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Abstract 

Milner, R. and M. Tofte, Co-induction in relational semantics, Theoretical Computer Science 87 
(1991) 209-220. 

An application of the mathematical theory of maximum fixed points of monotonic set operators 
to relational semantics is presented. It is shown how an important proof method which we call 
co-induction, a variant of Park's (1969) principle of fixpoint induction, can be used to prove the 
consistency of the static and the dynamic relational semantics of a small functional programming 
language with recursive functions. 

1. Introduction 

The purpose  of this note  is to present  one ins tance among  several we have 

encoun te red  where the use of non-we l l - founded  sets, m a x i m u m  fixed points  of 

mono ton i c  operators and  a proof  method,  which we call co-induction, are essential 

tools in s tudying the semantics  of p rogramming  languages.  

A set A is non-well-founded if  there is an infinite sequence A~, A2, • • • such that 

An+ 1 is a member  of A , ,  for all n t> 1. Otherwise it is said to be well-founded. Although 

it is often assumed in set theory that all sets are wel l - founded,  Aczel 's an t i - founda t ion  

axiom [2] leads to an al ternat ive set theory which is very useful in compute r  science. 

The significance of m a x i m u m  fixed points  and  non-we l l - founded  relat ions in connec-  

t ion with concur rency  has been  demons t ra ted  in work by (among  others) Park [9, 

10] and  Mi lner  [7]. 

0304-3975/91/$03.50 © 1991--Elsevier Science Publishers B.V. 
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Non-well-founded objects occur naturally in programming language semantics. 

The example we present in this paper  is the soundness of  a type inference system 

with respect to the dynamic relational semantics of  a little functional programming 

language. The language is essentially the lambda calculus enriched with an explicit 

construction for recursive functions. In the dynamic relational semantics all l;unctions 
evaluate to c losures  of the form (x ,  exp,  E ) ,  where x is the formal parameter  of  the 

function, exp is the body of the function and E is an environment containing 
bindings for the variables that occur free in exp. If  the closure is the value of a 

recursive function, then E should map the name of the function to the entire closure 
itself. For example,  the evaluation of the expression 

fix factorial (n)=...factorial(predn) (1) 

in the empty environment should yield a closure satisfying 

clfact = ( n , . . .  factorial(pred n), {factorial ~ clract}). (2) 

By encoding tuples and finite maps as sets, one can view a solution to (2) as a 

non-well-founded set. Alternatively, one can consider non-well-foundedness of other 

objects than sets with respect to other relations than membership. In our case, for 

every n-tuple ( x l , . . . ,  x,) let us say that each xi is a cons t i t uen t  of the tuple and 

for every finite map {Xl ~-~ y~, • • •, x, ~ y,} let us say that each yi is a c o n s t i t u e n t  

of the map. Let us write x > y to mean that y is a constituent of  x. A c o n s t i t u e n t  

s e q u e n c e  is a finite or denumerable sequence of objects such that if y is the successor 

of  x in the sequence then x > y .  If  we broaden the notion of membership to 

constituentship in this way, then it is quite natural to call an object n o n - w e l l - f o u n d e d  

when it occurs in some infinite constituent sequence. Note that any clfact satisfying 
(2) is non-well-founded as it occurs in the infinite (periodic) constituent chain 

clfact > { f a c t o r i a l  ~ C/fact} > clract > { f a c t o r i a l  ~-~ clfact} > • • • . 

Whereas structural induction is a powerful technique for proving properties of  

well-founded objects, co - induc t ion  may be used for proving properties of  non-well- 

founded objects. Co-induction is not a new mathematical  tool; it is essentially a 

variant of  the principle of  fixpoint induction of Park [8]. But the breadth of its 

application is perhaps not fully appreciated; we hope that the proofs we present in 
this paper  will induce more awareness of  the use of  the principle in practice. 

