
http://wrap.warwick.ac.uk/

Original citation:
Rytter, W. (1986) On the complexity of parallel parsing of general context-free
languages. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-075

Permanent WRAP url:
http://wrap.warwick.ac.uk/60774

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60774
mailto:publications@warwick.ac.uk

R.esearch report

OH TnE CotupuexmY oF PRnauleu PARSING

OF GENERAL CONTEXT.FREE LANGUAGES

by

Wojciech Rytter

(RR75)

Abstract

Let T(n) be the time to recognize context-free languages on
a parallel random access machine without write conflicts (P-
RAM) using a polynomial number of processors. We

assume that T(n) = Q(log n). Let P(n) be the time to compute
a representation of a parsing tree tor strings of length n

using a polynomial number of processors. Then we prove:
P(n) = O(T(n)). A related result is a parallel time log n

computation of the transitive closure of directed graphs
having special structure.

Department of Computer Science
University of Warwick
Coventry, CV4 7AL, England April 1986

@I{TEff.FREE IAI{GUAGES

Wojciech Rytter,

University of Warwick ,Department of Comp.Science

Coventry CV47AL

and

Warsaw University, Institute of Informatics

Abstract

Let T(n) be the time.to recognize context{ree languages on a parallel
random access machine without write conflicts (p-nnrrrrl using a
polynomial number of processors. we assume that T(n) =Cl(lo6 n).
Let P(n) be the time to compute a representation of a parsing tree for

strings o_f lenglll using a polynomiai number of processors. Then weprove: P(n)= O(T(n)).
A related result is a parallel time tog n computation of the transitive
closure of directed graphs having special structure.

The problem of parsing for context-free tanguages (cfl's,shor1y) seems to
be harder than the problem of recognition. lt was proved by Ruzzo [1] that
if r'(n) is the time to recognize cft's on a RAM (sequentially) then the
time needed to parse cfl's on a RAM is o(T'(n)log n)). we show that when
one considers parallel time then parsing is not harder than recognition
(however the number of processors can grow considerably, though
polynomially).

2

Our model of parallel computation is a parallel random access machine
without write conflicts (known also as a CREW p-RAM). Such a machine
consists of a number of synchronously working processors (RAM's) which
are using a common memory . No two processors can attempt to write in
the same step into the same location, however many processors can read
from the same location. Such a modet corresponds to bounded fan-in
circuits.

The best algorithms for parallel general context-free recognition on a
P-RAM work in log2 (n) time using o(n6) processors, see [2,3] (such
complexity can even be achieved on much weaker models of parallel
computations, cube connected computers and perfect shuffle computers,
see [4]). lt is a hard open problem whether general context-free
recognition can be done in parailel time log(n) on a p-RAM. For
unambiguous languages log n time is enough,see [5], and if the language is
a bracket cfl then the number of processors can be linear,see [6]. Optimal
(log n time and n/rog(n) processors) parartet parsing and recognition
algorithms can be constructed for one-sided Dyck languages.
The algorithms for generat context-free recognition use the parsing
matrix (to be defined later). We show that using this matrix a parsing tree
can be constructed in log (n) time using a cubic number of processors. Even
if the recognition does not construct the parsing matrix then we can
construct it by executing simultaneously o(n2) parallel recognizing
algorithms. The parallel time does not increase, however the number of
processors should be multiplied by n2 in this case.
Throughout the paper we assume (for ease of exposition) that the
grammars are in Chomsky normal form. Let G be a context-free grammar in
Chomsky normal form, let N , Ter, denote the set of nonterminal, terminal
symbols, respectively. we write A - >B if the grammar has such a
production, and A->*w iff the string w can be derived from A. Let S be the

3

starting symbol of the grammar.

Let w=a[1]a[2]....a[n] be a given input string of length n. The recognition

problem is: decide whether A->*w, where A e N

The parsing problem is: construct a parsing tree PT.

This tree has 2n-1 nodes numbered 1..2n-1. With each node x there is

associated the following information :

Father[x], Left[x],Right[x], (left and right sons, if x is not a leaf) and

Label[x] (an element of N).

The tree should satisfy locally the rules of the grammar:

Label[root]=S;

Label[x]->Label[Left[x]lLabel[Right[x]l if x is not a leaf ;

Label[x]->alil if x is the ith leaf, (from the left).

Fathe r[Left[x]l= Father[Right[x]l=y.

