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2. TUTORIAL PAPERS 





Using algebra for concurrency : some approaches 

Robin Milner 

Edinburgh University, September 1983 

Introduction 

A prominent feature of any algebra is that its expressions, by their 

form, either exhibit the structure of the objects which they represent, or 

exhibit the way in which those objects were built, or could be built, or 

may be viewed. Often indeed an object does not possess structure, but we 

impose structure upon it by our view of it - and thereby understand it 

better. A rectangular array of numbers, for example, is not of itself a 

row of columns, nor is it a column of rows; these are views which we 

impose upon it, and any linear expression of such an array will impose some 

such biassed view. 

So it is no accident that algebra is useful in understanding complex 

distributed systems; for such systems must have many parts (else they would 

not be complex), and a structured view is essential in understanding something 

with many parts. 

In designing an algebra for distributed systems, we are first faced 

with an inherent difficulty; the connectivity of the components is not in 

general tree-like, whereas the structure of an algebraic expression is 

always tree-like. It follows that the connectivity of a system is not 

expressible merely by the form of an expression. However, the analysis of 

an expression into subexpressions will express the analysis of the system 

into subsystems - and the expression will often be chosen in such a way that 

the subsystems which are thus identified are physically meaningful, and 

possess properties from which properties of the complete system follow 

naturally. 

A more detailed problem for the algebra is: what is the nature of the 

connecting links between subsystems of a distributed system? In a system 

such as the following 



do the arcs represent directed channels carrying data from one node to 

another, in which case do they have any memory capacity? Or do they 

represent simply the contiguity of the objects represented by the 

connected nodes - an interface across which they exchange an immediate 

interaction? And in either case does the forked arc from B to A and 

C carry a communication between B and both A and C, or does it signify 

that a single communication occurs between either B and A o__rr B and C but 

not both? 

One modest purpose of this paper is to show that precise answers 

to these questions can indeed be given by choosing one algebra or another, 

and that the different choices differ markedly. In section 2 we look at 

an algebra in which the arcs represent unbounded queues of data elements. 

In sections 3 - 6 we look at more primitive (but more general) models in 

which the arcs are immediate interfaces; in this case the queues of 

section 2 would themselves be represented by nodes of a particular nature. 

Another - not so modest - purpose is to illustrate in each case that algebraic 

proofs of system properties can indeed be carried out. We have no space 

either to treat complex examples or to show the full richness of the 

algebraic theories concerned. Instead, we hope that readers will 

find interest in the significance and importance of the fundamental 

choices in building an algebraic model - namely, fixing the nature of 

the objects, and fixing the basic operators by which a rich enough 

class of objects can be built. 

In the final section 7, we comment very briefly upon the relation 

between algebra and other theoretical tools for analysing concurrent 

systems. 



2. P_~ipelining : Kahn networks 

A particularly simple and attractive form of concurrency is provided 

by the Data flow idea which arose first from the work of Jack Dennis at 

MIT and his group, but was first put on an algebraic footing by Gilles Kahn 

first at Stanford and then at IRIA (now INRIA) near Paris. 

Simple networks are considered in which each node receives a 

(possibly infinite) sequence of values along each of zero or more input 

lines, and delivers such a sequence along zero or more output lines. If 

an output line serves more than one succeeding node, then its values go to 

all of them. There may be loops in the network, and typically some lines 

are designated as inputs and outputs of the entire network. An example is 

shown below, in which the nodes are uninterpreted 

Sy 
(w) 

Now in this network, the node F 2 may be interpreted as a function of two 

input sequences, yielding one output sequence; the other nodes similarly. 

The question is: given the functions FI,F 2 and F3, how may we 

express the function represented by the entire network, which takes input 

sequences x and y and yields output sequence z ? The answer is gained 

simply by introducing an unknown w standing for the sequence of values 

which travel along the single arc which loops back form F 2 to F 1 . For 

then the output of F 1 is Fl(w,y) - a sequence - and this is fed into F2~ 

so that w satisfies the equation 



10 

w = F2(x,Fl(w,y)) 

and it can be shown that under simple conditions there is a unique 

solution to this equation - though depending on F 1 and F 2 it may be 

an infinite, finite or even empty sequence. Finally, since F 3 receives 

as inputs w and Fl(w,y) , the output z is given by 

z = F3(w,Fl(w,y)) 

As a more concrete example, consider the following net S 1 (with no 

input lines and one output line). We can calculate that it generates 

the sequence S I = 1.2.3. ''' of all positive integers. 