The reader may suggest, at this point, that there is no need to take a closure to 

be a non-well-founded object, since one can deal instead with perfectly well-founded 

objec ts - -namely  a finite expression, formed by a recursion operator, which rep- 

resents the infinite unfolding of the closure. This can be done, but it does not remove 

the need for co-inductive proof; indeed, we have pursued this approach and have 

found that the proof  presented here requires only minor modifications. We prefer 

to deal with closures as non-well-founded objects because it appears most natural 

to do so. 
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Relational semantics borrows the idea of inference rule from formal logic to 

define the semantics of  programming languages. It derives from Plotkin's work on 

"structural operational semantics" [ 11]. Kahn and his group use the term "natural 

semantics" [5] for what we call relational semantics. Whatever the name, it is of  a 

more syntactical and mechanical  nature than denotational semantics, where pro- 

grams are mapped  to objects (so-called denotations) in a mathematical  model. Using 

denotational semantics it has been proved that the type inference system we define 
below is sound, i.e. that if an expression exp has a type r according to the type 
inference system and d is the denotation of  exp then d is a member  of  the set 

(actually an ideal) which models the type r (see e.g. [6]). In this paper  we shall 

prove the corresponding result for relational semantics. This gives us the opportunity 

to review and apply the principle of  co-induction, without which we have not been 

able to prove the consistency of the type inference system and the dynamic semantics. 

The rest of  this paper  is organized as follows: In Section 2 we define the syntax 
and the dynamic semantics of  the language; in Section 3 we define the static semantics 

of  the language; in Section 4 we introduce the idea of maximum fixed points and 

co-induction and in Section 5 we use it to prove the consistency of the static and 

the dynamic semantics. In Section 6 we finally discuss alternative notions of what 

it is for a value to have a type, some of which take one beyond the realm of 

co-induction, since this concept depends on the monotonicity of  functions. 

The reader is supposed to know elementary set theory; the basic ideas in relational 
semantics are simple and will be introduced when they are used. In order to allow 

the reader to concentrate on the basic proof  method, we have chosen to state and 

prove a relatively elementary theorem. 

2. The language and its dynamic semantics 

For the definition of the language we assume a set Const of  constants, ranged 
over by c, and a set Var of  variables, ranged over by x and f The language Exp of 
expressions is 

e x p  : : = ,  

x Variable, 

c Constant, 

fn x ~ exp Abstraction, 

fix f ( x ) = e x p  Recursive function, 

expj exp2 Application. 

The abstraction fn x ~ e x p  corresponds to lambda abstraction in the lambda 

calculus. In fix f ( x )  = exp, the function f is defined recursively. 
In what follows, we use ~ to mean disjoint union of sets and A 6n ~ B denotes 

the partial functions from the set A to B that have a finite domain. I f f ~  A ~" , B 
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the domain  and range o f f  are denoted by D o m ( f )  and R n g ( f ) ,  respectively. Every 

finite map f ~  A a, ) B can be written in the form {a, ~ h i , . . . ,  a ,  ~ ,  b , } ;  in par- 

t icular { } means the empty  map.  For  every f, g c A a" ) B the map f +  g e A an ~ B, 

called f m o d i f i e d  b y  g is the finite map with domain  D o r a ( f )  u D o m ( g )  and values 

( f + g ) ( a )  = g (a ) ,  if a c D o m ( g ) ,  and ( f + g ) ( a ) = f ( a )  otherwise. 

We now give a relational semantics for Exp in the form of  a set o f  inference rules 

the conclusions o f  which are o f  the form E ~ e x p  ) v, read " e x p  e v a l u a t e s  to  v 

in E " .  To handle  recursion we allow our  semantic  objects to be non-wel l - founded.  