It is enough to compute only the tables Father and Label. Left and Right can

be computed then easily on a P-RAM in log(n) time using a small number of

processors. On the other hand, if we have Left and Right then

this does not determine Father, since PT might be any directed acyclic

graph whose nonleaf nodes have outdegree 2.

The parsing table Tab is of the type array[0..n,0..n] of subsets of N,

Tab[i,i]=if icj then { A : A->.a[i+1]...a[i]] else s.

Example.

Let G be the following grammar:

S->CS S->AS S->CA S.>DD S->AC

C->AA C->BB

D->AA D->DC

A->a B->b.

N=iS, C, D,A), Ter=ia,b).

4
Let w=aabba.

The parsing table is presented in Fig.2, and the parsing tree in Fig.1 .

S.. Node

/"*r.t,)

/'f, G)!_\^ io

&, ,X, j \u tn' :(7) (B) ,,

9

Lobel Father Left
S2
c13
A2
A2
st6
c57
B6
B6
A5

Right
5

:

9

:

Fig.l.Porsing tree and its representotion

Fig.2. The persing table for G end w=E6bbo.

Let G be a directed acyclic graph given by the relation R, where R(u,v)
holds whenever (u,v) is an edge of G. we say that G satisfies the unique
path condition (upc, shorily) iff for every two nodes v, u there is at most _

2

3

4
q

5

5

one path from u to v. (Equivalenily, one can say that G is weakly
acyclic,after removing orientation the undirected graph is acyclic).
The best known upper bound to compute the transitive closure R" of
directed graphs is log2n, however if the graph satisfies UpC then it can be
improved

Lemma.

lf the directed graph G with m nodes satisfies UPC then the transitive
closure of G can be computed in log(m) parallel time on a P-RAM using
m3 processors.

Proof .

Let R be the relation corresponding to a directed acyclic graph G satisfying
UPC, and V be the set of nodes. Assume that the nodes are numbered 1..m.
We say that a node is a sink iff it has outdegreezero. Let s= log m . First
we compute the tables R1[vl (corresponding to some relations), for g<k<s.

fo,=R;

for each sink v do in parallel Rg[v,v]:=true;

for k:=1 to s do

for each v1 ,v2,v3 such that R6_1[v1,v2] and Rp_1[v2,v3]

do in parallel R1[v1 ,v3]:=true;

We claim that there are no write conflicts in the above algorithm and
Rr[v1 ,v21 holds iff there is a path from v1 to v2 and v2 is a sink.

The first fact follows from the following (easy to prove) invariant:

6

(-) if Rp[v,v1] and Rp[v,v2l and v, v1, vz are lying on the same path in G

then v1=v2, for k=0..s.

This invariant implies that whenever we have Rt_t [v1 ,v2] and Rp_1 [v2,v3]

and Rp-1[v1,v2'] and Rp-1[v2',v3] then v2:v2', because upc guarantees that

all the nodes involved lie on the same path.

The second fact follows from our doubling technique. We are doubling the
distances between v1, v2tor which Rp[v1,v2] hotds , until ultimately vz

becomes a sink. The foilowing invariant can be easily proved:

(**) lf Rp[x,yl and y is not a sink then dist(x,y)=2k

(dist is the length of the path from x to y in the graph G).

we have computed a part of R*, if y is a sink then R.(x,y)=pr[x,yl. Now we

compute R* for all nonsink nodes.

we introduce two relations R';, and Dp (k=0..s), represented by

two-dimensional tables with the same names.

R'p[x,yl holds iff R1[x,yJ holds and y is not a sink.

Dp[x,yl holds iff dist(x,y).2k*1, for nonsink nodes X,y .

Let lD denote the identity relation and . denote the composition of
relations, we consider only the nodes which are not sinks. The retations D1

can be computed using the following recurrence formula (following from
invariant (*-)):

DO= R+lD; Dk+1 =Dk+Dk.R'k*1.

we can easily compute R'g ?nd Dg , n€xt we apply the recurrence equation

log(n) times.

fork:=1 bsdg
begin

for each x,z do in parallel jI Df_t [x,z] then D1[x,z]:=true;

for each x,y,z such that Dg_1[x,y] and R'p[y,zl do in parallel D1[x,z]:=true

end

There are no write conflicts here because it x,y,z are lying on the same

path and R'1[y,z] holds then y is uniquely determined by x, z (as a node lying

on the path from x to z, whose distance to z is zk \. observe that in this

algorithm Dp could be replaced by D (in fact the subscript k is not needed,

though it helps to apply the recurrence formula direcily).

