Theoretica! Computer Science 80 (1991) 153-202 153
Elsevier

The monadic second-order logic
of graphs V: on closing the

gap between definability

and recognizability™

Bruno Courcelle

Laborataire d'Informatigue, U.A. CNRS, Université Bordeaux-1, 351 Caurs de la Libération,
33405 Talence, France

Abstract

Courcelle, B., The monadic second-arder logic of graphs V: on closing the gap between definability
and recognizability, Theoretical Computer Science 80 (199)) 153-202,

Context-frec graph-grammars are considered such that, in every generated graph G, a derivation
tree of G can be constructed by means of monadic second-order formuias that specify its nodes,
its labels, the successors of a node etc. A subset of the set of graphs gencrated by such a grammar
is recognizable iff it is definable in monadic second-arder logic, whereas, in general, only the il
direction holds.

Introduction

A fundamental theorem by Biichi [3] states that a language is recognizable iff it
is definable in monadic second-order logir (MSOL; this logic uses quantifications
over objects and sets of objects). This result has been extended to finite ranked
ordered trees by Doner [11], and to sets of finite unranked unordered trees by
Courcelle [7]. This latter extension uses an extension of MSOL called counting
monadic second-order logic (CMSOL), making it possible to count the cardinalities
of sets modulo positive intzgers.

These three results relate an algebraic aspect, namely recognizability, defined in
terms of congruences having finitely many classes, to a logical one. Their proofs
use as an intermediate tool a third notion, that of a finite-state string or tree

* This work has been supporied by the “Programme de recherches coordonnées: Mathématiques et
Informatique” and by the ESPRIT-BRA project GRAGRA (“Computing by graph transformations®.
Contract 3299;.

0304-3975/91/503.50 © 1991 —Eisevier Science Publishers BV.

154 B. Caurcelle

automaton. Our 2im is to cxtend them to sets of graphs (“‘graph” means “‘finite
hypergraph™ in this paper). Since a graph can be considered as a logical structure,
graph properties can be expressed by logical formulas. From this we derive the
notion of a MSO-definable set of graphs, i.e., of a set of graphs characterized by a
graph property expressed by a MSO formula. Graph operations (that for instance
glue two graphs in a certain precise way) make it possible to equip the set of graphs
with an algebraic structure, to define the notion of a congruence on the corresponding
algebra, and to define the notion of a recegnizable set of graphs.

One half of the analogue of Biichi’s theorem holds: every MSO-definable (and
even CMSO-definable) set of graphs is recognizable [7]. The other half does not:
the set of square n x n-grids, where n ranges over a nenrecursive set, is recognizable
but is not definable. However, this counterexample uses a set of graphs of infinite
tree-width, i.c., for which infinitely many graph operations are necessary to define
its elements by finite graph expressions. [t leaves open the case of sets of graphs of
bounded tree-width. We make the following conjecture.

Conjecture 1. If a set of graphs of bounded iree-widih is recognizable, then it is
CMSO-definable.

In this paper, we propose a method that may lead to a proof of this conjecture.

Let us explain why the proofs of the three results by Biichi, Doner, and Courcelle
concerning words and trees do not extend to graphs. These proofs use finite-state
automata, and no such notion is known for graphs. It is not clear at all how an
automaton should traverse a graph. A “general” graph has no evident structure,
whereas a word or a tree is (roughly sp~aking) its own algebraic structure. Automata
are useful because they can realize congruences on strings or trees, and because
their behaviours can be simulated by MSO- or CMSO-formulas.

However, some graphs have a well-defined structure: when a graph G is generated
by a context-frac graph-grammar, then any derivation tree of this graph can be
considered as its structure, and can be traversed by a finite-state tree-automaton.
Such a tree-automaton can realize a congruence having finitely many classes. The
central idea of this paper is: if a derivation tree of the considered graph G can be
constructed in G by means of monadic second-order formulas, then, the behaviour
of the automaton traversing the derivation tree can be described in G itself, by a
MSO formula.

A context-free graph-grammar is MSO-parsable if, in every graph it generates, a
derivation tree of this graph can be constructed by means of monadic second-order
formulas, in a uniform way. We say that the set of graphs generated by such a
grammar is strongly context-free. Our main theorem states that, for every subset of
a strongly context-free set of graphs, recognizability implies MSQ-definability. These
notions extend to CMSOL in an easy way. Conjecture 1 is a consequence of the
following.

Manadic second-order logic of graphs 155

Conjecture 2, For cvery k, the sei of graphs of tree-widith ar most k is strongly
context-free.

We prove this conjecture in the case where k =2. The main step ot rhe proof
consists of establishing that the set of oriented series-parallet graphs is strongly
context-free.

Let us mention that the exact definition of a CMSO-parsable grammar uses certain
reduced derivation trees, which we describe informally at the end of this introduction.
By using derivation trees inste¢ad of reduced derivation trees, one would get a strictly
weaker notion of strong context-freeness, and Conjecture 2 would be false.

If a set of graphs is strongly context-frze, then it is CMSO-definable. Qur main
theorem (Theorem 4.8) entails that cur second conjecture is equivalent to the
following (see Conjectures 4.12 for a precise discussion of these conjectures and
their relations).

Conjecture 3. If a set of graphs is coniext-free and CMSO-dcfinable, then it is strongly
conrexi-free.

Note that we do not conjecture that every context-free graph grammar generating
a CMSO-definable set is CMSO-parsable; this statement is actually false, snd we
shall give a counterexample.

We also introduce new notions, we prove results of independent interest, and we
make other conjectures. We now review a few of them.

(1) We introduce graph transductions, and consider those that are definable in
CMSOL.

The notion of a rational transduction is essential in the theory of context-free
languages. Tree transductions are also important in many respects. A transduction
is any nondeterministic (multivalued} mapping from words to words or from trees
to trees. To be of any interest, a transduction must be specified in some finitary
way, for instance by a generalized sequential machine, or a tree-transducer.

The general notion of a transduction can easily be extended to graphs;and even
to relational structures. We do not specify graph transductions by machines or
automata, but by monadic second-order logical formulas. We introduce and use
transductions that we call definable. The transduction mapping a derivation tree to
the graph it generates is definable. Its inverse is definable for CMSOQ-parsable
grammars (rigorous definitions are given in Sections 2 and 4).

(2) A tree is usually an ordered graph representing a term, written with function
symbols of a fixed arity, constants, and variables. If an operation symbol like + is
associative and commutative. then a term like +(x, +(y, z)) can be written equally
well +(x, y, z) or +(y, x,). The symbol + is no long:r binary (it becomes of variable
arity) and the order of the arguments is irrelevant (in other words, they form a set
and not a sequence). All these equivalent notations can be represented by a single
tree such that the successors of & node labelled by + form a set {as opposed to a

156 B. Courcelle

sequence), the cardinality of which is not fixed. In order to forzralize this idea, we
introduce reduced trees, i.e., trees built with one associative and commutative
aperation symbol, its unit, and *‘arbitrary™ operation symbels {denoting operations
having no special property).

We conjecture that the recognizability of an equational set of reduced trees is
decidable. (A set is equaticnal if it is 2 component of least solution of a system of
recursive set equations, written with appropriate operation symbols.) The decidabil-
ity of the recognizability of a rational set in the free commutative monoid is a speciai
known case of this result. We give easily testable sufficient conditions for this
property.

(3) We define a class of context-free graph-grammars, which we call regular
because of styactural similarities with the regular tree-grammars. These grammars
are CMSO-parsable.

This paper is organized as follows. We review graphs and context-free graph
grammars in Section 1, and monadic second-order logic in Section 2. We also
introduce definable graph transductions in Section 2. In Section 3, we introduce
reduced trees. We introduce strongly context-free sets of graphs in Section 4, and
we investigate their properties. We introduce the regular graph-grammars in Section
S, and we prove that they generate strongly context-free sets of graphs. In Section
6, we prove that the set of series-parallel graphs and the set of graphs of tree-width
at most 2 are strongly context-free.

Notation

We denote by N the set of non-negative integers, and by N, the set of positive
integers. We denote by [a] the interval {l,. .., n} with, in addition, [0]=0.

The set of nonempty sequences of elements of a set A is denoted by A*, and
sequences are denoted by (a,,...,a,) with commas and parentheses. The empty
sequence is denoted by (), and A% is A" U {(}}. The jth ciement of a sequence s
is denoted by s(j).

We use = for “equal by definition”, i.e., for introducing 2 new notation. The
notation :&> is used similarily for defining logical conditions.

Let & be a set. A {many-sorted} ¥-signarure is a set F given with a mapping
prof: F — ¥* x ¥. We say that & is the ser of sorts of F and that prof(f) is the
profile of f. We also write

fisyx- x5, —s

in order to state that prof(f)=((s,, 52,..., %), 5). The integer k is the rank p(f)
of f.

As in many other works, e.g., [4,7, 1], we call F-magma what is mare usually
called an F-clgebra, i.e., an object M =((M.}.. ,. {fur); ¢) where cach M, is a set

Monadic second-order logic of graphs 157

(called the domain of sort s of M) and each f,, is a total mapping:
M, x---xM, — M_if [is of profile: s, x- - x5, — &

We denote by M(F) the initial F-magma, and by M(F), its domain of sort s. This
set can be identified with the set of well-formed ranked trees. We denote by hy, the
unique homomorphism M(F)— M where M is an F-magma. If re M(F),, the
image of ¢ under h,, is an element hy,(?) of M,, also denoted by 1,,. One considers
t as an expression denoling Iy, and fy, as the value of t in M.

By a system of (set) equations, we mean a tuple S=(u,=1¢,,...,u,=1,). Its
unknowns are the symbols u,,...,u,, and the terms t,,..., ¢, defining them are
formal sums (unions) of terms in M(F v Unk(5)), where we denote by Unk(S) the
set of unknowns of §. One also assumes that each unknown has a sort in %, and
that all the terms in the right-hand side of its defining equation are of that sort. If
M is an F-magma, then S has a least solution, where the value of an unknown is
a subset of the domain of M of the correspanding sort. A set is M-equationai if it
is a component of the least solution in M of such a system. See [4] for a detailed
study of these systems.

1. Graphs and context-free graph grammars

We review the basic definitions from [2] and [7]. As in these papers, we deal
with a certain class of oriented hypergraphs, which we call simply graphs. The
following notions are recalled or introduced: graphs, graph operations, context-free
(hyperedge-repiacement) graph-grammars, recognizable sets of graphs, tree-width
of a graph, presentation of a set of graphs.

Definition 1.1 (Graphs). The (hyper)graphs we define have labelled (hyper)edges.
The alphabet of edge labels is a ranked alphahet A, i.e., an alphabet that is given
with a mapping 7: A — N (the integer t(a) is callied the type of a). A graph over A
of type n is a S-tuple H =({V,;, Ey, lab,, verty, src,;) where V is the set af vertices,
E,; is the set of edges, lab,. is a mapping E;; — A defining the label of an edge,
verty is a mapping E,, — vV}, defining the (possibly empty) sequence of vertices of
an edge, and sre,, is a sequence of vertices of length n. We impose the condition
that the length of vert, (¢) is equal to 7(lab,(e)), for all ¢ in E,;. One may also
have labels of type 0, labelling edges with no vertex. An element of src, is catled
a source of H. The sets E,; and V,, are assumed to be finite and disjoint.

We denote by FG(A) the set of all graphs over A, by FG(A), the set of those of
type n. A graph of type n is also called an n-graph. By a binary graph, we mean a
graph all edges of which are of type 2 (and not a 2-graph).

For every integer n in N, we denote by n the n-graph with n vertices, no edge,
and » pairwise distinct sources. If a € A, we denote by a the 7{a}-graph H with
Vv, =[m{a)], E,; ={}, labgy (*) = a, vert () = sre,, = (1, ..., 7(a)). Hence, A is con-
sidered as a subset of FG(A).

158 B. Courcelle

In general, we consider two isomorphic graphs as equal. However, in some proofs,
we fix one graph H with its sets ¥V, and E,; of vertices and edges, and we consider
various subgraphs of H. In such cases (made precise in the text), we consider as
equal two subgraphs only if they have the same sets of vertices and the same sets
of edges.

The notion of tree-decomposition of a graph, and the associated notion of
tree-width are essential in the study of sets of graphs defined by forbidden minors
(201, and for the construction of polynomial graph algorithms (see [1] and the
references listed in [5-8]) because they provide structurings of graphs. Far this latter
reason, they also appear in the study of context-free sets of graphs. They have been
originally defined for binary graphs. The extension to (hyper)graphs is straight-
forward.

Definition 1.2 (Tree-width}). Let G be a graph. A tree-decomposition of G is a pair
(T, f) consisting of an vnoriented tree T, and a mapping f: Vr — 2(V) such that:

(1) vV, =U{f(i]/l'6v1},

(2) every edge of G has all its vertices in f(:) for some i

(3) if i,j, ke V, and if j is on the unique loop-free path in T from i to k, then
S AR E),

(4) all sources of (5 are in f(i) for some i in V.

The width of such a decomposition is defined as

Max{card(f(i})|ic V¥V }—1.

The tree-width of G is the minimum width of a tree-decomposition of G. It is
denoted by twd(G). For a O-graph, condition (4) is always satisfied in a trivial way.
Similarily, condition (2) is always satisfieu for the edges of type 0 or 1 (provided
conditian (1) holds). Such edges can be added to or deleted from a graph without
changing its tree-width. Trees are of tree-width 1, series-parallel graphs are of
tree-width 2 (or 1 in degenerated cases), a clique with n vertices is of tree-width n,

The i1ree-width of a set L of graphs (denoted by twd(L)} is the least upper bound
in Nu {0} of {twd(G)|G € L). The set of finite cliques and the set of finite square
grids are of infinite tree-width.

We now define the substitution of a graph for an edge in a graph. From this basic
notion, we shall define several important notions: graph operations, context-free
graph-grammars, and recognizable sets of graphs.

