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ABSTRACT

A Probabilistic algorithm for checking set disjointness and performing set intersection of two sets stored
at different machines is presented. The algorithm is intended to minimize the amount of communication
between the machines. If n is the number of elements in each set and k is the number of bits required
to represent each of the elements, then it is shown that the expected running time of the set disjointness
algorithm is Oflog log n) rounds, each round consisting of exchanging one message with 2n ~ & bits and
performing O(n) steps of local computation. The deterministic lower bound on the amount of communication
in this case is Q(nk). The analysis of the algorithm involves approximating Markov chains by deterministic

models.

1. INTRODUCTION

This paper considers the problem of computing set intersection of two sets stored at two different
machines. We assume that the sets contain elements whose size is quite large. For example, an element may
be a line of text, a picture, or a file. The goal is to avoid sending all of the data to one machine and performing
the intersection there. This is essential in cases where communication dominates the computation cost or in
cases where there is not enough space in one machine for both sets. We present in this paper a probabilistic
distributed algorithm for set intersection that is based on hashing, and in particular, random hash functions
(CW79, WCT9]|. The algorithm efficiently eliminates elements that do not belong to the intersection without
sending them over to the other machine. The rate of elimination of elements depends on the relative size of
the intersection. We analyze the expected performance of the algorithm and show that if the intersection
is small then the improvement in communication cost over any deterministic algorithm is substantial. If
the intersection is not small then elements are eliminated at a slower rate. The algorithm can detect this
with high probability early and then a deterministic algorithm can be used on the elements that were not
eliminated. The additional cost of local computation is not excessive in any case. One of the most important
application of set intersection is in the compustation of semi-joins in distributed database systems [BG79].

The sequential computational complexity of the set intersection problem under a comparison based
model is known. It is straightforward to perform set intersection of two sets of size n, using sorting, with
O(nlog n) comparisons. Reingold [Re72| proved that }(nlog n) comparisons are necessary to determine
if the two sets are disjoint. Manber and Tompa [MT82| extended Reingold’s results to probabilistic and

nondeterministic decision trees and proved that the same lower bound holds (see also [MSM84}). Manber



[Ma84| considered the case of sets of different sizes and showed that ®(mlog n) comparisons are necessary
and sufficient in order to determine set disjointness of two sets of sizes n and m, m > n. The same lower
bound holds for probabilistic decision trees as well. These results imply that one has to use more than

comparisons to improve on the solution using sorting.

In shis paper we show that the set disjointness problem can be solved in Q(n log log n) expected number
of operations. The operations include hashing and comparisons. Moreover, the algorithm we presens is very
suitable to a distributed environment in which the sets are stored at two different machines. [t can be
divided into O(log log n) rounds, each round consists of exchanging one message with 2n ~ & birs {where &
is the size of each element) and performing O(n) steps of local computation. (It is possible to modify the
algorithm to work in O(n) expected number of bits of communication by reducing the size of the messages
as the algorithm progresses. However, more rounds will be required, hence it will be an inferior distributed

algorithm. We will not discuss this modification in this paper.)

Analysis of probabilistic algorithms is usually quite complicated. This problem is no exception. We
analyze the running time for large n by splitting the evolution of the algorithm into two stages, an essentially
deterministic initial stage and a random termination stage. We approximate the behavior of the algorithm in
the initial stage by a deterministic model and show that this deterministic approximation is good until most
of the elements outside the intersection have been eliminated. We then show that the order of magnitude of
the running time of the random termination stage is independent of n. The techniques employed here are
applicable to models in a variety of fields (cf. [Ku76|) and further applications to probabilistic algorithms

are anticipated.

