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INTRODUCTION 

BACKGROUND Axiomatic methods for data type specification arise from the 
idea that a data type D in a program language L, or program P, should be 
formally characterised in L, or P, as a collection E of operators which 
have properties defined by a set E of axioms. The axiomatic specification 
(E,E) is meant to be a contract in which E settles the syntactic structure 
of D and E guarantees a set of features connnon to all implementations of 
D. Algebraic specification methods are the simplest of the axiomatic methods 
in so far as they use the simplest axioms which are algebraic formulae 
such as equational laws. 

Axiomatic data type specifications were first seen in A. van Wijngaarden's 
study of computer real arithmetic [57], but the full extent of their r8le 
for general user-defined types emerged later, through the work of C.A.R. Hoare 
on program specification and correctness [25,26,27] and D. Parnas on 
modularisation [43,44]. The algebraic specification methods originate in 
B. Liskov and S. Zilles [34], S. Zilles [59], J.V. Guttag [21] and ADJ [17]. 
Simple, elegant, and ideally matched to an algebraic view of the semantics 
of data types, the algebraic specification methods have proved to be a 
versatile tool for thinking about problems to do with data in the design 
and implementation of programming languages : see Wulf [58] and the 

bibliography Kutzler and Lichtenberger [29]. 

But these investigations, with their diverse programming objectives, have 
not easily grown into a theory of algebraic data type specification. The subject 
has been made with widely varying standards of conceptual precision and 
mathematical rigour, and has been troubled by technical problems of an algebraic 
nature. One thinks of the literature generated by M. Majster's transversable 
stack [37] which fails to have the much favoured finite equational specification. 
This important observation signalled a growth to profusion of algebraic 
specification techniques, many informal and defective, some ad hoe, designed 
for particular examples. 

CLASSIFICATION PROGRAMME The purpose of this paper is to concisely review 

the mathematical basis of the algebraic approach to data type specification, 
and organise a proper mathematical analysis and classification of the 

algebraic specification methods that gives technical insight into the 

methods, and a theoretical assessment of their scope and limits. We will 
concentrate on equationaZ and conditional equationaZ specifications, with 
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and without hidd;Jn operators, using initiaZ aZgebra semantics, as developed 

b.r the ADJ Group for data types with total operators; see ADJ [17,18,51,52]. 

However, the tools and techniques can be used to extend the classification 

programme to include other specification methods. 

In Sections 1 and 2 we carefully describe the syntactic and semantic 

structure of an algebraic specification technique. This leads us to a 

taxonomy of 27 specification methods : 9 not involving hidden machinery, 

9 allowing hidden operators, and 9 allowing hidden types and operators. For 

these methods we formulate comparison questions of the form : Given two 

aZgebraic specification methods Mand M', is M more generaZZy appZicabZe or 

more powerfuZ than M', are they equivaZent, or are they disparate in their 

powers of definition? In the course of the pap.er., we completely answer 

such questions for all the methods not allowing hidden machinery, and we 

almost complete the classification of the other techniques. The situation 

is summarised in Figures A and B in Sections 1 and 2. 

In making the classification,where possible, we survey relevant 

information and results existing in the data types literature, and in 

the mathematical literature, but usually we prove or reprove what we need 

here. For example, in Section 4, we prove in detail that the simple 

numerical structure 

2 ({ 0, 1, ••• } ; 0, x+ 1, x ) 

cannot be specified using finitely many equations and initial algebra 

semantics, unless auxiliary or hidden operators are permitted. Also, 

in Section 4, we prove in detail that the simple structure 

({O,l, ••• },{true,false}; O, x+l, p, true, false), 

where p:{O,l, ••• } + {true,false} is the characteristic function of the prime 

numbers, cannot be specified using finitely many conditional equations and 

initial algebra semantics, but it can be given a specification using finitely 

many equations and auxiliary functions. These results are related to 

work on the role of hidden operations by ADJ [52] and Majster [37,38]. 

Other counter-examples can be found in Section 6. 

In Section 3 we carefully define the nature of an effectively 

calculable data type in terms of computabZe and semicomputabZe many-sorted 

aZgebras. This leads to the concepts of soundness, adf3qitacy and compZeteness 
~ 

for algebraic specification methods and, in particular, to adequacy and 

completeness questions of the form : Can the specification method M d/3fine 

aZZ, and onZy, the data types one wants, at Zeast in principZe? 
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In Section 5, we prove the following adequacy theorem. Any computdbZe 

data type A can be aZgebraicaZZy specified by a finite set E of equations 

invoZving a finite set E of operators, some external, to A, using initial, 

aZgebra semantics for (E,E) (Theorem 5.1). Such specifications can define 

semicomputable but non-computable types, however. Using the adequacy 

result, we are able to prove the following completeness theorem (Theorem 5.3). 

THEOREM A da.ta type A is semicomputdbZe if, and onZy if, it can be 

aZgebraicaZZy specified by a finite set E of equations, invoZving a finite 

set E of operators and da.ta domains external, to A, using initial, aZgebra 

semantics for (E,E). 

The question as to whether or not hidden sorts are necessary for the 

finite specification of the semicomputable data types if an important open 

problem (Open Problem 3.15). 

The need for a systematic and rigorous survey seems to have been 

first recognised by S. Kamin whose admirable notes [30] s~nnnarised 

specification techniques, associated with initial algebra semantics, and 

posed a number of questions about the differences between them. Answers 

to those questions can be found here along with connnentary which settles 

some other technical matters raised in [30] (hidden function mechanisms; 

universality). 

An objective of this paper is to serve a variety of readers as an 

essentially self-contained and reliable compendium of theoretical facts 

about specifications. Part of our material may seem familiar to some 

readers, but it is a fact that no theorem is given here which has an 

adequate statement and/or proof elsewhere. For example, our account of 

the adequacy and completeness theorems and problems, stated above, 

contradicts a popular and mistaken idea, originating in Guttag [21], that 

the adequacy of the algebraic specification method is evident from the 

equational definition of the partial recursive functions. 

FURTHER WORK AND PREREQUISITIES This paper is a cornerstone for a series 

of articles [3-11] which further develops the classification project according 

to the principles seen here; in particular, it is a second edition of [4]. 

Among the,subjects considered are : implementing equational specifications 

as rewrite systems and the completeness of the method for computable data 

types [5]; the size of algebraic specifications and adequacy theorems for 

computable data types [6,7]; proving specified programs using data type 
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specifications [9]; completeness of methods based on final algebra semantics 

for the cosemicomputable data types [8,10]; completeness of methods based 

initial and final algebra semanitics for computable data types [11]. See 

the Concluding Remarks for further comments. 

We presume the reader is familiar with the informal issues and basic 

mathematical ideas about algebraic specifications, for which we follow 

and recommend ADJ [18,51,52]. The papers Kamin [30] and Majster [37,38] 

are also useful to have to hand. In addition we use some basic results 

from recursive function theory for which we recommend Mal'cev [39] or 

Rogers [47]. The reader will also find the paper Meseguer and Goguen [42] 

of value in seeing our work in a broad context. 

ACKNOWLEDGEMENTS We are particularly indebited to S. Kamin, J.W. Thatcher, 

and an anonymous referee, for useful criticism of the first edition of this 

paper. We thank Ms. Judith Thursby for typing this manuscript. 

1. ALGEBRAIC SPECIFICATION METHODS 

In this section and the next we shall survey the mathematical 

foundations of the algebraic specification methods for data types in 

order to establish notation and terminology, and, in particular, to explain 

in detail the classification scheme for the methods. A number of subjects 

require commentaries : axiomatic specifications; algebraic specifications and 

their algebraic semantics; the use of hidden or auxiliary operators and 

sorts in specifications; but we begin with a discussion of the concept 

of an abstract data type. 

ABSTRACT DATA TYPES. The term data type has many informal usages, and 

few precise definitions, in the literature about programming languages 

and methodology. For instance, D. Gries lists seven interpretations 

in his editorial notes in [20] (pp. 263-268) and all of them can be found 

supporting roles to play in the subject of abstract data types and their 

specification. There is, however, an exact meaning for the term ahstraat 

data type which is invariably used (often implicitly) in work on algebraic 

spe~~fication methods. The mathematical defintion is essentially due to the 

ADJ Group and appears in [17] although its essential features are more 

carefully explained in [18]. We will quickly reconstruct the definition, 

noting any correspondences between our technical vocabulary and the usages 

in Gries' list. 
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First, consider a data type D whose syntactic structure is determined 

by a list of names for different kinds of data (for use in variable 

declarations) and lists of notations for distinguished data and basic 

operations (for use in assignments and in tests for control constructs). 

These items we call sort, constant and operator syrribols, respectively, and 

the union L of the lists we refer to as the signature of D. (In Gries' 

notes, the first interpretation of type is restricted to signatures.) 

What makes such a data type D an "abstract" data type is a property 

of its semantics namely, the semantics of D is defined quite independently 

of how data and operations are to be represented in implementations. This 

criterion is made precise via the semantical concept of a data structure 

which formalises the third, and most popular, informal description in 

Gries' list (and subsumes the second). 

Throughout this paper we assume that every signature permits 
at least one closed term for each sort. 

A data structure is a finitary many-sorted algebra which is minimal 

in a sense to be defined below. Thus, a data structure A consists of 

a finite family A1, ••• ,A of sets, called component data <lomains, together 
. n 

with a finite list of elements of these sets, and a finite family of (total) 

functions of the form 

A 
µ 

where A=(A1, ••• ,Ak) and A1, •.• ,Ak' µ E {l, ••• ,n} and k E w - {O}. 

The distinguished elements are called the initial data of the structure and 

the maps are called the primitive operations of the structure. 

A many-sorted algebra is minimal, or prime, if it is generated by 

its distinguished elements; equivalently~ if ithas.no proper subalgebras. 

This minimality condition in the definition of a data structure ensures 

that every element of a data structure can be constructed from its initial 

data by means of its primitive operators. 

A data structure A exactly describes how the syntax of a data 

type D is interpreted in a concrete implementation or particular representation 

of the semantics of D. The representation-free picture of the semantics 

of data type, required in the concept of alil abstract data type, :can /l>e achieved 

by adopting the following principle: 

1.1 ABSTRACTION PRINCIPLE. A property P of a data structure A qualifies 

as an abstract seman,tical property of the data type D which A represents 

if, and only if, P is an invariant of algebraic isomorphism ie. if B is 

another data structure implementing or representing D, and A and B ar~ 

isomorphic as algebras, then P is true of B. 
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For example, finiteness is an abstract property and, moreover, any 

property of a data structure which is first-order definable is an abstract 

property. In a latter section we will define the effective aomputabiU-t;y 

of a data structure in such a way as to make it an abstract property of 

a data type. With this kind of analysis of the abstract nature of a data 

type semantics, the ADJ Group gave the following semantical definition of 

an abs·tract data type in [18]: 

1.2 ABSTRACT DATA TYPE An abstract data -t;ype is the isomorphism class 

of a data structure. 

For information on the: invariance of semantical properties of programs 

based on abstract data types see Tucker and Zucker [53]. 

Mathematically, the theory of abstract data types is the theory of 

finitely generated minimal algebras. We assume the reader is familiar 

with the basic algebra of congruences, homomorphisms and so on, and can 

establish, when needed, facts such as: 

1.3 LEMMA Let A and B be minimal algebras of signature L If 

· there are homomorrphisms ~ : A + B and ~ : B + A then A ~ B via ~ and ~. 

Nowhere in this paper do we allow partial operations in our types. 

AXIOMATIC SPECIFICATIONS A first-order axiomatic specification (E,T) 

describes a data type as a signature E whose constants and operator symbols 

satisfy a set T of first-order axioms. In Hoare's seminal paper [25], 

a specification is a formal documentation for a data type D which guarantees 

properties of implementations of D for use in proving the correctness 

of programs using D. The idea of axiomatising implementations is suited 

to an abstract (read : representation-free) view of data type, but alone, 

without special algebraic devices, it does not support a method which 

uniquely defines abstract data types. For consider the semantics of a 

first-order specification (E,T). 