S I 

TO do this, we must first interpret the four nodes: 

ZERO = 0.e 

ONES = 1.ONES 

THEN(x,y) = first(x).y 

(a zero, followed by the empty sequence £ ) 

(the infinite sequence of ones) 

(the sequence y preceded by the first 

member of the sequence x) 

PLUS(x2y) = ~irst(x) + first(y)) .PLUS(rest(x),rest(y)) 

(adds the pairs of inputs, one by one) 

Note that any sequence x can be split into its leading member first(x) 

and its remaining sequence rest(x). Now the sequence S I generated by 

the whole net clearly satisfies 
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S l = PLUS(ONES, THEN(ZERO~.S I)) 

NOW we can begin computing S I as follows: 

S 1 = PLUS(ONES, THEN(0.EjS I)) 

= PLUS(I.ONES, 0.S I) 

= i. PLUS(ONES, S I) 

To go further, let's define inductively 

Sk+ 1 = PLUS(ONES, S k) (k = 1,2 .... ) 

If we can show that for all k > i 

S k = k. Sk+ 1 

then we have what we want, for it will follow that 

S I = I.S 2 = 1.2.S 3 = 1.2.3.S 4 = ... 

= 1.2.3 .... 

(i) 

(2) 

(3) 

(4) 

So let us prove (4) by induction on 

since S I = l.S 2 follows from (2) 

at k, and prove it at k + i: 

k. It certainly holds for k = i, 

and (3); so now assume that (4) holds 

Sk+ I = PLUS(ONES, S k) by definition of Sk+ 1 

= PLUS(I.ONES, k.Sk+ I) by assumption 

= (k+I).PLUS(ONES, Sk+ I) by PLUS 

= (k+1).Sk+ 2 by definition of Sk+ 2 

which is what we wanted. 

Nets of this kind can, in a very succinct manner, compute interesting 

and nontrivial functions. Wadge (in his work on LUCID) and others have 

given many examples, and the proofs can always be carried out in the above 

algebraic style - which is definitely a mathematical style rather than a 

specialised program-proof methodology. 
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Certainly the nets exhibit a form of concurrency and communication, 

namely "pipelining" ; what are their limitations? First, the model 

and the proof method become considerably more complex as soon as the 

nodes are not assumed to be determinate - or at least not fully described 

as functions; an example of a non-determinate node is the MERGE 

in which it is known that z contains all members of x and of y 

in the right order, but interleaved in an unspecified manner (e.g. according 

to order of arrival, which is not specified in the model). Such non- 

determinism can be very useful. Second, the model attains its simplicity 

partly by omitting one feature of behaviour which we may sometimes wish 

to take into account, namely the relative order in which the input elements 

are received and the output elements delivered in a network. For - 

considering our first illustrated net with nodes FI,F 2 and F 3 - the solution 

which determines z as a function of x and y does not indicate how many 

elements from x and y are absorbed before the first, second,.., element 

of z is generated. 

A third limitation is that any realization or implementation of the 

model will require unbounded memory capacity to represent the queues of values 

which build up on internal arcs of a network. It is important to be able to 

ignore this detail at a high level of modelling, but if memory capacity is to 

be modelled then the Kahn networks are not the appropriate tool. 

To achieve a general model of communicating agents which removes these 

limitations involves, apparently, a totally different approach. We illustrate 

one such approach - but emphasize that the purity of the Kahn model should 

tempt us to use the latter whenever we can accept its limitations. 
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3. Interacting agents 

We look now at an algebraic way of presenting agents "which interact 

with other agents linked to them. A convenient simplification, to begin 

with, is to treat interaction as neither input nor output of values, but 

as a symmetric handshake between two (or perhaps more) agents; its 

occurrence carries no value from one agent to another, but merely means 

that something (e.g. a high voltage pulse) rather than nothing has occurred. 