Several other similar problems have been studied recently under a distributed model. Rodeh [Ro82]
showed that exchanging ®{log n) numbers is necessary and sufficient to compute the median of the union of
two sets stored at different machines. Mehlhorn and Schmidt[MS82] considered the following very simplified
version of set intersection. Given two sequences X = (z,,z2,...,2,) and Y = (y;,¥2,.-.,Yn), such that
X,Y C {0,1,...,2™ — 1}, determine whether there exists 1+ such that z; = y;. They proved that any
deterministic algorithm requires sending n? bits, and then showed a probabilistic algorithm whose expected
communication cost is only O(n log? n) bits. This serves as another example where probabilistic algorithms
are more powerful than deterministic algorithms. In this paper we extend these results to the more general

set intersection problem.
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Another similar example of the power of probabilistic algorithms is probabilistic counting. Flajolet and
Martin [FM83] (see also iSt831) introduced a class of such algorithms to estimate the number of distinct ele-
ments in a multiset. They were able to achieve an estimate with typical accuracy of 5-10% by a probabilistic
algorithm that runs in linear time and makes only one pass through the data. This is significantly faster

than the regular deterministic algorithm which requires sorting.

2. THE ALGORITHM

Let X = {z,, 25, .z,yand Y = {y,, s, .. Y}, such that X, ¥ C {0, 1, ..,2% - 1}

We assume that X is stored in machine M, and Y is stored in machine M>. We want to compute X NY.
Both machines can exchange messages and perform local computation on the data they hold. Our main
measure of complexity is the number of bits of communication and the number of messages. We are also
interested in minimizing the amount of local computation.

The algorithm consists of several identical rounds. In each round the sets are reduced by eliminating
elements that are certain not to appear in the intersection. The algorithm terminates when either no more
elements are left, in which case the sets are guaranteed to be disjoint, or when we are left with a subset of
candidates that belong to the intersection with very high probability. In this case we can either conclude
that, with high probability, the sets are not disjoint, or exchange the candidates to ensure that they indeed
form the intersection. In section 4 we show that if the sets are disjoint the expected number of rounds to
eliminate all elements is Oflog log n).

Each machine ¢ (£ = 1,2) uses a binary table, called By, of size N > n. N determines the size of
each message. Obviously, the larger N is the less messages we expect to have; it is convenlent to consider
N = m + n. The main part of the algorithm is the use of random hash functions introduced by Carter and
Wegman [CW79|. These functions are taken at random from a predetermined class of hash functions. For
example, the following class of functions is a good candidate: H; = {(az+ b6 (mod p)) (mod N), where
a,b < p (a # 0), are chosen at random, p > 2* is a prime, and N is the size of the table (p > N) (see
[CWT9, WCT9] for a description of several other good classes and their properties). We denote the elements
that are not eliminated after round » by X* and Y* respectively (X° = X and Y° = Y'); these elements are
called candidates. In each round » > 0 one of the machines, say M, selects a random hash function H; from
a class of hash functions H. (Since the number of such functions required by the algorithm is small, it is

sufficient in practice to select those functions in advance; however, for the analysis we need the fact that the
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functions are completely random.)

M, sends a description of H; to M, (in the case of the function given above the description includes
the parameters « and b). M, uses H; to hash the elements of X* into B in the following way. Bi{j] is
set to true iff there exists at least one element r. & X* such that H;(z.) = ) {ie =z, is hashed onto the
7’th position). M> does the same (using the same hash function) for ¥*. The corresponding tables are then
exchanged. This requires sending only N bits. M| can now eliminate all elements of X' that were hashed
into position 7 such that Ba[7] = false; M> does the same for Y*. (To find those elements one can either

leave pointers with the B tables, or rehash.)

There are several ways to terminate the algorithm. If we are only interested in a disjointness test and
we are satisfied with a probabilistic algorithm that may make errors then we can run the algorithm for
c{log, log, n) steps. where = > | is a constant. If not all the elements are eliminated then the sets are not
disjoint with very high probability (depending on ¢). If we want to determine the actual intersection with
some probability of error we can terminate at round @ when either X' = 0 (notice that X' = ¥ implies
Vi=0), or X7 = X7t = = X" (and the same for Y') for some predetermined constant g. We have

not yet analyzed this case.