Now we can compute R*= Rs*D, in one parallel step. This completes the

proof .

Theorem

Assume that context-free recognition can be done in the parallel time
T(n) using R(n) processors of a p-RAM, and T(n)=911sg n).

Then the representation of a parsing tree (if there is any) can be

constructed in parallel time o(T(n)) using o(R(n) n2*n3) processors.

lf the recognition procedure constructs the parsing table then O(R(n)+n3)
processors are enough.

Proof .

First we construct the parsing table Tab for a given input string

w=a[1]a[2]...a[n], and a given grammar G in Chomsky normal form. This can
be done in parallel time T(n) using n2 R(n) processors. For each A,i.j,
simultaneously we check whether A->*a[i+1]...atil.
lf s->"w then we start to compute a parsing tree etse we stop here,
because we know that in such case there is no parsing tree.

We construct now the following acyclic directed graph G represented by
the relation R (the relation:to be a possible father). The set of nodes is

V= {(A,i,j) : i.j, AeTab[i,j]]. We execute:

I
for each node (A,i,j), i<j, do in parallel

find ickcj, B,C such that

there is a production A->Bc and B e Tab[i,k] and c eTab[k,i];
R[(B, i, k), (A, i,j)] := R[(C, k,j), (A, i,j)] :=tru e ;

((A,i,i) becomes a possible father of (B,i,k),(c,k,i), the number k and
nonterminals B, C can be found using a tinear number of processors for
fixed i,j,these processors coutd be organized into the tree to search i-th
row and j-th column (simultaneously) of Tab for suitable B,C. There can be
many k's possible, but we choose any one of them and it is then fixed).
The graph corresponding to our exampte grammar and the string aabba is
shown in Fig.3. observe that the tree from Fig.1 corresponds to a subgraph
of this graph.

s,0,5 _

\
4,4,5

4,1 ,2 8,2,3 8,3,4

Fig.3. The groph G.

Next we compute the transitive closure R*. The graph G satisfies upc and
we can use algorithm from the lemma. Let vg =(s,O,n). The parsing tree pr
consists of all nodes v such that R-(v,vg) holds .The root of pr is vg . The

s,

I
function Father is computed as follows:

for each u, V e PT do in parallel

if R(u,v) then Father[u]:=v;

The tables Left and Right can be computed in parallel time log n using the
table Father.so far the nodes are not numbered (from 1 to 2n,1) as

required, each node is a triple of the form (A,i,j) ,and all the tables have

entries indexed by such triples. The set of such triples belonging to pT can

be numbered from 1 to 2n-1 using the algorithm of Tarjan and Vishkin [7]
for preorder (or postorder) numbering of trees.This can be done also by

arranging all possible triples in any initiat order (e.g. lexicographically),

and then the final number of a triple belonging to PT could be obtained by

counting the number of preceding triples which are elements of pT (using a
prefix computation). lf num is the numbering obtained , then

Label [n u m (A, i,j)] :=A.

The constructed tree now satisfies all the requirements. This completes
the proof.

L

It was proved in [5] that every unambiguous cft can be recognized in log(n)

time on a P-RAM using a polynomial number of processors. Now we can

strengthen the result of [5].

Corollary.

Every unambiguous cfl can parsed on a P-RAM in log n time using

polynomial number of processors.

Acknowledgments.

The author thanks M.Paterson for his comments on this paper.

References.
10

11l W. Ruzzo. On the complexity of general context free language parsing

and recognition. Automata, languages and programming. Lect.Notes in

Computer Science,1979

tzl W.Ruzzo. Tree-size bounded alternation. Journal of Comp. and

Syst.Sciences 21, 218-235, 1 980

t3l W.Rytter. The complexity of two way pushdown automata and recursive
' programs. NATO Advanced Research Workshop "Combinatorial algorithms on

words" (ed.A.Apostolico,Z.Gal i l),Spri n ger-Ve rlag 1 985

t4l W.Rytter. On the recognition of context free languages. Computation

Theory, Lect.Notes in Comp.S'cience,springer Verlag 1985

tsl W.Rytter. Parallel time log n recognition of unambiguous cfl's. Fund.of

Computation Theory, Lect.Notes in Computer Science 1985

16l W.Rytter,R.Giancarlo. Parallel parsing of bracket and recognition of
-

input driven languages. manuscript,1985

l7l R.Tarjan,U.Vishkin. Finding biconnected components and computing tree

functions in logarithmic parallel time. Proceedings of IEEE Symp. on

Found.of Comp.Science, 1 984