Each agent - which may be realised by one or many processors - carries sites 

or ports on its periphery at which such events may occur; a Greek letter 

malt be conveniently used both to name a port and to stand for an event 

occurring at that port. Here is an agent with two ports: 

If we wish P to be an agent which alternates between ~ and ~ eventsf 

then it may be defined by the equation 

p = ~.~.p 

Of course, by expanding this, we can obtain 

P = a.S.a.3.~. .-- 

showing that the order of events <here, a strict alternation) at different 

ports is indeed recorded. A slightly more complex agent 

which alternately performs either ~I o_rr ~2 ' then ~ , may be defined 

by the equation 

Q : ~I'8"Q + ~2"8"Q 

(which may be abbreviated by Q = (~i +a2 ) -6.Q) ; here the binary operator 

"+" between agent expressions indicates that either arm may be entered, 

but not both, during a computation. Thus we already have two operations 

on agent expressions; summation - meaning disjunction - and the prefixing 

(e.) of an atomic action at a particular port. 
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Typically, an agent P will have the form 

p = E(~i.P i) 

where i ranges over some set, indicating the possible next actions of P. 

We will not yet deal with how to stick agents together to form 

bigger agents; even with the slender resources introduced so far we can 

represent the handling of data values. For suppose we wish an agent 

to represent a buffer with capacity one, alternately receiving values in 

(non-negative integers) at port ~ and delivering them at B . We 

may do this by taking ~ to stand not for a single port, but for a family 

{aili 6 ~} of ports, one for each value; likewise 8 Then our buffer 

can be defined 

B : ~ (~i.~i.B) 

A convenient notation for this (avoiding writing Z too often) is gained 

by introducing variables x,y,.., over ~ - or whatever data domain is 

appropriate - and taking the first occurrence of such a variable to imply 

summation over ~ : 

B = ~X.~X.B 

A rather different - but equally simple - agent with two ports is a storage 

register which can be assigned a value at a and can deliver its current 

value at 8 : 

The parameter v in R(v) indicates the current value stored in the 

register, and - using a variable as indicated above - we can define R(v) thus: 

R(v) : ~x.R(x) + 8v.R(v) 
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The importance of this example is that the formalism can treat both 

passive agents -- e.g. memory -- ~d active agents on exactly the same 

footing. This is valuable in many applications; if we consider the 

systolic arrays discussed by Mead and Conway, for example, then we find 

agents where memory capacity and processing power are united in the same 

element, and it would be irksome to have these roles treated by different 

notations. 

It is often helpful to represent the possible "courses of action" 

of an agent graphically. For this purpose we can use a derivation tree. 

If we expand the agent Q , given above, a little way, then we get 

Q = ~i.8.(~I.~. Q +~2.S.Q) + ~2.~.(~I.$.Q +~2.~.Q) 

and we can conceive the indefinite expansion by the tree 

Such a tree represents both the action sequences which are possible 

(these are the paths of the tree) and the possible alternatives at each 

point in an execution (these are the branches from a node). 

One final point before considering the composition of agents: 

the treatment so far is ambiguous in the sense that it has not been 

determined whether our agents are synchronous (forced to do something 

at every tick of a universal clock) or asynchronous (able to wait indefinately 

until an interaction is expected or demanded by the environment). Operators 

which compose agents cannot remain uncommitted in this sense; from now on we 

shall adopt the second (asynchronous) alternative, but here remark that a 

synchronous calculus is equally possible. 
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4. Product of agents 

The focal point of an algebra of concurrent communicating agents, 

such as we are discussing, is undoubtedly the choice of an operator 

(a kind of product ) which puts together two agents to make a single 

agent, whose behaviour reflects both the independent actions of each 

component and also their mutual interaction. 

Let us consider two agents P and Q , which are buffer-like 

(as our very first example): 

P = ~.~.P Q = B.~.Q 

We revert to the simple form in which values are not carried by handshakes, 

but the addition of values poses no real difficulties. Notice that we 

have arranged P and Q to share a port name B ; this arrangement can 

be made by using "renaming" operators which we do not consider in this 

paper. 

Now following the method of Hoare and his group, and also of George Milne, 

we wish to "multiply" P and 

pictured 

Q together to form an agent which may be 

in which the actions e and y may occur independently, but the action B 

may only occur (as "interaction") when both P and Q are capable of it. 

