it may be

an infinite, finite or even empty sequence. Finally, since F 3 receives

as inputs w and Fl(w,y) , the output z is given by

z = F3(w,Fl(w,y))

As a more concrete example, consider the following net S 1 (with no

input lines and one output line). We can calculate that it generates

the sequence S I = 1.2.3. ''' of all positive integers.

S I

TO do this, we must first interpret the four nodes:

ZERO = 0.e

ONES = 1.ONES

THEN(x,y) = first(x).y

(a zero, followed by the empty sequence £)

(the infinite sequence of ones)

(the sequence y preceded by the first

member of the sequence x)

PLUS(x2y) = ~irst(x) + first(y)) .PLUS(rest(x),rest(y))

(adds the pairs of inputs, one by one)

Note that any sequence x can be split into its leading member first(x)

and its remaining sequence rest(x). Now the sequence S I generated by

the whole net clearly satisfies

11

S l = PLUS(ONES, THEN(ZERO~.S I))

NOW we can begin computing S I as follows:

S 1 = PLUS(ONES, THEN(0.EjS I))

= PLUS(I.ONES, 0.S I)

= i. PLUS(ONES, S I)

To go further, let's define inductively

Sk+ 1 = PLUS(ONES, S k) (k = 1,2)

If we can show that for all k > i

S k = k. Sk+ 1

then we have what we want, for it will follow that

S I = I.S 2 = 1.2.S 3 = 1.2.3.S 4 = ...

= 1.2.3

(i)

(2)

(3)

(4)

So let us prove (4) by induction on

since S I = l.S 2 follows from (2)

at k, and prove it at k + i:

k. It certainly holds for k = i,

and (3); so now assume that (4) holds

Sk+ I = PLUS(ONES, S k) by definition of Sk+ 1

= PLUS(I.ONES, k.Sk+ I) by assumption

= (k+I).PLUS(ONES, Sk+ I) by PLUS

= (k+1).Sk+ 2 by definition of Sk+ 2

which is what we wanted.

Nets of this kind can, in a very succinct manner, compute interesting

and nontrivial functions. Wadge (in his work on LUCID) and others have

given many examples, and the proofs can always be carried out in the above

algebraic style - which is definitely a mathematical style rather than a

specialised program-proof methodology.

12

Certainly the nets exhibit a form of concurrency and communication,

namely "pipelining" ; what are their limitations? First, the model

and the proof method become considerably more complex as soon as the

nodes are not assumed to be determinate - or at least not fully described

as functions; an example of a non-determinate node is the MERGE

in which it is known that z contains all members of x and of y

in the right order, but interleaved in an unspecified manner (e.g. according

to order of arrival, which is not specified in the model). Such non-

determinism can be very useful. Second, the model attains its simplicity

partly by omitting one feature of behaviour which we may sometimes wish

to take into account, namely the relative order in which the input elements

are received and the output elements delivered in a network. For -

considering our first illustrated net with nodes FI,F 2 and F 3 - the solution

which determines z as a function of x and y does not indicate how many

elements from x and y are absorbed before the first, second,.., element

of z is generated.

A third limitation is that any realization or implementation of the

model will require unbounded memory capacity to represent the queues of values

which build up on internal arcs of a network. It is important to be able to

ignore this detail at a high level of modelling, but if memory capacity is to

be modelled then the Kahn networks are not the appropriate tool.

To achieve a general model of communicating agents which removes these

limitations involves, apparently, a totally different approach. We illustrate

one such approach - but emphasize that the purity of the Kahn model should

tempt us to use the latter whenever we can accept its limitations.

13

3. Interacting agents

We look now at an algebraic way of presenting agents "which interact

with other agents linked to them. A convenient simplification, to begin

with, is to treat interaction as neither input nor output of values, but

as a symmetric handshake between two (or perhaps more) agents; its

occurrence carries no value from one agent to another, but merely means

that something (e.g. a high voltage pulse) rather than nothing has occurred.