Another approach is to run this algorithm for as long as a significant number of elements are expected
to be eliminated and then send the remaining elements {most of which belong to the intersection with high
probability) to the other machine. The decision when to stop the algorithm depends on the relative costs of

the different steps. More precisely, the cost of the computation is

m-1
Cop = Z [CX (Xl + YL) -+ IB} + (Xm + Ym)

=4}

if the algorithm is terminated after m rounds. The parameters o, § and  correspond respectively to the
costs of hashing and performing the elimination, sending the bitmaps, and sending the remaining elements
at the end (we include both X™ and Y™ for symmetry). Let B be the cardinality of the intersection. We

would like to select the first m such that the cost of performing the next round is more than the cost of the



extra communication in sending the elements that could have been eliminated in this round, that is

E Evﬂf (_X’m m Ym) -y (Xm-—l = ym- L) !X'm,~—1’ an—L}

X - B (1= N7

-t et

A (¥mt By (1- NTY

U (.Xm~). + Y'm,—].) " B

Of course this requires an estimate of B. One such estimate (based on least squares after m rounds) is given

by

r -t / -1
S W, [XLH +yrt - X (1 —(1-N-Y ) - Y <1-— (1- Nyt )}

S W (1= 8= e (1= N-1)Y]

Lz}

where {W,,,} are positive weights. The optimal selection of the weights as well as other estimation methods
remained to be studied. Termination rules based on a more careful analysis of the stochastic model also

need to be explored.

3. EMPIRICAL RESULTS

We simulated the algorithm for checking set disjointness that was described in section 2. We considered
two random disjoint sets and measured the mean and standard deviation (over 200 random inputs) of the
number of rounds it took to eliminate all elements. We assume that the hash functions map the elements

uniformly onto the bitmap tables. The results are given in table 1.

set size mean standard deviation

16 2.845 0.568
32 3.120 0.476
64 3.205 0.452
128 3.270 0.445
256  3.420 0.495
512 3.760 0.428
1024 3.940 0.238
2048 3.990 0.173



4096 4.015 0.122

83192 4.040 0.196
16384 4.065 0.247
32768 4.100 2301
65536 4.165 0.372

Table 1: Running times for the set disjointness algorithm

4. ANALYSIS

If we assume that the values of H, for distinct elements are independent and uniformly distributed, then
the algorithm in the previous section is probabilistically equivalent to the following “balls in boxes” model.
There are N boxes and red, green, and blue balls. At the 2’th round let R, denote the number of red balls,
G; the number of green balls, and B (which does not depend on 2) the number of blue balls. The balls are
placed at random in the boxes. If a box contains only red or only green balls then those balls are discarded.
The remaining R;, red, G,;.; green, and B blue balls are then collected and the process is repeated. Of
course, the red balls correspond to elements in X but not in Y, the green balls to elements in ¥ but not in
X, and the blue balls to elements common to X and Y. We are interested in the behavior of the model if ¥
is large and Ry and G, are O(N).

As a first step in the analysis, we show that the probabilistic model is well approximated by the following
deterministic model. Given ry, go and b,

7”i+1 =T <1 - 6‘[,)+!7i)>

(4.1)
Gi+1 = Gi (1 - 8"“’4’"")

Theorem 4.1 For N = 2,3,..., let {(Rfv, GY, BN)} be the random process described above with N boxes
and starting with R} red balls, G} green balls, and B blue balls. Define r’¥ = N=!RN ¢V = N='GV,

and b = N7'BY . Let 0 < @ < 1/2, and {(r;, g:)} satisfy 4.1 . If for each ¢ > 0,
Jim Pr (N (Ir = rol + |g] = go] + 6N —b]) > e} =0,

then for e > 0

(4.2) Jim Pr {sgp N (e~ lgb — ) > e} —o.
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Remark 4.2 By (4.2), for large N, v —r;j < eN~" and gV — ¢;| < e N~ with high probability.