Let us denote this product operator by &~ -- we may call it B-synchronization. 

There will be such an operator & for any action e ~ and in general we may 

wish to use &A ' A-synchronization, for any set A of actions. Sticking 

to &~ , and recalling that we wish to consider agents expressed in the form 

Y~i.Pi , what equation should be satisfied by 

• P.) &~ (X 7 j-Qj) ? 
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The product agent should be able to do any ~ . which is ~ B ~ or any 

yj which is # ~, or ~ itself provided e. = ~ = y . for some i and 

some j . So we propose : 

If P -= Z(ei.P i) and Q -= Z(yj.Qj) , 

then P &~ Q = 

Z ~ "(P & Q) + Z Yj'(P&sQJ ) 

+ Z s.(Pi&s QJ) 

ei=Yj=8 

The first and second sums represent the independent actions of P and Q 

respectively, while the third represents their interactions for all pairs 

i,j such that e i = 8 = Yj • Such a general equation may be less easy 

to understand than a particular case, so let us calculate P &8 Q for our 

particular case in which P = e.S .P and Q = 8.T.Q . We proceed as follows: 

P &8 Q = ~.(S.P) &8 S.(y.Q) 

= ~.(8.P &8 8.<¥.Q)) (I) 

Here we have used the product rule once, noting that the only possible first 

action is ~ performed by P , since P cannot yet allow Q to perform ~ . 

Now we shall be able to find some equations which determine the behaviour 

P & Q , for we have 
B 

8"P &8 B.(y.Q) = 8. (P &8 Y'Q) 

= 8.(~.8.P &8 ¥'Q) 

= 8.(~.(~.P &8 Y'Q) + Y.(~.8.P &8 Q)) (2) 

(this step reflects independent action by either component). 

Also, 

8.P a8 Y'Q = Y.(8.P &8 Q) 

= Y'(8"P &8 8.y.Q) (3) 

while ~.8.P & Q is just the original P & Q. 
B S 

If we put (i), (2) and (3) together, and write R for (P &8 Q) and S 

for (8"P &8 8.y.Q), we get the simple equations 

R = e.S 

S = 8.(c~-y.S + y.~.S) (4) 
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Apparently, then, our composite agent R first performs a , then 

repeatedly performs ~ followed by ~ and y in either order. In 

this simple case at least, we have been able to deduce a product-free 

description of the product of two agents; the equations (4) might have 

been written down to describe the behaviour of a single agent R with 

three ports: 

Such  t r a n s f o r m a t i o n s  o f  d e s c r i p t i o n  a r e  t h e  e s s e n c e  o f  t h e  a l g e b r a i c  a p p r o a c h .  

I t  may be  c o m p a r e d  w i t h  t h e  a l g e b r a  o f  r e g u l a r  e x p r e s s i o n s ,  w h i c h  d e s c r i b e  

the behaviour of finite automata in classical automata theory. But automata 

theory failed to provide a notion of product which was adequate to express 

how two concurrent automata can interact. 

At this point, we should ask whether our product P &8 Q has given us 

what we want. On the one hand, we note that it could again be "8 -synchronized" 

with yet another agent, T say, which is also capable of performing 8 from 

time to time. The resulting agent P &~ Q &B T 

which reflects that the action 

could be pictured as follows 

will only be performed when all three agents 

are capable of it; thus 8 -synchronization permits us to model multi-way 

(not just two-way) handshakes. In passing, we note that it is easy to show 

that &8 is both commutative and associative, that is: 

P &~ (Q &B T) (P &~ Q)&~ T 

P &8 Q Q &~ P 

and such algebraic laws are essential in a smooth calculus. 

On the other hand, we may have wished something different for the 

product of P and Q. For we may argue that the intermediate port 

sould serve only for interaction between P and Q, and that it should not 
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be visible or accessible outside the product. In other words, we look 

for a form of product in which the only remaining visible actions are 

and y . 