From the logical point of view, the natural semantics of (E,T) 

is the class ALG(E,T) of all E-structures satisfying the axioms in T. 

This is because of GOdel's Completeness Theorem: 

1.4 COMPLETENESS THEOREM A first-order statement p is provable from 

T if, and only if, it is true in all models of T; in the usual notation, 

T I- p if, and only if, T ~ p 



With reference to the Lowenheim-Skolem Theorem, few of the members of 

ALG(r,E) can have anything to do with data types. We define, therefore, 

the class of data structures 

ALG (E,T) = {A E ALG(E,E) : A is minimal}. 
m 

The class ALG (E,T) consists of all implementations aonsistent with the 
m 

conditions in T. As the class is closed under isomorphism, and contains 

9 

non-isomorphic data structures, ALGm(E,T) serves as the semantics of 

specification (L, T) when the latter is thought of as a contract open to 

interpretation by a number of different abstract data types - an interpretation 

appropriate to program verification [9,12,13]. 

However, to be able to define an abstract data type by means of 

an axiomatic specification (E,T) some semantic mechanism M is necessary 

which chooses, uniquely up to isomorphism, an algebra M(E,T) E ALGm(E,T) 

as the meaning of the specification (E,T). Given any such mechanism M, 

we say that an abstract data type D (read : isomophism type of a minimal 

algebra) is aorreatZy speaified by an a:ciomatia speaifiaation (E,T) u:nder 

semantias M if the algebra M(E,T) is in D. 

This assignment by M cannot be accomplished by logical means for 

first-order specifications in general; it can be made by algebraic techniques 

for algebraic specifications. 

ALGEBRAIC SPECIFICATIONS According to usage, a first-order specification 

(E,T) is called an aZgebraie speaifiaation when the ax:ioms in T "look algebraic". 

In this paper, we consider specifications made with three simple 

kinds of algebraic axioms, only : sirrrpZe equations, or identities; equations; 

and aondi tionaZ equations. 

Let T(E) denote the algebra of (closed) terms over L and let 

Tr(X1, ••• ,Xn) = TL(X) be the algebra of all terms or polynomials over L 

in the indeterminates X = (X
1

, .•• ,X ) • 
. n 

A sirrrpZe equation, also called a sirrrpZe identifiaation is an axiom of 

the form t=t' where t,t' E T(E). An equation is an axiom of the form 

t(X) = t'(X') where t(X) E TL(X) and t'(X') E TL(X'). A aonditionaZ equation 

is an axiom of the form 
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h h 1 <. <k d . . w ere eac ei' - 1 - , an ek+l is an equation. In the obvious notations, 

the sets of such axioms are nested thus: 
i i 

SEQ(I:)--- EQ(I:) -----+ CEQ(I:). 

Here then, an algebraic specification (I:,E) will be a simple equational 

specification if E c SEQ(I:); an equational specification if E c EQ(I:); or a 

conditional equation specification if E c CEQ(I:). In particular, axioms 

involving negation, explicitly or implicitly, are not allowed in specifications: 

for example, no inequalities t*t' or definition-by-cases t = if e then t 1 
else t 2 • 

Shortly, we will need to discuss computations on syntax in the arguments 

that follow so we assume that the various sets 

T(I:) ' SEQ(I:) , EQ(I:) , CEQ(I:) , etc. 

have been godel numbered by means of the set w = {O,l, ••• }. On being given 

the godel number of a term, polynomial, axiom etc. we can primitive recursively 

calculate ~odel numbers for its subterms, and the complexity of its syntax. 

Furthermore, in saying that E c CEQ(I:) is a recursive or recursively enumerable 

set (for example) we actually mean that with respect to the godel numbering 

o : w + CEQ(I:) the set o-1(E) = {i : o(i) E E} is recursive or recursively 

enumerable. And in saying that E = {e. : i E w} 
1 

is recursively enumerated 

by f : w + CEQ(I:), where f(i) = ei' we actually mean that f : w + w is a 

recursive function such that Of : w + E is surjective. 

SEMANTICS OF ALGEBRAIC SPECIFICATIONS. The choice of an algebra M(I:,E) in 

ALGm(I:,E) as the meaning of the algebraic specification (I:,E) is most simply 

made using initial algebra semantics. 

When E contains conditional equations, the category ALG(I:,E) of all 

E-algebras and all homomorphisms between them possesses an initial object 

l(I:,E), unique up to isomorphism. Furthermore, I(I:,E) E ALG (I:,E) and we 
m 

can define M(I:,E) to be I(I:,E) : ADJ [17,18]. 

Let A be a minimal algebra, or data structure, representing the 

abstract data type D. Then the specification (I:,E) correctly defines 

the type D under initial algebra semantics if 

I(I:,E) ;; A. 

The practical effect of this method is to declare two operator terms of 

T(I:) to be semantically equivalent if, and only if, they can be proved 

equal using the axioms of E and the rules of first-order logic: 



1.5 PROVABILITY CRITERION For any t, t' E T(E) 

E ~ t = t' if, and onZy if, I(E,E) ~ t = t' • 

Compare this with the Completeness Theorem 1.4. 

We must assume that the reader is familiar with the basic algebra 

and logic involved in constructing and using initial algebra semantics. 

For example, we will make great use of the construction of I(E,E) as a 

factor algebra T(E,E) of T(E). 

Recall that, for E c CEQ(E), a congruence - on a E-algebra A is 

an E-aongruenae if for each conditional equation e of the form 

t 1 ;: ti A ••• A tk = tk + tk+l = tk+l 

where ti' ti E TE(X), 1 ~ i ~ k+l, we have that 

t 1 (a) = ti (a), •.• , .~(a) = tk(a) implies ~+l (a) = tk+l(a) 

11 

for all a E AA
1 

x ••• x AAn. Equivalently,= is an E-congruence if 

A/=: is in ALG(E,E). The intersection of all E-congruences on A is an 

E-congruence called the ieast E-aongruenae on A, and is denoted -E (when A 

is understood). 

Now consider the least E-congruence on T(E), and define 

T(E,E) = T(E)/:::E • 

It can be shown that I(E,E) ~ T(E,E). 

In working with T(E,E) we will make use of transversals for =E : 

Let = be a congruence on A. A transversai T for = is a complete family 

of unique representations of - in the sense that (i) for each afA there is 

tET such that a=:t and (ii) for each t,t'ET, t=:t' implies t=t'. (We have 

here adopted the name transversai from the algebra of groups.) 

In the case of a transversal T for =E on T(E), suppose T satisfies 

t 1, ... ,tn ET if, and only if, cr(t
1

, ... ,tn) ET. Then T is an E-algebra 

under the application of the operator symbols of E to terms in T, that is 

isomorphic to T(E,E). This construction has been called a aanoniaai term 

aZgebra in ADJ[51]. 

1.6 LEMMA 

1. 7 LEMMA 

T(E,E) = T(E~{e E SEQ : E ~ e}) 

If E is a set of equations, 

T(E,E) = T(E,{e E SEQ : e is a substitution instanae 
of some e' EE}). 

Initial algebra semantics is the denotational device used to assign 

a meaning to a specification in the early works of the ADJ Group [17] and 
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Liskov and Zilles [34,59]. And it is the only semantics considered in this 

paper. However, initial algebra semantics is not the semantics desired 

by J.V. Guttag [21] (see [22] for an explicit statement to this effect). The 

semantical status of an algebraic specification is far from clear in Guttag's 

early work; perhaps his requirements are best met by the final algebra 

semantics of Wand [55] and the Munich Group [14,56]. Final or terminal 

algebra semantics is a category-theoretic dual to initial algebra semantics 

in which provability is replaced by logical consistency. We have considered 

the technique in [B,10,11]. 

CLASSIFICATION OF SPECIFICATION METHODS 

An algebraic specification method is characterised by the nature of 

its axioms and the nature of its semantical mechanisms. We consider methods 

based on initial algebra semantics and three types of axioms. Yet in a 

specification (E,E) the set E of axioms may be a finite, recursive or 

recursively enumerable set of simple identities, equations or conditional 

equations. This amount to 9 possibilities; later we will discuss two 

further refinements-of specification methods, involving auxiliary operations 

and sorts, that lead to a classification of 27 methods. For the moment, 

let us make a notation for the 9 : let 

FIN, REC and RE 

denote finite, recursive and recursively enumerable and let 

SEQ, EQ and CEQ 

denote simple equations, equations and conditional equations. 

Let a E {FIN,REC,RE} and S E {SEQ,EQ,CEQ}. A specification (E,E) 

is of type (a,S) if E is a set of type a containing ax:ioms of type S. 

1.8 DEFINITION An abstract data type represented by many-sorted 

algebraic structure A has an (a,S) specification under initial algebra 

semantics if there is an (a,S) specification (E,E) such that 

T(E,E) ~ A. 

1.9 EXAMPLES Consider the following four important structures on the 

set w = {0,1,2, ••• } of natural m.unbers: 

Al = (w; o, x+l) 

1\2 = (w; O, x+l, x+y) 

A3 = (w; o, x+l, x+y, x•y) 

A4 = (w; o, x+l, x+y, x•y, x2) 



These structures have the following (FIN,EQ) specification: 

E1 = (NAT; O, SUCC) 

El= </J 

E2 = (NAT; O, SUCC, ADD) 

E2 = {ADD(X,O) = X, 

ADD(X,SUCC(Y)) = SUCC(ADD(X,Y))} 

E3 = (NAT; O, SUCC, ADD, MULT) 

E
3 

= E2 u {MULT(X,O) = O 

MULT(X,SUCC(Y)) = ADD(MULT(X,Y),X) 

E4 = (NAT; O, SUCC, ADD, MULT, SQ) 

E4 = E
3 

u {SQ(X) = MULT(X,X)} 

We leave the task of verifying that for i=l, ••• ,4 

I(E.,E.);;: T(E.,E.);;;: A. 
i i i i i 

as an easy, yet essential, exercise. 
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These 9 types of specification are completely classified in Figure A, 

wherein a single arrow (a,S) + (a',S') indicates that any data type that 

can be given an (a,S) specification can be given an (a',S') specification, but 

not conversely; and a double arrow (a,S) :t (a',S') indicates that the two 

kinds of specification define the same data types. The figure also registers 

the adequacy of the methods with respect to the finite, computable and 

semicomputable data types; this is taken up later in Section 3. Figure A 

conveniently records many theorems, of varying difficulty, distributed 

throughout the paper. Some results are easy and can be proved here, for 

illustration. However most results are best established with the semantical 

concepts of computable and semicomputable data type at hand; we will connnent 

on Figure A then. 

1.10 THEOREM Let A be a many-sorted algebra of signatUl'e E. Then the 

fol lMng are equivalent : 

(i) A has an (RE,SEQ) specification; 

(ii) A has an (RE,EQ) specification; 
" (iii) A has an (RE , CEQ) specification. 
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complete for semicomputable data types 

(RE ,SEQ) ____ .-_(RE ,EQ) ______ (RE, CEQ) 

ll 
(REC,CEQ) 

(FIN,CEQ) 

(FIN,EQ) 

(FIN,SEQ) 

(REC,EQ) 

(REC,SEQ) 

adequate for 
computable data types 

adequate for finite 
data types 

,, Figure A Classification of the 9 algebraic methods 
(without hidden machinery) 



PROOF By virtue of the definitions, it is sufficient to prove 

statement (iii) implies statement (i). Suppose As T(L,E) where Eis an 

r.e. set of conditional equations. Then define 

E' = {t = t' : t, t' E T(L) and E ~ t = t'} 

By Lemma 1.6, T(E,E) ~ T(E,E'). Clearly, E' is r.e. and hence A has an 

(RE,SEQ) specification. 
D 

1.11 THEOREM Let A be a many-sorted aZgebra of signatu:re E. Then A 
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has a (REC,EQ) specification if, and onZy if, A has a (REC,SEQ) specification. 

PROOF Clearly every (REC,SEQ) specification is a (REC,EQ) specification. 

To prove the converse, suppose that A has a (REC,EQ) specification (L,E) 

i.e. Eis a recursive set of equations over E and A~ T(L,E). 