Proof: The theorem follows from Theorem A.1 in the Appendix. Note, letting ey = (1 — N"l)_N,

[V N NI N — (N N
E!‘T,'_:_{}T{ v i r (1 Y () i )

il

i

FLN (TN yl'\f)

v

(4.3)
Efg . ir¥ gV} =g (1 - o 07e))
= 1 (Y gY)
and
B (- (Y e) 1 6] =
(44) N7 (L =N <e;(””+fffv) _ e;/jg»”w:v))

2 [ —2(bV4yP —2(bN+gM)
+(rM) (ew/g) ! )“BN (¥ )>}

. T Y
with a similar identisy for g%, .

Theorem A.1 gives (4.2) with sup; replaced by max,<;<ys, with 0 < 3 < 1 — 2a. However. ryp <

NY .
ro(L—¢7")" = o(N~*) and similarly gys = o (N "") so the stronger statement follows from the mono-
ronicity of r;, rf\’, ¢;, and gLN. E

Our main interest is in
(4.5) ermin{z:RfV:GN :O},

T

We begin by treating the case in which G{ =

Proposition 4.3 Suppose GY =0, BY >0, N = 2,3, ..., supy (r) +b") < co, and R} — co. Then

(4.6) lim sup |Pr{ry <z} —exp {—R(j)v (1 - eN""N>3H =0,

N—ooez+

and hence for each ¢ > 0 there exists . > 0 (independent of N) such that

log RY
log (1 - e,}}"N) 1

8

(4.7 limsupPr{ [7x —

N —ro0

Z ke p S e




Remark 4.4 Let &, €, |, be independent geometrically distributed random variables with Pr {¢; < z} =

1= (1 - p)®. Then for large R
Pr {lqu g zL ={1—-{1- p):)R’ ~ e PlL=)T

Consequently, 7y behaves as the maximum of RY independent geometrically distributed random variables
s . . —hN
with parameter p = ey

Proof: Let fIN denote the fraction of boxes that contain blue balls at the 2’th round. Note that ffV, fév, o

are L.id. with E[fN] = 1-¢;"" and

T

N 4 [ N _ N
Var (£) = o3t = e 4 N7 (e - i)

—- __,}N “21"V
N <‘3N = ey/n

Il

IA

Then

<1 - (bN):>R‘V > Pri{ry < 2}

: my
el
=31

oo
ol ) -7

> exp {—R(I)\/ (1 - e;,”N):}.

=F

The asymptotic validity of the approximation follows from the fact that RBY — co, and the second
inequality by Jensen’s inequality. Without loss of generality we may assume 6% — b > 0. (Otherwise work
with convergent subsequences.) If ¥ — 0, the left side and the right side of (4.8) are asymptotically the
same and (4.6) follows, so assume 6% — b > 0. By the monotonicity of Pr{ry < z} it is enough to show

that for arbitrary 0 < &k, < k2 < co the convergence in (4.6) is uniform for z satisfying

ky < Rtj)v (1"61:/1)N>: < ko
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that is

(log RY —logks) / llog (1 - r’:,l’v)K <z < (log RY —log /cl)/

log (1 - e;,"NH,

By the mean value theorem

(4.9) .

and (4.6) follows. Finally, to obtain (4.7), solve

—uN
e

~RYN (l—-e““N>:L ~RYN (1—, >:2
e v =¢/2 and ¢ v = (1-¢/2),

which gives

log R{" — log (|log (¢/2) )

110;_{ (1 - eX,”N)

Zp =

and
log R — log (|log (1 - ¢/2)))
log (1 - e;,I’N) i

Define
ke = 1+ sup max (|log (|log (¢/2)])], \logN(Uog(l —</2)0)
N 1log <1 —ey’ )1
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Corollary 4.5 If b > 0 and limy ., log N bY — bl = 0, then