Definition 1.3 (Substitutions). Let Ge FG(A), let ecE;; let H e FG(A) be a graph
of type 7(e). We denote by G[H/e} the result of the substitution of H for e in G.
This graph can be constructed as follows:

® construct a graph G’ by deleting e from G (but keep the vertices of e);

® add to G’ a copy H of H, disjoint from G';

Monadic second-order logic of graphs 159

® fuse the vertex vert (e, i), i.e., the ith element of the sequence vert;(e) (that is

still a vertex of G’), with the ith source of A thisis done foralli=1,..., r(e);
® the sequence of sources of G{H/e] is that of G'.

Ife,,..., e are pairwise distinct edges of G, if H,,. .., i, are graphs of respective
types 7(e)),..., (&), then the substitutions in G of H, for e,,..., H, for ¢
can be done in any order; the result is the same, and it is denoted by
G[H,/e,,..., H./e}].

Definition 1.4 (Graph operations). A graph operation is a mapping f:FG(A),, x- - -x
FG(A),, :— FG(A), such that, for every k-tuple (H,, ..., Hy), where H, is a graph
of type n;:

fH,,...,H)=Gl[H/e,..., H/e]

for some fixed graph G of type n, some fixed edges ¢,,..., e, of G of respective
types n,,..., n.. We say that f is of profile n,x - - - xm, — n, and that it is defined
by the tuple (G, e,,. .., e). We may have k=0. Then f is a constant, the value of
whichis G.

A signature of graph operations is a pair = =(P,”) where P is a signature with
set of sorts ¥ <N, and forevery pin P, pis atuple (G, e,, ..., €.} as above, defining
a graph operation, also denoted by j, that has the profile of p. A P-magma FG, is
associated with 7 as follows: its domains are the sets FG(A), for n in %, and the
operations ar¢ the fs. We denote by h,, the unique homomorphism M(P) — FG ..

A presentiation of a set of n-graphs L is a pair (7, K) where = is a finite signature
of graph operations, K is a subset of M(P), such that L=h_(K). If G=h,(r),
then we say that ¢ is a syniactic tree of G. The parsing problem consists of finding
a syntactic tree of a given graph, in the context of a fixed signature .

Definition 1.8 {Context-free graph-grammars). A context-free (hyperedge replace-
ment) graph-grammar is a 4-tuple I' ={A, U, Q, Z) where A is the finite terminal
ranked alphabet, UJ is the finite norrerminal ranked alphabet, Q is the finite set of
production rules, i.e., is a finite set of pairs of the form (u, D), usually written u — D,
where DeFG(Au U),., and ue U, and Z is a graph in FG(Au U) called the
axiom. The set of graphs defined by I' is L(I")=L(f, Z) where for every graph
K eFG(AUL U),,

L([, K)={H e FG(A),|K -, H},

and —, is the elementary rewriting step defined as follows: K —g H iff there exists
an edge e in K, the label of which is some u in U, and a production rule (¥, D) in
P, such that H=K[D/e], i.e., such that H is the result of the replacement (i.e.,
substitution) of D for e in K.

A set of graphs is contexr-free if it is defined by a context-free graph-grammar.
We denote by CF(A), the family of context-free subsets of FG(A),.

The axiom Z of a context-free graph-grammar will be assumed to be a nonterminal
symbol. This is not a loss of generality since, if this is not the case, one can add a

160 B. Courcelle

new nonterminal symbol u, and a rule u,— Z in order to define a set of the form
L(T, Z) where Z is not in U, by a grammar with the above condition.

Example 1.6 (Oriented series-parallel graphs). Let A consist of symbols a, b, and c,
all of type 2. The set SP of oriented series-parallel graphs over A is the subset of
FG(A), generated by the context-free grammar I, the set of production rules of
which is shown in Fig. 1, with one rule of the first form for each symbol x in A.
An example of a graph belonging to L(I") is also shown in Fig. 1.

We call context-free the graph-grammars introduced in Definition 1.5 because
their derivation sequences can be described by derivation trees and because the sets
they generate can be characterized as least solutions of systems of equations. Both
notions can be introduced in an algebraic setting borrowed from [14] (see also [4]).

Definition 1.7 { Systems of equations in sets of graphs). Let P be a set of names given
to the production rules of a context-free graph grammar I. We write p:u — D to

|
y
|

N e

1 b L]
*
a
u _— u -
" .
[] 2
u l
[}
2
the production rules a series-parallel graph

Fig. 1.

Monadic second-order logic of graphs 161

express that p names the productionrule w — D. Welet e, . .., ¢, be an enumeration
of the set of nonterminal edges of D. We consider (D, e, . .., ¢,)as a graph operation
p. This defines a signature of graph operations associated with I. We let FG,- be
the associated P-magma, and h;- be the unique homomorphism M(P) — FG,.

Let p be a production rule of the above form. We denote by p be the term
plw;,, ..., u,) where u; is the nonterminal labelling ¢, for j=1,..., k We let S; be
the svstem {u,=1,,..., U, =1,) where r;, is the sum of terms j such that p has
left-hand side u;. The least solution of S,- in the powerset magma of M(P) is an
n-tuple of equational sets of terms (or trees; see [12)), (T,,..., T,), where T, <
M(P),,. The set T; is the set of derivation trees, representing the derivation sequences
of I' starting at u,. We denote it by T{(I, ;). With these notations, we have the
following thecrem.

Theorem 1.8 (Bauderon and Courcelle [2]). (1) h(T{F, &)} =L{T, &), for all i =
1,...,n
(2) {L(T,), ..., L(T, u,)) is the least solution of S, in P(FG,-).

We denote by T(I") the set T(I', u), where u is the initial nonterminal of I, and
we call it the set of derivation trees of I,

Example 1.9 (continuation of Example 1.6). We denote by / (read parallel-composi-
tion) and by * (read .enes-composition) the two binary operations on 2-graphs
corresponding to the prod:ction rules of I” of the second and third type. The system
S, is thus reduced to the unique equation

u=a+b+c+u futusu

{where + denotes the union of sets of graphs). A derivation tree 7 of the graph of
L({I') shown in Fig. 1 is shown in Fig. 2. (Let us note that this grammar is ambiguous,

AVAN
VANYA
Ay
AN

162 B. Courcelle

in the sense that a graph G in SP may be the image under hy of several distinct
derivation trees.)

Corollery 1.10. A set of graphs L is cuntext-free iff it has a presentation (m, K} for
some equational subset K of M(P).

Proof. (Only if): Immediate consequence of Theorem t.8(1).
(If): The image of an equational set is equational [18], and every equational set
of graphs is context-free (this follows from Theorem 1.8(2). O

The construction of Definition 1.7 shows how to transform a context-free graph-
grammar into a presentation of the set it generates. Conversely, from a presentation
(m, K)of asetof graphs L, such that K is equational, one can construct a context-free
graph-grammar as follows. We let K be given as the first component of the least
solution in #(M(P}) of a system of equations {u,=r,,..., u, =1, where each
right-hand side 1 is a sum m, +- - -+ m, where each m, belongs to M{Pu U) and
U is the set of unkrowns of the system. For each of these terms mr, one defines a
production rule u, — D, where D is the graph in FG(Au U) defined by m. One
obtains in this way a contexi-free graph grammar I' with set of nonterminals U,
and L=h,(K)}=L(I, u,). See [2] for the proofs.

Theorem 1.11 (Courcelle [6, 8]). For every contexi-free graph-grc mmar I', one can
compute an integer k such thar twd(L(I")) < k,

(2) Forevery n and k, the set {G € FG(A)}, |twd(G) =< k} is context-free. A grammar
can bhe constructed 1o generate it.

We now recall from [5-7] the fundamental notion of a recognizable set of graphs.
If one considers the replacement of a graph for an edge in a graph as the generaliz-
ation of the replacement of a word for a letter in a word, the notion of a recognizable
set of graphs defined below extends that of a recognizable language.

Definition 1.12 (Recognizable sets of graphs). A congruence is an equivalence relation
= on FG(A) such that, any two equivalent graphs are of the same type, and, for
every graph K in FG(A), for every edge e of K, for every graph G of type r{e)
and every G'=G, one has K[G/e}= K[G'/e]. Such a congruence is locally-finite
if it has finitely many classes of each type. A subset L of FG(A), is recognizable if
there exists a locally finite congruence = such that, if G=G',then Ge L iff G'c L.
We denote by Rec(FG(A)), the set of such subsets.

Theorem 1.13 (Courcelle [5-7]). The intersection of a contexi-free and a recognizable
sel of graphs is context-free.

A diagram comparing the various classes of sets of graphs we have defined in
this section, together with others is given at the end of Section 2 (Fig. 3).

Monadic second-order logic of graphs 162
2. Monadic second-order logic

The use of monadic second-order logic for expressing graph properties is the
subject of the series to which the present paper belongs. See in particular [5-9). We
review or introduce the following notions: relational structures, monadic second-
order logic, definition in monadic second-order logic of a structure in ancther one,
definable transductions of structures, quotient structures, structures defining graphs,
definable sets of graphs, and we conclude with a diagram comparing various classes
of sets of graphs.

Definition 2.1. Let R be a finite ranked set of symbols such that each element r in
R has arank p{r) inN.. Asymbol rin R is considered as a p(r)-ary relation symbol.

An R-(relational) structure is a tuple § ={Dyg, (7}, g} where Dy is a possibly
empty set, called the domain of §, and r, is a subset of D4'"' for each r in R. We
denote by ¥ (R) the class of finite R-structures (all structures will be finite in this
paper).

We denote by Z(R, W) the set of formulas of counting monadic second-order logic
written with the symbols of R, and with free variables in W, where W is a set of
variables X, Y, X,, X>.Z, Z',.... These variables will denote subsets of D, where
S belongs to ¥(R).

‘the atomic formulas are: X< VY, r(X,,.... X,) where n=p(r), and card, ,(X)
where 0<p<g, g=2.

ifX, Y, X,,..., X, denote subsets X, ¥, X,,..., X, of Ds, Se€ ¥(R), then these
formulas are true iff, respectively, X = ¥, rg(x,,..., x,} holds where x, is some
element of X; for everyi=1,...,n and card(X) = p + mg for some meN.

The formulas of #(R, W) are formed with the Boolean connectives - and v,
and existential quantifications.

Let S be an R-structure, let ¢ € (R, W), and v be a W-assignment in §, ie.,
¥(X) is a subset of Dy for every variable X in W (we write this v: W — §). We
write (S, y) F ¢ iff ¢ holds in § for y. We write S = ¢ in the case where ¢ has no
free variable.

A set of R-structures L is definable if it is the set of R-structures where some
formula ¢ in £{R) holds.

In order to make formulas r {uble, we shall also write them with A,= and VX,
and we shall use the following abbreviations:

X=Y forXcYrYcX

X=0 for¥Y[YcX=XcCY]

sghlX) forVY[YcX=V=0vY=X]
(to mean that X 1s singleton)

ax for there exists one and only one X.

164 B. Courcelle

We shall also use lov.ercase variables x, y, x,,..., X, to denote singletons, i.e.,
elements of D, § € $(R). Thir means that
® Ix ¢ stands for x [sgl(x) A ¢],
® Vx. ¢ stands for Vx [sgl{x)=>¢],
® xc Y stands for x= Y.

For an assignment y: W -~ 8§, we shall assume that y(x)} is singleton for every
lowercase variable x in W. We shall write ¥{x) = d instead of y(x)={d}.

Formal constructions and proofs will be given in terms of the restricted syntax
defined at the beginning.

Definition 2.2 (Relative definability of structures). Let R and R’ be two ranked sets
of relation symbols. Let W be a finite set of uppercase variables, called here the
set of parameters, (It is not a loss of generality to assume that the parameters are
set variables; this is just convenient for some proofs.}

An (R, R')-definition scheme is a tuple of formulas of the form 4 = (¢, ¥y, ..., ¥,
(8.). r-x) where R * k is the set of pairs (r, j), where r belongs to R and j is a
sequence of p(r) integers in [k],

pe L(R', W),
g e PR, {x}u W), forevery i=1,...,k
0.e $(R', {x),...,X,n}w W), foreverysin R *k of the form (r,J).

Let Te ¥(R’),let y bea W-assignment in T. A structure § with domain =D, x[k]
is defined by 4 in (T, y) (this is denoted by S =def,(T, y)) if

(Ty)Fe,
Ds:={(d,i)|de Dy, i[k], (T, v,d) = &}

{this set may be empty, and S is still well-defined)
rs={((di, i), ..., (d DT v di,....d)E 6.,

where j=(iy,...,i,) and s=p(r). (By (T, v.d,,...,d)E=6,,, we mean
(T, ¥')F 8., where ¥’ is the assignment extending v, such that y'(x;) =d, for all
i=1,...,s; analogous notations will be used in the sequel).

Note that S is defined in a unique way from T, v, and 4.

In the special case where k =1, we can replace D, x {1} by D. Hence, Dsc Dy,
and the tuple 4 can be written more simply (¢, ¢, (8,),.).

We denote by def (T} the set of structures of the form def,(7, ¥) for some
assignment y. If W =0, then def,(T) is either empty or singleton. We write $=
def,(T) iff it is the singleton reduced to S.

A relation f= P(R') x P(R) is called a transduction F(R') = F(R). We consider
it as a total mapping F(R') — P(F(R)). Hence, we write (T, S)ef as well as
S5 € f(T). The domain Dom(f) is the set of structures T such that f(T) contains at
least one structure. If f is functional, i.e., if f(T) is empty or singleton for all 7,
we write § = f{T) instead of S f(T).

Maenadic second-order iagic of graphs 165

A transduction f is definable if it is rcuul to def, for some definition scheme 4
of appropriate type. We say that f is escentially definable if there exists a definable
transduction f* such that f'c f and Dem(f") =Dom({).