Define E' to be the set of all simple equations obtained by substituting 

all closed terms over L into the equations of E. Thus 

E' = {t=t' : for some e1 = e2 EE and t 1, ••• ,tn E T(L) 

t = e 1Ct 1, ••• ,tn) and t' = e2Ct1, ••• ,tn)} 

By Lemma 1.7, we have T(E,E) ~ T(L,E'). We claim E' is recursive. 

Now given t=tt with t,t' E T(E) there are finitely many equations 

e1=e2 E EQ(L), the set of all equations over L, such that there could exist 

t 1, ••• ,tn E T(L) with 

t = e1Ct1, ••• ,tn) and t' = e2Ct1, ••• ,tn) 

The length of the equations are constrained by the length of the terms 

t,t'; in fact: 

I el I + I e2 I + 2 (I tl I + • • • + I tn I) ::; It I + It' I 

Thus we can search through all equations and find those e 1=e2 for which 

t=t' is a substitution instance, and decide whether or not e1
=e 2 E E 

since E is recursive. Thus, E' is recursive. D 

1.12 PROPOSITION Let A be a finite many-sorted minimal, structu:re. 

Then A has a (FIN,SEQ) specifica1lion. 

PROOF FQr each element b of A, let tb E T(L) be a term that evaluates 

to bin A (using minimality). Let us axiomatise each operation crAof A 
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Ecr = {cr(tb, ••• ,~) = tb crA(bl' ••• ,bn) = b} 
1 n 

and set 
E = U E 

CJE:E cr 

Then it may be proved that T(E,E) ~ A. 0 

CONSTRUCTING SPECIFICATIONS We will state a series of theorems about 

constructing algebras and their specifications which are of general interest 

and which will be employed in many of the proofs of this paper. 

Let A and B be algebras with signatures E and E' respectively; and 

suppose that E n E' = r/J. The join [A,B] of A and B is the algebra of 

signature E u E' obtained by taking all the domains, constants, and 

operations of A and B together to form one algebra. The effect of this 

operation on algebraic specifications is this: · 

1.13 JOIN LEMMA Suppose A ~ T(E,E) and B ~ T(E' ,E'). Then. 

[A,B] ~ T(E u E', E u E'). 

Let A be an algebra with signature E. Let E' be a set of conditional 

equations over E, and let =E' denote the least E'-congruence on A. 

1.14 FACTOR LEMMA Suppose A ~ T(E,E) o Then 

A/=n, : T(E,E u E') 

1.15 REFINEMENT LEMMA Suppose A 2! T(E,E). If E' r E and A~ E' then 

A g1 T(E,E'). 

Let A be an algebra with signature E and let f: AA x ••• x AA +A 
1 n µ 

be a function on A. On adding f as an operation we obtain an algebra 

Af with signature Ef = E u {F}. 

Suppose A~ T(E,E). We can algebraically specify Af by a straight-forward 

representation of the graph of f. Let T be a set of canonical term 

representatives, or a transveral, of ~· The map f on A uniquely induces 
A A 

maps f and fT on T(E,E) and T in the obvious way 
f 

1\1 
* ... x AA A 

~ i n l~ A 

f 
T(E,E)A x ••• x T(E,E)A T(E,E)µ 

1 

vl 
n 

Iv " A 

f T 
TA x • • • x TA T 

1 n µ 



where v : T(E) + T(E)/=E is the canonical factor map v(t) = [t] which 

is a bijection on T. We define 

which represents the graph of f on T. 

1.16 FUNCTION LEMMA Suppose. A et T(E,E) and f is a map on A. For any 
transversal. T, 

2. SPECIFICATIONS WITH HIDDEN FUNCTIONS AND HIDDEN SORTS 

The specification methods classified by Definition 1.8 have the 

property that only the sorts and operations of the data type signature 

are allowed in specifications of the data type : if A is of signature E 
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then A must be axiomatised by a set E using the operations in E only. These 
methods can be augmented usefully by allowing extra, auxiliary sorts and 

functions in specifications (E',E') that are not required in A, so E c E'. 

2.1 EXAMPLE Consider the algebra 
2 A5 = (w; o, x+l, x ) • 

The natural way to specify AS is to specify the algebra 

A4 = (w; O, x+l, x+y, x•y, x2) 

by means of the (FIN,EQ) specification (E 4,E4) in Examples 1.9 and then 

to forget or to hide the operations of addition and multiplication. Later 

we will prove that it is not possible to specify AS without recourse to 

hidden operations. 

To put such techniques on a proper foundation we must define the 

mechanisms of hiding the auxiliary operations. 

Let B be an algebra of signature E and let E0 c E. We define two 

algebras: 

Bir is the algebra consisting of the domains, constants and operations 

of B named0in E0 ; and 

<B>E is the subalgebra of BjE generated by elements named in r 0 • 
0 0 

2.2 LEMMA The fo i Z.ooing a!'e equivaZ.ent : 

(i'} BIE is minimal.; 
0 

(ii) B.IL = <B>E ; 
0 0 

(iii) BIL 
,..,, 

<B>E = 
0 0 
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2.3 LEMMA Let B be of signatwe L and Zet Lo c Ll c L. Then 

(i) (BIL )jL = BIL ; 
1 0 0 

(ii) <<B>L >L = <B>L • 
1 0 0 

2.4 LEMMA Let B and B' be L-aZgebms. Let cp B + B' be a 
L-homomorphism. Then the restriations 

et> : BIL + B'IL and cp 
0 0 

are L0-homomorphisms. 

These two contraction methods lead to three kinds of specifications 
allowing hidden functions and three kinds of specifications allowing hidden 
sorts and functions. For in either case, in the specification of A of signature 
LA' an algebra B of signature LB' with LA c LB' is constructed and specified, 
and we may choose one of the following 

(i) BIL ;;: A 

(ii) <B>L ~ A 

(iii) BIL = <B>L ~A. 

Let a€ {FIN,REC,RE} and S € {SEQ,EQ,CEQ}. Let A be a many-sorted 
algebra of signature L representing an abstract data type. 

2.5 DEFINITIONS An (a,S) hidclen funation speaifiaation of type I, II or 
III for A consists of an algebraic specification (L0,E0) of type (a,S) such that 
L c L0, and LO contains exactly the sorts of L, and which defines A by means 
of' initial algebra semantics in one of the following three ways, respectively::. 

Type I T(L0 ,:E0)1L :;;:- A 

Type II <T(Lo,Eo)>L ~A 

Type III T(Lo,Eo)IL = <T(Lo,Eo)>L ~A 

2.6 DEFINITIONS An (a,S). hidden sorts speaifiaation of type I, II or 
III for A consists of a specification (L0 ,E0) of type (a,S) such that L c Lo 
and which defines A by means of initial algebra semantics in one of the 
followi~g three ways, respectively: 
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Type I T(L:o,Eo) It: ~A 

Type II <T <L:o 'Eo)> L: ~A 

Type III T(L:o,Eo>IL: = <T(L:o,Eo)>L: ~A. 

In Kamin [30], type I specifications are said to be the usuai 

interpretation of hidden functions and sorts; and type II specifications are 

said to be the subaZgebra interpretation. In the standard case that A 

is a L:-minimal algebra, a type I specification is also a type II specification 

and a type III specification (Lennna 2.2). 

In this paper we will consider only specifications of type III, and 

introduce the following terminology ([4]). 

2.7 DEFINITIONS An (a,S) hid.den enrichment specification for A is an 

(a,S) hidden functions specification of type III for A. 

An (a,S) hidden enrichment with sorts specification for A is an (a,S) 

hidden sorts specification of type III for A. 

For example, (L: 4,E 4) is a (FIN,EQ) hidden enrichment specification 

of the algebra A5 of Example 2.1. 

In addition to the 9 types of 'specification methods, defined in the 

last section, we can consider a further 9 types of specification method 

that allow hidden functions and 9 types of specification method that 

allow hidden sorts and functions. This makes 27 methods in total, all 

based on initial algebra semantics. 

Thus, let a E {FIN,REC,RE} and S E {SEQ,EQ,CEQ} and let y E {HE,HES}~ 

where HE and HES stand for hid.den enriahment and hid.den enrichment with 

sorts, respectively. The first 9 types of specification are abbreviated (a,S) 

as before; the 18 new types of specification are abbreviated (a,S,y). 

Once again we will summarise what is known of the classification in 

Figure B. The majority of equivalences will follow easily from our discussion 

of computability : see the next section. 

We conclude with two lennnas. 

2.8 LEMMA Let (L:,E) and (L:',E') be specifications with L: c L:' and 

E c E'. Suppose that L: and L:' contain the same sorts. Suppose there exists 

a transversai T c T(L:) for ~ such that 

(i) for distinct t 1,t2 E T, t
1 
~,t2 

(ii) for each constant c E L:' - L:, there is t E T such that 

c ~' t; 
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complete for semicomputable types 

(RE,SEQ,HES) 

(RE,SEQ,RE) 

(REC, SEQ, RES) 

(REC,SEQ,RE) 

"'" t 
I 
I ? 

..Ii 

(FIN,SEQ,RES) 

'I' I 

I 
.I 

? 

? 
1(----

(FIN,SEQ,HE) • . 

(RE, SEQ) 

(RE,EQ,HES) 

(RE,EQ,RE) 

(REC,EQ,RES) 

(REC,EQ,RE) 

(FIN,EQ,RES) 

(FIN,EQ,RE) 

'' I 
I 
I ? 
I . 

I 
-·~ 

(RE,CEQ,RES) 

(RE,CEQ,HE) 

(REC, CEQ ,RES) 

(REC,CEQ,RE) 

(FIN,CEQ,RES) 

(FIN,CEQ,HE) 

adequate for computable types 

Figure B Classification of the 18 algebraic methods 
(~sing hidden machinery) 



PROOF 

(iii) for eaeh k-ary operation cr EE' - E and any t 1
, ... ,tk ET 

there is t ET sueh that cr(t1 , ... ,tk) =E,t. 

Then T(E',E')IE ~ T(E,E). 

Since E c E' and T is a transversal, it is easy to see that 

cp([t]E) = [t]E'' fort E T,well defines a E-homomorphism 

cp T(E,E) + T(E',E')IE 
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Condition (i) implies cf> is injective, because if t 1,t2 E T and [t1JE * [t2JE 

then Ct1JE' * Ct2JE'. Conditions (ii) and (iii) imply that cf> is surjective 

as follows: we show that for each t' E T(E') there is t E T such that 

t~,t'. 

Now if t' E T(E) then t =E t' for some t E T and so t = t' as is -E' ~ 

contained in =E' • Assume t' E T(E') - T(E). We argue by induction 

on the complexity of t'. 

The basis case has t' a constant in E'-E and is immediate from the 

condition (ii). 

Lett' = cr(ti,···'tk) for some cr EE' and assume there exist 

t 1 , ... ,tk ET such that ti =E' ti for 1 ~ i ~ k. Then t' ~' cr(t1, ... ,tk). 

If cr EE then cr(t1 , ... ,tk) E T(E0) and obviously t =E' t' for some t ET. 

If cr EE' - Ethen cr(t1 , ... ,~) ~' t for some t ET by condition (iii). Thus, 

t - t' . =E' D 

2.9 LEMMA Let (E ,E) and (L' ,E ') be speeifieations with E c E' , E c E' • 

Suppose that E and E' eontain the same sorts and that 

T(E',E') IL ~ T(E,E). 

Let A and A' be E and E '-algebras sueh that 

A' IL ~A 
If A~ T(E,E) and A' is an E'-algebra then 

B~T(E',E') 

PROOF The hypotheses imply there is a E-isomorphism 

By the 1nitiality of T(E',E')IE for E-algebras - inherited from T(E,E) - the 

map cf> is unique as a homomorphism. Since A' is an E '-algebra there exists a 

E'-homomorphism ~: T(E',E') +A' which restricts to a E-homomorphism 
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w: T(E',E') IE +AIL· 
E'-isomorphism. 

