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Abstract : Here we present a new version of recursion induction principle
with an effective and, by the way, mechanisable flavour. Further-—
more we obtain a measure of the complexity of equivalences (or
inequalities) between recursive programs and also of the diffi-

culty of their proofs.

Résumé : Nous présentons ici une nouvelle version du principe d'induction
récurrent avec un souci d'effectivité et, donc, de mécanisation.
Bien plus, nous obtenons une mesure de la complexité des équiva-
lences (ou des inégalités) entre programmes récursifs et, aussi,

de la difficulté de leurs preuves.
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I. Introduction.

' Any manipulation, such as transformations, optimisation, development

of programs, must be proved correct j any verification process requires

some methods, known to be valid, for proving properties of programs.

For this purpose, in the years 60, the litterature presents two kinds
of very useful tools for the recursive case :

- a principle of structural induction (R.M. Burstall [5])

- a principle of recursion induction (J.W. de Baker, J.Mc Carthy,
J.H. Morris, D. Park and D. Scott [3, 25, 27, 30])
or, more precisely several statements of recursion induction principle which

are equivalent roughly speaking (see I. Greif [14]).

Our aim is to study proofs performed in a formal system which manipu-
lates universally quantified first order formulas, by rewriting systems on
terms (close to some methods presented by G. Huet and D. Oppen [21]). Thus
we deal only with recursion induction principle, for the structural induc-
tion requires a very deep knowledge about calculi domains which is not in
general finitely axiomatisable by first-order theory. The ori~-
gin of this restriction lies in the research of a notion of "effectiveness
of induction principle" in order to design a system, more or less mechani-
sable, performing induction proofs. Indeed the methods developped in this
framework give some ability to understand why certain proofs require human
skilfulness (namely invention of auxiliary lemmas). Indeed we construct a
proofs system such that we are able to associate in a constructive way a
recursive function over integers to each demonstration performed : this
function gives a measure of the difficulty of this demonstration., Moreover
if we deal with inown as difficult (a priori an intuitive notion but which
is defined precisely below) and provable with the system then the demonstra-
tion performed is difficult necessaraly. To give some intuition about effec-
tiveness, quickly recall some definitions and results of the well known

fixed point theory.

‘

Let D be a domain (partially) ordered by € and with a least element .1
such that (D, E, A ) is a c.p.o. ; note (Dn -+ D) the set of continuous
function with n arguments over D and call too & the canonical extension of
the order relation on D. A recursive program is an equation (actually a sys-

tem of equations) like

FX) = t[FI(X)

* proofs
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—‘ . (3 L3 .
where X is a n-vector of variables and T a continuous functionnal over
n
(0" » D).

By definition the function computed by this program is the least fixed
point of the functionnal T, called Yr’ which is the least upper bound of
the increasing sequence of elements of (D" - D)'{rn[ij l n ¢ N} where 1

denotes too the constant function equal to 4.

Let P be a predicate and T be a continuous functionnal, both over
n
(" ~+ D).

The recursive induction principle states
if (i) PQY) |
and (ii) ¥f ¢ (D" » D) (P(f) => P(1[£]))
are true then Y, satisfies P (obviously P camnot be any predicate

and must belong to the class of admissible predicates, see Z. Manna [26]).

It is clear that this statement is too general and may be written with
a more effective flavour. For example
if (1) 1p e NP(PLaD)
and (ii) ¥n e N (¥k € N(psksn A P(t5[4]) => (™ (1))

are true then YT satisfies P,
Let us see an example introducing notations used below.

Example 1 : Let D be a c.p.o. and R be the system of equations
F(x) = £(F(x)) T functionnal over (D - D) AF.fF
G(x) = g(G6(x)) o functionnal over (D -+ D) AG.gG

Assume that f and g check the set of properties S
{£(g(x)) = g(£(x)), £(L) = g(d)}. We are going to show that Y, and Y_ are

equal by recursion induction stated above :

(i) we choose p equal to 1, because 1[1] is equal to f(1) and o[l] to
g(4) and by the second property of § (i) is true ;

(ii) the induction hypothesis is : for each n31 1"[1] is equivalent to
d'[1]. Then



<

LR % I 1 ) by definition of t
L= f(On[L]) by induction hypothesis
= f(g(on_l[ll)) by definition of o
= 8(f(0n-1LL])) by the 15% property of S
= 8(f(Tn—1LL])) by induction hypothesis
= g(t[L]) by definition of t
= g(a"[L]) by induction hypothesis
= Un+]LL] by definition of ¢

and we reach the equality rn+l[L] = on+][¢]. So (ii) is true too and the
principle ensures us the equivalence between YT and Y . We remark that we
start from the term Tn+][;] and reach the term‘(?+1LL] by a sequence of
terms - rewriting following three rules :

- equations of the recursive program definition R

- laws satisfied by base functions S

" = induction hypothesis.

Our point of view about induction principle and system of equivalence
proofs involves some constraints which are adequatly formalised in the
framework of the theory of algebraic semantics [10, 11, 15, 16, 28, 29] :

- recursive programs (schemes, actually) are systems of equations bet-
ween well formed terms built from a set A of base function symbols, a set F
of procedures symbols and a set V of variables H

- laws (properties) of base function symbols are expressed as axiomatic
system, subset S of the cartesian product MA(V) x nA(V) (where MA(V) is the
set of basic terms), and are used in proofs by mean of the generated
congruence <—§—> (i.e. the . rewriting rejation defined by S, see below) ;

- induction proofs are induction on the Kleene's sequences ; the Kleene's
sequence related to some functionnal is the set'{fn[L] | n e N} where Tn[JJ is
obtained by n consecutive calls of the full substitution rule on T[4] ;

- formulas are (conjonction of) inequalities between terms 3 we shall

write (1,0) instead of T & 0.
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We can state a restricted form of the classical induction principle
(Morris [27]) as follows

if for any integer n Tn[l](<—§—> Uy—> U <—§—>)* o L]
n

then TS<R,S>G.

where - S.p.g> Means that for every interpretation satisfying S the function
’
computed by T with the system of recursive definitions R is less
defined than the function computed by o ;

- is the rewritting relation generated by § ;

s is the rewritting relation generated by the set

"or = (P, P L) | pen)

- <g> s g Uy

- (< > U G U< 7 >)* is the reflexive and transitive closure of

< S > U T Ly U < R >,
n

Here we get an explicit induction step by means of the relation T
and we can rewrite the example 1 with these notations as the reader
could check. However some examples show that this statement is too restric-

tive.

Example 2 : Let us consider the system of recursive definitions R
F(x) = h(F(x)) (1 = AF.hF)
G(x) = h(h(G(x))) (o = AG.hhG)
One easily checks

(i) oo[.L] = '_ro[_L] . ] .
() ¥ e N I = ) = g = LU

which ensures us the identity Yr = Yo'
Example 3 : (R. Milner [2]) Let R be the system of recursive definitions

F(x) f(F(x)) (t AF.£fF)
G(x)

g(G(x)) (o = AG.gG)
and S be the set of laws {f(g(x)) = gz(f(x)), f(1) = g(1)}, we have the

following properties (easily provable)

il
-

(1)  o[4] E<R,S> T[4]
(D) ¥ e N £(ILD = g o o™
Gii)¥j e 8 o[ = "y

<R, S>
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then 1 = <R.S> ci.e.Tand 0 have the same least fixed point for any
9

interpretation of f and g satisfying the set of laws S.

We have to generalise our induction principle by choosing for each
pair of terms (t,0) a suitable sequence of pairs of approximations of
the functions computed from ¢ and t by the system R of recursive definitions
instead of the Kleene's sequence. But to keep some gain in effectivity we
consider subsequences - selected by a function k from N to N - of the se~
quence of approximations obtained by applying some universally correct compu-
tation rule p [7, 13, 34] (the most often the "full substitution" or the
"parallel outermost" rule). Then we restate our principle

if for any integer n p™(7)[L] (< > U > U <)% ok(n)(U)LL]
I
n

then 7 g g.

<R, S>
where - is the rewriting relation generated by the set

I
n

= (P 141, 0P (o) 11]) | pen)

This new formulation (well fitted to the former examples) suggests the
main concept of this article, namely classes of formulas related to (univer-
sally) correct computation rule and some class of functions from N to N :
we shall note Is(p‘§3 the set of formulas, that is couples of terms (t,0),
such that there exists k of ¥ such that, for any integer n p T [4] £ k(n)(o)[.l.]
(where t CS t' means the interpretation of t is 1ess defined than that of t'
for any 1nterpretat10n satisfying S) and write E (p 53 {(1 o) I (t,0) e I (p %)
and (o,1) e I (p;y)} Clearly for any formula (t,0) in I (p, ) the 1nequa11ty
T & <R,S> o is valid, and the same validity result holds for E (p,ﬁﬁ :

(1,0 € ER(p,‘S') => T = <R,8> °

We can see the fact that a formula (t,0) belongs to some I (p ?6 as an
indication (a measure, by means of the class of functlonsQ?) of the difficulty
or complexity of a proof of the theorem T g <R,S> 0 (indeed in the examples
one can see that a "difficult" theorem in this sense requires the help of some
auxiliary lemmas). On the other hand, the fact (t,0) ¢ EIS{(p ﬁs gives some
idea about the relative "efficiency of computation” of the same function by T

and g, with respect to the computation rule p.



From this point of view of "proofs complexity" we investigate the
problem of completeness of these classes of formulas and obtain the
following résults where we denote respectively fs and po the "full
substitution" and "parallel outermost" (or "parallel call by name'')

computation rules (see [3, 13, 34]) :

(0) For any recursive function f from N to N, there exists a recur-

sive program R, a set of axioms S and a formula such that T £ (R O
td

and (t,0) ¢ Ig(fs;{g}) and (1,0) € Ig(po;{g}) imply g>f (that is ¥n e N
g(n)2£f(n)).