Following Hoare and Milne~ we choose to achieve this not by modifying 

the product, but by introducing an operation called hiding which may be 

applied to any agent to conceal some of its actions. Specifically, if 

R is some agent possibly capable of performing B from time to time, 

then 

R/~ 

will represent R's behaviour with all ~ actions omitted. (Of course 

we have operators "/6" for all actions ~ , and operators "/A" for all 

sets A of actions.) Thus, instead of forming the product R = P & Q 

of our two agents, we shall often prefer to form the hidden product 

R' = (P &8 Q)/8 ; looking back at equations (4) above, we shall expect 

R' to satisfy instead the equations 

R' = ~.S f 

S' = c~oy.S I + y.~.S' 
(4') 

-- i.e. the hidden product first performs ~ , and thereafter repeatedly 

performs ~ and y in either order. We shll not give the exact definition 

of the hiding operators here; it requires refinements which would take up 

too much space. 

There are variants of the product operators &~ and &A Instead 

of pursuing them further, we shall now look briefly at an alternative 

originally introduced by the author; it has an advantage over the above 

in that just one product operator is required, in place of a family of 

operators indexed by actions ~ or by sets A of actions, but a disadvantage 

(in the form given here) that it models only two-way (not multi-way)handshakes. 

Part of the purpose of describing two approaches in this paper is to dispel 

the tempting impression that there is one clearly best algebra of concurrent 

processes. 
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5. An alternative agent product 

To define an alternative product, we make a new assumption, namely 

that for every action ~ there exists an inverse action ~ , and that an 

interaction may occur between two agents whenever they may perform 

inverse actions. Moreover, this interaction constitutes for the product 

agent a distinguished action -- denoted by the symbol T -- which we may 

call the silent action. By this means we can get away with just a single 

operator, called composition and denoted by "I", in place of the family 

&8 of operators -- though (as here presented) we thereby sacrifice multi- 

way handshakes and retain only two-way handshakes. 

Let us treat the same example as before: 

P = ~.8.P Q = g.7.Q 

(Note that we have named one of Q's ports inversely to one of P's ports, 

to make the product work). Rather than writing down a general equation 

for the product (Y~i.Pi) ] (Xyj.Qj), we shall state the rule informally: 

the next action of PIQ can be either an action which is possible for P 

or Q independently, or a Y action if P and Q can perform inverse 

actions. 

We now begin to compute P I Q : 

= ~- (S-PI~-7-Q) + ~- (~-S-PI¥-Q) 

No inverse actions were possible (hence no T action results) on this first 

step. But the second term, which was absent when we worked out P &8 Q' 

represents the possibility that Q's ~ action may be complemented by a 

8-action performed not bY P but by some further agent P' to be added 

later. In other words, systems like 
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can be formed by this product operation, representing how may interact 

with either P or P' There is a 

disjunctive quality in 

of "&B". 

If we were to proceed further in computing PIQ we would get a rapid 

expansion; for example, for one of the terms we would get 

since the three possibilities of independent action by either component, 

and interaction, are all present. 

Q 

(but not both) through the same port. 

"I" which contrasts with the conjunctive quality 

But we can avoid so much expansion by using an analogue to the hiding 

operator. This time, we require something a little different; we use an 

operator ~ called restriction. The effect of R~8 is to discard from 

R all alternatives (appearing as sum/hands of R) which begin with either 

8 or ~ . This means that the only use of these actions within R is 

to permit interaction between different components of R (yielding • actions 

for R itself). 

Let us now compute, not PIQ, but R" = (PIQ)~8 : 

R" = (~.8.PI~.y.Q)~$ 

= ~o (8.PI~.y.Q)~ 8 

= ~.T. (ply.Q)~ 8 

At each step, alternatives involving uncomplemented actions 

have been discarded. We now compute S" = (PIy.Q)~B : 

s" = (~.8.P[y.Q)~8 

= e.(8°pIy.Q)~ + y.R" 

= e.y.(B.P Q)~ + Y.R" 

or 

= ~.7.Y.S" + y.~.T.S" 
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Putting these together, we have obtained the following product-free 

description of our composite agent R" : 

R" = ~ .~ .S" 
(4") 

S" = ~.y.T.S" + y.~.T.S" 

If we compare this with the equations (4') in the previous section, we 

see that the only difference is in the presence of some m actions, which 

are so to speak traces of internal communications. In fact, there is 

mathematical justification for the algebraic law 

(for arbitrary ~ and P), and this law removes all difference between 

(4') and (4") ! 