More  precisely, it is possible to define sets Val, Clos, and Env so that they satisfy 

the set equat ions 

v E Val = Const  © Clos Values 

fin 
E e Env = Var ) Val Environments  

el  or (x ,  exp ,  E> ~ Clos = Var x Exp x Env Closures 

and so that  for all f, x,  exp,  E there is a unique closure e l s e  Clos solving the equat ion 

clo~ = (x ,  exp ,  E + { f  ~--~ cl~}) .  (9) 

Mathemat ical  justification that it really is possible to find sets Val, Env and Clos 

which meet  these requirements (in part icular  the requirement  that (9) have one and 

only one solution for e l~ )  can be found  in Aczel 's  book  [2]. Intuitively, the solution 

to (9) can be unders tood  as the non-wel l - founded object which results f rom repeated 

appl icat ion o f  (9) as a rewriting rule. Note  that, because Clos = Var x Exp x Env, 

every closure cl in Clos is a triple and if ( x , ,  e x p , ,  E~) = ( x2 ,  e xp2 ,  E2) then x 1 = X2, 

e x p ,  = e x p :  and E, = E2. 

E~c--- - .~c  

x C Dora E 

E ~ x - - + E ( x )  

E ~- fn x => exp ~ (x, exp, E) 

cl~ = <x, exp, E + l f  H cl~}) 
E ~- fix f ( x )  = exp ~ cloo 

E F- expx ---+ o E F- exp2 ~ c2 c = APPLY(ChC2) 
E~- expl exp2 - - -*c  

E ~- expl ~ ( x ' , e xp ' ,E ' )  

E ~ exp 2 - - ~ v 2  

E' +{z'  ~ v2} ~- exp' ---~ v 

E ~- exp 1 exp~ ----* v 

Fig. 1. D y n a m i c  semant ics .  

(3) 

(4) 

(5) 

(0) 

(7) 

(s) 
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A closure is the value o f  an abstraction. As in the literature, a closure takes the 
form (x, exp, E)  where x is the formal parameter ,  exp the body  of  the funct ion and 

E an envi ronment  which maps  each free variable o f  exp to the value it assumes at 

the time o f  the declarat ion o f  the function. In general, evaluat ion o f  a fix expression 

yields a non-wel l - founded  closure as illustrated with the factorial example in the 

introduction.  

To handle  the appl icat ion o f  constants to values, we assume a partial funct ion 
A P P L Y : C o n s t  × C o n s t *  Const.  With these convent ions we define the dynamic  

semantics o f  Exp by the inference rules in Fig. 1; the rules allow us to infer statements 

o f  the form E ~- exp ) v, read exp evaluates to v (in E ). For instance, rule 7 can 

be read: if exp~ evaluates to Cl and exp2 evaluates to c2 and c = APPLY(c~,  c2) then 
expl exp2 evaluates to c. 

3. Static semantics 

The static semantics o f  Exp is defined by an inference system, more  precisely a 

simple m o n o m o r p h i c  type inference system, as follows. 

The set Type of  type expressions (just called types in the following),  ranged over 

by ~', is defined by 

T:"=TT ] T I - - ) T 2 ,  

where 7r ranges over a set o f  primitive types, e.g., int and bool. A type environment 

is a finite map f rom variables to types: 

fin 
TE ~ TyEnv = Var ) Type. 

We assume a basic relation IsOf~_ Const  x Type relating for instance 3 to int, true 

to bool but not 3 to bool, and we require that whenever  c = APPLY(c1,  c2) and 

c~ IsOf0-1 ~ ~'2) and c2 I sOf  r~ then c I sOf  r2. The inference rules appear  in Fig. 2; 

c IsOf ~- 

T E F  c==::::~ T 
(lo) 

x C D o m T E  

T E  F x ==~ T E ( x )  
(11) 

T E + { x  ~-* r l}  F exp ==v ~'~ 

T E F f i a  x = >  exp ~ vl ~ "r: 
(12) 

T E + { f  ~ r, ---* r2} + {z ~ Yl} [- exp ~ r~ 
(13) 

T E  F fix f ( x )  = exp ~ r, -~ ~r 2 

T E  F expl ~ rl ~ r~ T E  ~- ezp2 ~ T 1 (14) 

T E  [- eXpl exp2 ~ "c 2 

Fig. 2. Stat ic  semant ics .  
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they allow one to infer statements of the form TE ~- exp ;, r, read exp elaborates 
to r (in TE ). 