Thus W = ~ and W must be bijective and hence a 

3 • CO:MPUTABLE AND SEMICO:MPUTABLE ALGEBRAS 

D 

In this section we define the computable and semicomputable data 

types and explain their role in the theory. A number of basic properties 

of these notions are described and we are then able to review the Figures A 

and B of Sections 1 and 2 in order to set the scene for the rest of the 

paper. 

ADEQUACY AND COMPLETENESS 

Our semantic measures of adequacy for the specification methods 
are the classes of aomputabZ.e and semiaomputabZ.e data types. 

3.1 DEFINITIONS A many-sorted algebra A is said to be effeativeZ.y 

presented when it is given an effeative aoordinatization (a,n). consisti:p,g 

of recursive sets Q1 , ••• ,Q , Q. c w for 1 :s; i :s; n, corresponding with the 
n l. 

domains A1, ••• ,An of A; surjections a 1, ••• ,an, ai Qi+ Ai for 1 :s; i :s; n; and, 

for each operation cr, 

a x • • • x 

-a recursive function a 
-a 

that traaks a in the sense that the following diagram commutes:· 

AA. x 
1 

r aA. x ••• x~ 
1 

QA. x 
1 

wherein (aA. x ••• x aA. )(x1, ••• ,Xi.t) = (aA. (x1), ••• ,a~ (Xi.t)). We sometimes 

write a:Q-+-A
1 

or, simply~ a for an effectiv~ coordinatization (a,Q). 

The algebra A is said to be aomputabZ.e, semiaomputabZ.e or 

aosemiaomputabZ.e, if there exists an effective presentation a : n + A 

for which the relations =. defined on Q. by 
l. l. 

x = y if, and only if, a.(x) = a.(y) in A., a. i. i. i. 
l. 

for 1 :s; i :s; n, are recursive, r.e., or co-r.e., respectively. 
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These three notions are the standard formal definitions of constructive 

algebraic structures currently in use in mathematical logic and they derive 

from the work of M.O. Rab~n [46] and, in particular, A.I. Mal'cev [39]; 

they possess the following essential property: 

3.2 LEMMA Computabili-t;y, semicomputability and cosemicomputability 

are isomoPphism invariants. 

Thus, the three notions qualify as abstract semantical properties 

for data types, according to the Abstraction Principle 1.1. 

3.3 DEFINITION A data type D is computable, semicomputable, or 

cosemicomputable, if there exists an algebra A representing D that is 

computable, semicomputable or cosemicomputable. 

By Lennna 3.2, if one algebra represents D and is effectively computable 

then all representing algebras of D are effectively computable. 

Shortly, in Lennna 3.12 and 3.14, we will see that, under initial algebra 

semantics, all the algebraic specification methods define semicomputable data 

types. Thus, given the independent interest of the notion, it is natural 

to seek to determine which specification methods are capable of defining 

all semicomputable data types. 

More generally, let M be a data type specification method and let 

K be a.class of data types. 

3.4 DEFINITIONS The method M is sound for K if each data type D 

defined by M is in K. 

The method M is adequate for K if each data type D in K can be 

defined by M. 

The method M is complete for K if M is sound and adequate for K. 

Notice that two methods that are complete for the same class 

are equivalent. 

In this paper we are often concerned with methods that are 

complete for the semicomputable data types and adequate (but not sound) 

for the computable data types. For information on methods that are 

complete for computable and cosemicomputable data types, see the :concluding 
~ 

Remarks. 



24 

BASIC TECHNICAL IDEAS 

Combining the components of an effective coordinatization <a.,m of 

A we can make a recursive algebra n of numbers from nl, ••• ,nn and the 

recursive tracking operations, of signature .I:. With respect to this 

algebra, the maps a 1 , ... ,a.n constitute a i:-epimorphism a. : Q + A. Thus, 

A is the lnlromorphic :image of a recursive algebra Q of numbers and A ~ Q/=. • 
a. 

3.5 REPRESENTATION LEMMA A aomputable aZgebra A is isomorphia to a 

reaursive aZgebra R of nwnbers eaah of whose domains Ri is the set w 

of naturai nu.nibers, or the set w of the first m naturai nu.nibers, aaaordingZy 
m 

as the aorresponding domain A. of A is infinite, or finite of aardinaZity m. 
]_ 

PROOF Let A be computable under a. : n + A. For each 1 s i s n, define 

the recursive set r. c P.. by 
]_ ]_ 

x E r. ~ x E P.. & (Vy<x)[y E P.. + y 1 x] ]_ ]_ ]_ a.. 
]_ 

so that a.i . r. +A. is bijective. Let f. . w + r. . . 
]_ ]_ ]_ ]_ 

bijection if r. is infinite: and let f. . w + r. be . 
]_ ]_ m ]_ 

is finite. Define R. = dom(fi) and f3. : R. +A. by 
]_ ]_ ]_ ]_ 

f3. = a.. f. : R. + r. + A. • 
]_ ]_ ]_ ]_ ]_ ]_ 

Now for each recursive tracking function 

-
P.A. x ••• x P.A. + P. 

1 k µ 
a : 

of operation a of A we define a recursive function 

• • • x 

by 

+R µ 

be 

a 

a recursive 

bijection if r. 
]_ 

It is easy to see that crk tracks a with respect to (3. It follows that 

combining the domains Ri and operations crR forms the required algebra R 

isomorphic to A under (3. 

Obviously, such an isomorphic algebra of numbers can be provided 

for a semicomputable or cosemicomputable algebra A if, and only if, A 
"' 

is computable. 

0 

We will now discuss the invariance of computability in terms of the 

uniqueness of the coordinatizations. 



25 

3.6 DEFINITIONS Let a and S be effective presentations of an algebra A. 

Tfien a recursively reduces to S (in symbols : a ::; S) if there exist recursive 

functions f 1 , ••• ,fn where 

f. : Q~ + Q~ 
1 1 1 

that commute the following diagrams 

for 1 ::; i ::; n. 

dY:------~ 
1 

f. 
1 

s. 
1 

And a is recursively equivalent to S if both a ::; S and S ::; a. 

Now recursive equivalence is the basic identity relation between 

coordinatizations and establishes the uniqueness of computability concepts 

in the algebraic setting. 

Let R c AA x ••• x AA be a relation on A and let A be effectively 

presented by a. 1 Then R is ~aid to be a-computable if its preimage 

-1 
a (R) = {(x1, ••• ,~) : (aACxJ, ••• ,aA(~))E R} 

1 k 

is recursive. The definitions of a-serrricomputable and a-cosemicomputable 

relations follow mutato nomine. The following fact is easy to check. 

3. 7 LEMMA L.et R be an a-computable (a-serrricomputab le or a-cosemicomputab le) 

relation on A. If S is another effective presentation for A and S recursively 

reduces to a then R is S-computable (S-serrricomputable or S-coserrricomoutable). 

To what extent is the computability of an algebra, and its various 

relations, dependent upon the choice of a coordinatization? We will show 

that as far the theory of data types is concerned, the computability theory 

is independent of coordinatizations. 

H~nceforth, we consider minimal algebras only 

algebra of signature L. 

let A be a minimal 

Clearly, the term algebra T!L) is computable under any natural godel 

numbering of terms. By Lemma 3.5 , we can choose a computable coordinatization 
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y* : R + T(L), with the domains of Reach being w. Let v: T(L) +A be 

the unique term evaluation homomorphism. We define the standard effective 

presentation of A, derived from y*, to be the composition 

YA= vy* : R + T(L) +A • 

3.8 REDUCTION LEMMA The standard effective presentation yA of minimaZ 

aZgebra,A recursiveiy reduces to every effective presentation a of A. 

A proof of this fact can be found in Mal'cev [39]; coupled with 

Lemma 3.6, it leads to several important results: 

3.9 INVARIANCE THEOREM The minimai aZgebra A is computabie, semicomputabie 
or cosemicomputabie if, and oniy if, it is so under the standard effective 
presentation yA. 

3.10 UNIQUENESS THEOREM Any two semicomputabie coordinatizations of the 
minimai aZgebra A are recursiveiy equivaient. 

3.11 REPRESENTATION LEMMA Let A b~ a minimai aZgebra. If A is 
semicomputabie, or cosemicomputabZe, then it can be represented as the 

image of a recursive aZgebra R of nwnbers, aU of whose domains are w, 

and such that epimo:rphism a : R +A has congruence =a' defined by 

x =a y if, and oniy if, a(x) = a(y) in A 

is r.e., or co-r.e., respectiveiy. 

CLASSIFICATION OF METHODS : NO HIDDEN MACHINERY Let us begin to apply 

these concepts in the classification of specification methods, and comment 

on Figure A. 

Let A be minimal and define 

SA = { t = t' E SEQ A I= t = t ' } 

= {t = t' E SEQ v(t) = v(t') in A} 

where YA= vy* : R +A is the standard effective presentation for A 

constructed above. Clearly, by the definitions, 
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Suppose that A has an (RE,CEQ) specification (L,E) so that A~ T(L,E). 

By the Provability Criterion 1.5, 

E r t = t 1 ~ A I= t = t' ** t = t' € SA 

Since E is an r.e. set of axioms, SA is r.e. Thus we may deduce that 

A has an (RE,SEQ) and hence an (RE,EQ) specification. Furthermore, since 

SA is r.e. we know that -YA is r.e. and, in particular, that A is 

semicomputab le. 

Conversely, suppose A is semicomputable. Then, by the Invariance Theorem 

3.9, A is semicomputable under yA and SA is r.e. Thus, we know A has an 

(RE,SEQ) specification and so an (RE,EQ) and an (RE,CEQ) specification. 

3.12 COMPLETENESS LEMMA Let A be a minimaZ. many-sorted aZ.gebm. Then 

the foZ.Z.owing are equivaZ.ent : 

(i) 

(ii) 

(iii) 

(iv) 

(V) 

A is semiaorrrputabZe; 

SA is r.e.; 

A has an (BE,SEQ) speaifiaation; 

A has an (RE ,EQ) speaifiaation; 

A has an (RE,CEQ) speaifiaation; 

Suppose that A is co!DPutable then, by a similar argument, we can 

conclude that SA is recursive. Conversely, if SA is recursive then A 

is computable under YA• 

3.13 LEMMA Let A be a mirimaZ. many-sorted aZ.gebra. Then the foZ.Z.(J/J]ing 

are equivaZent : 

(i) A is aorrrputabZ.e; 

(ii) SA is reaursive. 

If A is aorrrputabZ.e then A has a (REC, SEQ) speaifiaation. 

Later we will show that the converse of this adequacy fact is 

false (Corollary 6.3) ie. that (BEC,SEQ) specifications are not sound for 

computable types. In addition, we will show that the (REC,SEQ) and (REC,EQ) 

specifications, shown to be equivalent in Theorem 1.11, are not adequate for 

the semicomputable types (Theorem 6.5). However, we will show that the (REC,CEQ) 

specifications. are complete for the semicomputable types (Theorem 6 .1). This 

concludes' the case of infinite specifications (without hidden operators or sorts). 

To ·complete our commentary on Figure A, we note that the (FIN,SEQ), (FIN,EQ) and 
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(FIN ,CEQ) specifications are rather weak and are not adequate even for the computable 
data types; a full discussion of these finite methods can be found in the 
next section. 

CLASSIFICATION OF METHODS HIDDEN MACHINERY Given the Completeness 
Lemma 3.12, it is a routine matter to extend it to the following: 

3.14 COMPLETENESS LEMMA Let A be a minimal many-sorted algebra. Then 
the following are equivalent 

(i) A is semicomputable; 

(ii) A has an (RE,(3,y) specification for any f3 E {SEQ,EQ,CEQ} 

and y E {HE,HES}. 

Later, we will show that the (REC,S,HE) specifications and hence 
all the (REC,a,S) specifications are complete for the semicomputable 
types (Theorem 6.2). Thus, on allowing hidden sorts or operators and 
infinitely many axioms, completeness for a method duly follows, and all 
methods are equivalent. 

We are left with two basic questions: 

Are any finite algebraic specifications either complete for the 
semicomputable data types, or adequate for the computable data types? 