Each agent - which may be realised by one or many processors - carries sites

or ports on its periphery at which such events may occur; a Greek letter

malt be conveniently used both to name a port and to stand for an event

occurring at that port. Here is an agent with two ports:

If we wish P to be an agent which alternates between ~ and ~ eventsf

then it may be defined by the equation

p = ~.~.p

Of course, by expanding this, we can obtain

P = a.S.a.3.~. .--

showing that the order of events <here, a strict alternation) at different

ports is indeed recorded. A slightly more complex agent

which alternately performs either ~I o_rr ~2 ' then ~ , may be defined

by the equation

Q : ~I'8"Q + ~2"8"Q

(which may be abbreviated by Q = (~i +a2) -6.Q) ; here the binary operator

"+" between agent expressions indicates that either arm may be entered,

but not both, during a computation. Thus we already have two operations

on agent expressions; summation - meaning disjunction - and the prefixing

(e.) of an atomic action at a particular port.

14

Typically, an agent P will have the form

p = E(~i.P i)

where i ranges over some set, indicating the possible next actions of P.

We will not yet deal with how to stick agents together to form

bigger agents; even with the slender resources introduced so far we can

represent the handling of data values. For suppose we wish an agent

to represent a buffer with capacity one, alternately receiving values in

(non-negative integers) at port ~ and delivering them at B . We

may do this by taking ~ to stand not for a single port, but for a family

{aili 6 ~} of ports, one for each value; likewise 8 Then our buffer

can be defined

B : ~ (~i.~i.B)

A convenient notation for this (avoiding writing Z too often) is gained

by introducing variables x,y,.., over ~ - or whatever data domain is

appropriate - and taking the first occurrence of such a variable to imply

summation over ~ :

B = ~X.~X.B

A rather different - but equally simple - agent with two ports is a storage

register which can be assigned a value at a and can deliver its current

value at 8 :

The parameter v in R(v) indicates the current value stored in the

register, and - using a variable as indicated above - we can define R(v) thus:

R(v) : ~x.R(x) + 8v.R(v)

15

The importance of this example is that the formalism can treat both

passive agents -- e.g. memory -- ~d active agents on exactly the same

footing. This is valuable in many applications; if we consider the

systolic arrays discussed by Mead and Conway, for example, then we find

agents where memory capacity and processing power are united in the same

element, and it would be irksome to have these roles treated by different

notations.

It is often helpful to represent the possible "courses of action"

of an agent graphically. For this purpose we can use a derivation tree.

If we expand the agent Q , given above, a little way, then we get

Q = ~i.8.(~I.~. Q +~2.S.Q) + ~2.~.(~I.$.Q +~2.~.Q)

and we can conceive the indefinite expansion by the tree

Such a tree represents both the action sequences which are possible

(these are the paths of the tree) and the possible alternatives at each

point in an execution (these are the branches from a node).

One final point before considering the composition of agents:

the treatment so far is ambiguous in the sense that it has not been

determined whether our agents are synchronous (forced to do something

at every tick of a universal clock) or asynchronous (able to wait indefinately

until an interaction is expected or demanded by the environment). Operators

which compose agents cannot remain uncommitted in this sense; from now on we

shall adopt the second (asynchronous) alternative, but here remark that a

synchronous calculus is equally possible.

16

4. Product of agents

The focal point of an algebra of concurrent communicating agents,

such as we are discussing, is undoubtedly the choice of an operator

(a kind of product) which puts together two agents to make a single

agent, whose behaviour reflects both the independent actions of each

component and also their mutual interaction.

Let us consider two agents P and Q , which are buffer-like

(as our very first example):

P = ~.~.P Q = B.~.Q

We revert to the simple form in which values are not carried by handshakes,

but the addition of values poses no real difficulties. Notice that we

have arranged P and Q to share a port name B ; this arrangement can

be made by using "renaming" operators which we do not consider in this

paper.

Now following the method of Hoare and his group, and also of George Milne,

we wish to "multiply" P and

pictured

Q together to form an agent which may be

in which the actions e and y may occur independently, but the action B

may only occur (as "interaction") when both P and Q are capable of it.