It is clear that the domain of a definable, or of an ¢ssentially definable transduction
is definable. It is the set of R’-structures T such that (7T, y) = ¢ for some assignment
y,1.e,suchthat TEIW,, ..., W, [¢], where W, ..., W, are the parameters of 4.

Lot < F(R) and F'< F(R’). We say that ¥ is definable in & if there exists
an (R, R')-definition scheme 4 such that ¥ =def (¥)= {def.(T, v)|Te S,
v: W — T}. {Let us make precise that two isomorphic st:ucts: ;s are considered as
equal.)

Quotient structures form an importani example.

Definition 2.3 (Quotient structures). Let $ be an R-structure, ana £ b2 an equivalence
relation on Dg. We denote by §/ E the R-structure defined as follows:

Dg s =Ds/E
rs;e([di],. ... [di]) is true iff
r.(d},...,d}) is true for some 4, in [d,],..., d} in [d.] (we denote by

[d] the equivalence class of d with respect to the equivalence relation E).

Let us now assume that £ is generated by the binary relation on D defined by
a formula n with free variables x, y, (i.¢., that E is the least equivalence relation
comtaining this binary relation). Since the transitive closure of a binary relation that
is definable in monadic second-order logic is also definable in monadic second-order
logic [7, Lemma 1.7], the relation E is definable by a formuia % with free variables
x and y.

Our purpose is to construct 4 such that §/ E is defined in § by 4. Our construction
uses a parameter X. We let 4 be the tuple (¢, 4, (8,),.g) such that:
(i) ¢ is the formula

Vx 3y [f(x, p)aye X),

saying that ¥(X) meets each equivalence class of E once and only once.
(ii) ¢ is the formula x, € X saying that the domain of def (S, y) is y(X).
(iii) @, is the formula

Ayi, e Ya [T M)A AT (X, P A (P oy ¥a)]

(where n=p(r)).
With these notations and definitions, we have the following lemma.

Lemma 2.4. The transduction of R-structures § — S/ E, where E is the equivalence
relation on Dy generated by the binary relation defined by a monadic second-order
Jormula n, is definable.

166 B Courcelle

Proof. This result follows immediately from the definitions and the construction
of A O

The following proposition says that if S =def,(7T, y} then the monadic second-
order properties of § can be expressed as monadic second-order properties of { 7,).

Let A={¢, ¢,..., U, (8.). r.) be written with a set of parameters ¥, Let V'
be a set of uppercase variables disjoint from ¥,

For every variable X in 7, forevery i=1,..., k, we let X, be a new variable, We
let ¥={X;|Xe¥,i=1,...,k). Forevery : ¥ — P(D),welety: ¥ — P(Dx[k])
be defined by

Y(X)=q(X |} x{1}u---un(X)x{k).

With this notation we have the following.

Proposition 2.5. (1) For every fziinuia B in LR, 7°), one can construct a formula 8

in PIR' T W) such that, for everv T in F(R’), for every u:W—~T, for every
n: ¥V — T, wehave: def s(T, u) isdefined (ifitis, we denote it by S), yisa V-assignment
inS, and (S, v)= Biff (T,puu)F B.

(2) If ¥'< F(R’) has a decidable monadic theory, and if ¥ is definable in ¥, then

the monadic theary of ¥ is also decidable.

Proof. (1} We take ﬂ— equal to
B nen iVx [xe X, = e (x)]|t<i<k),

where ﬁ is constructed by induction on the structure of 8 as follows:;
¢ ifBis XcX' thenBis X, € X{r -rX.c X},
®ifBisr(X'...,X"), then B is

A¥is--an [W{olr.n(.VI.---.}’u)’\.l'lex:||1’\' ' 'A)',,EX;,.,IjE[k]"}]

(where we denote by j(i) the ith element of the sequence j),
® il B is card, ,(X), then B is

W {eard, (X\) A" - ncard, (X,)|0<p,....p<qp+ - +p, =pmodq},

® if B is 1B, then ﬁ is -ﬂﬁ,,
® if B is B, v B.. then B is B, v §..
® if Bis AX. B, then £ is 3X,,..., X,. , (we assume that al' variables of 8 are
in ¥).
The verification that § satisfies the desired properties is easy by induction on the
structure of 3.
(2) Immediate consequence of (1). O

Part (2) of Proposition 2.5 states that the monadic theory of ¥ is interprerable in
that of %", Interrretability of theories is a strong form of reducibility. See {21] on
interpretations of monadic theories of graphs.

The following proposition is an easy consequence of the previous one.

Munadic second-order logic of graphs 167

Corollary 2.6. Let < F(R), 'S F(R’), and "< F(R"). If & is definable in ',
and &' is definable in &", then ¥ is definable in &". The compusition of two definable
transductions is a definable transduction.

Let f: (R} — ¥(R') be a transduction. Let L be a set of R-structures, and
K be a set of R'-structures. The domain-resiriction of f by L is the transduc-
tion f A (LX¥(R')) and the codomain-restriction of f by K is the transduction
Fn(FRYxK).

Corollary 2.7. If f is definable (resp. essentially definal‘e) and if L is definable, then
the domain-restriction of f by L is definable (resp, essentially definable). If ['is definable,
and if K is definable, then the codomain-restriction of f by K is definable.

Definition 2.8 (Relational siructures representing graphs). Let A be a finite set of
edge labels as in Definition 1.1, let n e N, Let R(A, n) be the following set of relation
symbols:

v of arity 1,
edg, of arity 7(a)+1, for each a in A,
ps; of arity 1, foreachi=1,...,n
For every n-graph G over A, we let |G| be the R(A, n)-structure such that:
D =VYsuE, (we assume that V,;E;=4),
vg(x)=true iff xeV,
edg,c(x ¥, ..., n)=tre iff xcE,, labg(x)=a,
and vert;(x)=(y,,..., 1),
ps,c(x) =true iff x =srcg(1).

It is clear that |G| represents G, i.e., that, for any two graphs G and G', |G| is
isomorphic to |{G'| iff G is isomorphic to G'.

A subset L of FG(A), is definable iff there exists a formula ¢ in #(R(A, n)) such
that Ge L iff |G| = ¢, i.e., iff the set of structures representing it is definable. The
notions of a graph transduction, of a definable graph transduction, and of an essentially
definable graph ransduction follow in a similar way from the corresponding notions
concerning structures.

In [5-9] a slightly different version of counting monadic seccnd-order logic is
used: the structures representing graphs have two domains {the set of edges, and
the set of vertices), and the formulas are writien with variables of two possible sorts
(the variables of so.© vertex” denote vertices or sets of vertices, and those of sort
“edge” denote edges or sets of edges). It is not hard to prove that the two logical
languages yield the same definable sets of graphs. The proof is similar to that of
Proposition 2.5.

We now recall a basic theorem from [7].

168 B Courcelle

Theorem 2.9. Every definable set, afl graphs of which are of the same iype, is
-ecognizable.

To conclude this section, we present a diagram, comparing the various families
of sets of graphs we have discussed. (On this diagram (Fig. 3), the scope of a family
name is the largest reciangle, at the upper left corner of which it is written.)

The following families of sets of graphs are compared in Fig. 3:
® REC, the family of recognizable set of graphs;
® DEF, the family of definable sets of graphs;
® CF, the family of context-free sets of graphs;

B, the family of sets of graphs of finite tree-width;
® SCF, the family of strongly context-free sets of graphs that we shall introduce in
Section 4.

REC L
DEF L,
[] cr 727
?
SCF T
]
Fig. 3.

Provided the refereace alphabet contains at least one symbol of type at least 2,
the families REC and B arc uncountable. The other ones are countable. The
inclusions shown on the diagram, are strict, except possibly the two inclusions

SCFc CFn DEF, (1)
CFNDEFc CFNREC, (2)
We make the flollowing conjecture, saying that the equality holds in (2}, i.e., that

the box with ? in Fig. 3 is empty.

Conjecture 2.10. if a set of graphs is recognizable and has a finite tree-width, then i
is definable.

Since every context-free set has a finite tree-width, and since every recognizable
set of graphs of finite tree-width is context-free (by Theorems 1.11 and 1.13), one

Manadic secand-order lagic of graph 169

can replace “has a finite tree-width™ by “is context-free™, and one gets an equivalent
conjecture. We shall establish it for sets of graphs of tree-width at most 2 (see
Section 6).
We shall also make the related conjecture that the box with ??? is empty. See
Conjectures 4.12 for a discussion of these conjectures.
Tne diagram also locates several sets of graphs:
® [, the set of square grids;
® L the set of all 7 x n square grids, where » is an ¢lement of some nonrecursive
subset of N;
® S, the set of graphs correspending to the language {a"h"|n > 0};
o T, the set of binary graphs representing unranked unordered trees.
See [7] for the proofs.

3. Reduced trees

Finite ranked ordered trees represent terms in a well known way. If some binary
operation is known to be associative and commutative, the corresponding terms can
be represented by reduced irees, some nodes of which have a ser and not a seguence
of successors. This idea has been introduced by Franchi-Zannettacci in the context
of attribute grammars [12]: derivation trees are reduced in this way, and this improves
the efficiency of the evaluation of attributes. This reduction will be applied to the
syntactic trees representing graphs as defined in Section 1.

In this section, we give definitions making it possible to deal rigorously with
reduced trees. We represent these trees as graphs, we state that a set of reduced
trees is definable in monadic second-order logic iff it is recognizable (extending the
correspoading theorem of Doner for ranked ordered trees recalled in the introduc-
tion), and we give sufficient conditions for the recognizability of an equational set
of reduced trees.

These technical results will be used in Sections 4-6.

Definition 3.1. Let P be a one-sort signature containing one binary (infixed) symbol
and a constant e. By a P-ac-magrta, we mean a P-magma M in which the operation
v 1s associative, commutative, and has unit ey,.

The quotient P-magma RM(P):= M(P)/ <, where R is the set of equational
axioms{x fyv=y fx, x f{yv fz)={xf¥) /2 x Je=x}is the initial P-ac-magma.
Its elements can be represented by trees, the nodes labelled by / of which have an
unbounded, unordered set ol successors, or by graphs as defined below.

Definition 3.2. Let B:= P—{/, e}, where P is as above, with rank functionp: P — N,
We make B into a set of edge labels with type function r: B —N,, defined
by m(b):= p(b)+1.

170 B. Courcelle

We make FG{ B}, into a P-ac-magma M by letting
ey =1,
G fuH=A[G/e, H/f],
bu (G, ..., G =B[G//e,...,Gi/el,

where the graphs A and B, are shown in Fig. 4. The operations /,, and b, can

be deseribed informally as follows:

(a) L=G jJ H is obtained by fusing the sources of G and H into a single vertex
becoming the source of L {one assumes that G and H are disjoint).

(b) K =bhyl{G,,...,Gy) is obtained by taking a disjoint union of G,,..., G,
by adding a new edge labelted by & with sequence of vertices

(sreg;, (1), ..., sree;, (1), v),

where v is a new vertex, becoming the source of K.
These operations are illustrated in Fig. 4 for k = 3. Itis clear that 7, is associative,

commutative, and has unit e,,.

1 1
L] L]
\ .
A
v -
[L] .
Graph A I
Ell Ei Elo
Graph B,
1
L]
1 b
e
4 V
[] L) [
G //y H by(G,,G,,G,)

Fig. 4.

Monadic second-order logic of graphs 171

Hence, there is a unique homomorphism k: RM({P) — FG(B),. It is not hard to
establish that k is one-to-one. We denote by RT(B} the subset k(RM(P)) of FG(B),.
Hence, k defines a bijection of RM(P) onto the set of graphs RT(B).

We introduce some terminology concerning this bijection. Let t in RM(P} corre-
spond to G in RT(B). A node w of ¢ having a label in B corresponds to an edge
e of G having the same label. This node is the root r of 1, or is a successor of r
where r is labelled by 7, iff the last vertex of e is the (unique) source of G. We say
in this case that e is a 0-edge of G. Otherwise, w is the ith successor of some node
w' that has a label in B, or is separated from such a node by a sequence of nodes
labelled by /. Let ¢’ correspand to w’. We say that ¢ is an i-edge ol G, and that ¢
is an i-successor of ¢’ where i is such that the last vertex of ¢ is the ith one of &'.

In Fig. 5, we show an element ¢ of M(P), its value { in RM(P), and the graph
k(7). The edges of k() labelled by a,b, and f are 0-edges. The one labelled by ¢
is a 2-edge, and is the unique 2-successor of the one labelled by f. The two edges
labelled by d are }-edges and are the 3-successors of the one labelled by .

It is not hard to establish that RT{B) is definable (as a subset of FG(B),).

A/

/NN
ANV TS

~ ~
/ \ reduced tree t graph k(t)

tree t

Fig. 5.

Theorem 3.3. Let L= RM(P). The following conditions are eguivalent:
(1) L is RM(P)-recognizable,
(2) k(L) is a recognizable subset of FG(B),,
(3) k(L) is a definable subset of FG(B),,
(4) k(L) is a definable subset of RT(B), i.e.,

k(L)={GeRT(B)|GE ¢} for some ¢ in (R(B, 1)).

172 B. Courcelle

Proof. (3)=>(4) is trivial. (4)=>(3) since RT(B) is definable in FG{B),. (3)=>(2)
by Theorem {2.8).

(2)=(1): If k{L) is recognizable with respect to FG(B), then it is recognizable
with respect to M, because M is a derived magma of FG(B) (see ([7]). We obtain
that L is RM({P)-recognizable because recognizability is preserved under inverse
homomarphisms.

(1)=>(3): Theorem 5.3 of [7] establishes this result in the special case where all
symbals of B are of rank O or 1. The extension to the present case is straight-
forward. O

It is essential that definability be understood with respect to counting monadic
second-order logic. Otherwise, i.e., without the atomic formulas of the form
card, (X), the implication (1)=(3) does not hold. This has been proved in [7,
Corollary 6.6].