In Theorem 5.3, we will prove (FIN,EQ,HES), and hence (FIN,CEQ,HES), 
specifications complete for the semicomputable data types. In Theorem 5.1 
we will prove (FIN,EQ,HE), and hence (FIN,CEQ,HE), specifications are 
adequate (but not sound) for the computable data types. As illustrated 
in Figure B we have no information on the (FIN,SEQ,HE) and (FIN,SEQ,HES) 
specifications and, more importantly, must record that the following 
problem from [4] is still open: 

3.15 OPEN PROBLEM Are the (FIN,EQ,HE) specifications complete for the 
semicomputable algebras? 

Some work on this problem can be found in [10]. 

WORD PROBLEMS The mathematical tools of computability we employ are 

used in studying algorithmic questions in algebra, mainly in combinatorial 
•' aspects of group theory (Lyndon and Schupp [36]) and universal algebra 

(Mal'cev [40]); and in ring and field theory (Rabin [46], Stoltenberg-Hansen 
and Tucker [50]). The equivalence of (i) and (ii) in Lemmas 3.12 and 
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3.14 establish their connection with the decidability of word problems. 

With reference to the literature (Gratzer [19], Cohn [16] or 

Mal'cev [40]) we note the following : 

3.16 LEMMA Let V be a variety of algebraic structures of signature I: 

d.efined by a finite set L of l(JJJ)s. Then A E V is finitely presented with 

respect to V by (X,R) if, and only if, the pair (I: u X, L u R) is a (FIN,EQ) 

specification for A on adjoining the generators of A as constants. 

Thus, the existence of finitely presented semigroups and groups with 

unsolvable word problems (Lallement [33], Rotman [48]) implies that 

(FIN,EQ) specifications define non-computable algebras and are not sound 

for computable semigroups and groups. Not all finitely generated semigroups 

and groups are finitely presented, and indeed there exist semicomputable 

semigroups and groups that are not finitely presented : thus (FIN,EQ) 

specifications are not complete. 

On the other hand every finitely generated abelian group is 

finitely presented with respect to the variety of abelian groups and 

indeed is computable. By the Hilbert Basis Theorem, the same is true of 

the finitely generated connnutative rings. 

4. LIMITATIONS OF SPECIFICATIONS WITHOUT HIDDEN MECHANISMS 

The main tasks of this section are to construct two simple algebras 

and prove in detail that they fail to possess (FIN,EQ) and (FIN,CEQ) 

specifications, respectively. Both algebras are computable so from these 

theorems we can deduce a number of non-equivalence results with methods 

that are adequate for computable data types. 

Hidden operations can be used to give simple specifications, as we 

saw in Example 2.1. In Majster [37], there appeared the first example of 

a type which cannot be specified by a (FIN,EQ) specification. The type 

is an interesting stack, but its complexity precluded a full proof of 

its non-definability. Attempts and suggestions aimed at giving a specification 

of Majster's stack, using extra machinery,.are found in Kapur [31], 

Jones [28], Hilfinger [24] and Subrahmanyam [49], Veloso [54]; see, too, 

Majster [38] which includes another example we will take up shortly. 

In ADJ [52], there is a critique of this situation. In particular, 

a simpler toy-stack, based on Majster's stack, is constructed and carefully 

proved not to have a (FIN,EQ) specification and yet to have a (FIN,EQ,HE) 



specification. Thus, it is known that there are data types that one 

desires to specify that require the use of hidden machinery. 

Independently of ADJ [52], we presented in [4] the algebra A5 in 

Example 2.1 as an example of a data -type that one wishes to define, 

but which needs hidden machinery. Here is the proof. 

4.1 THEOREM The aZ,gebra 

2 
A = (w; O,x+l,x ) 

does not possess a (FIN,EQ) specification. 
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PROOF Suppose for a contradiction that (Z,E) is a (FIN,EQ) specification 

of A. We assume that E contains no trivial equations of the form t=t. 

Let E = E1 u E2 u E3 where 

E1 contains the simple equations of E; 

E2 contains the equations of E of the forms 

where t 2 is simple and X,Y are free in t 1,t3; 

E3 contains the equations of E of the form t 1 (X) = t 2 (X) 

where X is free in t 1,t2 • 

First we show that E2 = 0. For instance, t 1(X) = t 2 cannot hold in A 

because t 1(X) is interpreted in A by an injective function (because the 

operations of A are injective) while t 2 is interpreted as a fixed number. 

The case of t 2 = t 1(X) is identical. Finally, t 1(X) = t 3(Y) cannot hold 

in A because on substituting Y = 0 we obtain an equation of the previous 

form t 1(X) = t 2 which does not hold in A. 

Now we show that E3 = 0. Actually we will show that if A I= t 1(X) = t 2(X) 

then t 1(X) = t 2(X) and the equation is trivial; since we supposed E to be 

free of trivial equations we may conclude that E3 = 0. 

If A I= t 1 (X) = t 2 (X) then if Fe:Z names f (x) = x
2 

A f t 1F(X) = t 2F(X) • 

We will ereate a special representation of these terms of form tF(X) in 

order to prove t 1=t2• 

Let Z' = L - {o}. 

Let S name s(x) = x+l • 

The terms of interest are those in Tz 1 (F(X)). 
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Let B be the following structure of infinite signature I' 

B = (w : 

2 wherein f.(x) = x + i; note 
1 

This B is tailored to the 
semantics of TL 1 (F(X)) (see Lemma 4.2). Let r be the signature of B with 
fi named by Fi. We construct a syntactic transformation H: TL,(F(X)) + Tr(X) 

H(F(X)) = F0 (X) 

H(S(t)) 

H(F(t)) 

if H(t) = F F ••• F (X). 
a0 a 1 ~ 

4.2 LEMMA H is injective and t and H(t) have identieai interpretations 
as functions on w. In partieuiar, 

PROOF We leave this as an exercise involving induction. D 

Suppose H(t
1
F(X)) = 

We will prove that 

F ••• F (X) and H(t2F(X)) = Fb ••• Fb (X). 
al ap 1 q 

B I= F ••• F (X) = Fb ••• Fb (X) ~ p=q and a.=b. for i=l, ••• ,p • a 1 ap 1 q i i 

That is, the semigroup G of functions on w generated by the f. under composition 
1 

is a free semigroup. This done we deduce that 

B I= H(tlF(X)) = H(t2F(X)) implies H(tlF(X)) = H(t2F(X)) • 

By the injectivity of H we know that t 1F(X) :: t 2F(X). This obviously implies 
that t 1 = t 2 • 

Suppose B I= F ••• F (X) = Fb ••• Fb (X). If p=l=q then on their 
al ap 1 q 

interpretation as polynomials on w, the terms on each side have different 
degrees, namely 2P and 2q respectively. Consequently~ the terms cannot 
represent identical functions and the equation fails on B. Thus p=q. 

We now need some special notation. 

ci F F ••• ·F i 
Fb.Fb. • •• Fb = T = a. ai+l a 

]_ p 1 i+l p 

oi cri ]_ i cri-Ti = + T p = 

i: i Now o and p we consider as polynomials over the ring 7l of integers. Note 
that 

i i i p-i+l deg(cr ) = deg(o ) = deg(T ) = 2 



for i$p. In this notation our equation is B I= o'=-r' or equivalently 

ll F p'=O. 
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Suppose that o'~-r'. Let j be the largest index such that a.*b .• 

So i>j implies a.=b. and oi=-ri. By induction on k we show thatf;r d·$ k $ j-1 
1 1 . k 

it is the case that ll IF pJ- = O. Thus ll ~ p' = 0 which contradicts 

our assumption. 

In the bas is k=O 

If j=p then pj = 

there are two cases j=p and 
• . 2 2 

oJ--rJ = (X +a ) - (X +b ) = 
p p 

and by the assumption on j=p, ll IF pP = O. 

If j<p then 
. . i ·+1 ·+1 

PJ = OJ--r = F OJ - F -rJ 
a. b. 

J J 

= ((oj+l)2 +a.) _ ((-rj+l)2 +b.) 
J J 

= (oj+l)2 _ (-rj+l)2 + a.-b. 
J J 

= a.-b. 
J J 

j<p. 

a -b 
p p 

·+1 ·+1 
because OJ = -rJ by choice of j. 

In the induction step, let ll 

i = j- (k+l) = i-1. 

Thus ll j+ pj = O. 
i 

~ p = 0 where i = j-k. 

i-1 
p 

i-1 i-1 = o --r 

Now ll ~ pj = 0 imp lies 

deg(o2p2) ~ deg(o2) ~ 2p-i+l ~ 2. 

Hence deg(pi-l) ~ 2 and ll fi' pt-l = o. 

This concludes the proof that E3 = ~. 

Suppose TO:: ,E1) 3 A. Let 
2 

Ek = {F(Sn(O)) = Sn (0) ne:w, n$k} 

We consider 
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Notice that if i<j then E. c E. and that A is an Ek-algebra for all k. 
1 J . 

We claim that for sufficiently large k
0

, Ek 1- E
1

• This can be easily 
0 proved: 

First define A T(E) + w such that 

A I= t = gA(t)(O) 

By induction, we define 

A.(O) = 0 

A.(S(t')) = A.(t')+l 

A.(F(t')) = A.(t 1
)

2 

It is easy to check that this A is uniquely determined. 

4.3 LEMMA E j- t = SA.(t) (O) 
A.(t) 

PROOF This is done by induction on t. The basis case t=O is trivial. 

The induction step has two cases. 

Let t=S(t'). Then, by the induction hypothesis, 

EA.(t') j- t' = SA(t')(O) 

EA.(t) I- t' =SA.(t')(O) 

EA.(t) I- S(t) = S(SA.(t')(O)) 

EA.(t) I- t = SA.(t')+l(O) 

E).(t) I- t = SA.(t)(O) 

Let t=F(t'). Then, by the induction hypothesis, 

EA.(t') I- t' = s"-Ct') (o) 

EA.(t) I- t' = SA.(t')(O) 

EA.(t) I- F(t') = F(SA.(t')(O)) 

EA.(t) I- t = SA.(t')
2 

(0) 

EA.(t) I- t = sA.(t) (O) 
,. 

D 



Since 

Choose k0 > max{lel e E E1}. Then for any e = t = t' E E1 

Ek r- t = SA(t) (0) and Ek r- t' = SA(t') (O) 
0 0 

A I= t = t ' we know that A ( t) = A ( t' ) 

Since Ek r- E1 we know that TO:,Ek ) 
0 0 

and hence that Ek 

is an E1-algebra.
0 

Since A ~ T(Z,E1) is an Ek -algebra we can 
0 

A ~ T(~,El) ~ T(Z,Ek ) 
0 

conclude that 

r- t = 
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t' . 

We contradict this statement that,A is initial in ALG(Z,Ek) by giving 

an Ek -structure into which A may not be homomorphically 

is ~O = (w : O,x+l,g) where g : ~ is defined by 

mapped. The structure 

0 2 
g(x) = { x 

k2 
0 

otherwise. 

Any homomorphism ~ : A + ~ must satisfy ~(n) = n; notice the homomorphism 
. 0 
property fails as follows: 

~f (k0+1) = g~(k0+1) 

~((k0+1) 2) = g(k0+1) 

2 2 
(k0 +1) = k0 

Thus we have shown that T(Z,E1) ~A and we conclude that A does not 

possess a (FIN,EQ) specification. 

On adequacy grounds, to be discussed in the next section, we have 

the following: 

4.4 COROLLARY (FIN,EQ) and henae (FIN,SEQ) speaifiaations are not 

equivalent to the infinite speaifiaation methods. 

On examining the first part of the proof, it is easy to show the 

following: 

4.5 LEMMA (FIN,EQ) speaifiaations are not equivalent to (FIN,SEQ) 

speai fiaations. 

D 

Next, let us t~rn to (FIN,CEQ) specifications. We will now give a 

simple computable algebra that cannot be defined by these specifications. 
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The problem is alluded to in ADJ [52], but not solved. The algebra was 

mentioned in Majster [38] as an example of a structure without a (FIN,EQ) 

specification, but a proof was not provided. 