Let us denote this product operator by &~ -- we may call it B-synchronization.

There will be such an operator & for any action e ~ and in general we may

wish to use &A ' A-synchronization, for any set A of actions. Sticking

to &~ , and recalling that we wish to consider agents expressed in the form

Y~i.Pi , what equation should be satisfied by

• P.) &~ (X 7 j-Qj) ?

17

The product agent should be able to do any ~ . which is ~ B ~ or any

yj which is # ~, or ~ itself provided e. = ~ = y . for some i and

some j . So we propose :

If P -= Z(ei.P i) and Q -= Z(yj.Qj) ,

then P &~ Q =

Z ~ "(P & Q) + Z Yj'(P&sQJ)

+ Z s.(Pi&s QJ)

ei=Yj=8

The first and second sums represent the independent actions of P and Q

respectively, while the third represents their interactions for all pairs

i,j such that e i = 8 = Yj • Such a general equation may be less easy

to understand than a particular case, so let us calculate P &8 Q for our

particular case in which P = e.S .P and Q = 8.T.Q . We proceed as follows:

P &8 Q = ~.(S.P) &8 S.(y.Q)

= ~.(8.P &8 8.<¥.Q)) (I)

Here we have used the product rule once, noting that the only possible first

action is ~ performed by P , since P cannot yet allow Q to perform ~ .

Now we shall be able to find some equations which determine the behaviour

P & Q , for we have
B

8"P &8 B.(y.Q) = 8. (P &8 Y'Q)

= 8.(~.8.P &8 ¥'Q)

= 8.(~.(~.P &8 Y'Q) + Y.(~.8.P &8 Q)) (2)

(this step reflects independent action by either component).

Also,

8.P a8 Y'Q = Y.(8.P &8 Q)

= Y'(8"P &8 8.y.Q) (3)

while ~.8.P & Q is just the original P & Q.
B S

If we put (i), (2) and (3) together, and write R for (P &8 Q) and S

for (8"P &8 8.y.Q), we get the simple equations

R = e.S

S = 8.(c~-y.S + y.~.S) (4)

18

Apparently, then, our composite agent R first performs a , then

repeatedly performs ~ followed by ~ and y in either order. In

this simple case at least, we have been able to deduce a product-free

description of the product of two agents; the equations (4) might have

been written down to describe the behaviour of a single agent R with

three ports:

Such t r a n s f o r m a t i o n s o f d e s c r i p t i o n a r e t h e e s s e n c e o f t h e a l g e b r a i c a p p r o a c h .

I t may be c o m p a r e d w i t h t h e a l g e b r a o f r e g u l a r e x p r e s s i o n s , w h i c h d e s c r i b e

the behaviour of finite automata in classical automata theory. But automata

theory failed to provide a notion of product which was adequate to express

how two concurrent automata can interact.

At this point, we should ask whether our product P &8 Q has given us

what we want. On the one hand, we note that it could again be "8 -synchronized"

with yet another agent, T say, which is also capable of performing 8 from

time to time. The resulting agent P &~ Q &B T

which reflects that the action

could be pictured as follows

will only be performed when all three agents

are capable of it; thus 8 -synchronization permits us to model multi-way

(not just two-way) handshakes. In passing, we note that it is easy to show

that &8 is both commutative and associative, that is:

P &~ (Q &B T) (P &~ Q)&~ T

P &8 Q Q &~ P

and such algebraic laws are essential in a smooth calculus.

On the other hand, we may have wished something different for the

product of P and Q. For we may argue that the intermediate port

sould serve only for interaction between P and Q, and that it should not

19

be visible or accessible outside the product. In other words, we look

for a form of product in which the only remaining visible actions are

and y .