Definition 3.4 (Equational sets of reduced trees). Let P be a ranked set of symbols
as in Definition 3.1, with two special symbols / and e. Let A be a P-magma, let §
be a polynomial system {u,=1,,...,u,=1,). We denote by L((S, M), ;) the ith
component of the least solution of § in #(M). If h: M — M’ is a homomerphism
into a P-magma M’, then

L((S! M’)! ul) zh(L(su M)! u,):={h(m)lm€ L((S! M)I ul)}

by a lemma in [18, Lemma 5.3] (see also [3, Proposition 13.11]).
Let M be a P-ac-magma. Then, the unique homomarphism hy, :M(P)— M
factors uniguely into

har : M(P) —s RM(P) —% M

where h,, is the unique homomorphism M(P)— RM(P), rh,, is the unique
homomorphism RM(P) — M. It follows that

L{(S, M), u,) =rh (L((5, RM(P)), u;}}
and that
L{(8, RM(P)), u;) =h, (LS, M(P)), u;})

foralli=1,...,n

The sets of ordered ranked trees L((S, M(P)), u;), abbreviated as L(S, u,), are
equational and recognizable with respect to M(P). Their images under h, are
equational but not necessarily recognizable with respect to RM(P). (Let us recall
that equational sets are preserved under homome phisms, and that recognizable
sets are not in general; they are preserved under inverse homomorphisms.)

We say that S is ac-compatible if the sets L({(S,RM(P)), u,) are RM(P)-
recognizable.

We call h,(t) the associative-commurative image of 1, for r in M(P). We let
h(L):={h,(1)| L} be the associative-commutarive image of L, for L< M(P).

Monadic second-order logic of graphs 173

Conjecture 3.5. One can decide whether the associative-commutative image of a M(P)-
recognizable set is RM(P)-recognizable.

If this conjecture is correct, it follows that one can decide whether a system is
ac-compatible.

It holds in the special case where p(b) =0 for each b in B= P-{/, e}, because
RM(P) is then the free commutative monoid generated by B, with / as multiplication
and e as unit. Deciding whether a recognizable subset of M(P) has a RM(P)-
recognizable associative-commutative image reduces to the problem of deciding
whether a rational subset of the free commutative monoid is recognizable. This is
decidable. An algorithm has been given in [15].

Example 3.6. Here is an example of a system (actually reduced to a single equation)
that is not ac-compatible:

u=(afb)fu+e

The trees forming its least solution in ?(M(P)) can be linearly written
(afgbyylagb)flafb)y---4f(ajb)je (with the convention that the
operation J associates to the right).

Their images in RM(P) =N"" a\c the von.mutative words with as many as and
bs, and they do not form a recognizable set.

We now define easily testable syntactical conditions ensuring that a system is
ac-compatible.

Definition 3.7. L<t S be a system with set of unknowns U. We denote by AC the
following condition on §:
{AC) There is a subset W of U such that every equation u=p of § satisfies
one of the following two conditions:
(AC1) ue W and the monomials forming p are of the form b(x,,..., &) for
some u,,..., u, in U, some b in B of rank k=0,
(AC2) ue U— W and p is of the form:

wyfutectw, futwi fwifo fwg

where wy,..., w,, w;,..., w, are unknowns in W.
Let us note the following special cases of AC2: n=0and pis wi f w3 J - J wi,
n=k=0and pise, and finally, k=0, n#0,and pis w, fu+---+w, fu+te
There exists at most one set W for which AC holds. It can be equal to U, or empty.

Proposition 3.8. A system which satisfies condition AC is ac-compatible.

Before proving this proposition, we state a lemma. A term with leading (left-most)
symbol in B is called a B-term. Every term r in M(Pu U/) can be written in a
unique way as follows:

I:s[“l/xlv"'s'k/xln]

174 B. Courcelle

where f,,...,; are B-terms, s is written with /, e, the variables x,,..., x;, such
that they occur in this order, once and only once.
We call this writing the B-decomposition of .

Lemma 3.9. (1) Let 1, t" in M{Pu U) have :he B-decompositions s[1,,..., 1] and
sTty, ... 1) Then t &4 t" iff k = n and, for some permutation o of [k], we have

5 (:')'R 5'[x1/x-rllh LA xut,x:r(nl]

and 1, < 1), for all i in [k].
(2) Ift, 1" are B-terms of the respective furms b(1,,...,)y and b'(17, ..., 1), then
tegt iffb=b andt <1 for alliin [a].

Its preof can be done by inductions on the lengths of rewriting sequences in a
standard way.

Proof of Proposition 3.8. For every subset L of M(P), we denote by L the set
{reM(P)|tesp 1, e L).

We say that L is saturated if L= L. By Proposition 12 in [10], h, (L} is RM(P)-
recognizable iff L is M(P)-recognizable.

Let S be as in Definition 3.7; we shall construct a system $ such that U < Unk(S),
and L(S, u)=L(S, u) for every u in U. We let & be a new unknown. The system §
has the unknowns of U w {#}, together with other ones we shall introduce below.
[ts equations are of three types:

Type I: the unique equation defining &

é=¢ffetejeé+te
Type II: for every w in W, we let its defining equation in S be
w=¢éjfw+w/je+p
where its defining equation in S is w = p (of the form AC!).
Type HI: we now associate several equations with an equation of the form
u=wifut--Hw futwi fwif-- pw,
as in AC2. For every suhset K of [n], we define a new unknown (u, K}, and we

identify (4, [#]) with w.
We define (u, K) by the equation

(u, Ky=w, [(u, K)+(u, K} fw+ - -+ w [(u, K)+ (0, K) [w,
+y K)jé+eéflu K)tpy

where py is defined as follows: if K =4, then py is &, if K ={j}, then pi is w}; if
K has at least two glements, then py is

Y {(u, K} J (4, K")
K, with K' and K" nonempty}.

K’ and K" form a partition of

Manadic second-order logic of graphs 175

It is interesting to consider some special cases. If k =0, then we have the equations
(u, M) =(u,0) fe+é f(upP)+é

that can be replaced by the simpler equation (i, @) = €, and the equations
(u, K)=(u,K) f&+e § (u, K)+px

as above if K is nonempty. If X =#x =0 then, we need only take u=2. If n=0,
k # 0, then, we need only take

u=wifutugw+---+w futujw+éjutupfete
Claim. L(8, u)=L{S, u) for every u in U.

Proof of claim. (=): For every u in U, every 1 in L(§, u), one can find 1" in L(S, u)
such that 1 &4 t° (we shall say that 1 and 1’ are R-equivalent). This can be proved
by induction on # such that u —% r where § is considered as a regular tree grammar
(see [13] or [4, Section 13]).

To prove the other direction, one first observes that L(S,) c L(S, u) by the way
5 is constructed. We now present the main steps of the proof that for every unknown
u' of §, the set L(S, u') is saturated.

Let r in M(P) be such that u’— ¢ t, and 1’ be R-equivalent to 1. We shall prove
by induction on n +size(r) that ¢’ is derivable from u’ in §.

Let s[1y,.. ., 1,,] be the B-decomposition of 1. We have the following cases.

Case 1: u'=u and belongs to W. Then, m = t and by Lemma 1.9, the B-decompo-
sition of I’ is necessarily of the form s'[r] for some] that is R-equivalent to r,.
Then t, is b{s,..., r,), where each r is derivable from some unknown of S, by a
derivation sequence of length at most n, and 1] is of the form b(ry, ..., r}), with 7]
R-equivalent to r,. By applying the induction to the terms r,, one obtains the result.
We omit the details.

Case 2: u'={(u, K) with u in U - W. Let the defining equation of i in § be

u=wfut---+w, fut+tw, . ff Wasi.

Then each B-term ¢ is derivable in § from some w; with j in [n+k]. By Lemma

3.9, the B-decomposition of r' is of the form s'[r.,,,,, . .., t};(n] fOr some permutation
o aof [m] such that #] is R-equivalent to ¢. The term ' can be also written as r / r’
where the B-decomposition of r is of the form c[1),,,,, ..., 1,], and that of ¢’ is

of the form ¢'[4,ps sy Himi)

We let K' be the set of integers i such that n+i=o(j) for some j in [p], and
K" be K - K" It is now easy to verify that r is R-equivalent 10 some r, derivable
from (u, K'), and that r’ is R-equivalent to some rj derivable from (#, K"). It
follows by induction that r and ' are respectively derivable from (u, K')and (», K"),
from which we conclude that ¢'=r J r' is derivable from (u, K.

Case 3: u is & This case is much simpler than the preceding ones and is left to
the reader.

This concludes the proof of the claim and, consequently, of the proposition. [

176 B. Courcelle

Remark 3.10. If a system S does not satisfy condition AC, it may happen that it
can be transformed into a system S’ satisfying it, such that Unk(S)< Unk(5") and
L{(S, RM(P)), u}=L{((S",RM(P)), u) for all # in Unk(S). Then the syst : S is
ac-compatible. Such transformations of systems, that in a certain sense preserve
their jeast solutions, have been examined in detail in [4]).

Another example is the transformation that replaces in a system S every monomial
t by an R-equivalent one, yiclding a system S’ with the same set of unknowns. The
two systems S and S’ are equivalentin A(RM(P)) (they have the same l¢:i~t solution),
and § is ac-compatible if §' satisfies condition AC.

Remark 3.11. The many-sorted case: we now assume that P is a many-sorted
signature, that 7 is its set of sorts, and that for every s € & one has a binary symbol
4. of profile s x5 — s, and a constant e, of sort 5. A many-sorted P-magma M is
a P-ac-magma if the equational axioms expressing that /. is associative and commu-
tative with unit e,. All the definitions, results, and conjectures of this section extend
easily to the many-sorted signature P, We omit the routine details.

4. Monadic second-order parsable graph-grammars

A set of graphs L is strongly conrexi-free iff it has a presemtation such that, in
every graph G of L, a syntactic tree of G can be specified by a fixed definition
scheme. Roughly speaking, this definition says that L is generated by a context-free
graph-grammar I" such that, in every graph, the associative-commutative image of
a derivation tree of the graph G relative to the grammar I is defined by a fixed
definition scheme.

In this section, we let = = (P, ") be a finite signature of graph operations, we let
¥ be its set of sorts. The signature = may contain special symbaols }/,, e, denoting
fixed graph operations defined below, such that /, is associative and commutative
with unit e,. We let B=P—-{/,.e,|n=0}.

We denote by h, the unique homomorphism M(P) — FG,,, and by rh,, the unique
homomorphism RM(P) — FG,.. A presentation of a set of graphs L is a pair of the
form (#, K) whereeither K= M{P)and L=h_(K),or KSRM(P)and L =11 (K).
A set L is context-free iff it has a presentation where K is an equational subset of
M(P), or of RM(P) (by an immediate extension of Corollary 1.10). Actually, we
shall only consider presentations where K is a subset of RM(P). This is not a loss
of generality for the following reasons. Some of the operations defined by symbols
in B may be associative and commutative, without being declared so. This means
that they are treated as “ordinary” operations. Their associativity and commutativity
propertics are not used to reduce syntactic trees, as done in Section 3. Hence, the
case where K <€ M(P) is nothing but the special case of that where K = RM{ P) and
non¢ of the special symbols #, and e, occurs in K.

Monadic second order logic af graphs 177

Definition 4.1 (Parallel-composition). We generalize the parallel-composition
operation introduced in Example 1.9 to graphs of type n. For G, G’ in FG(A),, we
let H=G j/, G’ be the n-graph formed as a disjoint union of G and G’ in which,
for all i, the ith source of G is fused with the ith source of (', in order to form
the ith source of H. Hence, the operation # introduced in Example 1.9 is /., and
the operation Jf,, introduced in Definition 3.2 is /,.

We let e, be a constant denoting the graph n, with n vertices, no edge, and n
pairwise distinct sources. It is clear that /, is associative and commutative, and
that G /, e, =e, J., G = G for every graph of type n. If G is a graph of type n, we
denote by /4 G the parallel composition of p disjoint copies of G. We obtain n
if p=90.

These definitions also apply if n =0. Then G J, G’ is the disjoint union of & and
G’ (denoted by G® G’ in [2]; it has no source) and e, is the empty graph 0.

Definition 4.2 (Definable and parsable presentations). Let (m, K)) be a presentation
of a set of graphs L, with K = RM(P),. It is definable if the mapping rh,: K — L
is definable as a transduction (see Definition 2.2). It is monadic second-arder parsable
(we shall simply say parsable) if the transductionrh ;' ;: L — K is essentially definable.

A set of graphs is strongly contexi-free if it has a parsable presentation. (We shall
prove that a strongly context-free set of graphs is context-free, which is not obvious
from the definition.)

Let I' ={A, U, @, u,} be a context-free graph grammar, with nonterminal symbols
Ui, ..., 4, Wesay that it is constructed over = if, for every productionrule g: u — D,
the graph D is the value of some term § in M(Pu U) (i.e,, D=h_(§)). Welet S, .,
be the system of equations (i, =1,,..., u, =t,) where each 1, is the sum of all terms
4 such that g is a production rule with lefi-hand side u,. I K is the first component
of its least solution in #(M(P)), we have L(I') =rh,(K). It follows that {7, h,(K))
is a presentation of L=L(I"), with h,.(K)< RM(P).

We say that I is monadic second-order parsable il it is constructed over a signature,
such that the associated presentation of L(I”) as defined above is parsable. It follows
that the set of graphs defined by such a grammar is strongly context-free.

Lemma 4.3. For every signature of graph operations =, the transduction
rh.:RM(P)— FG,, is definable.

Proposition 4.4. (1) A presentatior (m, K} is definable iff K is definable, iff K is
recognizable in RM(P).
(2) A set L has a definable presentation iff it is context-free.

Lemma 4.3 says that every graph can be defined in its syntactic tree. A set of
graphs is strongly context-free if, conversely, in every graph of the set, a syntactic
tree of this graph can be defined.