{4.10) lim sup Pr fry < 2z} —exp { -RY (1~ e"’):}l =0,

N—co =g~

and for every e > 0 there is a «. such thas

. 3 log RY . } .
4.11 lim sup Pr f{rl - - - >k o <e
( ) N—~cop 1{ v :lOg(l‘“‘f”’)”

Proof: As before, by monotonicity, it is sufficient to fix 0 < k; < ks < co and consider z satisfying

b

o BY (1-ey™) RN (1) < ks,

which implies z < C'log RY = O(log N). Then by the mean value theorem

B (1) Yo

i -1
- bl —HN L
e —en E(l—el\, ) (l—e )

74

ko (1p =6+ 0 (V1) (1=27") (1)

and the Corollary follows. J

Next we consider the case rq, go,b > 0.

Theorem 4.6 Suppose the conditions of Theorem 4.1 are satisfied with 7y, g0, b > 0. Let 0 < v < & and

define
- ylog N ﬂ
o log(1—e7")
Then
(4.13) lim sup |Pr{ry <z} —exp {— (Fon + gon ) N (1 — 8~!r)3—nw H =0,
N—oo .cz+

and for each € > 0 there exists k., > 0 such that

log N S <
N ~————-—————-——ﬂ > ke p < e

(4.14) limsup Pr { " Togl= o

N —co
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Remark 4.7 Note that

, Tkt gk d : e ~
{4.15) To 4+ go < ﬁ——-——,); Ty exp { = Z gl} + gy eXp { T Z rz} <k {7y, go. b)
— g—h - e
for all k.
Consequently there exist constants ¢, and ¢y depending on ry, gy and & such that
4.16 g NTT Lrpn + Gop KeaNTT
N N

for all V.

Proof: It follows from Theorem 4.1 that for every ¢ > 0

N o

- Y, g,
{(4.17) lim PIH——-— F r ~1

>€}:O,

Let r_,{; = min {z : R;’V = O}. 7{\?, = min {L : [?,;‘V = O} where for 1 > oy f{lN is the number of red balls

iToy

that have been in a box with a blue ball at each round 3, oy < ;3 < 2. Finally, let RIN, 1 > oy, be

the number of red balls that would remain if at time oy all green balls were painted blue, and define

nk = min {7. : f?lN = 0}. Note that v§ < rf and that
{4.18) Pr{nf\‘} §z} SPr{rﬁ Sz} SPr{vI{‘} Sz}.

After round oy, {Rf\’} and {1“?11\!} behave like the model without green balls analyzed in Proposition 4.3 .

Consequently, by Proposition 4.3 , Corollary 4.5 , and the Markov property

| e N
lim sup ]Pr {nﬁ —on & z} - F [exp {-R(J,VN <1 — ey (’ g¥, )> Hi
| VANNE

SEZF
(4.19)
= Jim sup [Pr {nf o < 2}~ exp {=rp N (17"} =0
N—ca g+ )
and
I S
N—oosez+ |
(4.20)

= lim sup |Pr ’7R~0N§z —exp iy ~Tapy NV 1—e ™ =0
N

N=—roo .cz+

12



It follows that limpy . Pr {71,\‘} = r{,?} = 1,

Let 7§ and +§ be defined as r{f and v§. Note that 7y = 7§ V 7§ so limy—c Pr {TN =y vk} =L

Again applying Proposition 4.3

i sup (Pe{§ 5y ~ow < 2} - B lex {(RE, < 02) (15" ) ]|

N —o

(4.21) -
= lim sup Pr{ry —on < 2} - exp{— (Toy + 9oy ) N (1 - e"’):}i =0,
N —co sez+

Replacing z by z — oy gives (4.13).
Finally (4.14) follows from (4.13) and {4.16) by an argument similar to that used for (4.7). 8§

In the final case considered, we assume BY =0 for all ¥.