Consider the following two-sorted structure Cf based on the 

characteristic function 

f : w-+ {true,false} 

of a set sf c w where 

X E Sf*> f(x) = true. 

The structure cf has domains w and {true,false} linked by f: 

Cf = (w;{true,false} : O,x+l,true,false,f} 

The structure Cf is uniquely determined up to isomorphism by f: 

4.6 LEMMA The following conditions are equivalent : 

(i) f = g; 

(ii) sf = s . 
g' 

(iii) cf = c . 
g' 

(iv) 
,..., 

Cf Cg; 

(v) there is a homomorphism cf> : cf -+ cg. 

PROOF The 

cf> : cf -+ cg 

cycle of implications from (i) to (v) are obvious. Suppose 

is a homomorphism. Then cf>(n) = n for all nEW because cf> 

preserves 0 and successor. Thus for all n 

f(n) = cp(f(n)) = g(cf>(n)) = g(n) 

and (v) implies (i). 

Consider the following sparsity property on f : 

For any kEW there exists XEW such that f(x) = true and 

f(x-k), ••• ,f(x-1),f(x+l), ••• ,f(x+k) = false. 

Equivalently, for the set Sf 

For any kEW there exists xESf such that the interval 

[x-k,x+k] n sf = {x}. 

D 

2 
For example, the set {n nEW} of squares satisfies this sparsity property. 

Less· obviously, 
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4~7 LEMMA The set P of prime numbers satisfies the sparsity property. 

PROOF A significant theorem about the increasing enumeration 

p0, p1, p2, ••• of the primes is that for any n there exist (infinitely many) 

i such that 

see Theorem 6.1 in Prachar [45]. 

We note that if f has the sparsity property then: 

For any kEW there exists xEW suah that f(x),f(x+l), ••• 

f(x+k) = false. 

Or equivalently 

0 

For any kEW there exists xEw suah that the intervai [x,x+k] n sf = ~ • 

4.8 THEOREM Let f : w + {true,false} satisfy the sparsity property • 

. Then the structure cf faiis to possess a (FIN,CEQ) speaifiaation. 

PROOF Suppose for a contradiction there exists a finite conditional 

equation specification (L,E) for Cf so that T(E,E) ~ Cf. Let K be the 

class of all characteristic function structures 

K = {C 
g 

g : w + {true,false}} 

We claim that Cf is the only structure in K that satisfies all the equations 

in E. For suppose that Cg ~ E then since Cf is initial in ALG(E,E) there 

must exist a homomorphism W : Cf + Cg. By Lemma 4.6, Cf = Cg. 

Now define ~ = A e. We know that Cf is the only structure in K that 
eEE 

satisfies ~. This property we will seek to contradict. 

The open formula ~ can be built up using - and v from equations over 

the two sorts of numbers and booleans. An equation t 1=t2 over booleans 

is equivalent to 

(t1 = FALSE A t 2 = FALSE) v (t1 = TRUE A t 2 = TRUE) 

and hence we may assume that the atomic formulae of ~ are either equations 

over w, or equations over booleans having one of the forms t=FALSE or 
.. 

t=TRUE and that there are no variables of type booleans. The atomic 

formulae are therefore of the form: 
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Sn(O) = Sm(O) F Sn(O) = F Sm(O) 

Sn(O) = Sm(X) F Sn(O) F Sm(X) 

Sn(X) = Sm(X) F Sn(X) = F Sm(X) 

Sn(X) = Sm(Y) F Sn(X) = F Sm(Y) 

Let <P contain the numerical variables x1 , ... ,Xn and have length t. 

We will now construct a g : w -+ {true, false} such that C I= cp and 
g 

cf =1= cg. 
Since f satisfies the sparsity assumption we can choose Z€W such that 

f(z) = true but for all xE[z-4tn, z+4tn] if x*z then f(x) = false. 

Now we define 

g(x) = 
{ 

f(x) 

false 

if x=l=z 

if x=z 

Thus f,g differ only at z. This has the following implications for 

valuations p {x1 , ... ,Xn}-+ w of <P: 

4.9 LEMMA If for each i=l, ••• ,n 

then 

if, and only if, C , p I= cp 
g 

PROOF We prove this by induction on cp. The 8 cases of atomic formulae 

follow a similar pattern : we consider 

and show that 

implies 

implies 

Now Cf,p F $ entails that 

c ,p I= <P g 

c ,p IF <P g 

f(sa(p(X.))) = f(sb(p(X.))) 
]_ J 

where '8. (x) = x+ l.. 



As jp(X.)-zl > i and a<t, and lp()(.)-zl > i and b<t, 
i J 

a b 
s (p(Xi)) * z and s (p(Xj)) * z • 

Hence, 
f sa(p(X.)) 

i 

= f sb(p(Xj)) 

and C , p I= cf>. The second argument is similar. 
g 
The induction steps for v aDd - are easy. 

by definition of g 

by equation 
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0 

Since f * g, we have that Cf * C and C ~ cf> (remember the assumptions 
g g 

on cf>). Thus, there exists a valuation a: {x1, ••• ,Xn} + w such that 

C ,a I= - cp. In view of the difference between f and g, we may expect the 
g 

elements V= {o(X1), ••• ,o(Xn)} to be "near" z. We will construct another 

valuation T that mainly coincides with a but which changes values in a 

"small" interval around z to larger values in a "small" interval higher 

up. such that 

implies c,-rl=-4> g 

and Lennna 4.9 can be applied to T to yield 

This done we note that Cf 17' cp, which is a contradiction. 

To construct T we first find two numbers L,R such that 

(i) L E [z-4tn,z] R E [z, z+4in] 

(ii) z-4tn < L - t L+i < z 

(iii) z < R-t R+t < z+4tn 

(iv) [L-i, L+i] n V = ~ [R-i, R+i] n V = ~ 

E ] 
L L+t z R-t R 

] 
R+t z+4tn 
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Suppose no such L at the centre of an interval of length 2 existed then 

condition (iv) implies there must be 42n/22 = 2n elements of V within 

[ z-4R.n, z]. 

By sparsity, there is a number K
0 

> max(V) + 4R.n + z such that the 

interval [K0-42n, K0+4R.n] does not contain elements x with f(x) = true nor 

elements of V. Set d = K0 - z. Then define valuation 

T(Xi) = { cr(Xi)+d if cr(Xi) E [L,R] 

if cr(Xi) ii. [L,R] cr(Xi) 

z max(V) KO 

E • ] • [ • 3 

4.10 LEMMA For a:ny open formuZa w of Zength $ Ji a:nd with variabZes 

among x1, ..• ,xn we have 

PROOF 

case 

[L,R] 

A cr I= w if, and onZy if, A ,TI= W 
g' g' 

This is shown by induction on the structure of W• The basis 

divides into subcases determined by the atomic fornulae. 
a b Consider S (X.) = S (X.). If cr(X.) and cr(X.) are outside 

1 J ]. ]. 
then cr and T agree on x. and x. and we are done: 

]. J 

Ag,cr I= Sa(Xi) 

A ,T f Sa(X.) 
g ]. 

= Sb (X.) and 
J 

= Sb (X.) 
J 

In the case cr(X.) E [L,R] 
]. 

and a(X.) i [L,R] it is the case that 
J 

A ,cr ~ Sa(X.) 
g ]. 

A ,cr 11 Sa(X.) 
g ]. 

= Sb (X.) and 
J 

Sb (X.) 
J 

To see this note that a(X.) ii. [L-2, 
J 

R+R.J and so lcr(X.) - cr(x.)j >Ji. 
]. J 

Sb (X.) implies 
J 

jcr(x.) - a(x.) I 
1 J 

$ a-b $ a+b • 

Since a+b < 2 this equation cannot hold. 

But 

'-' a b I I Concerning A ,T ~ S (X.) = S (X.). We note that T(X.) - T(X.) > R, 
g ]. J ]. J 

becauS'e T(X.) = cr(X.) and 
]. ]. 

T(X.) = cr(X.)+d = cr(X.) + max(V) + 42n+z > cr(X.) + R, 
J J J 1 



By the same reasoning we can deduce the equation does not hold. 

The other cases of atomic formulae follow similarly and the 

induction steps are obvious. 

We have shown that for the constructed T 

C ,cr I= - <I> implies C ,T I= - <I> 
g g 

0 

Since IT(Xi) - zl > t for each i we can apply the Lemma 4.9 to conclude 

C g, T I= - <I> imp 1i es C f' T I= - <I> 

which is the desired contradiction, as explained earlier. 0 
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Again, on adequacy grounds, we can deduce the following improvement 

to Corollary 4.4. 

4. 11 COROLLARY (FIN,CEQ) speaifiaations are not equivalent to the 

infinite r.e. specification methods. 

The non-equivalence with the infinite recursive specification methods 

follows in Section 6. 

The fact that (FIN,CEQ) and (FIN,EQ) specifications are not 

equivalent was established in ADJ [52] using a rather simple, if artificial, 

type. In Bergstra and Meyer [2] a natural example of a data type of 

sets-of-integers is shown to have a (FIN,CEQ) specification, but not to have 

a (FIN,EQ) specification. 

5. ADEQUACY AND COMPLETENESS THEOREMS FOR SPECIFICATIONS WITH HIDDEN 

MECHANISMS 

In this section we will prove that the (FIN,EQ,HE) specifications 

are adequate for the computable data types and that the (FIN,EQ,HES) 

specifications are complete for the semicomputable data types. We will 

use some fairly elementary results from the theory of recursive functions 

and present proofs in some detail in order to establish properly the 

translation of ideas of computability to ideas of algebra. 

A~ with the situation concerning hidden functions, outlined in the 

previous sec~ion, there have been some observations concerning effective 

calculability and the power of methods already. In Guttag [21] and Guttag 

and Horning [22], the definition of th~partial recursive functions by 
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Herbrand-Godel-Kleeneequations is claimed to establish adequacy for their 
methods. However a considerable amount of work, particularly on the technical 
foundations of their specification methods, is necessary to establish that 
fact. A puzzle arises in their claim, however : the semantics of 
Herbrand-Godel-Kleene equations is that of an operational rewrite rule system 
and hence ought naturally lead to an initial algebra semantics for equations; 
but Guttag and Horning deny such a semantics is intended for their methods. 

In Majster [38], a similar sentiment concerning Herbrand-GOdel-Kleene 
computability and finite equations and hidden functions is expressed. Again 
considerable work is required to develop the initial algebra semantics 
of specifications for partial types, which Majster's interpretation clearly 
involves, and to develop the necessary computability theory for data types 
as we have here, in the case of types with total operations. Later in our 
series [1] we considered computable data types with partial functions. 

For simplicity, the theorems will be proved in the case of single-sorted 
data types only. The many-sorted generalisations are indeed true, but 
we prefer to follow the usual practice of our series of leaving the generalisation 
to the reader. However, in [11] it was expedient to give an account of an 

interesting relationship between the single-sorted and many-sorted cases 
of computable data types which can be of help here. 

5.1 THEOREM Let A be a single-sorted minimal algebra of signature L. 
If A is computable then A has a (FIN,EQ,HE) specification. 

PROOF The case that A is finite is accounted for by Proposition 1.12. 

Suppose A is infinite. 

By the Representation Lennna 3.5, A is isomorphic to a recursive 

algebra R of numbers, say 

R = (w; c1, ••. ,cn' f 1, ••• ,fm) 

where the c.EW and the f. are recursive functions on w. R is minimal, 
l. l. 

of course. We will show that R has a (FIN,EQ,HE) specification by constructing 
an algebra R' having a (FIN,EQ) specification and such that 

First we will prove the following technical fact 
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5.2 LEMMA Let g1, ••• ,gm be primitive recursive functions a:nd Zet 

A1, ••• ,A
2 

be the functi·ons appearing in their expUcit definitions. Then 

the algebra 

B = (w; O,x+l,Al' ••• ,A2, f 1, ••• ,fm) 

has a (FIN,EQ) specification. 

PROOF Without loss of generality, we can assume that the operations of B 

are ordered in a list 

o,x+1,e1, ••• ,e2+m 

so that any function is to the right of all those functions appearing 

in its explicit definition. 