178 B. Courcelle

Proof of Proposition 44. (1) If (7, K) is definable, then K is a definable subset of
RM(P). Hence, it is recognizable by Theorem 3.3.

Conversely, if K is recognizable, then it is definable by Theorem 3.3. Since
rh,. is definable by Lemma 4.3, its domain-restriction to K is also definable by
Corollary 2.7.

(2) If L has a definable presentation (m, K), then K is recognizable (by (1)),
and eguational because RM(P) is finitely generated (so that every RM(P)-recogniz-
able set is equationai). Hence, rh,(K) = L is equational. It is thus context-free by
Corollary 1.10.

Every context-free set has a presentation with K € M(P), that is definable
by (1. O

The proof of Lemma 4.3 necessitates a few technical definitions.

Definition 4.5, Let # =(P,”) be a sigiature of graph operations as described in
Section 1. We let B:= P—{/}...e.|n=0}

We aim to define the graph rh. (1), for t in RM(P), as a gluing of copies of the
graphs defining the operations p for p in B. Following Definition 3.2, we consider
a tree ¢ in RM(P) as a graph in RT{B) also denoted by r. Hence, we let 1=
(V,,E,, lab,, vert,, src,). We let m be the sort of ¢, i.e., the type of the graph it defines.

For every p in B of profile n,x - - -xn, — n, defined by a tuple (D, e,,..., &),
we denote by v(p,j i) the ith vertex of ¢, We denote by H(p) the graph
Dimn,/e,,...,m/e,]. Hence, H(p) is the graph D from which the **nonterminal”
edges ¢,,..., ¢, have been deieted.

For every e in E,, we let H(e} be a copy of H(lab,(e)) disjoint from all other
graphs under consideration. Technically, if lab,(e) = p, if H(p) = (V, E, lab, vert, src)
then we can let

H(e)=(Vx{el, E x{e}, lab’, vert’, src’) with 1ab’((e’, e)) = lab{e’),

vert'((e’, e}, i):=(vert(e’, i), e},
and src’(j):=(sre{j), e) for all e'e E, all ic[7(e')], all je[r(H(p))].

We also let v(e, j, i) denote the vertex (v{p, j, i), e) of H(e). The graphs H(e),

H(e') are disjoint for every two edges ¢, e'# ¢, of 7. We let
K(r)=K:=(V,Ex,laby, verty,sre,)

where V= [m]ulU{Vyle€E}, Ex=\U{En.|ecEdl, laby is the mapping

such that laby [E, (., = lab,,, ., vert, is the mapping such that vert [E ., = vert,; ..,

and srcy '=(1,2,..., m).

We finally let glue(¢) be the graph K(r)/= where = is the equivalence relation

on Vi, generated by the set of pairs of vertices R, U R,, where
Ri={(4 srey, ()} ie[m), e is a 0-edge of 1},
Ry={(v(e', j, i), srey,. () |ie [r(lab,(e))), e, ' € E,,
e is a j-successor of €'},

Manadic vecond-order logic of graphs 179

{Let us recall that if = is an equivalence relation ou the set of vertices of a graph
K, then the quotient graph H = K /= is defined as (V,. /=, E, lab,, vert,,, src,,),
where vert,, (e, i) is the equivalence class ol vert,. (e, i), and src,, (i) is that of sre, {i).)

Lemma 4.6. For every t in RM(FP), we have rh_(1) = glue(1).
Proof. By induction on the structure of 1. []

For future reference, let us define as follows a family of binary relations on E,:
ifi,'eN, pp'eB xcVy,, x'eVy,, then, for every ¢, ¢ in E,:

Bipsi a6 e’} iff eis an i-edge, €’ is an i'-edge,
and (x, e)=(x', e’}.

For each 6-tuple i p, x, i, p', x" as above, the associates binary relation on 1 can
be defined by a monadic second-order formula {to be interpreted in the logical

Example 4.7. Here is an example illustrating the construction of Definition 4.5. We
use again the signature of graph operations P defining series-parallel graphs (see
Example 1.9).

Figure 6 shows a term r in RM(P), and its representation as a graph in RT(B).
Figure 7 shows the intermediate graph K(r), and its quotient glue(t). In Fig. 7, the

/1\ 88 |
/\ S

A o
/I b &by

a reduced tree the tree t represented
t in RM(P) as & graph in RT(B)

Fig. 6.

180 8. Courcelle

1 2
o e
% Wt e,
5 s T T
L e, e,
Y Y e e
Rt v e e
< e —— b “w -
a b / / \

4 ~
_../ /__. AN NN

the graph K(l)

the graph rh_(t) = glue(t)

Fig. 7.

dotted lines are not edges, but represent the pairs of vertices in R,; the dash-dot
lines represent jairs in R..

Proof of Lemma 4.3. This result is actually an immediate apolication of Lemma 4.6.
Let us consider r in RM(P), of sort m. We wish 1o define in 1 the graph glue(r).
Let k be Max{m, size(H(p))|pe B} where the size of a graph H is Card(V,)+
Card(E,,).
1t follows from Definition 4.5 that K() can be defined in B, x [k]. More precisely,
the sources of K(1) are represented by the pairs (sre,(1), i), i = 1,..., m. The vertices
and edges of the graphs H(e), e € E, that form K(r) can be represented by pairs of

Munadic secend-order Ingic of grapin 181

the form (e, i), i< [size(Hte))]. Hence, K(1} is definable in r. 1ts quotient glue(7) is
definable in K{r) by Lemma 2.4, hence, glue(?) is definable in 1. [J

Theorem 4.8. Let L be a strongly contexi-free ser of graphs.
(1) L is definable, recognizable, and contexi-free.
(2) A subser of L is definablie iff it is recognizable.

Proof. (1) Let us assume¢ that LS FG(A), is strongly context-free. We let R:=
R(A,n)and &4 ={¢, ¥,..., ¢, (0.}, g.0) be a definition scheme, with set of para-
meters ¥ ={W,,..., W,,), that defines, in every graph G in FG(A),, a syntactic
tree of this graph, relative to a fixed signature of graph operations. Hence, for every
such graph G:

Ge L ifl defy(G, y) is defined for some ¥,
iff (G, y)F e,
iff G=3W,, ..., W, [¢]

It follows that L is definable. Hence, it is recognizable by Theorem 2.9. It is also
context-free, because it is of finite tree-width (since its elements are the vaiues of
graph expressions constructed over a finite signature of graph operations (see
Theorem 1.11), and because every recognizable set of graphs of finite tree-width is
context-free.

(2) Let M c L be recognizable. Since recognizability is preserved under inverse
homomeorphisms, the set D=rh,'(M)cRM(P) is recognizable. Hence, D is
definable by Theorem 3.3, Let 8 be a formula defining i, i.e., be such that for every
tree t in RM(P), re Diff 1 = 8.

By Proposition 2.5, one can construct a formula § with free variables in " such
that for every G in FG{A), and every ¥ -assignment y in G:

t=def (G, y) is defined and 1= 8 iff (G, v)E= 8.

In order to complete the proof of the theorem, it suffices 1o prove the following
claim.

Chaim. Ge M ifG=3W,,.... W,.[8]

Proof of the claim. If GE=3W, ..., W,.[B). then (G, y) = B for some y. Hence,
def (G, y) is a tree ! such thai + = 8. Hence, te D and rh,(t) = G belongs to M.

Let conversely Ge M. For some y: W' — G, def;{G, y) is a well-defined tree
such that rth,.(1} = G. Hence, 1€ D. It follows that r = 8 and that (G, y} = 8. Hence,
GE3IW,,...,W,.[B8) O

Let us recall that every definable set of graphs is recognizable but that some
recognizable sets are not definable [7]. Hence, part {2} of this theorem proves that
every recognizable set that is "bounded™ in some way (here, “bounded™ means
“included in a strong context-free set”) is definable.

182 B. Courcelle

Special cases are known from [3] (see also [22, Theorem 3.2]) for sets of words
and [11, Theorem 3.9] for sets of ranked ordered trees (see also [22, Theorem ii.i]).
Our Thearem 3.3 establishes the corresponding property for the class of trees RM(P).
All these sets (of words, of trees of various types) are strungly context-free as we
shall see in Section $.

What about languages? Let us say that a context-free (string) grammar I’ is
monadic second-order parsable if the transduction from words in L(I') to their
derivation trees (relative to I') is essentially definable. These grammars generate
regular languages by Biichi's theorem. Conversely, a context-free grammur generat-
ing a regular language is not necessarily monadic second-order parsable, 2s shown
by the following example.

Example 4.9. Let I, be a context-free grammar generating {a"b" |n = 1} with initial
nonterminal u,, and /", be another one generating {a, &)* — L(I')), with initial
nonterminal u,. Let us assume that these grammars have disjoint sets of nonterminals.
Let I' be the union of {7 and I, augmented with the rule w, — u., generating
{a, b}* from the initial nonterminal u,.

The grammar I is not monadic second-order parsable. Let us assume, by contra-
diction, that it is. Let f be a definable transduction from words to derivation trees
(of I') expressing that. Its codomain-restriction by the set of derivation trees of I',
(that “eliminates™ the derivation trees of I) would be definable, and Theorem 4.3
would show that I", is monadic second-order parsable. The language L{I",} would
be definable, hence, regular, which is not the case.

We denote by SCF(A), the class of strongly context-free subsets of FG(A),.

Theorem 4.10. (1) The intersection of a strongly context-free set of graphs with a
recagnizable one is strongly contexi-free.

(2) The class SCF(A), is closed under union, intersection, and difference.

(3) If L is context-free and L' is strongly context-free, then the inclusion L< L' is
decidable. The equality of two strongly context-free sets of graphs is decidable.

Proof. (1) Let L be strongly context-free. Let L' be definable. The definable trans-
duction f: L — K expressing that L is strongly context-free can be restricted into
a definable transduction L ~ L' — K, establishing that L ~ L' is strongly context-free.
If L' is assumed to be recognizable, then L":= L~ L' is recognizable, hence definable
by Theorem 4.8. The above argument (with L" instead of L’) establishes that L” is
strongly context-free.

(2) Let L and L’ be strongly context-free subsets of FG(A),, given by parsable
presentations {7, K) and (7, K') over a same signature 4. (It is easy to make two
signatures into a single one, by renaming some symbaols if necessary.) It is not hard
to establish that the presentation (7, K w K') of L L’ is parsable.

Monadic second-nr. er logic of graphs 183

Since a strongly context-free set is definable, the other closure assertions follow
from (1). Let us recall that FG{A), is not context-free as soon as A contains at least
one symbol of type > 1, by the results recalled in Definition 1.2 and Theorem 1.11.
Hence, the class SCF{ A), has no maximal element.

(3) Let L be a context-free and L' be a strongly context-free set of graphs over
A oftype k, Then L < L' iff the set M = L~ (FG(A), — L") is empty. Since FG(A), —
L' is definable, the set M is context-free, and its emptiness can be tested. If L and
L' are both strongly context-free, the two inequalities L= L' and L'< L can be
tested, hence so can be the equality L=L".

Remark 4.11. Let us first recall that there exist context-free sets of graphs having
an NP-complete membership problem. An example is the set of graphs of cyclic
bandwidth at most 3 (see [17]).

Let now L < FG(A), be strongly contexi-free. The membership of a graph G in
L can be decided in time O(size(G)"). We sketch the proof of this fact. Let ¢' be
the formula that defines L (see Theorem 4.8(1)). One can find an integer m such
that twd(L) = m, and an algorithm that, for every graph G in FG(A),, gives in time
Ofsize(G)°) the following possible answers (see [8]):

(1) GelL;

Q) wd{G)<mand Gk ¢,

(3) twd(G)<mand GF —¢'.

Hence, one obtains G¢ L in cases (1) and (3) and G ¢ L in case (2).

Let us now consider the case whete G is in L. The formula ¢’ is of the form
AW, ..., W..[¢], where W, ..., W, are parameters. From sets W,,..., W,
satisfying ¢, a syntactic tree of G can be obtained. We think, that by the results of
[1], one can obtain in linear time a {W,, ..., W, }-assignment in G, and, from this
assignment, one can construct in polynomial time, the syntactic tree it defines. [

Conjectures 4.12. We compare the various conjectures we made in the introduction
(Conjectures 1-3), and in Section 2 {Conjecture (2.10)). We fix a nontrivial alphabet
A. Without loss of generality, we shall only compare sets of 0-graphs. We let L,
denote the set of 0-graphs of tree-width at most k.

Let us consider the following statements.

(A) For every k, the set L, is strongly context-free (Conjecture 2}.

{B) If a set of graphs is context-free and definable, then it is strongly context-free
{Conjecture 3).

(C) IT a set of graphs is context-free and recoenizable, then it is definable (by
Theorems 1.11,1.13, and 2.9, this satement is equivalent to Conjecture 1, also
reformulated as Conjecture 2.10).

By the same three theorems, one can replace in statement {B) the condition “is
context-free™ by *‘is of finite tree-width™, and statements (B) and (C) are respectively
equivalent to:

(B’) for every definable set of graphs K, the set K n L, is strongly context-free,

(C') for every recognizable set of graphs K, the set K ~ L, is definable.

184 B. Courceliv

We now observe that (A) and (B) are equivalent. Statement {B) implies (A)
because L, is context-free (Theorem 1.11) and definable [8]. And (A) implies (B}
by Theorems 1.11{1j and 4.8. They imply the validity of (C), i.e., of Conjectures 1
and 2.10. It does not seem that (C) implies them.

Let us now consider again the diagram of Fig. 3. The conjecture that (A) and (B)
hold is equivalent to stating that L, belongs to SCF, and that the box with ??? is
empty. It implies that the box with ? is empty. The apparently weaker conjecture
that (C) holds is equivalent to stating that the box with ? is empty.