4. Typing values using maximum fixed points and co-induction 

By pointwise extension of  the relation I sOf~  Cons txType  we get a relation 
I sOf~  Env x TyEnv. We expect it to be the case, then, that if exp elaborates to r in 

TE and exp evaluates to c in E and E IsOf TE then c IsOfr .  We refer to this 

proposition as the basic consistency of  the static and the dynamic semantics. 

However, this proposition needs strengthening before it can be proved by induc- 

tion, the reason being that evaluation resulting in constants may require evaluation 

resulting in closures (about which the basic consistency says nothing). Below, we 

first extend the relation c IsOf r to a relation v : r, read v has type r, which also says 

what it is for a closure to have a type; then we define the relation E : TE, read E 

matches TE, to be the pointwise extension of v : r and prove that if exp elaborates 

to r in TE and exp evaluates to v in E and E matches TE then v has type r. There 

are variants to the v : r relation which also are plausible definitions of what it is for 

a value to have a type. We shall call these relations collectively correspondence 

relations, because each of them defines a correspondence between the dynamic 

semantics (values) and the static semantics (types). 

The consistency proof is relatively simple if we can define the correspondence 

relation so that it satisfies 

/ (i) if v = c then v IsOf r; 

v : r  iff ~(ii) if v=(x ,  exp, E) then there exists a TE such 

[ that TE ~ - f n x ~ e x p  >r  and D o m ( E ) =  

D o m ( r E )  and E(x)"  r E ( x ) ,  for all x e Dora(E).  

(15) 

Because of  the existential quantification in (15) (ii), these bi-implications do not 

constitute a definition, merely a property of a correspondence relation. The reader 

is probably surprised to see (15)(ii); given that we are trying to prove the soundness 

of the type inference system, why refer to the type inference system itself in the 

definition of what it is for a closure to have a type? 

There are two reasons, a pragmatic one and a technical one. The pragmatic reason 

is that the main interest of Theorem 5.1 is the case where E is an initial environment 
binding pre-defined variables to constants, TE is an initial type environment binding 

the same variables to their types, and v is a printable value, i.e. a constant rather 

than a closure. In this case the theorem gives the desired result independently of 

(15)(ii). 

The technical reason is that (15)(ii) leads to a simple proof of the consistency 

theorem since a relation satisfying (15) can be obtained as the (maximum) fixed 

point of a monotonic operator as follows. 
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Let U be the set Va l×Type ,  let P ( U )  be the set of  subsets of  U and let 
F : P ( U )  ~ P ( U )  be the function defined by 

F ( Q ) = { ( v ,  z ) e  U[i f  v = c  then v IsOf r; 

if v = (x, exp, E) then there exists a TE such that 

TE ~ - f n x ~ e x p  ; , r  and D o m ( E ) = D o m ( T E )  

and (E(x) ,  T E ( x ) ) •  Q, for all x • Dom(E)}.  (16) 

It is clear, then, that the relations satisfying (15) are precisely the fixed points of  

F. Notice that F is monotonic  with respect to set inclusion: Q _c Q' implies F(Q)c_ 

F(Q' ) .  Since ( P ( U ) ,  c_) is a complete lattice, it follows from Tarski 's fixed point 

theorem that F has a largest fixed point and a smallest fixed point, namely 

Qmin =(-~ { Q c  U [ F ( Q )  c_ Q} 

and 

Q .... = U { Q _ c  UlQc_ F(Q)}. (17) 

For our particular F, the minimum fixed point Qmin is strictly contained in the 

maximum fixed point Qmax and the minimum fixed point is too small. To demonstrate 

this, let us show that the closure elfact defined in the introduction has type i n t  ~ i n t  
if we take the correspondence relation to be omax, but not if we take it to be Qmin. 