Following Hoare and Milne~ we choose to achieve this not by modifying

the product, but by introducing an operation called hiding which may be

applied to any agent to conceal some of its actions. Specifically, if

R is some agent possibly capable of performing B from time to time,

then

R/~

will represent R's behaviour with all ~ actions omitted. (Of course

we have operators "/6" for all actions ~ , and operators "/A" for all

sets A of actions.) Thus, instead of forming the product R = P & Q

of our two agents, we shall often prefer to form the hidden product

R' = (P &8 Q)/8 ; looking back at equations (4) above, we shall expect

R' to satisfy instead the equations

R' = ~.S f

S' = c~oy.S I + y.~.S'
(4')

-- i.e. the hidden product first performs ~ , and thereafter repeatedly

performs ~ and y in either order. We shll not give the exact definition

of the hiding operators here; it requires refinements which would take up

too much space.

There are variants of the product operators &~ and &A Instead

of pursuing them further, we shall now look briefly at an alternative

originally introduced by the author; it has an advantage over the above

in that just one product operator is required, in place of a family of

operators indexed by actions ~ or by sets A of actions, but a disadvantage

(in the form given here) that it models only two-way (not multi-way)handshakes.

Part of the purpose of describing two approaches in this paper is to dispel

the tempting impression that there is one clearly best algebra of concurrent

processes.

20

5. An alternative agent product

To define an alternative product, we make a new assumption, namely

that for every action ~ there exists an inverse action ~ , and that an

interaction may occur between two agents whenever they may perform

inverse actions. Moreover, this interaction constitutes for the product

agent a distinguished action -- denoted by the symbol T -- which we may

call the silent action. By this means we can get away with just a single

operator, called composition and denoted by "I", in place of the family

&8 of operators -- though (as here presented) we thereby sacrifice multi-

way handshakes and retain only two-way handshakes.

Let us treat the same example as before:

P = ~.8.P Q = g.7.Q

(Note that we have named one of Q's ports inversely to one of P's ports,

to make the product work). Rather than writing down a general equation

for the product (Y~i.Pi)] (Xyj.Qj), we shall state the rule informally:

the next action of PIQ can be either an action which is possible for P

or Q independently, or a Y action if P and Q can perform inverse

actions.

We now begin to compute P I Q :

= ~- (S-PI~-7-Q) + ~- (~-S-PI¥-Q)

No inverse actions were possible (hence no T action results) on this first

step. But the second term, which was absent when we worked out P &8 Q'

represents the possibility that Q's ~ action may be complemented by a

8-action performed not bY P but by some further agent P' to be added

later. In other words, systems like

21

can be formed by this product operation, representing how may interact

with either P or P' There is a

disjunctive quality in

of "&B".

If we were to proceed further in computing PIQ we would get a rapid

expansion; for example, for one of the terms we would get

since the three possibilities of independent action by either component,

and interaction, are all present.

Q

(but not both) through the same port.

"I" which contrasts with the conjunctive quality

But we can avoid so much expansion by using an analogue to the hiding

operator. This time, we require something a little different; we use an

operator ~ called restriction. The effect of R~8 is to discard from

R all alternatives (appearing as sum/hands of R) which begin with either

8 or ~ . This means that the only use of these actions within R is

to permit interaction between different components of R (yielding • actions

for R itself).

Let us now compute, not PIQ, but R" = (PIQ)~8 :

R" = (~.8.PI~.y.Q)~$

= ~o (8.PI~.y.Q)~ 8

= ~.T. (ply.Q)~ 8

At each step, alternatives involving uncomplemented actions

have been discarded. We now compute S" = (PIy.Q)~B :

s" = (~.8.P[y.Q)~8

= e.(8°pIy.Q)~ + y.R"

= e.y.(B.P Q)~ + Y.R"

or

= ~.7.Y.S" + y.~.T.S"

22

Putting these together, we have obtained the following product-free

description of our composite agent R" :

R" = ~ .~ .S"
(4")

S" = ~.y.T.S" + y.~.T.S"

If we compare this with the equations (4') in the previous section, we

see that the only difference is in the presence of some m actions, which

are so to speak traces of internal communications. In fact, there is

mathematical justification for the algebraic law

(for arbitrary ~ and P), and this law removes all difference between

(4') and (4") !