Example 4.13. The following set of graphs L has a parsable presentation (7, K)
with K € RM(P), but no parsable presentation with K € M(P). »

We let a be a symbol of type 0 and L be the set of graphs G of the form /| a,
for n > 0. Assume that we have a parsable presentation (7, K) of L with K < M(P)
for some P. The corresponding definition scheme is written with special predicates
card,,, for p, g N, with g in some finite set N of integers. Hence, this definition
scheme defines in each graph G of L a syntactic tree of L that is an ordered tree.

A graph in L is just an unordered set of undistinguishable edges. Let us consider
the set L' of graphs in L with a number of edges equal to a multinle of some prime
number M larger the least common multiple of all the elements of N. It is proved
in [7] that the predicate card, ,, can be expressed by a monadic second-order formula
in structures where some linear order is definable, which is the case of the syntactic
trees of the graphs of L. It follows that L’ can be defined by a formula using the
special predicates card,,,, for p, g with g in N, hence that card,, ,, can be expressed
in terms of them. The proof of [7] showing that the counting monadic second-order
logic is strictly more powerful than the noncounting one can be adapted and proves
that this is not possible. Hence, one obtains a contradiction as desired.

5. Regular graph-grainmars

We introduce a class of graph operations such that, for every signature = built
with them, the transduction rh,' is definable. It follows that every preseniation of
the form (m, K) where K is recognizable is parsable. The context-free graph-
grammars associated with such presentations are called regular. The regular tree-
grammars and the left-linear (word) grammars are of this form (via appropriate
transformations into graph-grammars).

Definition 5.1 (Regular graph operations). As in the last section, we denote by P a
finite signature of graph operations over the ranked alphabet A. We let <N be
the finite set of sorts of this signature. We let B:= P—-{/,,e,|n=0}. In addition,
we assume that 0 is not in 7, and that all elements of A are of positive rank (i.e., type).

Monadic vecond-order logic of graphs 185

For every p in B, the associated graph operation is defined by a wple
(D(p),e,,....e). Theedgese,,..., e of D(p)areits nonterminal edges. The other
ones, labelled in A, are its terminal edges. We let H{ p) be associated with p us in
the construction of Definition 4.5.

We need some terminology concerning paths in (hyper)graphs. With a graph G,
we associate the set

P(G)={(ve i jo'Yvr,v'eV, ecEg, i jeTle)], i#j, v =vert,(e, i),
v’ =vert;{e, j)).

A path from v to v' in G (or linking v 10 v'), is 2 nonempty sequence = of elements
of P(G) of the form

m={v, ey, i, fr, ooy, e, dn, jo, 2) o (U, €1, 0y s B)
Its length is k, and its sequence of vertices is defined as
vert(w):=(g,), Ls, .o, Ui g, U7

Ifo,,..., 0 , are internal vertices, i.e., are not sources of G, then = is an internal
path. Note that v and ¢’ may be internal or not. We say that = is a terminal path
if all its edges are terminal.

Let us consider the following conditions concerning a graph D(p) for p in B.

(R1) D(p) has pairwise distinct sources.

(R2) D(p) has at least one edge. Either it is reduced to a single terminat edge,
all vertices of which are sources, or each of its edges has at least one internal vertex.

(R3) Any two vertices of D{ p) are linked by a terminal and internal path.

We say that P is regular if conditions (R1)-(R3) hold for each p in B, if 0 is not
a sort of P, and if no element of A is of type 0.

The main theorem of this section is the following.

Theorem 5.2. Let 7 be a signature of regular graph operations over A. The transduction
th.':FG(A) — RM(P) is definable.

The basic technique of this proof has already been used in [9] to establish that
an infinite graph defined as the initial solution of a system of graph equations can
be characterized by a monadic second-order formula. Before starting the proof, we
give a few examples showing that the theorem fails without some of conditions
(R1)-(R3}.

Examples 5.3. We let A consist of a, b, ¢, d, /. We shall introduce graph operations
p, r. s, 1 forming with #, and /- a signature . We shall consider sets of graphs L
that are not definable, but that are of the form rh_ (K} for recognizable zets K. If
vh.':FG(A) — RM(P) would be definable, its codomain restriction to the sets K
would be definable, and the sets L would be definable by Theorem 4.8.

186 8. Cuurcelle
Let p be the graph operation defined by the graph:

1e s . “ ° b .2

the nonterminal edge of which is labelled by u. We let ¢ be an edge label of type
2, hence also a graph. Then L,:=rh_({p"(c){n=0}) is the set of graphs of the
following form:

b
10— so0...0—" 0 .02 ,0...0—> 02

with as many b's as a’s. Since one cannot express the equality of the cardinalities
of two sets in monadic second-order logic, this set is not definable (see [7] for more
details). Hence, rh_' is not definable. Note that D(p) satisfies conditions (R1) and
{R2), but not condition (R3}.

Let now r=4d #, f, where d and f are both of type 1. Let Ly:=rh,({/} r|n=1}).
This set consists of graphs with one vertex, one source, and an equal number of
unary edges labelled by d and by £ As above, it is not definable. Here, D(r)
contradicts condition (R2) but satisfies the two others.

Now let s be the binary graph operation defined by the following graph:

)

u t

with nonterminal edges labelled by u and v. Let also ¢ be the graph
1,28 ——(@.

Then the set L.:=rvh_({/3 s{f, 1)|n=1)}) is not definable by the same counting
argument as abave. Note that Di(s) satisfies (R1)-(R3), and that 1 satisfies (R2) and
(R3) only. The fusion of vertices due to :he substitution of t for # and v in D(s)
destroys condition (R2) (for s, 1}).

Let us note in passing that every graph operation built as a finite combination of
regular graph operations is regular.

We now siart the proof of Theorem 5.2.

Remarks 5.4. Soine preliminary remarks and notations are necessary. Let te
RM(P)},. Then G =rh,(t):=K(¢)/=€ FG{A), where K(1) and = are as in Definition
4.5. We shall use the notation of this definition,

We assume that ¢ is not reduced to an isolated rcot, i.e., that G is not reduced
to n. We also assume that each graph H(p) has at least one internal vertex.

We let h be the canonical surjective homomorphism K(r)— G =K(7)/=.

For every pin B, we let {f,,.... ,f,,_,,F} be an enumeration of the set of edges of
H(p). We let E,,; be the set of edges of G of the form h({f,,, e})} where ecE,,
lab(e)=p, 1<j<n, and e is an i-edge. (Hence, 0= i< M = Max{p(p}|p< B}.)

Moradic second-order logic of graphs 187

Every edge ¢ of G is of the form h((f, €)) for a unique edge ¢ of 1, a unique
edge f of H(p). We let /., be this edge and k(e’}= (i, p,j) where i is such that e
is an i-edge of t.

It is clear that the family € ={E,,,} forms a finite partition of E..

For each p in B, let us also choose an internal vertex c, of H(p) (we have assumed
that each H(p) has one internal vertex hence is not reduced to a single terminal edge).

We let C={h((c,,e))|e<E,, p=lab{e)}. Note that C is in bijeciion with E,.
Our purpose is to establish that f can be defined in & in terms of ¢ and C

For every path = in G of the form

(vye), i, Jr, 0Dy, €, by fa, D) o (20 1, €, B ks B7)
we define its rrace as the sequence
tr{aw) = (k(e,), iy, jitk{er), iz, o) . .. (k{ed), i,).
Now let » be a path
(v,e, i va0)) oo (Dhoa, €, 0,0k, 87)
in H{p). Let e E,, p=1ab,(e). We denote by h{p, ¢) the following path in G:
(h(v, e), hie,, e), i), 5, h v, e)) ... (kv e), hleg, e), i, ji, h{v'. #)).
If e is an f-edge then tr{h{y, e)) is the sequence
=L p,m). i\,)i, p.m3), ia, jo) o (UG po), s,)

where ¢, =f,,, foreach j=1,... k

Lemma 5.5. Let G, t be as in Remarks 5.4. Let i be a path in G of the form h(w, ¢)
Jor some e in E,, some path w in H{lab,(e}), all vertices of which, except perhaps the
last one are internal. If u' is another path in G having the same trace and the same
initigl vertex, then u' = p.

Proof. Let u=(v,e,, 1,5, t,)(vy, €, 02,)2, 00 Ty, e, di, 0o t) and p'=
(v, er, i1, 01, 00, es, 65, 55, 23) ... be he two paths. Since they have the same
trace, they have the same length k and i, =i., j. =j, foralls=1,...,k

We have v=h(D, e), e,=h(é,, e), and e, =h(é],¢’) for some ¥, &, ¢&,, and €'
We shall prove that , =€ and e'=e.

Let us assume that ¢’ # e. We have v=h(7, e) = h($', e’). This is possible only if
¢ is a source of H(p) or " is a source of H{p') (or both), where p =1lab,(e),
p'=lab,(&'). Since © is not a source of H(p), &' must be a source of H(p'). Since
p and g’ have the same trace, k(e;)=k(e,). It follows that p=p’ and €, = é&|.
Hence, ¢’ is a source of H(p') iff & is a source of H(p). We obtain that £ is a source
of H(p), a cuntradiction.

Hence, e'=e. It follows that v;=v,. We can repeat this argumen; for the
right factors (o, €., is, jr, 1) ... and (&}, €3, i3, j2, v5) ... of p and u'. We finally
obtain u=u'. O

188 B Courcelle

We shall now construct logical formulas with parameters denoting the seis in &
and the set € In these formulas, we shall denote in the same way a variable and
the object or the set of objects it defines. Hence, we take as set of parameters
Wi={CYo{E,,li<M peB, j<m,l)

Lemma 5.6. Ler G, 1, &, C be as in Remarks 5.4. For every pin B, every i in [0, M],
every vertex x of H(p), one can construct a formula x,,; (u, w, W) such that, for every
wo vertices u and w of G

(G, u,w, H) = x,.. iff w=hn((c,,e)) for some i-edge e in E, such that
p=lab,(e) and w=h((x, e)).

Roughly speaking, this lemma says that every vertex w of G is definable from
the corresponding vertex # in G. By “corresponding”, we mean that u is of the
form h((¢,, ¢)) and that w = k{((x, ¢)) for some e

Proof. We {irst assume that x # ¢,. By condition (R3) there is an internal path 7 in
H(p) linking ¢, 10 x. Let

(‘l{n.f;?.nllv ilvjlw Ul)(vlv.l;!.m:v i;.jg, UZ) [(e ikvjﬁv x)
be this path. We let + be the sequence

((lq P. "ll)u ilajl)((l-v p\ m:’! iJ lj?) . (("u ps mL)l l‘lnjl.)-

Let /... be an edge of H(p) such that vert(£, .., 1) = ¢, forsome m. Let y,,, (4, w, W)
be the formula expressing that

(i) e C and u is the fth vertex of an edge in E,, ...

(ii) there is a path with trace r from u to w.

In order to express that, for some edge e in a pain, one has k{e)=(i, p, J), it
suffices to write e€ E, . 't follows that a menadic second-order formula y,, . can
be written te express (i) and (it).

It u=h({c,, e)) for saome i-edge e in E, with p=lab,(e) and w=k((x, ¢)), then
(1) and (11} hold with path h(w, ¢) sutisfying (ii).

Let conversely w, w salisfy x,,, .. Let w be a path satisfying (ii). Then u = h{(c,,))
and e is an i-edge by (i). The path h{n, e) links u to h{{x, e)); its trace is . Lemma
5.5 yields that pu = A{m, ¢), hence w = h({x, ¢)).

We still have to consider the cuse where x = ¢,. We take y,,. expressing that
u< C that u = w, and that u is the fth vertex of some edge in E, ., as in condition
{1). This case is actually simpler than the previous one. [3

Lemma 5.7. One can construct a formula g, -, (4, w, W) such that, for every two
vertices u, w of G:

(Gouw, &, CVE g, i u=h{{e,, e)), w=hllc,,) for some e, ¢' in
E, wherep =lab,(e), p’ =1ab,(¢'), eis ani-edge,
and e’ is an i'-successor of e in 1.

Monadic secend-arder logiv of graphs 189

Proof. For every p,p' in B, every i in [0, M), every i’ in [p(p)}]., we construct a
formula p,,, (4, v, #') as follows. We let x,,..., x, be the sequence of vertices
of the i'th nonterminal edge of p {these vertices belong to H(p)). Welet (y,,...,)
be the sequence of sources of H(p).

We let w,, . be the formula

v, s v D (o, WA X (W00, W) L
A Xp.i..\:,.(uq Uks W.) A Xp'.i'.,r,‘(w, UL, r'M'/-)]'

If u=h((c,, e}), w="4((c,,e")) for some e &' as in the statement, then v;=
h((x;, e))=h(({y,e')). It follows from Lemma 5.6 that Xp.ix (U, v, W) and
Xpiwv, (W, t;, W) hold for all j=1,..., k Hence, u,, .- (4 w, #) holds.

Let us conversely assume that u,, .. (v, w, #) holds. Let v,,..., v, be vertices
such that y,;. (4, v;, W) and x, ;. (w, y,, W) hold for all j. We have u = h{(c,, e)),
w=h{(c,, ') for some i-edge ¢ labelled by p, some i’-edge ¢’ labelled by p’. We
need only prove that e’ is an i’-successor of e. We make the following observation
concerning A.

Fact. Ifx, x' are vertices such that h((x, e)) = h((x’, e')), with e’ # e and, if x is internal
in H(p), then x' is a source of H(p') and e is an ancestor of ¢’

We now complete the proof. We have hA((x;, e)) = h((y;, €’)) for all j. By condition
(R2), some vertex x; is internal in H(p). It follows from the fact aboxe that e is an
ancestor of e’. If &' is not a successor of e, then e’ is a successor of some edge " # ¢
such that e is an ancestor of ¢". Every vertex h((y;, e'}) is equal to A{(x;, e}), it
is also equal to h((z;, e")), where (z,,...,z) is the sequence of vertices of a
nonterminal edge in D(lab,(e")). Because of (R2), same vertex z, is internal in
D{lab,(¢")}, but by the fact, h{z,, ")) cannot be equal to h{(x,, e}). Hence, ¢ is a
successor of e, and actually an ’-successor since e’ is an i"-edge.