Define a sequence of algebras 

B0 = (w; O,x+l) 

Bn+l = (An, 8n+l) 

for n=O, ••• ,t+m. We will prove that each B has a (FIN,EQ) specification and 
n 

s.o, in particular, A=BR,+m has such a specification. 

The base of the sequence is obvious : let LO = {O,S} and E0=~ so 

Bo ei T(Lo). 

Assume that B has a (FIN,EQ) specification (L ,E ) so that B = T(L ,E ), n n n n n n 
and consider Bn+l" By the construction of the list, the new function en+l 

is either a projection function, or is defiµed by composition or primitive 

recursion from earlier e.,e. with i,j < n+l. These three cases are treated in 
l. J 

like manner so we will write out the case of primitive recursion, only. 

Suppose 

en+l(O,xl, ••• ,~) = ei(xl, ... ,~) 

en+l(y+l,xl, ... ,~) = ej(y,xl' ••• ,~, en+l(y,xl, ••• ,~)) • 

Then set Ln+l = Ln u {0n+l} and En+l to be En with these equations adjoined 

~+l (O,Xl, ••• ,~) = ~i(Xl, ••• ,Xk) 

~+l(S(Y),X1 , ••• ,~) = ~j(Y,X1 , ••• ,~, ~+l(Y,X1 , ••. ,Xk)) • 

Clearly, (Ln+l'En+l) is a (FIN,EQ) specification so we must show that 

T(Ln+l'En-11.) ~ Bn+l' We use Lemma 2.9. We know that Bn+llL = Bn and that 
n B ;;;;; T(L ,E ) so we must verify that 

n n n 
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to apply Lemma 2.9. For this we can use Lemma 2.8. 

because 

Consider T = {Sr (0) : rEw}. Now T is a transversal for T(L: ,E ) 
n n 

T{L: ,E >I~.~ B I~ = B0 ~ T(L:0) • 
n n L...o n L...o 

Condition (i) of Lennna 2.8 is fulfilled by E 
1 

because B 
1 

is an E 
1 n+ n+ n+ 

algebra. Since condition (ii) is automatic, we are left with condition (iii). 

This condition is checked by considering 
r rl rk 

~+l(S (O), S (O), ••• ,S (O)) 

and showing that it is E 1 
equivalent to an element of T going by the 

n+ 
equations for 8 +l to elements of T(L: ) in which T is an E c E l transversal. 

-n n n n+ 

We will now construct R' from R. Let f 

function. Then the graph of f 

k w + w be a recursive 

is recursively enumerable. Since every r.e. set has a primitive recursive 

enumeration, let h1, ••• ,hk' g: w + w be primitive recursive functions 

enumerating graph(f). Thus, 

graph(f) = {(h1(z), ••• ,hk(z),g(z)) Z E W} 

and, in particular, for all ZEW 

f (h
1 

(z), ••• ,~ (z)) = g(z) • 

Now for each k.-ary recursive operation f. of R choose primitive 
J J 

recursive functions 

j j J 
h1, ••• , hk. and g 

J 

that enumerate graph(f.) as above. Let {A .. } and {µ.} be the lists of 

D 

J l.J J • . 
functions making up the explicit definitions of the h~ and g3 , respectively. 

l. 
Define 

R' } j j j ) = (w; O,x+l,{A .. },{µ. , h1, ••• ,hk.'g ,f
3
.,c1, ••• ,cn 

;;. l.J J J 

Clearly, R'IL: = <R'>L: = R. 

specification. 

We have to show that R' has a (FIN,EQ) 
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First set 

{ } } h j j j) 
Ro' = (w; O,x+l, /.. •. ,{µ. , 

1
, ••• ,hk ,g 

1 
• ·· 

- · l.J J . :::;J :::;m, l:::;i.:::;k. 
J J 

and let its signature be L0. Then 

<R>._., = R' 
LAO 0 

and by Lennna 5.2, R0 has a (FIN,EQ) specification (L0,E0). 

We now define a specification for R'. Let L' be the signature of 

R' so that L' =Lou L. Let E' be E0 with the following equations added 
c. 

for each constant c.EL, c. = S J(O) 
-J -J 

for each operation f.EL, 
-J 

ij (hi (X),. •• ,~ (X)) = _&j (X) • 

The pair (L',E') is a (FIN,EQ) specification so we must verify that 

T (L' ,EI) ~ Rt • This is done by Lemma 2.9. 

Clearly, R' is an E'-algebra so all that remains is the hypothesis 

T(L',E')IL' ~ T(L0,E0). For this we look to Lemma 2.8. 
0 

Consider T = {Sr(O) rEw}. That T is a transversal for T(L0,E0) 
follows from the fact that 

Conditions (i) and (ii) of Lemma 2.8 are true of T by inspection of E, 

which leaves condition (iii). So consider the term· 

rl rk 
.!_(S (O), ••• ,S (0)) 

The isomorphism between T(L0,E0) and Re) implies there is an Sz(O) such that 

Thus, 

r. 
S i.(O) =..,, h.Sz(O) 

.c.o -i. 

rl rk 
.!_(S (O), ••• ,S (O)) ~' 

for 1 :::;; i :::;; k • 
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Since ~Sz(O) e: T(E0) and T is an E0-transversal, 

gSz(O) = , Si(O) 
. - EO 

for some i whence the condition follows as ~· c ~' • 
0 

Next we turn to the only completeness theorem we know for the 

semicomputable data types that concerns finite specifications. The use 

of hidden sorts we first saw in Subrahmanyam [49]. 

5. 3 THEOREM Let A be a singZe-sorted minimaZ aZgebra of signatu:ee E. 

If A is semiaomputabZe then A has a (FIN,EQ,HES) speaifiaation. 

D 

PROOF We consider the case when A is infinite. Since A is semicomputable 

we can choose a recursive algebra 

·of numbers and a canonical codification yA : R +A with = r.e. (by the 
YA 

Representation Lemma 3.11). Recall from Section 3 that YA is factored thus 

and that SA = {y*(i) = y*(j) 

equations true in A. 

v 

(i,j) e: = } is the set of all simple 
YA 

Since = is r.e. we can choose primitive recursive functions g,h to 
YA 

enumerate it so that = {(g(z), h(z)) : ze:w} and hence 
-YA 

Adjoin the functions to R to make (R,g,h) denoted R0 , with signature E0 . 

Consider next the new two-sorted structure of signature f 

B = (A,w; a1 , ••• ,a, 0 1 , ••• ,o, c 1, ••• ,cn' f 1, ••• ,fm,g,h,y) 
"· n m 

Clearly, BIE =A with nat the sort name for w and nat t E. We shall prove 

the theorem by showing that B has a (FIN,EQ,HE) specification. 
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Since R0 is computable it has a (FIN,EQ,HE) specification by Theorem 5.1. 

More precisely, from the argument of Theorem 5.1, there is a new recursive 

number algebra R~ and a (FIN,EQ) specification (Z0,E0) such that 

T(2:0,E0) ~ RQ 

R01{o,s} = (w; o,x+l) 

Define B' to be B with all the new operations added to Ro to 

make R0; let B' have signature f'. Clearly B' lr =B. 

Now L c r', Lo c LO c r' and {O,S} c f'. 

We show that B' has a (FIN,EQ) specification (f',F). 

Define F to be E0 together with the following equations over r' 

v(c.) = a . 
..!... -l. -l. 

):g(X) = J'.!!(X) 

Clearly, (f' ,F) is a (FIN,EQ) specification. To prove that 

T(f' ,F) ~ B' 

we take two steps. 

First we claim T(r',F) is an SA-algebra so that T(r',F) ~ T(r',F u SA). 

Secondly, we claim B' ~ T(r', Fu SA). 

Consider the second claim first. B' is an<.Fu S.J.-algebra so, by 

initiality and the fact that B' is minimal~ there is a unique epimorphism 

<P : T(r', Fu SA) + B'. To check that <P is injective we split <P into cp1 ,cp2 

<P1 = <PI T(r' ,Fu SA) IL and <P2 = <Pi T(r'' Fu SA) 'L' 
0 

Now T(r', Fu SA) lz is an SA-algebra and 
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Now B' IL =A~ T(L,SA). Hence T(f', Fu SA)IL is initial for SA-algebras 

and 

by ~. The injectivity of ~2 follows the same lines. 

Finally, consider the first claim. Observe {Sr(O) 

transversal for T(E0,E0) so that 

~(Sr(O)) ~· Sf(r)(O) 
0 

n:w} is a 

since T(E0,E(>' I fo ~ R0 
to show that 

Moreover one may now use the equations given for F 

by induction on the complexity of terms. From these observations, 

y*(g(z)) =F y(Sg(z)(O)) 

=F Y(&Sz(O)) 

=F y(hSz (O)) 

=F y(Sh(z) (O)) 

=F y*(h(z)) 

whence T(f',F) is an SA-algebra. 

With these results we have almost completed our work on Figure B 

in Section 2. 

6. COMPLETING THE CLASSIFICATION 

Some four results are necessary to complete the analysis of 

specification methods, without hidden machinery, represented in Figure A; 

and one result is outstanding for Figure B. We begin with completeness ,, 
issues. 

6.1 PROPOSITION Let A be a semiaomputabZe minimaZ aZgebra of 

signature E. Then A has a (REC,CEQ) speaifiaation. 

D 



49 

PROOF By the Completeness Lemma 3.12, A has an (RE ,SEQ) specification (E,E). 

Let E be enumerated by f so that f(i) = e.. Let c be a constant symbol for 
]. 

L and define E to be the set of all conditional equations of the form 
c 

for iEW. Clearly, 

c = c A 

i-times 

A c = c +e. 
]. 

T(L,E ) = T(L,E) ~ A 
c 

But E is a recursive set of axioms, for given any conditional equation 
c 

e = e1 A ••• A en+ e' one first decides whether or not the ej are c=c 

if not then eiEc. If the ej are c=c then one computes f(n) = en and 

checks whether or note is e'. 
n 

6.2 PROPOSITION Let A be a semicomputabZe minimaZ aZgebra of 

signatu.re L. Then A has a (REC,SEQ,HE) specification. 

D 

PROOF By the Completeness Lemma 3.12, A has an (RE,SEQ) specification (L,E). 

Let E = U E is the set of equations of sort s E L. Let f and g be 
s s s s 

recursive functions that enumerate E so that s 

i E W} 

Now for each sort s we adjoin to L a new function symbol Is to make 

a new signature L'. We define E~ to be Es with the following simple 

equations adjoined 

Is(t) = t for each tET(L) 

I ••• I (f (i)) = g (i) for each iEW 
s s s s 

i times 

Now E' = U E' is a recursive set of simple equations over L', by reasoning 
s. s 

analogous to that in the previous result. Clearly, 

T(L' ,E') IL ;:' T(L,E) ;;; A. 

From this result we can obtain a simple counter-example to the 

converse of 3.13. 

D 
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6.3 COROLLARY Therae aioe (REC,SEQ) speaifiaations that define non-aomputable 

algebras. 

PROOF Choose A to be semicomputable, but not computable, and apply the 

above constructions to it. The algebra TO:' ,E') is not computable. 0 

Next we will prove that the (REC,EQ) specifications are not complete. 

Let E be the following signature: 

so:r>ts 

aonstants 

f unations 

Let W c w and define 

nat 

o : nat 

S nat -+ nat 

F nat -+ s 

G nat -+ s 

s 

We have axiomatised the equality of functions on a 

given set of numbers: 

6.4 LEMMA The aongr>Uenae =E is the set 
w 

{(FSn(O), GSn(O)) : n€W} u {(GSn(O), FSn(O)) n€W} 

u {(t,t): t€T(E)} 

Thus, for n€W, 

In aonsequenae, for W, Z c w 

Aw ~ Az if, and only if, W=Z. 

PROOF Let = denote the set defined above. It is easy to show that = 

is a congruence. Since T(E)/= satisfies Ew we note that = is an Ew-congruence 

and that ~ c =, since ~ is the least EW-congruence. Conversely, it is 

easy to che~k that = c ~ ~ The other properties are immediate. D 
w 

either one or two elements. 