To show (C/fact , i n t  --~ i n t )  • omax, let us define Qfact = {(C/fact, i n t  -~ in t )} .  Looking 
at the definition of F, we can now check that Qf~ctC_ F(Qfact ). First, for the sought 
TE, take { f a c t o r i a l  ~-~ ( i n t  ~ i n t ) } .  Next, it is easy to show that 

TE F- fn n ~ exp "., i n t - ~  i n t  assuming that the IsOf relation associates the con- 

stants in exp, the body of f a c t o r i a l ,  with the obvious types. Finally, letting 

Efact = { f a c t o r i a l  ~ C/fact}, Efact and TE are defined on f a c t o r i a l  only, and the 

pair (E fac t ( f ac to r±a l ) ,  T E ( f a c t o r i a l ) )  is the element of  Qfact. Thus Qfact ~ 
F(Qr~ct). But Q ....  contains all the subsets Q of U that satisfy Q c F ( Q ) ,  so 
Ofact c Qmax. Therefore clrac, : i n t - ~  i n t  if we take : to be Qmax. 

On the other hand we have (C/fact , i n t  ~ i n t ) Z  Qmin. To see this, let us recall that 
there is an alternative characterization of Qmin, namely 

Rmin = ~ J  F A, (18) 
h 

where F A = F(I._.J~,<A F" ) ,  where h ranges over all ordinals (see [1] for an introduc- 
tion to inductive definitions). In other words, one obtains R m~" by starting from the 
empty set and then applying F iteratively. However, intuitively speaking, there is 
no first point in the chain 

0 c_ F(O) c_ F(F(O))c_. • • 

where the non-well-founded object (clf~ct, i n t  ~ i n t )  could enter because, according 

to the definition of F, C/fact cannot be types unless Efact has already been typed, i.e. 

unless Clract itself has already been typed. More generally, for any monotonic F 
which has the property that if all members of  Q are well-founded then so are all 
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members  of  F (Q) ,  one can prove by transfinite induction that the minimum fixed 

point of  F contains only well-founded objects. 

We say that a subset Q ~ U is F-consistent if Q c_ F(Q) .  This use of  language is 

motivated as follows: Q can be seen as a set of  claims, each claim being a pair 

(v, ~-) claiming that value v has type ~'. If  Q is F-consistent then there is a justification 
for each such claim q e Q, either with or without reference to claims in Q. The 

former is the case when q is a pair of  a constant and a type, in which case the 
definition of  F ensures that the constant is of  the claimed type. The latter is the 

case in our examples above, where the element of Qfact serves as justification for 

itself. (The fact that claims can serve as justifications for themselves makes the use 

of  the word consistency very appropriate.)  Indeed Qract is the smallest F-consistent 
set containing (c/f, ct, int ,-~ ±nt) .  Note that Qmax is the largest F-consistent subset 

of  U. 

Associated with the device of  defining a relation as the maximum fixed point of  
a monotonic  operator is the important proof  technique of co-induction: 

Let U be any set, let F:  P( U)-~ P ( U )  be a monotonic function and let 

R be the maximum fixed point o f  F. For any Q ~_ U, in order to prove 

Q c_ R, it is sufficient to prove that Q is F-consistent, i.e., that Q c_ F(Q) .  

The point is that R = I,_J { Q _c U ] Q c_ F(Q)},  so R includes all F-consistent sets. 

As an example of co-induction, assume we want to prove a theorem of the form 

Vx  e A . ( P ( x ) ~ ( e [ x ]  e R)) ,  

where A is a set, P is a predicate, e[x] is a formula which depends on x and R is 

the maximum fixed point of  a monotonic operator F : P(U)--> P ( U ) ,  where U is 

any set. We can then define 

Q = { q c  U I 3 x e A . ( P ( x ) ^ ( q = e [ x ] ) ) }  

and attempt to prove Q c_ F(Q) .  (For if Q c_ F ( Q )  then by co-induction Q c_ R, and 
Q c_ R is equivalent to the desired Vx e A . ( P ( x ) ~ ( e [ x ]  e R)) .)  Sometimes the 
inclusion Q c  F(Q)  does not hold, in which case one must look for a set Q 'D  Q 
which is F-consistent. It will even suffice to prove that Q w R is F-consistent. 