(1) For any recursive program R and formula (t,0) such that t g R C
(strong or syntactic inequality) then (t,0) belongs to IR(fs,Exp) where
Exp is the set of exponential functions form N to N. Moreover there exists

R and (ré(ﬂ such that t ¢ g 9 and (1,0) ¢ Ip(fs,{g)) imply ¥n ¢ N

g(n) > & ;n-

(2) For any R and (t1,0) such that t g R % the formula (t,0) belongs
to IR(po, Lin) where Lin is the set of linear functions, a result which
explains the better suitability of "po-induction" (see [4]) for proving

stong equivalences.

(3) If R is a "non-nested" (or linear) systém of recursive definitions
and T = R % then (t,0) belongs to ER(fs,Lin) (and in this case = R is
decidable).

These three results are obtained by using the language of branches of

the tree generated by a term in a recursive program.

(4) May be the most interesting and main result of this article is
obtained in the study of formal system of proofs : we define a powerful
system to prove formulas, which features follow these designed by B. Courcelle
and J. Vuillemin [12], namely fs—induction and ability to consider procedure
symbols as least fixed points by duplicating the system of recursive defi-
nitions. We carefully study the condition of application of the fs—induction
inference rule and show that if a formula (t,0) is provable in this system,
with R (recursive program) and S (axioms) as hypothesis, then (t,0) belongs
to Ii(fsf53 where®’ is the set of recursive functions, proving thus the va-
lidity of the system (a proof which is not always given in the related litte-
rature). Furthermore, given a proof of a formula (t,0), we are able to cons-—

truct a function f of ¥ such that (1,0) belongs to Ii(fs,{f}).
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Moreover if we do not allow duplication of recursive programs then

a provable formula 71 ¢ o belongs to Iz(fs,Lin).

<R, S>

We believe these results and methods raise very interesting problems
~ and open a wide research area. In particular in the field of methods for
proving program properties [9, 19, 20, 24], it seems interesting to study
their power by means of this notion of complexity ; for example it has
been proved in [23] that the so-called fold/unfold method of R. Burstall

and J. Darlington [6] allows to prove po-linear equivalences only.



II. Algebraic framework.

In the following sections we briefly recall formalism and main results
of the algebraic semantics of recursive program schemes. For more details
we urge the reader to refer to [1, 10, 11, 16, 28, 29].

Notations : we shall use some notations

N is the set of positive intergers ;

for any k of N greater then O [k] denotes the set {i ¢ N | 1sigk},

[0] may denote the empty set ;

for any non empty set X the free monoid generated by X is X*, the empty

word A, and the integer |u| is the length of the word u ;

for any subset L of X* and any word w in X* L/w = {u | u ¢ X* and w.u ¢ L}.

§1 C.p.o. set
Definition 1 - (D, E, 1) is a Ccomplete partially order (abbreviated in
c.p.o.) if and only if { is the least element of the par-
tially ordered set (D, E) and each directed subset A of D

has a least upper bound denoted UA.

Let us recall that A is a directed subset of D if and only if for any
pair (d,d') of elements of A there exists d" of A such that d £d' and d' g d".

Remark - Let be (D,E) a partially ordered set, the set Dk (k in N, k>0)

will be always ordered component wise and we shall use the same notation

Definition 2 - Let (D,g) and (D', £') be partially ordered sets. A

mapping f from Dk to D' is increasing iff V(d],...,dk),
V(e],...,ek) € Dk. (dl""’dk) l_:_“(e],...,ek) => f(dl""’dk)
f(e],...,ek).

Furthermore f is continuous iff for any directed subsets
of D, Al""’Ak’ having least upper bound, then the set
f(Al""’Ak) is directed (with respect to €') and admits

f(UAl,...,UAk) as least upper bound.

§2 F-magma

In order to built recursive program schemes which are systems of equations
on terms, we need a set of function symbols, say F, whose elements are symbols
with arity (a non negative integer). We call F, the set of elements of F with

k
the same arity k.

“
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Well formed terms (with respect to arities) are obtained by composition
of these symbols, applied to variables, and may be viewed as particular cases
of finite trees and the set of trees -finite or infinite- is a special case

M of F-magma (or F-algebra).

, Definition 1 - An ordered F-magma is a structure M =< DM' Sy S
# {£fy | £ € F}where (D) is aﬂaartlal ordered set with 1,
as least element and, for any f of F, , fM is an increasing
. k . . . . .
mapping from DMvto DM. M is said complete if (DI,EM,LM) is
a c.p.o. and each fM is continuous.
A morphism h between two complete ordered F-magmas, M and M', is a

continuous mapping from DM to DM' which preserves their structure.

Definition 2 - A complete ordered F-magma (abbreviated in coF-M) M is free
over X if and only if X is included in DM (up to a canonical
injection) and, for any other coF-M M' and any mapping h
from X to DM" there exists a unique morphism h; , from M

to M' whose the restriction to X is identical to h.

Obviously, such a magma is defined up to an isomorphism and we are going
to show the free coF-M over X is isomorphic to the set of F-well formed trees

over X.

‘ §3 Trees
Let be V a set of variables disjoint from F and described by'{xn | n e N}.

Let us introduce the splitted alphabet associated to F (see [8])
W = {(£,i) | fe F.» i e N}

Definition 1 - A F~well formed tree on V (abbreviated in a F-tree on V)
is amapping t from dom(t), a subset of Wﬁ, to F U V such
that %w ¢ W%, ¥f ¢ Fk (k>0) ¥(f,i) e WF : w.(f,i) ¢ dom(t)
implies :
(1) w ¢ dom(t)
(ii) t(w) = £
(iii) Wy Ndom(t)/w € {(£,7) | j e [k]}
Example 1 - V = {x}, F = F, UF,, F, = {f}, F, = {g}. t, is the appli-
cation s.t. dom(tl) = {0, (£,1),(£,D(g, 1)} 3 tl(A) = f ; tl((f,l)) =g
s t, (£, D (g, D) = x. t, is the application s.t. dom(t,) ='{A,(f,n,(f,l)(g,l),

(£:1,(82D} 5 €, = £ 5 £,((£,1) = g 5 t,((£,1)(g, D)= t,((£,1)(g,2)) = x.
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ty is the application s.t. dom(t,) = {A,(£,1),(£,2),(£,1) (g, 1),(£,1)(g,2)} ;
t3(A) =f t3((fsl)) =g t3((f,2)) =X 3 t3((f,l)) = t3((f,1)(8:2) = X.

Both t and t, satisfy the definition 1 above but ty does not because

f has .an arity equal to 1 and Wg f\dom(t3)/A = {(£,1),(£,2)}.

As usual t, and t, may be drawn as follows

f £

l l
t = g t = g
1 2 >
7\
X X

(in some intuitive sense our trees are not complete with respect to arities).

We note M;(V) the set of F-trees on V and we define on this set the
syntactic order by ¥t ¢ M;(V), ¥t' ¢ M;(V) t gt' iff dom(t) ¢ dom(t') and,

for any w in dom(t), t(w) is equal to t'(w).

In the example 1 above t, is less than t,. For this order the empty
tree @ (whom the domain is empty) is the least element of M;(V).

Proposition — The structure H =< MF(V), c, 2, {fH l f ¢ F} 1is the free
coF-M over V ; where, for any f of F,, fH is an application
from M;(V)k to M;(V) s.t., for any (tl""’tk) of M;(V)k,
fH(tl""’tk) is a tree t defined by
don(t) = {4} v LA (£,0).dom(t)) 5 €W = £ 5 £((£;D).w) =

ie[k]
ti(w) for any i in [k] and w in dom(ti).

To achieve this result it suffices to check (and checking is rather

tedious) the conditions of the definition 2 of §2.

If we note MF(V) the set of finite F-trees(whom the domain is finite)
and MF(V) the set of finite F-trees which are & -maximal (represented by
terms denoted as usually by prefixed polish notation), then <MF(V)’

{fH | £ € F}> is the free F-magma on V and <Mp(V), &, Q,'{fH | £ ¢ F}> is
the free ordered F-magma on V (with respect of an obvious definition of

these structures).

For any mapping v from V to M;(V), we note v¥ (instead of v; as written
in def. 2 of §2) the unique endomorphism of H whom the restriction to V is v.
We call it a substitution. Sometimes we write t[tl/xi]""’tp/xi ] instead
of v (t) where‘{xi. | 3 ¢ [p]} is the set of elements of V occuring at

least once in t ana, for any j in [p], V(Xij) = tj'
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§4 Congruences on H

We shall use the concept of congruences on F-magma and, more preci-
» sely, congruences on H stable by substitution (see [18, 31]). To define
this restricted notion we need the concept of subtree and subtree repla-
cement. First we note dom(t), the enlarged domain of the tree t in M;(V),
the set {w.(f,i)/w e dom(t), t(w) = f, f ¢ Fo ie [k]}if t # Q and
dom(Q) = {A}.

&

Definition 1 - For any w in dom(t), the subtree of t at node w, denoted

t/w, is defined by dom(t/w) = dom(t)/w and, for any u in
dom(t/w), t/w(u) = t(w.u). Furthermore, for any t' in
M;(V), the tree t[t'/w] obtained by the replacement of t/w
by t' in t is defined by dom(t[t'/w]) = (dom(t)—w.Wﬁ) U
w.dom(t'), for any u in dom(t)-w.wgt[t'/w](u), for any u
in w. dom(t') t[t'/wl(w.u) = t'(u).