This completes the proof of Lemma 5.7. O

Proof of Theorem 5.2. If G =n, then the tree 1 is e,,. This special case can be easily
recognized and treated separately.

We assume that each graph H{ p) has internal vertices, hence, is not reduced to
a single terminal edge.

Let us consider & and £ such that G =rh_(1). It follows from Lemma 5.7 that ¢
can be defined in G in terms of € and C, where € and C are associated with G
and ¢ as in Remarks 5.4.

In particular it suffices to define E, as equal to C with lab(c)=piff ce E,,; for
some i, j. It is easy to define V, in terms of £ The formulas defined in Lemma 5.7
are then uselul to express the incidence relations in /. We omit the other details.

In order to complete the proof, we need only construct a formula ¢ with free
variables in %, such that, if G is an arbitrary graph in FG(A),,, if vis a #-assignment
in G, then (G, v) E ¢ iff » defines a tree ¢ in RM(P) in the above sense, G =rh_(1),
and v defines the sets &, C as in Remarks 5.4.

190 B. Courcelle

Construction of ¢

We shall not construct it explicitly, we only indicate that ¢ should express the
following facts:

(C1) & forms a pantition of E,; (some sets of & may be empty), and the label of
an edge in E,,, is that of £, ; for all i, p, j; if E,,; is nonempty far some j, then it
is nonempty for all j, 1 ==j = n, (see Remarks 5.4 for the notation).

(C2) CcV,.

(C3) C and € define a tree r in RM(P), with E, = C, the structure of which is
described by means of the formulas of Lemma 5.7.

To formulate the subsequent conditions, we introduce some notation.

C,, ={ve C|v belongs to un edge in E,,, for some j}

(if C, € are as in Remarks 5.4, then, C,, ={h((c,, eNlecE,, lab,(e)=p. e is an
i-edge of r}. Let x be a vertex of D{ p). We say that (i, p, x, u) defines a veriex
wof G if ueC,,, weV, and w is the unique vertex of G such that
(Gs U, w, ?’w C) = .Xp.i.,\'

(C4) For every triple i p,j such that 1=j=<un,, the following holds. We let
{x1,...,x) be the sequence of vertices of f,; in H(p). We require that, for every
uin C,,, there is a unique edge in E,,; with sequence of vertices (w,, ..., w;) such
that (i, p, x;, u) defines wy, for each =1, ..., k. Conversely, we also require that for
every edge in E,,,, there is a unigue v in C;, such that (i, p, x;, u) defines the /th
vertex of this edge, foreach I=1,..., k

(C3) Every vertex of G belongs to some edge. A vertex v of G is defined by both
“translation in G™ of the formula #,,, ., ... {4, u'} introduced in Definition 4.5, that
defines a binary relation on E,. Since 1 can be defined in G (by condition (C3)),
Proposition 2.5 entails that one can express “in G the properties of 1.

Conditions (C1)-(C5) hold for &, C as defined in Remarks 5.4.

Let us now assume that v is a #-assignment satisfying them. Conditions (C1)-C3)
express that € and C define a tree r in RM(P). Condition (C4) shows that G is a
certain quotient of the graph K(¢) defined in Definition 4.5. Condition (C5) expresses
that G = K(¢)/= where = is the equivalence relation of Definition 4.5.

This concludes the proof of Theorern 5.2 in the case where all graphs D(p) for
p in B have internal vertices. If some graph D(p) dees not satisfy this property,
then it is reduced to a single lerminal edge. We let ¢, be this edge. The above
construction must be modified accordingly, We omit the technical details. O

Theorem 5.8. A presentation (m, K) where 7 is a signature of regular graph operations
and K is recognizable, is parsuble.

Proof. Let L=rh.(K). Since K recognizable it is definable (by Theorem 3.3).
Hence, the transduction rh.':L— K is definable since it is a codomain-
restriction of the definable transduction rh_': FG(A) — RM(P) by a definable set
{Corollary 2.8). [J

Manadic secund-order lugic of graphs 191

Definition 5.9 (Regular graph-grammars). A context-free graph-grammar I' is regular
(we say also that it is a regular graph-grammar), if it is constructed over a signature
of regular graph operations, and if the associated system of equations is ac-
compatible.

Theorem 5.10. Regular graph-grammar generate strongly cc1exi-free set of graph:.

Proof. If L is generated by a regular graph-grammar, then it is of the form rh,(K)
for some recognizable set K, and some signature of regular operations . The result
follows from Theorem 5.8. O

Propesition 8.11. Every left-linear (word) grammar, every regular-tree grammar is
{can be translated into) a regular graph grammar.
Proof. Let I be a left-linear (wrrd) grammar. Its rules are of three possible forms
u— av,
u-—a,
Uz,

where u, v are nonterminals, a is a terminal symbol, and e denotes the empty word.
They translate into the following rules, forming the context-free graph-grammar I':

-@

u—)l'q—;—.

u—1e —
u—1le,
For example, if the word abcd is generated by I, then the graph

n b < d
1e ® e » .

is generated by I The grammar fis regular; the graph operations it uses are regular,
and the associated system is ac-compatible (since the operation / does not occur
in it). (The rules of third form are represented with &,.)
Let us now consider the rules of a regular tree-grammar I. They are of the form
u—flu,uz,. ., w)
u—g
where u, u,, ..., %, are nonterminal symbois, f and g are terminal ones of respective
ranks k with k =1 and k =0. The rules of the corresponding graph-grammar I' are:
u—far(uy, ..o u)
U= gny
where the operations fy, and g,, are as in Definition 3.2. Again, these operations

are regular, and I is a regular graph-grammar. It generates the graphs corresponding
to trees in the sense of Definition 3.2. O

192 B. Courcelle

Example 5.12. The following graph-grammar generates the set of trees RT(B) defined
in Section 3. The initial nonterminal is u. It is regular because the graph operations
of the forms J,, and g,, are regular (as above), and the corresponding system of
equations satisfies conditions AC of Definition 3.7. Here are the rules of the grammar:

'w_’f\f(“v"'su]
W —> Gy
u—ufw

u—e.

Counterexample 5.13. The signature {a, b, e,, /.} where a and ¢ are as in Examples
5.3, is regular but the equation

u=af.bff,ut+e;

is not ac-compatible and the set of graphs it defines is not strongly context-free
{hecause it is not definable). This example is essentially identical to Example 3.6.

6. Series-parallel graphs and graphs of tree-width at most 2

In this section, we let A be a finite alphabet of symbols all of rank 2, we let
SPcFG(A), be the set of oriented series-parallel graphs defined in Example 1.6.
We shall prove that SP is strongly context-free. From this result, we shall derive
the strong context-freeness of the set of graphs ui tree-width at most 2.

We need a few technical lemmas on series-parallel graphs.

Let G be a graph in FG(A}. By a path in G from x to y, where x, ye Vg, we
mean in this section, a sequence of edges (e,,..., e,) such that x =vert;(e,, 1},
v=vert(e,, 2), vert;(e, 2) =vert,(e, ., 1) for i=1,...,n~1. We have an emply
path if n=0, x=y, and a circuit if x=y and n#0.

Let = be a vertex. A path gues through = if : is a vertex of one of its edges.
Otherwise, it avoids =. If G belongs to FG(A)., a long path in G is a path from
sree, (1) to sre,;(2).

The following characterization of oriented series-parallel graphs is classical
(see [24]).

Lemma 6.1. A graph G in FG(A), is in SP iff it satisfies the following conditions:
(1) every vertex belongs to a long nonempty path,
{2} G has no cireuit,
(3) thereis no 4-tuple (x, ¥, v~. z) of pairwise distinct vertices with pairwise noninter-
secting paths from x to y,, from v, to z, for i= 1,2, and from y, 1o y..

Definitions 6.2. A graph & in SP is concretely given by means of a set of vertices
V,; and of a set of edges E,,. Its sources need not be specified because they can be
determined from the orientations of edges in a unique way.

Monadic second-order logic of graphs 163

A sub-SP-graph H of G is a graph in SP with set of vertices ¥, < ¥, with set
of edges E,; = E;, and such that lab,; =labs | E, and vert, = vert; | E;,. We denate
this by H = G. (Two isomorphic sub-SP-graphs of G are nor considered as equal.)

If e is an edge of G, we denote by G[e] the sub-SP-graph of G with € as unique
edge. Let H and H' be sub-SP-graphs of G such that Ey nEy. =@. If srey; =sreyy,
we denote by H / H' the sub-SP-graph of G with set of edges E, WEy,. If
sr¢c;(1) =srey,(2), we denote by H « H' the sub-SP-graph of G with set of edges
EH v EH' .

We say that G is *-atomic (resp. J-atomic) if G is not equal to H « H' (resp. to
H 4 H’) for any two sub-SP-graphs H and H’. It is clear that a graph in SP is
s-atomic iff it is 2-connected or is reduced to a unique edge.

Lemma 6.3, Let GeSP.

(1) IfGisnot »-atomic, there exists a unique sequence G, , . .., G, k =2 of *-atomic
subgraphs of G such that G=G, % G,e-- -+ (.

(2) If G is »-atomic, then we have either G is reduced to a single edge, or
there exists a unique set {G,,..., G} of f-atomic subgraphs of G such that G=
G /G- ¥ G

Proof. Easy induction on the number of edges of G. O

Definition 6.4 (Constituents). By induction on the number of edges of G, we define
a set of subgraphs of G, denoted by CONST(G). If E; is singleton, then we let
CONST(G) = {G}. Otherwise, G can be decomposed in a unique way as stated in
Lemma 6.3. In both cases of Lemma 6.3 we let

CONST(G)={G}u CONST(G,)u - - U CONST(Gy).

The elements of CONST(G) are called the constituents of G. Note that for every
¢ in Eg;, G[e] is a constituent of G.

For every graph G in SP, Lemma 6.3 yields, by an induction on the size of G,
an expression t; in RM(P) denoting G. Here, we let P={/}, *}u A (the binary
operation # has no unit). The expression tgs is associated with G in a unique way
if, in Lermnma 6.3, Case 1, we choose to write G=G, ¢ (G2 (... (Gi_;*G.) ...).

Hence, we obtain in this way a bijection G — t; of SP onto a definable subset
K of RM(P). [n order to establish that SP is strongly context-free, we need only
prove that tg (represented by a relational structure as explained in Section 3) is
definable in G. For this purpose, we introduce some new technical definitions.

Definitions 6.5. Let G=SP and x, ye V.
(1) We write x < y iff there exists a path in G from x to y. Since G has no cycle,
the relation < is a partial order on G. We denote by < the associated strict erder.

194 B. Courcelle

(2) If x, p€ ¥V;, x< p, then we denote by G[x, v] the subgraph of G consisting
of all vertices z, x <z < y, and all edges of G linking these vertices. Its two sources
are x and y.

{3) Foreveryedge e of G, we denote by G[€] the graph G[vert; (e, 1}, vertg(e, 2}].
This graph is clearly *-atomic.

(4) We let Vi; be the set of vertices in V; that are avoided by some long path.
Then, for x in V;, we denote by left(x) (resp. by right(x}} the unique vertex y such
that:

{4.1) y<x (resp. x<y),

(4.2) every long path that goes through x also goes through y,

{4.3) there is a long path that goes through y and avoids x,

(4.4) if y' is any vertex satisfying (4.1)-(4.3) then y'< y (resp. p=<y'). (Hence, y
is the vertex satisfying (4.1)-(4.3) that is as close to x as possible.)

The existence and unicity of such vertices y will be proved below.

(5) If x is as above, we let G[x]:= G[left(x), right(x)].

{6) In order to have uniform nota‘ion, we also let left(e):=veris(e, 1) and
right(e) == vert (e, 2} for e € E;, so that G[e] can also be written G[left(e), right(e)).

Figure 8 illusirates these definitions. We have y = left(x), z = right(x); the vertices
y' and z’ satisfy conditions (4.1)-(4.3) but not condition (4.4). The graphs G[x]
and G[e] are equal (i.e., are the same concrete subgraph).

10:'/ ;of.*;o .\: \c + 0 2
y' v\ x Jz z’
Fig.aﬁ.

Lemma 6.6. If xcVy;, then left(x) and right(x) are well defined. The graph G[x] is
s-atontic.

Proof, The sources src., (1) and sre.(2) satisfy conditions (4.1)-(4.3) of
Definition 6.5.

Let us consider a long path containing x. On this path, there are two vertices y,
and y, such that y, < x < y,, that satisfy Conditions (4.2) and (4.3}, and that are as
close as possible w x. It follows that they also satisfy (4.4). Hence, conditions
(4.1)-(44) define a unique pair of vertices that we denote functionally by
(left(x), right{x)).

There exists a long path that avoids x and goes through left(x) and right(x).
Otherwise, one would have two long paths avoiding x and going through v and

Monadic second-vrder logic of graphs 195

right(x) on one hand, and left{x) and z on the other, for some y <left(x) and
z>right{x). The 4-tuple (v, left(x), right(x), z) would contradict condition 3 of
Lemma 6.t (see Fig. 9). It follows that we cannot have G[x]=H ¢ H' with x
common to H and H'. If we had G{x]= H ¢ H' with x in H and not in H', then
condition {4.4) in the definition of right{x) would not be satisfied. Similarily, we
cannot have x in H' and not in H. It follows that G{x] is =-atomic. O

Lemma 6.7. The set of e-atomic constituents of G is equal to {G[x]|xcE5wV5)

Proof. Let G=G,*G,*---» G, with G,,..., G, *-atomic, k= 1. For every i,
there exists x in Egu Vg such that G, = G[x]). {This follows easily from Lemma
6.6.) Hence, every *-atomic constituent of G is G[x] for some x.