5. The consistency theorem 

We take v : 7 to mean (v, ~-) e Qmax, where Qmax is the maximum fixed point of  

the operator  F defined by (16). The relation E : TE is the pointwise extension of 

v : ~-. We can now formulate and prove the consistency theorem. 

Theorem 5.1 (Consistency of static and dynamic semantics). I f  E : T E  and 

E F- exp ~ v and TE F- exp ;, .r then v : -r. 

Proof. By induction on the depth of inference of E ~ exp ~ v. There is one case 

for each rule. The cases for constants, variables and application of a constant are 
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trivial. Of  the remaining cases, the one for fix is the most  interesting, in that it uses 

co-induction.  

Recursion, rule 6: Here the evaluation is o f  the form 

cloo = (x, exp, E + { f  ~ cloo}) 

E ~ - f i x  f ( x ) = e x p  ~ clio (19) 

and the elaborat ion is o f  the form 

TE + { f  ~-+ z, ~ %}+{x  ~ 71} [-- exp-----> 72 (20) 
r E  ~- fix f ( x )  = exp > rl -~ 72 

where r = 71 ~ r2. To prove c l~:r  by co- induct ion we define Q = Qmax k_/{(clcx~, 7)}, 

and prove that Q is F-consistent .  Take a q • Q. I f  q c Qmax then q • F ( Q )  because 

Qmax__ C Q and the monotonic i ty  o f  F implies 

F(Qmax) c _ F ( Q )  i.e., QmaXc_F(Q). 

Otherwise q=(cL~,  r). Let T E ' =  TE + { f  ~+ r} and E ' =  E + { f  ~--~ cl~,}. We have 

TE'  + {x ~-+ rl} ~- exp "72 

by (20) so T E ' ~ - f n  x ~  exp ", r by inference rule 12. Since E : T E  we have 

D o m ( E )  = D o m ( T E )  and for all x • D o m ( E ) ,  E ( x )  : r E ( x ) .  So for all x • D o m ( E )  

we have ( E ( x ) ,  T E ( x ) ) •  Q. Moreover  ( E ' ( f ) ,  rE'(f))=(cl~, r ) •  Q. Thus 

D o m ( E ' )  = D o m ( T E ' )  and for all x •  D o m ( E ' )  we have ( E ' ( x ) ,  T E ' ( x ) ) •  Q. So in 

this case as well, we have q c F ( Q ) .  This proves that Q is F-consistent .  

Abstraction, rule 5: Here the evaluation is o f  the form 

E t- fn x ~ exp , (x, exp, E)  

and the conclusion of  the elaborat ion is TE ~- fn x ~ exp > r. Since in addit ion 

E : T E ,  the type envi ronment  TE satisfies the requirement  (15)(ii). Hence 

(x, exp, E)  : r. 

Application o f  Closure, rule 8: Here the evaluat ion is o f  the form 

E F- e x p l  , (x' ,  exp', E ')  

E F- exp2 ~ v2 

E '  + {x' ~ v2} [-- exp' ~ v 
(21) 

E t- expl exp2 ~ v 

and the elaborat ion is o f  the form 

TE~- exp~ > r'-+ r TE ~- exp2 > r' 
(22) 

TE ~- exp~ exp2 ;, r 

for some r' .  

By induct ion on the first premises of  (21) and (22) together  with E : TE we get 

(x' ,  exp', E ' ) : r ' -~  r. (23) 
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Similarly we get v2 : r '  by induct ion on the second premises. From (23) and the fact 
tha t : i s  a fixed point  o f  F, there exists a TE '  with E ' :  T E '  and 

TE F- fn x '  ~ exp'  ~ .c' ~ r. (24) 

Take such a TE';  this type environment  allows us to use induct ion a third time. 