Definition 2 - A precongruence on M;(V) is a preorder (a reflexive and
transitive relation) R on M;(V)XM;(V) such that, for any
t in M;(V), any w in dom(t), any mapping v from V to M;(V)
" and any pair (s,s') of trees, (s,s') in R implies the pair’
(t[v¥(s)/w],t[v*(s"')/w]) belongs to R too. A congruence on

0 . .
MF(V) is a symetric precongruence.

Proposition - For any R, viewed as a subset of the cartesian product
M;(V)xmg(v), the precongruence generated by R (i.e. the least
precongruence including R) is the reflexive and transitive

closure of the re1ation-—§—> defin_ed by t = t' iff

1(s,s') € R, }w ¢ dom(t), }v : V—> M;(V) s.t.
t = t[v¥(s)/w] and t' = t[v*(s')/w] while the congruence ge-
nerated by R is the reflexive and transitive closure of the
relation < U -
R
As usual we shall note -%—> (resp. <—i—>) the precongruence (resp. con-

R R
gruence) generated by R.

Example - V = {x} ; F = F, = {f,g} ; R={(fQ = gR), (fgx = ggfx)}. Considering
the precongruence generated by R, it is easy to show by integer induction that
£ —%f> g2™-1q.
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III. Recursive program schemes and their semantics.

§1 Recursive program schemes

A'Bgcursive'zrogram_gcheme (RPS) is a triple I = (A, %, R) where
- A is the base function symbols' alphabet and is some finite subset

ofL_)A;A={anIpENandthearityofanisn};
neN n n P P
- @ is the procedure symbols' alphabet and is equal to'{?],...,?h};

each P has an arity equal to n, 3

- R is a functionnal binary relation over ﬁAUQ(V) such that if (s,t)
belongs to R there exists an integer i (in [N]) such that s is equal to
@;X|+--%n; and t belongs to EAUQ({XI”"’Xni})'

For sake of clarity, we shall write - instead of < and use the
alternative presentation for RPSs

: PiXpreeKng = T, T; € MAUQ({XI""’XRi})

lsisN

Example - A = A, = {a} ; ¢ = ¢, = {tpl, $Yss *f3} 3 V={x} ; let us consider
the following RPS

‘P]x = axp, Px
vzx = alﬁxlfz(fzx
(p3x = ax(p3lp3p3x

Computations of a term s in a RPS,Z, (A, ¢, R), are needed to define the
semantics (see below) and are sequences ot terms rewrited from s in I. The

direct or immediate information contained in a term s is all what we can

know about this term without making any computation, that is to say by
ignoring the value of procedure symbols occurring in s. Whence the definition

of immediate information m(s) of a term s :
m(x) = x for any x in V
n n n .
m(a t,...t ) =an(t,)...n(t ) for a in A
p I P P (¢)) (p) P
ﬂ(q)itl...tni) =Q

thus 7 is a mapping frmMAUq,(V) to MA(V).
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Computation may be defined more precisely by sequence of iterated
application of some computation rule., Here we can define the fs and po
k computation rules (related to a RP§I) mentionned in the introduction as

mapping d. and ®s on ﬁAU (V) respectively by

x for any x in V

. o (x) = =.(x)
oz(a;tl...tp) - a;oz(t])...oz(tp) and
az(a:tl...tp)

Oz(?&t]...tni) = Ti[oz(tl)/xl...(&(tni)/xni] and

]

n n .
ap(xz(tl)...dz(tp) for any ap in A

az(lf’itl...tni) = ri[t]/xl...tni/xni] for any Y, in 9.
Example 1 - (cont.)

%01 %) = afx, f =

Ol §x) = aaxtf, Pxip, ¢ axg, fyx

We leave to the reader to check the following facts :b

Let Z be a RPS, s and s' be elements of EAUQ(V)

(1) s £s' => n(s) £ w(s') and oz(s) E oz(s')

(2) if there exists p terms of ﬁAUcD(V)’ Epseeest, and p substitutions
v],...,vp, such that s = s'[v’]‘(_t])/xil,...,v;(tp)/xip]then
m(s) = m(s") [(Trovl)*'(ﬂ(tl))/xi],...,(novp)*(n(tp))/xip]

a.(s) = OZ(S')[(UZOVI)*(Uz(tl))/Xil,---,(UEOVP)*(GZ(tp))/Xip]

§2 Semantics of RPSs
Let X, (A, ?, R), be a RPS, an interpretation of I is a complete ordered

A-magma M = Dy Sy Ly {aM | a € AD. We call D:; the set of "data mappings"
naturally ordered by the relation, also denoted Ey defined by, for some v,

v', in D;; s

v I;Mv' iff v(x) _t;Mv'(x) for any x in V.
Since M:(V) is the free complete ordered A-magma over V, for each t
belonging to MZ(V) and each interpretation M, we are able to define a

. . V © . \
continuous function ty from DM to DM by tM(v) equals to vM(t) forvin DM'
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Theorem 1| = (M. Nivat [28])
For any RPS I(=(A, ¢, R)), any s of.ﬁAU@(V) and any interpretation M

of I the set {Tr(t)M | s i%—> t} is directed with respect to =
Now we define the function computed by any term s of EAUQ(V) for a
given RPS I and an interpretation M,
Definition 1 - Let I, (A, ¢, R),Mbte an interpretation of I and s be a
term of'ﬁAU¢(V), the function computed by s is noted
S<Z,M> and is the least upperbound of the set {ﬂ(t)M |
%
ST> t}.

When M is the free interpretation H (<M§(V),§;,'Q,'{aH | a ¢ A}) cf.

IT1.§3) we write 8y instead of s and we have the following proposition.

<I,H>

Proposition 1 - Let I, (A, ¢, R) be a RPS, M be an interpretation and s be

a term of EAUQ(V)’ actually Sy is the tree generated by s in

I and belongsto M:(V), so we can define the function (SE)M

and we have the identity
(sp)y = S<r,m>

The following proposition rely computed function and rule of computation.

Proposition 2 - Let I, (A, ¢, R) be a RPS, M be an interpretation and s be

a term of MAUQ(V)’ S<Z,M>

{(mln(s))M | n e N} and of‘{(ndn(s))M | n e N} too.

is the least upperbound of

We could generalize this result by introducing the notion of correct
computation rule ; let us recall that a computation rule p associates to
each RPS I, (A, %, R), an application from'ﬁkUQ(V) to itself such that, for
any s in EAUQ(V)’ s —%}9 pz(s) ; p is said correct if and only if, forany s of
EAUQ(V) and any interpretation M, the set‘{(wpg(s))M | n € N} admits S<Z,M>
as least upperbound. We deduce from the above proposition that « and o are

correct computation rules [7, 13, 34].

§3 Equivalence and inequality modulo a class of interpretations

One of the main advantages of the algebraic semantics is related to

the equivalence of RPSs ; so we introduce a preorder and an equivalence

over MAU¢(V)°
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Definition 1 - Let £, (A, &, R), a RPS and C be a class of interpretations,

we define the preorder ):elat:l.on‘sd:,c> over MAUQ(V) by
' =
Vo, ' e Mypp(Ms &5 o, 8' <> WeCs,, M M S <r,w

and we note :<E > the associated equlvalence relatlon.

A class C of interpretations is said relationnal if the following holds :
there exists a binary relation over MA(V) such that for any interpretation M,

Me C <=> ((s,t) € § => Sy =M M)

For a given relation S, we shall note CS the relationnal class associated
to S and write <<Z o> (resp. 25 S>) instead of g Sox ,Cg> (resp. =ex CS>). Now
we give a very fruitful theorem whlch generalizes the theorem 1 of M. Nivat

and will be used very often in the sequel.

Theorem 2 - (I. Guessarian [16])
Let Z, (A, ¢, R), be a RPS, (s,s') be a pair of terms belonging to
AU<I>(V) and S a subset of M (M) (V) ; then

' <= . g —X_ LA N N '
ssZ,S>s <>Vt.sz>t 3t' : s 7> € s,.t.vr(t)\;sw(t)

where ES is the precongruence (C U <T>)* over MA(V).

IfR® is the class of all interpretations we shall write $5 (resp. :2)
instead of g <5 > (resp. E<z,*>).
Proposition I-[29]Let L,(A, ¢, R), be a RPS and (s,s8') be a pair of elements
in ﬁAU(p(V) ; then the following property holds
s & s' if and only is sy € sé

Proof : if part H is a particular 1nterpretat10n, then by definition of g *Z’

s' implies S¢y JH> Tx <Z H>* Following our notation the

the inequality s 3

last inequality may be rewritten S C SZ .
only if part For any interpretation M we deduce from the inequality
' . . ' ..
sy & s’y the inequality (SE)M =" (s Z)M and, by the proposition 2 of §2, we
. . ' . . .
reach the inequality S<Z,M> Ey S <I,M which holds for any interpretation M.

So we obtain the result.

§4 Representation of trees by languages

In this paragraph we define the representation of trees by their lan-

guages of branches, following an idea due to W. Rounds [32] and used in se~
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mantics by B. Rosen and B. Courcelle [31, 8]}. By means of a slight modi-
fication of the notion of branch, we obtain a very fruitful tool for our

purpose. But we need a lot of technical definitions and results.

Definition | - Let t be in Mx(V), the set br(t) of branches of t is the
subset of WX(AUV) equal to {w.t(w) | w ¢ dom(t)}.

By definition of the syntactic order over °°(V) we have, for any pair

(t,t') of elements of M (V), te t' if and only if br(t) ¢ br(t').