(&B,/B) There is a pleasant duality between the pair of operators

on the one hand, and the pair (,~B) on the other:

&8 (~ synchronization

/B (~ hiding) releases 8 from further synchronization demands;

while

demands certain interactions;

! (composition) permits both independent action and interaction;

~8 (8 restriction) inhibits certain uncomplemented actions.

In both cases, the lesson learned is that a pleasant algebraic treatment

is obtained by separating the synthesis of concurrent agents into two phases:

a product operation which takes account of their interaction, and an

encapsulation operation which prevents external access to internal interfaces.

The importance of the separation is that a binary product operation can be

applied repeatedly - to link an arbitrary number of agents together -- before

applying an encapsulation operation to "enclose" the composed system.

23

6. A bigger example

Consider the following system:

c~ 1 81 O~ 2#.---..~ ~ 2

8 n 8 3

° : n ~ , /

I ,

It consists of a ring of n identlcal agents, each waiting for a communication

from its predecessor in the circular order (as indicated by the little arrows).

f except for C 1 which is waiting for a communication on its a I port. It

is intended to act as a distributed scheduler for n independent agents

P1 'Pn (not shown). P. will be connected to C. at both ports ~. and
! 1 l

Bi ; P'l requests (at ~)i to initiate a certain activity, and indicates

(at 8.) when it has completed the activity. The scheduling discipline is
l

as follows:

(i) Requests are treated in cyclic order, starting wlth PI;

(2) Each P. must alternate between ~. and 8. -- i.e.
l l 1

it cannot be running more than one instance of the activity

at any time.

It is quite easy to define the agents C., and then to put them all together,
l

using either product operator ; moreover, the algebraic proof that the

resulting system has the two desired properties is not hard. If we are going

to use the second form of agent product, then we will define C. as follows:
1

@i

Ci : ~i "C~I ~ i G

Yi+l

C£ = ~i.(Ti+l.~i.Ci * @i.vi+l.Ci)

where subscript addition is modulo n)

24

Intuitively, C. first learns (at ~i) from his predecessor that he may
l

now grant a request (at ei) ; after that request he then transmits

request permission (at Yi+l) and receives termination signal (at 8 i) in

either order; then he repeats.

It is not hard to see that this system works. In fact, the scheduler

is expressed as

S = (c~lc21 "''ICn)'y~y 2 ' ' ' Y n

and the formulation and proof that S satisfies properties like (i) and (2)

above is not difficult. It has been given as an example in the author's

book "A Calculus of Communicating Systems", and can equally well be treated

using the operators (&8,/8) instead of (I,~8).

Conclusion

This short introduction to an algebraic approach to concurrency has

necessarily omitted some intricate details, as well as paying no attention

to other algebraic approaches (for example, Vaughan Pratt has suggested an

approach which generalises the Kahn networks in a different manner). What

we hope to have shown is that four kinds of operator - namely atomic action

(e.), summation (+), product (&~ or I) and encapsulation (/8 or ~8) -

together give great expressive power, and moreover satisfy interesting

algebraic identities.

In a methodology for proof about particular systems, we almost certainly

need more than "just" algebra. With algebra, we can typically prove equations

between agent expressions; we often wish also to prove that an agent possesses

some property which is not expressible by an equation. It is therefore

important to look at the relation between such algebras and logics - Temporal

or Modal logics - designed to express interesting properties of processes.

Another important relationship to study is between the algebraic

approach and Net Theory. The emphases of these models are different;

conm~unication is the cornerstone of tb~ algebra (in the present approach),

while Net Theory emphasizes causal independence, provides a totally different

graphical aid to intuition, and provides different tools for abstraction.

25

Finally, synchronous systems demand some form of treatment° The

author has found one way of integrating the above asynchronous algebra

with an algebra of synchronous (clocked) systems~ this method has some

mathematical simplicity - for example~ the algebra becomes more conventional

being at least a semi-ring (with agent sum and product as the semi-ring

operations) - but is by no means obviously the best integration possible.