( Indeed  this is why the " E  : TE'" is impor tant  in (15)(ii).) More precisely, since 

E ' :  TE '  and v2: r'  we have 

E ' +  {x '  ~-> re} : T E ' +  {x' ~ r'}- (25) 

Moreover ,  (24) must  be obta ined from the premise 

r E '  + {x '  ~ r'} ~- exp'  > r. (26) 

Not ic ing that  the third premise o f  (21) was deduced in fewer steps than the 

conclusion,  we can use induct ion on it together  with (25) and (26) to deduce the 

desired v : r .  []  

6. Discussion 

Since the v:  r relation is an extension of  the c I sOf  r relation, Theorem 5.1 implies 

the basic consistency result (namely that if E ~ exp > c and TE ~- exp----~, r and 

E IsOf  TE then c I sOf  ~-). However ,  there are other  natural  extensions o f  the I sOf  

relation for which one can at tempt to prove the consistency result. One is 

(i) if v = c then v IsOf~' ;  

v : ' r  iff (ii) if v = (x, exp, E )  then there exist r l ,  r2, such that  (27) 

~" = rl ~ ~'2 and for all v, ,  v2, if c, :' rl and 

E + {x  ~ vl} ~- exp ~ v2 then v2 :' r2. 

Interestingly, the opera tor  F '  associated with this revised proper ty  is no longer  

mono ton i c  with respect to set inclusion because o f  the occurrence o f  "Vl :' ~'," on 
the lef thand side o f  the implication. Nevertheless,  there is precisely one relation 

:' ___ Val × Type satisfying (27); this can be seen by induct ion on the structure of  type 

expressions. 

There are closures that have a type using :' but  have no type using :. One example 

is the closure (n, i f  t r u e  t h e n  7+n e l s e  f a l s e ,  { }). However,  we do not know 

whether  : is conta ined in :'. The consistency result can be proved using :' instead 

o f :  ; the p r o o f  we have again uses co-induction,  but it is rather involved and therefore 

not inc luded here. 

The justification for the existence of  fixed points were completely different in the 

two cases. Sometimes it is not  at all obvious whether  a given F has any fixed points 

at all. For  example,  let us extend our  set v o f  values by constructed values, 

v • Val = Const  © ConVal  © Clos Values, 

c(v)  • ConVal = Const  × Val Const ructed  Values 
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and consider the property 

I (i) if v = c then v I sOf r ;  

(ii) if v = c(v~) then there exists a r~ such that 

c I s O f ( r l + r )  and v l : r l ;  

v : r iff (iii) if v = (x, exp, E )  then there exist r~, r2, such that (28) 

r = r ~ r 2  and for all v~, v2, if vl :r~  and 

E + {x  ~ v~} ~- exp ~ v2 then v2 : r2. 

The operator associated with this property is not monotonic with respect to set 
inclusion. Neither is this property a definition on the structure of types because of 
(ii). We do not see how to justify the existence of such a relation without making 
assumptions about the IsOf relation. 

This should not leave the impression, however, that the technique of using 
maximum fixed points can rarely be applied. In fact, we have encountered several 
situations in operational semantics where the technique turns out to be very strong. 
In general, the technique is useful when considering consistency properties. Con- 

sistency is often of interest when one wants to relate non-well-founded objects, or 
more generally objects whose behaviour is in some sense infinite. Indeed, in the 
introduction we indicated that closures can be treated in either of these ways; in 
each case, typing of closures is a consistency property. Another example is the 
notion of observation equivalence in CCS [7] which is defined as the maximum 
fixed point of a certain monotonic operator. The idea is that two agents are bisimilar 
if the hypothesis that they are susceptible to the same observations is consistently 
maintained during computation. Finally the technique has been used to prove the 
soundness of a type discipline for polymorphic references [12, 13]. Here the need 
for taking the maximum fixed point in the definition of what is is for a value to 
have a type arises because, when locations are values, one can create cycles in the 
store; since the type of a location depends on the type of the value it contains, a 
cycle in the store may have a consistent typing although the justification of the 
typing is a cyclic argument (i.e. a consistent claim rather than something that in 
finitely many steps can be reduced to a question of constants being typed according 
to the IsOf relation). 
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