Lemma 1 - Let t, t;, ..., tp be elements of M (V) {xl | 3 € [p]} be the set
of variables occurring in t, then '

br(e_[tl/Xi],---,tp/Xip]) (br(t) - L1 w;, X3:) U d le'br(t )s

o jelel 37T 5ep)
where Wij = {w e dom(t) | t(w) = le} w | w. Xig € br(t)}.

Now we could construct the context free grammar Gz associated to a RPS %
and generating the language of branches. If I is described by

Yixl eee Xpn. = T

then G; is given by the triple (&, X, P) where
is the nonterminal symbols' alphabet and equal to ¢ U Wq),

X is the terminal symbols' alphabet and equal to W, UAUYV,

P is the set of productions, included inZ&x(T U X)*, and defined by

(~r > w. f)gPlffwfebr(T)n Wi (AU@)

((‘i’isJ) +w) € P iff w.xJ € br('r )N WAU<I>

Example - (example of §1 continued)

If I is the RPS described in the example of §1, the grammar G is given
by :

&= {\Pl’ \st ?3} U {("P],l)ﬁ (?2’])’ (‘?39 N}

X =~{(a,1)’(a:2)} U {a} U {X}

P is the following set of productions

i 2t (3,2 + (a,2)(p,, Dy,

P > a+ (a,D9) + (a,2¥, + (3,2)(¢,, DY,

3> a+ (a,2)f + (a,2) (95, D¢y + (3,2) (3, 1) (3, DY,
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(P> 1) + (a,1) + (2,2)(p,, D (P, 1)

(9,1 > (@, D@D + (2,2) Py, (P, 1)
@31 > (3, 1) + (2,2) @3, 1) (g, 1) (1, 1)

R4

Definition 2 [17] - Let G, (X, &, P) be a context-free grammar, G is

said strict deterministic if there exists a partition

over X US such that

(i) X is exactly a class of »,

(ii) Vj,j' e, ¥a, B, B' ¢ (XUE) such that} -+ aBf and
3' + aB' belong to P, if3 andj‘ are in the same
class of n, then the first letter of B ‘and the first

letter of B' are in the same class or B and B' are
empty and j =3’.

Proposition 1 — Let I be a RPS and Gy be the context-free grammar associated

then Gy is a strict deterministic grammar.

Proof - We only give the partition h over X U 3} defined by
XU {{p;} Uy, sjsnl}|1si SN}‘

Definition 3 - Let £, (A, &, R) be a RPS and t be an element of EAUQ(V)"
the language Lz(t) of branches generated by t in GE (as

. defined above) is the set {w | w ¢ X* and 4u £ br(t) :

u —%—> w}, included in WA*.(AUV) actually.

We need more technical definitions. Let I, (A, &, R), be a RPS and Gz
be the context-free grammar associated to I, we introduce the following

applications

- the language substitution By such that Bz(x) = {x}, for any x of X,
and 32(3) = {w I3 - w} for anyS’ of )3

- xz a mapping from (XUD)* to the set of languages over (XUZ)* such
that, for any w in (XUX*, either w belongs to X* and ¥ (w) = {w} or there
exists u in X%, 3’ in3, w' in (XUD* such that w = u} w' and Yﬁ(w) =
{uvw' l} > v} ;

- 1 an application such that, for any L subset of (Xum) *, i(L) is the
subset equal to L N X*,
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From these definitions we reach the following lemma giving relations

between BZ’ ¥., v and sy Op and v by means of br.

Lemma 2 - Let Z, (A, ¢, R), be a RPS, we have the following identities

i) By 0 br =br o o5

(ii) ¥z © br = br o a5

(iii) i obr=bronrx

.25225 (1) is proved by structural induction on t, element of MAU¢(V)' We
shall show that, for any t of M AUQ(V)’ o br(t) =br o oz(t) 3 if t be-
longs to V then o (t) = t, br(t) = {t} and By(t) = {t} ; if t does not
belong V either t(A) is in. A (3) or t(A) is in ¢ (b).

(a) t(A) = a, a e Ak s for every j in [k] let us note tJ the term
t/(a,j) : br(t) is equal to {a} U |_J (a,3). br(t ) thus By o br(t) is equal

to {a} v L} (a,j). By © br(t ) jelk]
jelk]

by induction we have

By o br(t) = {a} U jtiﬁl(a,j).br 0 g(t;) = braoy(t;)...0p(5)), then
By © br(t) is equal to br o o:(t).

(b) t(p) = V&, Yg € ¢ ; for every j in [n ] let us note tj the subterm
t/(q&,j) ¢ br(t) is equal to ﬁ{i} U t_J Of ,J) br(t )

jelnj]
then B o br(t) = Sz(?i) U L_J Bz((?i,j).br(t.»
je[ni J
but 8 £(f;) = br(t) O Wk, (AUS)

and  B((p;,3).br(t)) = {w | w.x e br(r;)}.8; o br(t,) =

“ X
]
= {w | w.dﬁ € br(Ti)}.br 0 Bz(tj)

Since op(t) is equal to Ti[cz(tl)/xl”"’oi(tni)/xni] by lemma 1, we
obtain BZ o br(t) = br o cz(t).

(ii) is proved in a very similar way .
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(iii) is also proved by structural induction on MAU¢(V)’ let t be in

ERTOE

if t belongs to V then w(t) = t, br(t) = {t} € X* ; if not t(A) is either
in A (a) or in ¢ (b).

(a) t(A) = a, a ¢ Ak ; for every j in [k] let us note tj the term
t/(a,j) then 2o br(t) = {a} U L) (a,j). 2.0 br(t ) and, by induction
jelk]
br(t) = {a} U | (a,j).br o 1 (t ) =br o n(t) since w(t)
is equal to an(tl)...n(tk) jelk]

(b) t(A) = . V. € ¢ ; then w(t) is equal to Q and br o w(t) is empty.
For each j in [n ], let us not tJ the term t/(V »j) then br(t) equals to

g du L (g ,J) br(t;) and 2 o br(e) = br(t) N X* = 9.

jeln;]

As a corollary, we get the following relations

to Bg o br(t) =br o wo og(t) and t o X? o br(t) =br o7 o ag(t)

for any t in MAUQ(V) and any integer n.

Proposition 2 - Let Z, (A, &, R), be a RPS and t be an element of MAUQ(V)’

then Lz(t) is equal to br(tz).

Proof - We know by proposition 2 of §2 that ts is the least upperbound of

the set {m o o°(t)|n € N} ; that means br(t y=ldbromnogd (t) By the
z neN

above relations we reach the equality br(t ) = %—kl 0 B o br(t). But we

know, by a theorem of Schutzenberger [33], that Ly (t) is equal to
Lizo BZ o br(t).

neN

As a corollary we get

Theorem 3 (see also [8])

let Z, (A, &, R), be a RPS and (s,s') be a pair of elements of MAUQ(V)
then s <. s' holds i{ and only if Lz(s) is included in Lz(s').

Procf ~ We itnow (by propeositien ! of §53) that s <5 s' if and only if

, ¥ Qe;;nltlon of the sv*‘thlc order and branches, we
now §. 1= <. holds if and only f?fbr(sv) is *1~1uded in br(s! )
P O TR R e
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IV. Recursion induction principle. Classes of valid formulas.

§1 Recursion induction principle

In the sequel p denotes a (universally) correct computation rule
(cf. III. §2 in fine), ‘S'denotes a set of functions from N into itself,
L, (A, ®, R), is a RPS and S is a subset of M (V) (V) ; now we state

our induction principle related to (p,3) :

Let R be a subset of M, (V) xM, ;6(V) equal to {(t.,t ) | €3}
if for each j in J there exists f. in %" such that
f (n)
¥ne N mwo t.) —>mo t.
p() oz (J)

£.(1)
where R is the subset S U {(m o p (t ), To sz (t D | jeJ, i< n}

of M (V)2 3 then the inequality tj s<2 3> tJ holds for each j in J or,
in other words, R is included in ‘<z,s>

If Z and S are given we shall say that R is provable by a (p, %)~
induction. To prove the validity of the induction principle we need the
following fact

Fact - Let (t,t') be a pair of elements of M (V) such that t —§—> t' ; if

S' is equal to S U {(t,t")} then we have the identity & Eg = Egi-

Proposition 1 - The recursion induction principle is valid.

Proof - The above proposition implies that for any integer n, ERO is equal

to Sp . But R is equal to S and the proposition ¥n ¢ N 7 o pg(t ) >

0
(n)
T 0 sz( )(t ) may be rephrased in ¥n e N 7 o p (t ) E Sgmo sz (t ?
and the theorem of Guessarian (theorem 2) ensures that the inequality

' -
tj S<Z,S> tj holds for each j in J.

The interest of this new statement of recursion induction lies not
only in the definition of an effective induction proof but also in the
definition of a complexity measure of proofs and a criterion to decide
"

whether a proof is better than another one. This suggests to define "complexity

classes of atomic formulas.

We note I?(p,@b the set of valid atomic formulas which is a subget of

AU¢(V) AUQ(V) defined by
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(t,t') ¢ Ig(p,ﬁﬁ iff 3f € $ ¥neNmo pg(t) Eg T O pg(n)(t')

Obviously, each formula of Ig(ff§3 is valid with respect to ¢ ss
9

Problem - Let p be a correct computation rule (which will alwaysbe o or

a) and S be a subset of MA(V)xMA(V) ; for what class of functions
from N into N, say §’, do we have the inclusion $ep g € Ig(pfy)

H]
for any RPS L.

This question is very important since its answer allows to study the
completeness of a formal proof system by finding the set such that

12(9:93’contains formulas provable by the system for any RPS I.

To give some answers we distinguish the case where S is the empty set

(§2) and where it is not (§3).