Theorem 4.8 Suppose the conditions of Theorem 4.1 are satisfied with ry, go > 0, and that BY = 0 for all
N. Let oy = min {7, irg < N”l}. Then
(4.22) lim Pri{ry € {on.on + Loy +2}} = L.

N oo

Specifically, setting uy = roy 1oy 1

lim (Pr{ry =onx}—e V") =0

N
(4.23) Jim (Priny =oy + 1} —e ¥k (1-e"uv) ) =0

: — oY _ o amNug —
ngréo <Pr{rN_crN+2} (1 e N)) 0.

Remark 4.9 Note that

(4.24) lim 25 = fm = g

t—oo Tig; 1—CcQ [o71

and

{4.25) lim &= 2P0 o

In particular impy oo —22¥7% = 1. Note also that limy _. s eVu» <1 — e‘N”TV> =0,

U,;v



50 impy oo Pri{ry = on} Pr{ry = oy + 2} = 0. Note that

a1l =g e

Ji i

ToetieL = (700)
= (V,g/x)d("z

and that lim; .o, C, = 1. It follows that immnfoy/log,log, N = L

Proof: From (4.24) and {4.25) it follows that

(4.26) dim R =i TR o

Since 7y —1Gay -1 > N 7', (4.25) and (4.26) imply that there exists k such thas

-ty hald 4

!
{4.27) lim = lim

N—co Ipy —k N—co Jppy —k

=0.

Then, by Proposition 4.1 , for each ¢ > 0

(4.28) lim Pr{ sup <

N o0 i<ay —k

; N
’"‘——11+ g‘——l}) >e}=0ﬂ
Ty | 95 !

By (4.4)
M )
E TNgN 1 ]T{v)gf’v
(4.29) = M) [ (e = ) (s - et

(4.30) Pr{ ::;11\/ - ll > /c(Nerglg\f)-L/zl < ck™?

and a similar inequality holds for gﬁ_l,

14



By (4.24), (4.28), and the fact that Nr,, _sysy —¢ — oo for £ > 2, we can, in (4.28), replace k by 1. It

also follows from (4.30) that for every ¢ > 0 there exists a . such that

) ; | -1
(431) Sl\lj[) Pr { NT?’N g'l:lN (T'[Xv—lgyw*l) > K’} i €
and
X gk —1/2
(4.32) sup Pr{ i -ZE2"0 — 1) > g, (Nuy) /7 ) < e
N I Un

Let £V denote the fraction of boxes at the 2’th round that contain green balls. Then
‘ (N N _ N N NNRY N N
(433) PI {ré+l -+ gi+l - 017‘{, vgxl } - E l(l - tzl ) 1’# y ] .

Numbering the green balls 1,2,...G¥, let nge = 1 if the k’th and £’th balls are in the same box. Then

(4.34) 0< g e, SN
k<?

and hence

(4.35) Eligh — &l ¥l <y

Si+1

Y-8,

1

Consequently, using (4.28)

lim Pr{ry _ +¢5 _, =0}

N—co s

. . RrRY _,
:NIT;E{“&&;V”"I) ’ }
(4.36)

. —-Nr¥ o LyN o,
= lim E[e ’-w«-f/«,v—.}
N-—co

= lim e Nrw-rv-2 = Q,
N—co ‘

and again by (4.28) (with k replaced by 1),

. NP g
lim )Pr{r,j,vV «{-g;’:’N :Q} — zr_N_uanxE

N —o0
(437) = lim |F [(1 _ E”N)RAN—L} . B_NF*N“L’"*N—L
N o0
N N |
= lim 1E [E“NY’:V"“I'N“l} .._e“Nr'N-l!hN-L — O,
— 00

which gives the first limit in (4.23). Verification of the other limits is similar using (4.31) and (4.32). §
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APPENDIX
Theorem A.l For N = 1,2,..., leg {Z!-N} be a Markov chain with values in R*. Let F : R* — R be