(&B,/B) There is a pleasant duality between the pair of operators 

on the one hand, and the pair (,~B) on the other: 

&8 (~ synchronization 

/B (~ hiding) releases 8 from further synchronization demands; 

while 

demands certain interactions; 

! (composition) permits both independent action and interaction; 

~8 (8 restriction) inhibits certain uncomplemented actions. 

In both cases, the lesson learned is that a pleasant algebraic treatment 

is obtained by separating the synthesis of concurrent agents into two phases: 

a product operation which takes account of their interaction, and an 

encapsulation operation which prevents external access to internal interfaces. 

The importance of the separation is that a binary product operation can be 

applied repeatedly - to link an arbitrary number of agents together -- before 

applying an encapsulation operation to "enclose" the composed system. 
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6. A bigger example 

Consider the following system: 

c~ 1 81 O~ 2#.---..~ ~ 2 

8 n 8 3 

° : n ~  , / 

I ,  

It consists of a ring of n identlcal agents, each waiting for a communication 

from its predecessor in the circular order (as indicated by the little arrows). 

f except for C 1 which is waiting for a communication on its a I port. It 

is intended to act as a distributed scheduler for n independent agents 

P1 .... 'Pn (not shown). P. will be connected to C. at both ports ~. and 
! 1 l 

Bi ; P'l requests (at ~)i to initiate a certain activity, and indicates 

(at 8.) when it has completed the activity. The scheduling discipline is 
l 

as follows: 

(i) Requests are treated in cyclic order, starting wlth PI; 

(2) Each P. must alternate between ~. and 8. -- i.e. 
l l 1 

it cannot be running more than one instance of the activity 

at any time. 

It is quite easy to define the agents C., and then to put them all together, 
l 

using either product operator ; moreover, the algebraic proof that the 

resulting system has the two desired properties is not hard. If we are going 

to use the second form of agent product, then we will define C. as follows: 
1 

@i 

Ci : ~i "C~I ~ i G  

Yi+l 

C£ = ~i.(Ti+l.~i.Ci * @i.vi+l.Ci) 

where subscript addition is modulo n) 
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Intuitively, C. first learns (at ~i ) from his predecessor that he may 
l 

now grant a request (at ei ) ; after that request he then transmits 

request permission (at Yi+l ) and receives termination signal (at 8 i) in 

either order; then he repeats. 

It is not hard to see that this system works. In fact, the scheduler 

is expressed as 

S = (c~lc21 "''ICn)'y~y 2 ' ' ' Y n  

and the formulation and proof that S satisfies properties like (i) and (2) 

above is not difficult. It has been given as an example in the author's 

book "A Calculus of Communicating Systems", and can equally well be treated 

using the operators (&8,/8) instead of (I,~8). 

Conclusion 

This short introduction to an algebraic approach to concurrency has 

necessarily omitted some intricate details, as well as paying no attention 

to other algebraic approaches (for example, Vaughan Pratt has suggested an 

approach which generalises the Kahn networks in a different manner). What 

we hope to have shown is that four kinds of operator - namely atomic action 

(e.), summation (+), product (&~ or I ) and encapsulation (/8 or ~8) - 

together give great expressive power, and moreover satisfy interesting 

algebraic identities. 

In a methodology for proof about particular systems, we almost certainly 

need more than "just" algebra. With algebra, we can typically prove equations 

between agent expressions; we often wish also to prove that an agent possesses 

some property which is not expressible by an equation. It is therefore 

important to look at the relation between such algebras and logics - Temporal 

or Modal logics - designed to express interesting properties of processes. 

Another important relationship to study is between the algebraic 

approach and Net Theory. The emphases of these models are different; 

conm~unication is the cornerstone of tb~ algebra (in the present approach), 

while Net Theory emphasizes causal independence, provides a totally different 

graphical aid to intuition, and provides different tools for abstraction. 
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Finally, synchronous systems demand some form of treatment° The 

author has found one way of integrating the above asynchronous algebra 

with an algebra of synchronous (clocked) systems~ this method has some 

mathematical simplicity - for example~ the algebra becomes more conventional 

being at least a semi-ring (with agent sum and product as the semi-ring 

operations) - but is by no means obviously the best integration possible. 