§2 The complexity of syntactic inequality

In this paragraph we are going to show that, for any RPS I, we have
the identities Iz(a,Lin) = &5 and Iz(o,Exp) = &5. In other - words we are
able to bound the complexity of strong inequality by the linear (resp.

exponential) functions from N to N.

We call Lin the subset of functions from N to N equal to {f | }a, b e N
¥n e N f(n) = a.n + b} and Exp the subset of functions from N to N equal to
{f | a, b, c ¢ N¥n € N f(n) = a.b” + c}. We shall say that Lin is "included"

in Exp because any function of Lin may be bounded by an element of Exp.

In the section 4 of part III we introduce Gy, (X,&, P), the context-
free grammar of branches associated to a RPS I ; to show the result claimed

above we need some technical remarks.

Definition 1 - Let Gy» (X,5, P), the grammar associated to a given RPS I ;

let us define the sequence

By=1{3¢8| twe x* 3—> w e P}

r~ — ™ -

Yol T {33.,-_,[ -}we(XUL'}n)* §—> w e P}

then EZ’ (X, 8, P) defined by T = rlfg{qgn and P = P Dx(XUZ)*

is the standard "reduced" grammar associated to Gy..
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Proposition 1 - Let Ez be the reduced grammar defined above, then the two

[17] following propositionshold
VjeE §e§'<=> {w e X* Ij %> w# ¢
and for any finite subset Y of (XU®)

'{wsX*l-}ueYu-%—->w}={weX*|-}ueYﬁ(XU'§)*u-§+>w'}

Proposition 2 - Let EZ be the reduced grammar defined above, then {3 does not

contain any left recursive symbol i.e. symbolj such that

3—;—»5 w for some word w.

This is because Gy is a strict deterministic grammar in the sense of

M. Harrison and I. Havel (cf. §4 in part III).

Lemma 1 - Let G be the reduced grammar, then there exists an integer P

such that for any w in (XUD)* and u in X* with w ——%—-> u, there
exists a leftmost derivation from w to u of length 1less than

p.lul (Ju| is the length of the word u).

Proof - For any } in {J and w J.n“‘ (XUD) *, if there is a leftmost derivation
from} to w its length is less than p' where p' denotes the number of
elements of T plus one by the proposition 2 above. Let p be p'+! and we reach

the result.

Theorem 4
 For any RPS I, (A, ¢, R), we have the following identities (1)
&5 = Iz(a,Lln) and (ii) § = Iz(o,Exp).

Proof - It suffices to show the two inclusions

(i) sz clI (a Lin) and (ii) g & € I (o Exp) (completeness property).
For any integer n and t in AU(D(V)’ we shall note 6 (t) the tree of M (V)
defined by the set of its branches br(ez(t)) A{u | u e br(tz) and lul gn}.

First, we prove the inclusion (i).

Fact |1 - Let us consider some u belonging to br(tz), then the proposition 2
of III.§4 ensures us that u belongs to Lz(t) s thus there exists an element
w in br(t) such that w —3];——> u and, by the lemma 1, we know there exists a

leftmost derivation from w to u of length less than p.|u| (p is the integer

of lemma 1),
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This fact and the definition of the application ¥ (cf definition in
III. §4) involve that u belongs to xp ul e br(t). Thus we have the relation
br(e (£)) = 1o br(en(t)) c 1o ‘62 n o br(t) ; applications of results of
III.§4_g1ve us br(en(t)) 10 bro ag'n(t) € bronmo ag'n(t) which is

equivalent to eﬁ(t) c 7o a ey,

Fact 2 - For any t in M, (V) any integer n and any u in 2o X o br(t) we

have the relation |u| g k.n + [lt|| where k = max {w] | -]-}e K ;———> w}
and |[t|]| = max {|u] | u e br(t)} (by convention [el] =
But br o T o ag(t) is equal to t o X; o br(t) and any branch of = o ag(t)

is a branch of ts such that its length is less than k.n + Htl |, so it is

a branch of elf +Ht||(t) We reach the inclusion br o 7 o oy (t) c br(ek n+||t||(t))

and the inequality m o o (t) = ek a+| |t I(t)

From Fact 1 and Fact 2 we deduce that for any pair (s,s') of elements

(V) such that s g

5 s' we have

AU¢
n z z : p.k.ntp.|]|s]]
T O az(s) = ek.n+||s||(s) Eek.n+||s||(s') S To ay (s')

thus (s,s') is in Iz(ct,Lin). Now we prove the inclusion (ii).

Fact 3 - By an obvious induction on integers we have the logical implication :

ueo Bg o br(t) => |u| < ||t|| for any t of M,. (V). By a result of III.§4

AUQ
and Fact 1 we reach the inequahty

) cg(t)g T o ug'“tll'kn(t).

Fact 4 - Since o (t) —> 0 (t) we have also 7 o oy 2(t) = To otzl(t). Combining

Fact 3 and Fact 4 we deduce that s §y ! 1mp11es, for any integer n,
T 0 cz(s) T O a (t) T o ap L q(s e mo 01; kn+q(s')

with p" =p.||s||, P =1p .k.]]s”, q = q .||s|| s thus (s,s') belongs to
Iz(o,Exp).

Proposition 3 - (a particular case of incompleteness). The identity

g5 = Iz( 0,Lin) does not hold for any RPS I.

It suffices to exhibit a counter-example of two elements, t and t',

such that t 3 t' and (t,t') does not belong to Iz(o,Lin). Let us recall
the RPS described in the example of part III
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t{’lx = ax(fzq?lx
z %_x = atp]x\f’ztfzx
= ax{sf;

we have given already the associated grammar

o
e
[

€ >ra+ (a,2)q§ + (a,2)(¢f2,1)<fl

¢, >a+ (a,Dp + (a,2)y, + (a,2) (¢,, DY,

Yy >a+ (a,2)p + (a,2)(cp3,l)lp3 + (a,2) ((f3,1)l{3

(f 1) > (@,1) + (3,2)(¥,, (¢, 1)

(> 1) > (@, D0, 1) + (a,2)(F,, 1)(Y¥,, 1)

(3, 1) > (a,1) + (2,2) (4¢3, 1) (94, 1) (3, 1)

on {(a,1),(a,2)}*ve define two sequences () opand (v) . by

induction :

u, = (a, 1)

= (a, 2)ununun

We know GZ is strict deterministic, thus for any non terminal symbol}
the set {u | u e X*} —;> u} is prefix-free (see [17]). From this remark

we are able to prove by induction that, for any integer greater than 1 :

u € 10 BL((Py, 1), v_ € 2o By((py5 D (P35, 1))

2
n +n

there exists p such that u € 20 Bg((“f’l,l) and p > —

2
there exists p such that v,Elo Bg((YZ,l) and p L;—:;B

(for this last relation let us remark that un('f],l) Ep;(('fz,l)) with p) n).

This example is borrowed from [12] who proved the equivalences

‘flx = ‘f3x and ‘Pyx o 3 % but (‘-&x, 'f’lx) does not belong Iz(o,Lin) .

We shall say a RPS I is linear (or non nested) if and only if the

associated context-free grammar GZ is linear,
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Proposition 4 - Let I be a linear RPS, t and t' two linear trees of

MAUQ(V) (i.e. trees such that each u in br(t) or br(t')
contains at most one occurrence of an element W¢)» then

we have

t §. t' = (t,t') ¢ Iz(d,Lin)

z

. . . . . n n
Proof - It is obvious since, in this case, T o az(t) (resp. 7 o az(t'))

is equal to T o cg(t) (resp. 7 o og(t')).
In some sense we give a new reason to call linear this kind of RPSs.

An interesting consequence of Theorem 4 is to show the advantage of
the a-induction to prove syntactic inequalities (or equivalences) since
proofs are less difficult. So we enforce the point of view developped by
G. Boudol [4]. |

To finish this section we must mention we actually do not know what
is the "best" (i.e. minimal with respect to inclusion) class of functions
%’ such that g5 is equal to Iz((xqg) for any RPS I. The above example
shows that & is included in Exp and contains Pol (the set of polynomial
functions). Is there any example of strong inequality whom the proof re-

quires exponential o-induction ? We do not believe and we state the

following
Conjecture 1 - Let Pol be the set of functions from N to N {f ] }ao,...,ape N

P .
f(n) = igoainl}, then we have the identity SZ = Iz(o,Pol) for

any RPS.E.

§3 General case
Let us recal we would find the class 3’ of function from N to N such

that the inclusion g c Ii(pﬁf) for any RPS £; a computation rule p and

<5,8> S
a non empty set S given. In this case the situation is more complicated and

we would like brought to light three remarks :

(1) In the introduction we give the following example (due to R. Milner)
let I be the RPS

$x = fix
qx = gyx
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and S be the subset of M{f }({x}) {(fgx, ngx) (£2,£2)} then we have the

equivalence ¥x = Yx and, for any integer n, the relation mw o ¢ Gfx) =

<%,8>
T 0 op(wx) implies p greater than 27-1,

From this example, we deduce that S<E g> is included neither in

Ig(c,Pol) nor in-Ig(a,Pol) So the desired class §7is at least Exp.

(2) 1f we call All the class of all functions from N to N, we have the
obvious property : for any RPS I, for any finite subset S of M (V) s S5 oo
]

is equal to I (p,All) (p is either o or o).

(3) It is well-known it is possible to construct a finite system of
terms rewriting, say S, such that it encodes the behaviour of a Turing
machine ; so we know that the class‘g’lmust contain the recursive functions

and we state the following

Conjecture 2 — The least class of functions from N to N, say 3( such that,

for any RPS I, any finite subset S of M (V) y € is equal

<I,S>
to I (p,ﬁ() (p is either a or ¢) is the class of recursive

functlons.