consinuonsly differentiable and suppose {Z,} satisfies Z,., = F(Z;). Define

(A.1) F¥(z) = E[Z},|Z] = 2]
and
(4.2) GY¥(z) = NE (7, - F¥ (20))712) = 2|

Let 0 < @ < 1/2. Suppose for each compact K C R, supy sup,ex GN{(z) < o0, and

(A.3) lim sup N*|FN(z) - F(2)| =0,

N—00 oy
and for each ¢ > 0

(A.4) lim Pr{N"iZ) — Z| > ¢} =0.

N —co

a) For M = 1,2,...and ¢ >0

(A.5) lim Pr{ max N“1Z1N~Zi1>e}:0.
N—co 0<i<M

b) If in addition, lim; .o Z; = Zs exists, and ||0F(Zs)|| < 1 (here dF is the matrix of first partial

derivatives), then, for 0 < § <1 —2c and € > 0

{A.6) lim Pr{ max N® EZI;N - Zz) > e} = 0.

N e 20 G<IKNA
Proof: Let Kyr = sup{||0F(z)| : miny<,<n |2 — Z.| < €}. Note that for 0 <2 < M ~ 1,
(A7) N*|ZX, = Zon| = [N*(ZX, - FY(Z]) + N (FY(2)) - F(Z])) + N (F(2]7) - F(Z))],

so for e > 0
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Pr{N~|ZN, - Zisi| > e} < Pr{N="|Z}, - FN(ZN)| > ¢/3, N

ZiN~Zz|§e}+

Pr{N"

FN(ZN) = F(ZN)| > ¢/3, N*

2V -z < e+

Pri{N“|ZN - Z|>en (37 K )}

IA

ge—2N-ll=20 g [GN(ZI'N)X{N g »z¥;<»}} -
Pr{N"IFN(ZN) = F(ZN)| > ¢/3. N" ZN - 2 < ¢} =
Pr{N“1Z} —Z|>ecn (37 K o)}

N

Using the uniform (in N) boundedness of GV on compact sets, (A.3), and (A.4), {A.5) follows by induction.

Under the conditions of (b), let p satisfy [|[0F(Z)|| < p < 1. By the continuity of F there exists ¢, > 0

and ¢y > 0 such that [8F(2)|] < pif iz = Z.oi < 50 + 0.

Fix 0 < € < ¢y. Let M = min{k:Z, - Z.,. < du,2 >k}, and let Ny be such that for N > N, and

|z — Zoo] < 00+ en, N iFN(z) - Flz)i el —p), 2. IEe 2 M N > Ny and N ;ZiN - Zl[ < ¢, then

(A.9)

Consequently

o

0<i<NS

max N [ZlN —Z¢| >e}

NZN  — Zo i < NYUZY = FN(ZN )+ e(1 = p)/2 + pe.

IN

Pr{ max N“
0<i<M

zy -z >€}+

Pr{ max N*|ZVN ~Zi1 > e, N |2 — Zy| < E}
M<i<N#

< Pr{ max N® ZiN-Zi >e}+
0<i<M
NP —
> Pr{N“[ZN, - Ziy| > e N ZY - Z) < ¢}
1=AL
< Pr{ max N"™|ZVN - le > e}+
0<i<M
NV 1
> Pe{N[ZY, - FY(ZN)| > «(1-p)/2, N* |2 - 2] < ¢}
1= M
<

Pr{ max N"iZ,-N—ZJ>e}+

0<i<M
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N~

L

46‘:(1 _ /))“: yoil=2e g GN(Z£‘V X
{

Ntz -z <

P

{

1=

and the right side goes to zero by part (a) and bonndedness of GV. g

For continuous time analogues of the above theorem see Kurtz ([Ku76|, [Ku78{). and Darden and Kurtz

((DK]).
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