Notice that the equivalence classes of are all'finite 
r;w 

and contain 
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6.5 THEOREM Let W be an r.e. non-reaursive set. Then the aZgebra 

~ is semiaorrrputabie but it faiis to posses-s a (REC,EQ) speaifiaation. 

PROOF The algebra is clearly semicomputable on account of Lenuna 3.12: 

the congruence is an r.e. set of simple equations that specifies A__. 

~w --w 
Suppose for a contradiction that .there was a specification (E,E) 

with E a recursive set of non-trivial equations such that T(L,E) ~ ~ 

i.e. ~ is ~ • Let E = E1 u E2 where E
1 

is the subset of all simple equations 

. f. w h h ~ 1n E. We 1rst s ow t at E2 = 't'" 

Let t
1
=t2 be a non-trivial element of E2 • Depending upon the 

occurrences of free variables in the equation, there are three possibilities: 

an equation of one of the following forms is valid in Aw: 

(remember the operations in E are unary). 

If t 1
(X) = t 2(Y) is valid then setting Y=O gives that {t1

(r) : rET(E)} 

is a subset of [t2 (0)]E which contradicts the finiteness of the equivalence 

classes. Thus no such equations are in E. 

If t 1
(X) = t 2(X) is valid then choose nEW and substitute FSn(O) 

t FSn(O) :::: t FSn(O) = t
1

GSn(O) ;, t 2GSn(O) 
1 ~ 2 ~ .i::. 

this yields an equivalence class with four elements which is not possible. 

(Note if W=·~ then it is recursive.) 

Finally, if t 1
=t2(X) is valid then again the set [t1~must contain 

the infinite set {t2(r) : rET(L)}, which is not possible. 

Thus, T(E,E 1) ~ ~ and the simple equations in E1 
must have the form 

FSn(O) = GSn(O) or GSn(O) = FSn(O) 

with nEW. Without loss of generality we may take 

But this means that T(L,E 1) is Az (by definition). Since Z is recursive 

and W is not recursive we know that Z*W and, by Lenuna 6.4, that AZ ~Aw· 

This contradiction of T(L,E
1

) ~ ~ completes the proof. 

.. 
We will now prove that the (FIN,CEQ) specifications are not 

comparable with the (REC,EQ) specifications (recall Theorem 4.8). 

D 
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6.6 THEOREM There is a semiaomputable algebra A that possesses a 

(FIN,CEQ) speaifiaation but fails to possess a (REC,EQ) speaifiaation. 

PROOF The construction of the algebra A is complicated and involves 

certain constructions made earlier. First, let W be an r.e. non-recursive 

set and let Aw be the two-sorted algebra made for Theorem 6.5: Aw= T(L,Ew). 

Let h : ro + w be a recursive function that enumerates W and define 

the single-sorted structure 

Bw = (w, o, x+l, h) 

with signature L1 • By Theorem 5.1, since BW is computable, there exists 

a (FIN,EQ,HE) specification (E 2,E2) such that 

Let CW= T(E2,E2). Thus~ is a computable algebra with a (FIN,EQ) specification. 

We will join the independent structures Aw and ~ by means of a map 

~ : Aw + CW that identifies their independent copies of w. This results in 

the structure Dw which is the algebra required in the theorem. In constructing 

DW we will work with specifications. 
A 

First we assume that E n E2 = ~. Let N and N denote the copies of 

the natural numbers in Aw and CW respectively. 

Let DW be the join [Aw,Cw] of the two structures; by the Join Lennna 

1.13, 

A 

To identify N and N we take transversals 

nEW} 
A A 

for N and N and define map ~ : N + N by 

The map ~ is added to DW as a new operation to make Dw,~· By the Function 
Lemma 1.16, this algebra is axiomatised by adding a new function symbol 

~ to E u E2 and equations 
• 

E~ = {~(Sn(O)) = Sn(O) : nEw} 

to Ew u E2 • For E3 = E u E2 u {~} and E3 = Ew u E2 u E~ we have 

DW,~ ~ T(L3,E3). 
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We take Ilw = T(E 3,E3). 

the properties of the theorem~ 

We claim that Dw is a structure satisfying 

6. 7 LEMMA Dw possesses a (FIN,CEQ} speaifiaation. 

PROOF The infinite s.et E3 of specifying equations for DW is made up 

of infinitely many axioms Ew for Aw' finitely many axioms E2 for CW and 
A 

infinitely many axioms E<I> for the linking of N, N. Leaving E2 alone, we 

make new sets 
A 

{IP(O) = 0 

A 

IP(S(X)) = S(IP(X))} 

E~ = {IP(X) = H(Y) + F(X) = G(X)} 

d d f
. 0 0 0 

an e 1 ne E 3 = EW u E 2 u E <I> • 

We will prove this by means of the Refinement Lemma 1.15. This requires 

us to know the following three conditions : 

(a) 

(b) 

(c) 

E~ r E3 

DW ~ T(E 3,E 3) 

0 
ow I= E3 

Of course, (b) holds by definition. We consider (c). 

Now Dw I= E2 because of (b) and Dw I= E~ by inspection. Consider 

D I= E~. 
Let a be any valuation of the free variables of the equation in E~; 

sayo(X) = [Sn(O)J, o(Y) = [Sm(O)]. And supposeDW,o I= IP(X) =H(Y). Then 

DW I= IP(Sn(O)) = H(Sm(O)) 

DW = Sn(O) = H(Sm(O)) 

by inspection 

By the construction of (the component algebra BW in) Dw' it may be checked 

that 

and hence, n=h(m) and nEW. We must now verify that 

This is true by virtue of EW in the specification of Dw· This concludes 

our check of (c). 
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Consider (a). 

E~ t- E<P ~s a matter 

to show E3 t- EW. 

Let F(Sll(O)) = 

h(m) = n. We have 

Since E2 c E~ we have that E~ 1- E2 • To show that 

of showing that E~ r Ecp by induction. Thus it remains 

G(Sn(O)) E Ew. Then nEW and there is mEW such that 

Bw I= Sn(O) = H(Sm(O)) 

~ I= Sn(O) = H(Sm(O)) 

and since CW= T(E2,E2), by initiality (Provability Criterion 1.5) 

E
2 

t- Sn(O) = H(Sm(O)) • 

L n "n " 0 L Now E<P 1 ~(S (0)) = S (O), and since E
3 

r E<P 

Applying the axiom of E~ we obtain 

, , ll Am A on substitution S (O) for X and S (O) for Y. 

This concludes the proof of (a) and, by the Refinement Lemma 1.15, 

the proof that DW ~ T(E 3 ,E~). 0 

6.8 LEMMA Dw does not possess a (REC,EQ) specification. 

PROOF Consider the relationship between DW and Aw· Clearly ?wjE = Aw and each 
function symbol of E3-E has codomain sort in E3-E • 

6 .9 LEMMA Let A and B be arbitrary algebras of signatures E an.d E'. 

Suppose that E c E' and BIE ;;:: A. Suppose that each function syrribol of 

E'-E has codomain sort in E'-E. Then for any equationai specification 

(E ' , E ' ) we have 

B ~ T(E',E') implies A~ T(E,E) 

where E = E' n L(E) and L(E) is the first-ord.er language over L. Thus if B •· 
has a (*,EQ) specification then A has a (*,EQ) specification. 

Now if we assume that Dw has a (REC,EQ) specification then, by Lemma 6.9, 

Aw has a (REC,EQ) specification : this is not the case because of Theorem 6.5. 
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i;>ROOF OF LEMMA 6.9 Let B ~ T(i 1 ,Et). Cons.truct B* a homomorphic image 

of B tha.t is made by collapsing all domains in B named in I:'-L: to a singleton 

set : we take B* = B/ ~* where 

E* = {X = Y : s sort in L:'-L:} 
s s 

By the fact that the operators of L:'-L: have codomains in L:'-L: we have that 

B*lz:: ~A • 

And that B* = T(L:', E' u E*), by the Factor Lemma 1.14. 

Now take E = E' n L(L:) i.e. E is the set of equations involving 

operators from L: only. Notice that E u E* ~ E' u E* because E* ~ E '-E. 

By the Refinement Lemma 1.15, 

T(L:', E u E*) ~ B* 

We will now show that T(L:,E) ;;;,' A. Clearly A I= E because B I= E' and 

Biz:;;;,' A. Thus we must show that A is initial in ALG(L:,E). Suppose 

C E ALG(L:,E); we must construct a homomorphism A+ C. First we enrich C 

to a L:'-structure C' by adding singleton domains for the new sorts and the 

uniquely determined operators having codomains among the new sorts. Note 

that C' I= E u E*. By the initiality of B* for ALG(L:', E u E*) there is 

a homomorphism ~ : B* + C'. On restricting our interest to L: we find 

that ~ induces a homomorphism A~ Biz:+ C. This concludes the proof of 

Lemma 6.9 and that of Theorem 6.6. D 

Finally, in Figure A, we must separate the simple equations from the 

equations : 

6.10 THEOREM There is an algebra A that possesses a (FIN,EQ) speeifieation 

but fails to possess a (FIN,SEQ) speeifieation. 

PROOF Let L: be the following signature 

sorts nat 

eonstants 0 : nat 

functions s nat -+ nat 

P nat -+ nat 
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and let E be the s.et containi.ng the equations. 

P(O) = O PS(X) = X • 

Clearly, T(E,E) is the structure 

A = ({O,l, ••• }; O, x+l, x-1) 

and A has a (FIN,EQ) specification. 

Suppose for a contradiction that A has a (FIN,SEQ) specification 

(E,E0). Define for k€W 

Ek = {P (O) = O} u {PSn+l (O) = Sn{O) . : n $; k} 

6 .11 LEMMA Let e be a sirrrpZe equation over E. If I e I < k and A. I= e 

then Ek I- e. 

PROOF By induction on the structure of e. D 

Let k0 = max{lel : e€E0}; remember E0 is finite. Then, by Lemma 6.11, 

Ek I- E0 • Since A I= Ek we have that A ~ T (E ,Ek ) by the Refinement Lemma 
0 0 0 

1.15. To this statement we obtain a contradiction. 

Let B = (w : o, x+l, s, p) where p : w;~ w is defined by 

p(n) = 0 

n-1 

0 

if n = O 

if o < n $; k
0 

if n > ko 

Now B I= E~ and so, by the initiality of A~ T(E,Ek ), there exists a 
. 0 ~ ( ) Q homomorphism o/ : A~ B. But we can calculate <P 1 in two ways : 

cp(l) = cp(s{O)) = scp(O) = s(O) = 1 

cp(l) 
k k = <P (p 0 s 0 ( 1) 

ko k = p cp{s t> (1)) 

ko 
= p (k

0
+1) 

= 0 

This is a contradiction. D 
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7. CONCLUDING REMARKS 

The classification progranune can be extended to other specification 

methods closely related are algebraic specifications equipped with final 

algebra semantics; specifications that allow forms of negation under both 

initial and final algebra semantics; specifications possessi.ng stronger 

properties such as associated rewrite rule systems that are confluent and 

noetherian, or such as w-completeness; specifications that allow partial 

operations under initial and final algebra semantics. In each of these 

cases there is much work to be done for the mathematics of the methods 

is not as simple as that of the cases considered here (see, for example, 

Heering [23], Broy and Wirsing [15]). In addition, the classification 

programme could include techniques such as those in Klaeren [32] and 

Loeckx [35]. 

We have taken some steps in these directions in our series [3-11], 

. particularly focussing on the subject of adequacy and completeness theorems 

for (FIN,EQ,HE) and (FIN,CEQ,HE) specifications under initial and final 

algebra semantics. Those of our results that are improvements of Theorem 5.1 

are proved using substantially harder arguments (involving the Diophantine 

Theorem for r.e. sets); thus the virtue of Theorem 5.1 is its use of 

basic facts about computability theory. In the case of semicomputable 

algebras• Th:eorem 5. 3 is both simple and the on"ly completeness theorem for the 

finite specifications under initial algebra semantics that is known. We 

feel that the solution of Open Problem 3.15 will be an important step 

forward. 
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