Thus a good question may be for some class of particular functionms,
say ?F, could we give some properties such that if S satisfies them the in-~

clusion <, cl (p,(J) holds. By this way we could reach a tool to define

<I,5> =
a hierarchy over the finite systems of terms rewriting.

But our recursion induction principle may be also used as mean to
study the validity and the completeness of formal systems to prove ine-
qualitites or equivalences. For example in [23] we proved that the so-called
fold/unfold method, elaborated by R. Burstall and J. Darlington [6], is an
incomplete method for proving programs equivalences. Let us give some expla-
nations : a system for performing transformations of recursive programs
(such as the Burstall-Darlington system) may be viewed as a system for proving
programs equivalence since one can perform a transformation from Pl to P2
which preserves the equivalence (under some assumptions, see [9, 23, 24]) one

prove the equivalence between P, and P,.

The next paragraph is devoted to the presentation of a powerful formal

system for proving recursive program schemes inequalities and equivalences.
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§4 A formal system for proving inequalities in RPS's

We take our inspiration in [12] to design a formal system, about

which we prove our main result : for all proof in the system we define,

in a constructive way, a recursive function which is a bound for the
complexity of the proved formula. This is shown when the axiom. . are
equations over the A-magma MA(V), that is are elements of a symetric
binary relation which expressesproperties of base functions, and which

we always denote S. -

Here we assume the existence of a procedure symbols universe ¥, so
that each RPS I = (A, ¢, R) satisfies & ¢ ¥ and for all (€ &, of arity

n, there exists exactly one T € MAUW({XI""’xn}) such that G*xl..;xn,r) e R.

Thus, the elements of ¢ are exactly the procedure symbols defined by
I, and I left other symbols of Y undefined, although they can occur in
the body of some definition in I. We call Alph(Z) (the alphabet of proce-
dure symbols of I) the set of procedure symbols which occur in some defi-
nition in I (thus ¢ ¢ Alph(Z)). Two RPS's Z = (A, @, I) and ' = (A, ¢', R')
are independant iff I does not define an element of the alphabet of L', and
conversely, ie N Alph(Z') = @ = &' n Alph(Z) and in this case I U I' =
(A, U %', RUR') is also an RPS.

One can easily check that in this case oy and oz{ commute :
Uz o oz' = GZ' o Uz = ZUZ'.

We also make more precise the notion of immediate information relative

to a RPS &

il

(A, ¢, R), which is the projection Ty on MAU?(V) defined as m,
except for :

Q if ed
T.Gm ...m) = ¥rp(m).. .m (m ) otherwise (ye¥)

Thus if I and I' are independant :
Ty O Tgr = Tgr O Mg = Toyge
The formal system is designed to prove formulas : an atomic formula is
an inequality t ¢ t' where t and t' belong to MAUW(V) (ie are terms with Q

as a symbol of constant) and a formula is a finite conjunction of atomic

formulas. We often identify such a formula with a finite binary relation
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over MAUW(V)’ writen {t1 < t},..., tp's té}, and abreviate the conjunction

of tgt' and t' ¢ tby t = t' (a symetric relation).

The (procedure symbols) alphabet of such a formula P is the (finite)
set Alph (P) of element of ¥ occurring in some atomic inequality of P,
and we say that P and the RPS I = (A, ¢, R) are independant iff
Alph(P) N & = ¢

In this case Ts X nz(P) = g, X cz(P) =P

z

We need another notation before describing the system : for a formula
P and a RPS Z = (A, &, R), we define the RPS Z|P, the restriction of I to P
as I|P = (a, ¢|P, R|P).

where ¢|P is the union of the ¢

(n),

s given by

2(9 = o N A1ph(P)
y e Q(n+l) <=> }4?2 ¢ﬂ¢(n), ¥ occurs in T s.t. prl...xn, 7) € Ror

'}"F € Q(n)

:  occurs in T s.t. (yx]...xp, T) ¢ R
and R|P = R N (M(DIP(V)XMAU\P(V)).

Then I - P = (A, @-8|P, R-R|P) is also an RPS, independant from z|P and P,
and such that I = Z|P U (I-P).

The description of the formal system conmsists in the inductive definition
of the notion of the (syntactic) consequence relation relative to an RPS

which is the least relation Fir-between formulas such that :

(1) Replacement rule

if Q¢ @ U <—> U—>)" then P | =@
5

(2) Union rule (or conjunction rule)

ifP|—TQandP' 5 Q' then P U P! |-—Z—QUQ'

(3) Cut rule

if P I-TQ' and Q' I-TQ then P }——Z—Q

(4) z"-induction rule

if ' and I" are independant, £ = I' U " and P and I" are independant,

1£ P b5v mon x 150(Q) and P U Q bv opu x 050 (Q)

then P "T Q
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(5) Restriction rule

if P }—Z—Q then P ”—ZTPUQ Q

As usual, we must define a concept of semantic validity, or more

precisely the semantic relation of consequence in I Fﬁ between formulas

on A and formulas on AUY as :

S IE P<=>, PC S<2,S>
<=> for all interpretation I satisfying S, for all (t,t') ¢ P :
\
ter,1> 51 <, 1>

To be of some use, the system must be valid, which means :
ShyP=5 |=P
This is true, as we shall see.

We may add some derived inference rules to simplify the proofs, such as,

for example, the inclusion rule (consequence of replacement and cut rules) :
if P t5- Q' and QC Q' then P |TQ
We shall abreviate ¢ F—E— P and P Fji— Q resp. by F—fr P and P |— Q.

A formula Q is provable from P (as axiom) in £ iff P l_f— Q, and a proof
of Q from P in I is a finite binary labelled (by statements Q' '_ET Q") tree,
such that :

- its root is labelled by P }—E—-Q

- the leaves are labelled by Q' I—EP—Q" which are instance of the replacement
rule (and we call the proof explicit if each step of cU 5> U-??» to
“obtain Q" is described)

- for each node which is not a leaf, the label result from its sons

by application of an inference rule.

We do not give a formal definition, but illustrate this notion by some

examples.

Example 1 -~ Let I be the RPS :

¥x = fyx
" lyx = o

and S be the set of axioms :
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s = {fgx = gfx, £ = ga}
We want to prove P = {fx =y¥x} from S in I. A proof (tree) is as follows :

b =

cut
Sk fyx=gyx fyx=gyx f— Px=yx
‘>—induction
S b— fa=gn S U {fyx=g¥x} |5 feyx=ggyx

Let us explicit the replacement

. obviously fQ €—§—> gQ

. ngx = Oz(f?x) <—§—> ngX <f;§;§§;> ggfx = oz(g¢X)

. Px <—Z—> fyx <———.;> g8yx <—=—> yx

fyx=gy z

This proof is easy, because it only needs an obvious lemma = gyx,

In the following example, the proof needs some more cleaver lemmas,
and the introduction of a copy of the given RPS. But let us first precise
this notion of copy and its use : a renaming (of procedure symbols) is an
application p = ¥ -+ ¥ which respect the arities (p(Wn)g; Wn for all n) and
such that there exists a finite subset of ¥, the support of p, denoted

supp(p) on which p is a transposition (a permutation such that p o p = 1id),
and the identity elsewhere.

We can obvidusly "extend" such a map (with the same notation) to
MAUW(V) by

p(t) =t if t € V U {Q}

k _ k

p(ant]...tk) = anp(t])...p(tk)

p(‘\tft,---tp) = p(y) p(tl)---o(tp)
and to relations, by p x p, and to RPS's, if we define for I = (A, ¢, R)
p(Z) = (A, o(8), pxp(R)).
(We can remark that p(ZUp(Z)) =3 U p(r)).
We call p(Z) a copy of I iff supp(p) = ¢ U &' with ¢ n o' = B, p(2) =o',
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We denote, for a renaming
E(p) = {‘{’xl ver X = p(tf’)xl xn/tp € supp(p)}

(which states that, up to a renaming, there is no change !) and we say
that a formula P' is a renaming, by p, of

= 1 : . L . ' : : *
{ti c ti/lﬂsp} iff P {6i c ei/lslsp} and ¥i 6, NGRS and

8! <=5 t!
1 E(p) i
(we do not impose that each occurrence of a procedure symbol in the atomic for-

mulas_of P is renamed by f to get P'). We can then state the

(6) Renaming rule

if £ = (A, ¢, R) is a RPS, p a renaming such that supp(p) € ¢, if
P f—z— Q and P' and Q' are resp. renamings of P and Q by p, if p(Z) =
then P' ]——z— Q'. In fact, this rule is a derived one, as shown by :

Fs— Q'

/I

I———QUE(p) Q U E(p) }5- Q'
/ union
P bQ \'—z E(p)
\ M

cut 2 -induction

\ T~

s P'UE() PEM - Q F— 92 E() — o;x0.(E(p))

union cut

Pl ? b B PERIR R b
\ // \\

2 -induction / \

F— Q=0 E(p) — czxoz(E))

Let us explain the leaves :

I—z— P' is a trivial instance of the replacement rule
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.{0=Qq}= Ty % T.(E(p)) since supp(p) C ¢

. E(p) — 0y X OE(E(p))since, for (P e supp(p) :

c&('fxl xn) <E(:)> p.( %(q)x cee X)) = op(z)(p(&f)xl xn) = <Jrz(F>(P)X1
(since p(Z) = I and ¥9 : p(8) o )> 8)

. P' U E(p) [——z— P since by assumption on P'
P (SFRy © T © 5y

1 . . ] * *
. Q UE(p) I——z— Q' since again Q - (<-l:3_(_p'7> o '—-Q > 0 <_E(p)>)
We mainly use this rule in the case of £ = X' U p(:') where p(Z') is

a copy of I'.

Example 2 -
p g% = fpx = fex
{yx = gyx pX V'x = g¥'x (a copy of I)

{\",‘{’. LP',?'} with p(?) =

(here the renaming p is given by supp(p)
p(y) = y").
S = {fgx = ggfx, £Q = gq}

We want to prove ©x =yx from § in I. An obvious first step is :

S l-——z—(fx = yx
/niof\
S b5 ¢x cyx S f—yx cpx

Let us detail the proof of S I—Z—cfx c¥x (we left to the reader the
(easier) proof of the converse inequality yx g_tfx).
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S by fxcyx
AN
restriction

S Fggr fx o ¥
A

renaming

k-——-?x cy'x

IS

U5 v fYx e Y'x P-{foCYIx}}-E—UEr{?xC\}Jx}

N\

Z-induction

N

P b 2 Cy'x PUQ p<v fgxc V'x
where
cz(Yx) = fpx R f\fx - V'x = o, (4'%)
The last step is the proof of the lemma S FfﬁfT fy/x S,¢'X

If we let P' = {fyx c yx} ;

S Izuz‘ fyx cy'x

T renaming

S kg f¥x cyx
%'-induction
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where :

. T (fy'x) = £0 ST BRE gyx <5 x = nz,(\yx)

. G (fy'x) = fgy'x <> ggfY'x —p> gg?x <~ 0 <—‘~\Px =g ,(Px)
% V= <3 P z I g (¥

Intuitively, this proof is more difficult than the one of example 1.

(indeed 9x ¢ yx belongs to Ig(c,Exp), as we have already seen).

We must point out that the independance hypothesis in the induction
rule are crucial for the validity of the system. For example, with the
RPS of example ! and S' = {fgx = gfx} we could prove, relaxing one of these

two independance hypothesis, that S' I-T(fx =yx ¢

. S"—-—z—?x =yx by "I"~induction" (with E' = £" = I) since
TR = Ex o feyx <5 sfyx < gk <o B = op()

. S' I-—Z— S' U I (trivial instance of the replacement rule) and
S'Uz I—z—‘f’x = yx is "proved" exactly as above by "I"-induction" with
P=S"UZI, " =zrand s' =9
But ¢x E<E,S'>\"'x is false.

We now state the main theorem, expressing the complexity -with respect
to S ¢ MA(V)Z and Z- of formulas P provable from S in I. To this aim, let
us define the set ¥'as the least subset of the set of functionnals over N

(that is mappings from N' into itself) such that
- suc, id ¢ © where, for f ¢ N  and n € N :
suc (£) (n) = £(n)+1, id (£)(n) = £(n)
- ify, ¥, € O then
LYoV, e &
+ max(y), Yp) € & where (max(¥), ¥,)(£))(n) = max(¥,(£)(n), ¥, (£)(n))
- comp (), ¥)) € & where (comp(yy, ¥,)(£))(n) = ¥, (£)(W,(£)(n)
+ 8(¥), yy) € & where 8(Y,, ¥,)(£) is given by

(8(¥y, ¥ () (m) = @n)(£)) (n)
. A(0) = '01

Amrl) =y, o A(m)
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Let ¥ be the least subset of NN which contains the identity function
and closed by & (f ¢ g & ped = v(£) eg). It is easy to check that

is a subset of the recursive functions and that for all f of §:

¥ne N f(n+tl) 2 f(n) 2 n

Theorem 5 - Complexity of provable formulas

For all S, symetric binary relation over MA(V), for all RPS z, for all
formula P and for all (explicit) proof of P from S in & there (effectively)
exists f in ¥ such that P < Ig(c;{f}). Furthermore the implication

S P =Pec1i(a$)
holds.

To prove this theorem we need a lot of technical definitions and lemmas,

S0 we postpome a detailed proof to the next paragraph.

An easy consequence of this "complexity theorem" is the following

corollary.

Corollary:validity.

The system is valid.
(Let us remark this may be reached in a more standard way, see for
example [35]).

Our result on complexity of provable formulas means that, if a formula
P is known to be valid in S and I with a minimal complexity h, then a proof
(if any) of P from S in I performed by the system must have a comp lexity
scheme y such that ¢ (id) is greater or equal than h. Thus if h is not a

"small" function, the proof must be difficult.

However this assertion is somewhat vague but we feel that the construction

of the claim below exhibits (at least for "non-stupid" proofs) a link between
an intuitive notion of "difficulty"” of a proof, and the speed of increasing
of its complexity. It remains to make these ideas more precise. But to

support them, let us mention some facts we know :
- if P is proved without use of induction its complexity is a linear function
- if P is proved with I"-induction in which I' = @, again its complexity is

a linear function
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- if P is proved with "non-nested" induction (no use of induction to prove
the hypothesis of the instances of induction rule) then its complexity
is (bounded by) an exponential function. "
We may remark that.the complexity scheme of a proof is completely
determined by the "sketch of the proof" : we call "sketch of the proof" a
binary tree in which each node is labelled by the name of an inference rule
plus an integer in the case of replacement rule (such that ¢cC t ) Then

two proofs with the same sketch have the same complexity scheme,

§5 Proof of the theorem 5

First, we have to put any proof in some "standard form", which will be
a proof using at most one application of the restriction rule, at the top

of the associated tree.

Let ff—f— be the least binary relation over formulas which satisfies
rules (1) to (4) ; we call a prbof (which does not use the restriction rule)

in this system a’'standard proof.

For any proof t :
. we denote by Alph(t) the union of Alph(P) U Alph(:) U Alph(Q) for all 1la-
- bels: P F?T'Q of t,

. if p. is a renaming such that supp(p) N Alph(t) # @, we denote by p(t) the
proof obtained from t by replacing at each node its label, say P F——— Q,
by 0o x p(P) }ETEY pxp(Q) . Obviously, it is a proof of p x p(Q) from
p x p(P) in o(Z) if t is a proof of P from Q in I (trivial induction on the
size of t).

. if I is a RPS such that Alph(Z) M Alph(t) = #, we get the tree (t<ZI) by
replacing in t at all nodes the labels P F——— Qby?P FfTﬁf Q : obviously
if t is a proof of P from Q in I', then (t < I) is a proof of P from Q in

'uUz: (same argument) .

Lemma 1 : Standard form.

PhyQ= 1" :2' [PUQ=2|PUQand? |lgroQ
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We only sketch the proof (which proceeds by induction on the number

of occurrences of the restriction rule in a proof of P from Q- in I)

Let t be a proof of the form :

P IT
tl
] 4
P IZ'IP'UQ' Q
restriction
P' |=+ Q'

and let p be a renaming such that, if we denote

z | ' UQ' and 1, = ' - (P' U Q")

1 =
Alph(t') N supp(p) = O and Alph(z,) ¢ supp(p)
Then p(Z]) =I,pX p(P') = P' and p x p(Q') =Q'.

Thus p(t") is a proof of Q' from P' in Zy U p(zz) = p(z").

Since Alph(p(Zz))f\ Alph(t') = @, we are able to construct the tree
(t' « p(Z,)) and to verify that '

P |'2'1$(22) Q
(t' « p(5,))
lz—Up(z?_)

AN
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is again a proof of Q from P in ZiU p(Zz) and obviously (2“Up(22)) | PUQ=
2| PUQ since Alph(Z,) € supp(p), and thus Alph(I,) N Alph(PUQ) = ¢ (for
Alph(PUQ) € Alph(t')). .

It is now clear that the theorem will be proved if it is established

forstandard proofs since we have b

PC I?:('c,{f}) => P c I, (0, {£})

S
zlp
for ZIP = ZISUP (s SMA(V)Z) and ¥n, p € N :

T.o0n x oop(P)=1r

n P
00y X Ty o0 X"Z|P°GZ|P(P)

zlp ©° “zp

From now on, we denote Ty © ot); by nrzf

Here is the second packet of technical definitions and properties :

- for a formula P, we define the parallel rewriting in P (see [18]) as :

! =
t+P,L> ! o<=> . 1s ¢ MA"‘P(V) -}{xil,...,xip}g v

3v,,...,v_ substitutions, }{t. c t!/1sjsp}l c P s.t.
1 P 1=7] =

t = sw;%tj)/xi d

j]lstp an

| - Koot
t' = 3[9j(tj)/xij]|sjsp

*
Obviously, ¢ -'/-é—> c —;—>and thus —;—> = +£—>

- for a RPS

z {‘?ixl R
l1 g1 €K

we define the simultaneous rewriting in I :

t —g—> t' <= (i) either t = t'

>

def

14 = "_ | I ] . ] !

(ii) or t = ft]...tk, t —ftl...tk, f ¢ AUY and ¥i t; —-§—> ti.

(iii) or t=g;m,...m,, t'=‘ri[m;/xl,...,m['11/)gl]]

and ¥j m, ——> m}

J 3 J

Again —> C ——> C 2> and 4> =-%>
T =3 =71 P >
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We denote <—§— = (—0—>)-l

- As we shall see, only the 5 U T> steps (in an instance of the re-

placement rule) can increase the complexity of the formulas. Thus we

define
f‘
0
*
Crp = EVF)
m+l _ _m 0
Erp “Spp ° (7 U °Epp

It is clear that, if Q is (explicitely) a finite subset of

cu > U —P—>)*,then there exists a (computable) m ¢ N such that

m
QCE; p:

We left to the reader the (easy) verification of the following facts

() tet' => 7.(t) £ 7.(c") and o (t) € o (")

(2) (see [28]) t —o—> oz(t) and
z
‘ t —g—> th = () = m(t"), a,(t) —-g—> o (t') and t' —g—>oz(t)

| |
(3) t -;’-71§—> t' = nz(t) m> Tl'z(t ) and, for all n, p e N

d p2n=>0 (t)(——/—/——> o —2&55) o"(t )
czxoz(P) pX
(hint : o (s [vg‘(tijij],sjsp) = 05 (8) [(og 0 v)* (o5 (e) /%551 5 0)

z z R z
(4) n, x nq(P) Cegandp 2q=>n % np(P) cegg

(hint : recall that nlf =m0 01; -p 32 q=>by (2) nz(t) =~ ni(t)

Lemma 2 :

Let t be astandard proof of Q from P in I, and I' independant from I.

|
If we get the tree ti (for minN) by replacing at all nodes of t the la-
1 1 \
bels P' HT Q' by ni x n ®P"H | z..1'1 x ni (Q"), then t:l is a
' r! .

tandard
standard proof qf n, XN (Q) from n, X nm (P) in I.
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Proof : by induction on t.

(1) If t reduces to a single node labelled P H——— Q, which is an instance

L
of the replacement rule, then there exists k ¢ N such that Q c 51; P
H
Let us prove the lemma in this case by induction on k ; and in fact :
z' z! kK o ]
T * My (@ g-t—:-ZI,ﬂlf;}‘mri(P) :

(i) if k = 0, Q€ (C U —o—>)*. We have only to check (by means of
X
fact (1)) that

t—g—>t'=>VmsN (t)—g—>n (t)

which is true because I and I' are independant (trivial induction on

the definition of —e—>).
z

(ii) if Qg_Elzd'Il, then for all (t,t') e Q there exists s,s' s.t. :
»

k A T * '
tSrp s(<—g— U-4f>) s'(C U—g——>) t

T 1
By induction hypothesis : n> (t) X g o = (s).
m =7 N XN (P) 'm

(iii) if s <o s' then, as in case (i) n (s) <—o— n (s') and, as we have

seen in (i) : (s )E U ——>)* n (t )
Z

(iv) if s +/—> s' then by (3) n (s) —-.+/—-.———> n (s') and again
n xn (P)

ni'(S')Q; U —§—>)* ni'(t').

(2),(3) If t is a tree in which the top rule is the union or cut rule, then

\
the lemma is trivial for tZ .

(4) If t is a tree (where Z Uz, =13

2

/ -1nd\

P PUQ |F——-° X 0, Q)
1 2 2 ‘

AN
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then we apply the induction hypothesis on t, and t,, and only remark
that

Z and I' independant = ¥m € N

zl z' Z' Z'

n, X (rg % 1 (Q)) = L (nm X (Q)) and
2 2 2 2

z' z' _ Z' Z'

n, X (cr22 x UZZ(Q)) = 022 X °22(“m xn_(Q).

The crucial step in the proof of the theorem is the following claim.
(1) for any (explicit) standard proof t of Q from P in I there (effec-
tively) exists a functionnal of @, denoted ¥ and called the

complexity scheme of t, such that

Vie® : P IN(o,{fD) 3 Q¢ Iy(o,{wHH

(2) moreover, if &' is independant from I, then the same functionnal
t
of @ is the complexity scheme of tli (as defined in lemma 2), for

allm in N.

The theorem follows from this claim, since S ¢ MA(V72 implies, for
all I, § ¢ I3(o,{id}).

Proof of the claim : by induction on a standard proof t of Q from P in I :

(1) if t reduces to one node, labelled P H—z— Q, then this is an (ex-
plicit) instance of the replacement rule, thus there (effectively)

exists k of N such that Q g[;l; P Let us define
) ’

lf'm+l = COHIP(EJE, \ym)

or more concretely, for f ¢ NN :

YolE)(m) = £(n)
Vo 1 (B (0) = EQ/_ (D) (m) + 1
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We prove that ¥m ¢ N : \;rm e @ (which is trivial) and ¥f ¢ T :
S _ S, -

by induction on k :
(i) if k = O then for all (t,t') € Q we have t(C U ——>)* t'
- z
and (by facts (1) & (2)) :

¥n e N .ni(t) c nﬁ(t')

But '}('o(f) (n) = f(n) and f ¢ § => £(n) 2 n thus (by fact (2))
b z '

¥n e N n.(t) & ns”o(f) (n)(t )

(ii) if QQEI;:-:I], then, for all (t,t') there exists s,s' s.t. :

t t:k s(<—e— U+H—>) s'"([C U—>)* t'
=Z,P z P -
By induction hypothesis :

¥n e N : ni(t) =8 r\f,k(f)(n)(s)

(iii) if s <o s' then (by fact (2)) s —§—> oz(s') and (fact (2))
)X

. nl(a z 1
¥p e N : np(S) Enp+l(s )

But £ ¢ & => f(y/k(f)(n)) + 1 ;\/’k(f)(n) + 1 (since ¥q £(q) 2 q)
and by definition of ?k+1 and fact (2) :

¥n ¢ n.{/k(f)(n) (S) ©n (f)(n) (S')

Vi 1

and, as we have seen in (i) :

bX ' X '
RAGIORE i ()@ )

(iv) if s —é—b s' then by facts (3) & (2) :

)(S) (—#—> o) n’

‘f’k+l(f)(n) (s

z

Y (D) (n

where P' = nz- X nz (P)
(D) () * Y L (6) (n)

since Y’kﬂ(f)(n) 2 \yk(f)(n) (see (iii)).

. by z
But by hypothesis 'ki'k(f) (n) ¥ nf(‘l'k(f) (n))(P) e Cg

f
/

thus by fact (4) : +1/’—> c &g since \Pk+l(f) (n) f(?‘k(f)(n)).”//,,
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Again, as we have seen in (i) :
E (] z ]
n‘h&l(f)(n) e n)bk+l(f)(n)(t ‘

To achieve the proof of the claim in this case, we only recall

- the proof of lemma 2, in which it is shown that we ‘have
Z' . Z' k v 1 " . .
np X N Q ggz’nzxnz (®) for all m, and the "complexity

scheme" ¥ of t only depends on k in this case.

(2) Assume that t is the tree

Pl UP | Q' UQ"

AN

o P I o

/N /N

and that ‘P' and " are the complexity schemes for t' and t", and

define y = max(\[a’ \}a"), obviously we have

vee § : B UP ¢ IN(0,{£) > Q' UQ" C T (o, (4D D
since R¢ L (c {g}) and g s h (<=> ¥n : g(n) < h(n))
implies R g.Ig(o,{h}) .

The second point of the claim is also easy in this case.

(3) If t is the tree

Pl
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and if ¢' and Y" are the complexity schemes for t' and t" , then
y = ¢ O_yﬂis the complexity scheme of t since

e S P03 Q' i WD 3 oIy (D). "

Again, the second point of the claim is trivial here.

(4) If t is the tree

P “?ﬁz" Q
///////////’:"-induji::;\\\\\\\\\\\\\

P ”—Z—I_ Tl'zn X ’ﬂ'zn(Q) PUQ “’fi_' Uzn X UZ"(Q)

ANIVAN

Let ' be (given by the induction hypothesis) a scheme of complexity

for t'
Ve T Pe I D - ma x mw(@ ¢ 15, (o, 6" (D))

First, let us remark that, since P is independant of " :

E" z"
¥p, q e N ng ¥ n (P) = P and thus

Pe I, (0,{f) & P IS, (o, (D)

. 1 ] 1" " L IU "
since ¥n ¢ N : nﬁ 0 nﬁ = nﬁ o nﬁ = nﬁ z

Iet'YW be (given by the induction hypothesis) a scheme of complexity

for t", and define a sequence of elements of @ by

A0 =y’

A1) = ¥" o A(m)

We prove that
"

Pc Ii.(g,{f}) P ¥m ¢ N n]i X ng'(Q) 4 IS.(G;{R(m) (£)h.
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Y

(1)

(ii)
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111 .
if m = 0, then ni X ni Q = Ten X 'nZ..(Q) and & (m) = V', this is
nothing else that the induction hypothesis on t'.

1" " "

X I z " o s
We"have Noep ¥ nm](Q) =n_ xn (oz., X oz..(Q)), by definition of
n_ . Since I' and I" are independant, we can use lemma 2, which
z" " " " z

"
1 ¥ nm+](Q) from n, X (PUQ)

in L', with the same complexity scheme Y" (induction hypothesis of

indicates that t"m is a proof of n

the proof of the claim, point (2)). But

Z" z" zll zll , "
XN (PUQ) =P U X (Q) (independance of P and I")

and by the induction hypothesis on m :

zl'

P nl@ ¢ o, A 9 if P ¢ 15,0, (6D

Obviously P ¢ Ig,(o,{ﬂ(m)(f) }) in this case since A(m)(£f) > f (for
ally e © and £ e§ : WE) 3 £).

Thus ni X Tl;"(PUQ) < Ig,(o,{'r\(m)(f)}) which implies, by definition
of A (M(m+1)(£) = y"(A(m) (£)))

D % nE (@ € IS, (o, A D (D)) -

k1 ¥ e

This means that, if P ¢ Ig,(c,{f}) then ¥m,n € N :

zll . z" z' z'
nm X nm (nn. X T](,A(m)(f))(n)(Q)) SES

Since A(m) (£)(n) % n for all n, if we let m = n in this formula, we
have by fact (4) : for all n e N

"uz! "'uz!
" Xy @ eEs

where '\};(f) (n) = (A (£))(n). Butyl is nothing but 6('9/',\’»") , which

is thus a complexity scheme for t.

The verification of the second point of the claim in this case is

trivial (see lemma 2).
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