Conversely, let us consider G[x]. We prove that G[x] belongs to CONST(G) by
induction on the structure of G in the sense of Lemma 6.3.

(N IfG=G,*G,*---2G,, k=2withG,,..., G, *-atomic, then we have two
subcases:

(i) x belongs to G; and to G,., for some i; then G[x]= G, hence, G[x]e
CONST(G).

(ii) x belongs to one and only one of the subgraphs G;; then left(x)} and right(x)
belong both to that G, and G[x] = G,[x]. Hence, G[x] e CONST(G,) (by induction)
and G[x]e CONST(G).

Q¥ GCG=G, JCG. f---§ G, with Gy,...,G, f-atomic and k= 2; then, the
argument is similar. Either G[x} = G and then G[x]< CONST(G), or G[x]= H[x]
where H is a »-atom equal to one of the G,. By induction, we obtain G[x]e
CONST(H) hence, G[x}e CONST(G). O

Definition 6.8 (Chains). Let H be a *-atomic constituent of G. A H-chain in G is
a sequence C =(G,, Gs,. .., G;) satisfying the following conditions:

(1) G,,...,G, are s-atomic constituents of G that are sub-SP-graphs of H,

(2) sreg, (1) =srey (1), and G, is maximal for inclusion with this condition, among
the sub-SP-graphs of H,

(3) for every i=2,3,..., k—1, G, is maximal for inclusion among the sub-SP-
graphs of H such that sreg,_ (1) =sreg (2}

It follows from these conditions that the graph C:= G, * G, - - - » G, is a sub-SP-
graph of H. A H-chain as above is complete if sre.; (2) =srey(2).

/ \

1o —p o + @ > @ 3 + & — & 2

y left(x) \ x right(x) f T
.

Fig. 9.

196 B. Courcelle

Lemma 6.9. For every s-atomic constituent H of G, wehave H=C, j C. - - - j &,
where {C,, ..., C.} is the set of complete H-chains of G.

Proof. It is clear that each graph € is f-atomic. By Lemma 6.3(2), we need only
prove that every element of the set of /-atomic constituents {H,, ..., H.} such that
H=H,jH,§--- f H., is of the form C; for some complete H-chain C,.

Let H, be such a j-atomic constituent. Then, H;=K, ¢ K, ¢ - - ¢ K, where
K,,..., K, are s-atomic. It is clear that K, is the unique maximal e-atomic
sub-SP-graph of H such that src, (1) =srek (1). Each K; is the unique maximal
sub-SP-graph of H such that srex (1) =srey, (2), where i =2,..., m. Hence, H; = c
where C is the complete H-chain (K,,..., K,). O

Theorem 6.10. The set SP of oriented series-parallel graphs is strongly context-free.

Proof. It follows fram Lemma 6.1 that SP is definable, because the three conditions
that characterize it as a subset of FG(A), ¢can be written in monadic second-order
logic. Hence, we need only consider a graph G in SP, and explain how t.; can be
defined in G, in the sense of Section 2.

All notions introduced in Definition 6.5 are expressible in monadic second-order
logic. Let us introduce a parameter X, denoting a subset of D=V, UE; (see
Definition 2.8), and let us require about it the following conditions:

(C1) if xe X, then G[x] is defined,

(C2) if x,ye X, x# y, then G[x]# G[y],

(C3) for every x in D, such that G[x] is defined, there exists y in X such that
Glyl=GIx].

In this way, we have a bijection of X onto the set of *-atomic constituents of G
{by Lemma 6.7). One can write a formula ¢(x, ¥, X'} saying that G[x]< G[y].

It follows that the expression t; in RM(P) (denoting G) derived from Lemma
6.3 can be defined in G. We do not give a formal construction, but we make a few
observations from which the construction of a definition scheme defining it can be
done.

(1) If xe X, then Gix]is equalto C, /- -- 4 C. where {C,,..., C,} is the set
of complete G[x]-chains in G. A G[x]-chain is completely defined by its first
element G[y] and the subgraph G[x]. Hence, the set {y,,..., y.} © C such that C,
is the G[x]-chain with first element G{ v;}, can be defined from x and X,

(2) If xe X and C=(G[y\),..., G[y,]) is a complete G[x]-chain, then C is
equal to

GLy)*Glyl=- -+ Gyl

It follows from the definition of a chain that each term y.., is definable from
x, X, und y,.

(3) The graph G is either G[x] for some x in X (the one such that Gf y]< G[x]

for every y in X) or is € for some complete G-chain (G[w)-.., G[ym]) that one
can also define.

Monadic second-order logic of graphs 197

From these remarks, one can define t; in G by an appropriate definition scheme.

Note that the role of X is just to select a unique x in Vi; U Eg such that G[x]=H
for each #*-atomic constituent H of G. The terms .; associated with different sets
X satisfying conditions (C1)-(C3) are thus isomorphic. O

We now aim to extend Theorem 6.10 to other sets of graphs related to series-parallel
graphs, and in particular to the set of graphs of tree-width at most 2,

Definitions 6.11 (Disoriented series-parallel graphs), Let G e FG{A),. We say that
H in FG(A), is obtained from G by reorientation if V,, =V5,Ey =Eg, laby, =labg,
SIC; =SIPCg, and, for some subset W of E,

vert;, (e) = (vertg{e, 2), vertgle, 1)) ifee W
=vertgl{e) ifeg W

We write this H = G(W). It is clear that if H = G(W), we also have G = H(W).

For every graph G, we denote by o,{ G) the 0-graph equal to G except that iis
sources are turned into internal vertices.

The set DSP of disoriented series-parallel graphs is defined as {o,(G(W))| G € SP,
WcEgl

Theorem 6.12. The set DSP is sirongly context-free.

Proof. For every G in FG(A),, every WS Eg, every x, y in V5, we denote by
G(W, x, y) the graph in FG(A}, consisting of G(W) equipped with (x, y) as sequence
of sources.

Let W ={W, Y,, ¥,, X}. One can modify th¢ definition scheme A of Theorem
6.10 into a definition scheme A’ with set of parameters % such that, for every graph
G in FG(A),, for every assignment y: % — G, we have:

(1) def (G, W, Y., Y,, X) is defined iff W is a set of edges of G, Y,, and Y, are
singletons {y,}, and {y.}, def.(G(W, y,, y5), X) is defined, and

(2) def (G, y)=def,(G(W, y,, ¥2), X) if they are both defined.

It follows that def (G, y} is defined for some y iff G € DSP. If this is the case,
then def,{G, y) is the tree t, denoting the oriented series-parallel graph H =
G(W, y,).

By using the information given by W, i.e., the reoriented edges, it is easy to modify
4’ so that it defines an expression tree for G defining it by means of the operaticns
*, 7, oy, the constams a for all a in A, and the operation o, that reverses the
sequence of sources of a 2-graph. O

198 B. Courcelle

Definition 6.13. A busic graph is a graph G in FG{A), of the following two possible
forms:

(1) either G is reduced to one vertex and one edge (forming a loop),

(2) or G is a two-connected graph in DSP, equivalently, a graph of the form
o (G(W)) for some e®-atomic (oriented) series-parallel graph G in SP, and
some Wc Eg.

As in [23], we say that a graph is two-connected if it is nonempty, connected,
and has no cut-vertex. Hence, a graph reduced to a single edge is two-connected.

Definition 6.14 (Tres-gluings). Let L= FG{A),. Let T be an unoriented tree with
set of nodes V. Let / be a mapping associating with every node v of V a graph f{v)
isomorphic to a graph in L. We assume that if v # v’, then f{v) 2nd f(v’) are disjoint.
For every edge (x, y) of T, we let f(x, y) be a pair (w, v) waere u is a vertex of f(x)
and v is a vertex of f(¥). We assume that f(p, x) ={u, u) if f(x, v)=(u4, v).

With (T, /) as above, we associate a graph glue{ T, f) in FG{A), as follows. We
let first K be the (disjoint} union of the graphs f(v), v € V. We let = be the equivalence
relation on V, generated by the set of all pairs f(x, y) for all edges (x,y) of T.
Finally, we define glue(T, f):= K/=~. We say that this graph is : tree-gluing of
graphs in L.

A maximal two-connected subgraph of a graph G is called a block of G [23].
Hence, every connected graph is isomorphic to a tree-gluing of its blocks. Conversely,
if G is a tree-gluing of two-connected graphs, the components f(r) are the blocks
of G.

Lemma 6.15. A binary O-graph is of tree-width at mosr 2 iff its blocks are basic graphs.

It follows from Theorem 6.12 that the set of basic graphs is strongly context-free.
Hence, the following two lemmas entail immediately Theorem 6.18.

Lemma 6.16. Let L < FG(A), be a strongly context-free set of nonempty connected
gruphs. The set L' of nonempry graphs, all connected components of which are in L,
is strongh contexi-free.

Lemma 6.17. Ler Lc FG(A), be a strongly context-free set of two-connected graphs.
The set L' of tree-gluings of graphs of L s strongly context-free.

Theorem 6.18. Ler A consist of symbols of rank 2. The set of graphs in FG(A), of
tree-width at mosi 2 is strongly context-free.

Proof of Lemma 6.16. Let (7, K) be a parsubr ~ecseni ion of L, with signature P,
We can assume that P contains #, (we add this -5 .3 P oiterwise). We let K’
be the set of terms in RM(P) of the form ¢, §. 42 7, - flo b, for k>-0, 4,,..., 1,
in K. We claim that the presentation (=, K') of {15 parsable.

Manadic secand-order logic of graphs 199

Let 4 be a definition scheme for L, with set of pavameters %#. We aim to construct
a definition scheme 4’ for L'. Its set of parameters will be some #”. In particular,
we wish to have, for all y': W' — G, where GeFG(A),, t=del;(G,y') ift t=
Uho Hat, G=G, flo - #o Gy, and 1, =ders(G;, v;) for some y;: W — G..

Let Ge FG(A), and x be an item of G (i.e., an edge or a vertex of G). We denote
by G, the connected component of G containing x. If ¥ is an assignment %" — G,
then, we denote by y, the W-assignment ¥ — G, such that y (W)= y(W)nDg,
for all W in % Since G, is definable in (G, x), it is not hard to construct from A,
a definition scheme 4, using an extra parameter Y such that, for every G in FG(A),,
for every x in D, for every y: W — G,

def, (G, v, {x}) =def,,(G,, v}
and such that one side i this equality is defined iff the other is. Let X be a nonempty
subset of D; such that
(i) G, L for each x in X,

(ii) G, =G, forx,yin X, x#y,

(iii) each connected component of G is G, for some x in X,

Such a set exists iff G belongs to L’. Let y be a #-assignment in G such that
1, .= def{G,, v.) is defined for each x in X. It is clear that the graph

L=t e b,
in FG(R(P, 1}},, where X ={x,, ..., x,}, is the desired tree, representing the graph
G=G,, fv- -+ 14 G,,. (Note here the use of /, in the definition of ., : this is because
we consider graphs representing trees in the sense of Definition 3.2 and not terms.)

One can construct from 4, a definition scheme A” with set of parameters W=
W {X} such that for every graph G in FG(A),, for every assignment y": ¥ — G,
we have the following conditions:

{1) def (G, ¥") is defined iff the subset v"(X) of D satisfies conditions (i)-(iii).
(It follows that Ge L' iff def.-(G, v") is defined for some y".)

(2) If S=def,{G, v") is defined, then § is the disjoint union of the graphs
representing the trees 1, , i=1,..., m, where y"(X)={x,,...,x,}. Hence, S is a
finite disjoint union of trees in RM(P). The tree ¢ we wish to construct is the result
of the fusion of the roots of the m trees forming S into a single node (the root of t).

By Lemma 2.4, t can be defined in § (whence in G, by Corollary 2.6). We need
only choose which of the roots of the trees r,,...,t, will be taken as the root
of 1. This choice can be made by means of an extra parameter Z.

It follows that one can construct A" with set of parameters ¥ = W o {X, Z} such
that, for every assignment ¥': #” — G we have

(1) def (G, y') is defined iff the subset y'(X) of D satisfies conditions (i)-(iii),

(2) ¥'(Z) is a singleton and y'(Z) < y'(X),

(3) if t=def, (G, y') is defined then (=14, - /.1, and (defines G=
G fo - fo G

The role of Z is to tell that the root of r,, where i is such that y'(Z)={x;} = ¥'(X)
is taken as root of 7 This concludes the proof. O

200 B. Courceile

Sketch of the proof of Lemma 6.17. A completely formal proofl would be quit= long.
We only give a sketch.

Let G be a graph in FG(A),,. Every edge ¢ of (& belongs to a unique block G,
of G (see [23]). The set of items of G, can be defined in G. (To be precise, one
can construct a formula ¢{(X, Y} such that (G, X, Y} =g iff X ={e}l and Y =Dg
for some e in E.;.) The graph G belongs to L’ iff each of these subgraphs G, belongs
to L. Since L is definable, this can be expressed in monadic second-order logic. A
syntactic tree of G, (with respect to the given parsable presentation of L) can be
defined in G,, hence in G, whenever G, belongs to L.

Let us now consider G belonging to L. It is a tren-gluing of a family {G.|ec E)
of blacks of G, for some E € E;, and the associated tree 1 (as in Definition 6.14),
can be defined in G. By combining the tree ¢ with the syntactic trees of the various
graphs G., e £, one can define (by an appropriate definition scheme), a syntactic
tree of G (with respect 10 an appropriate presentation over some extension of the
given signature of graph operations). We omit the details. O

In the following extension of Theorem 6.18, we do not limit A to symbols of
rank 2.

Theorem 6.19. The ser of graphs in FG(A), of tree-width at most 2 is strongly
context-free.

Proof. In Theorem 6.10, we have shown how a syntactic tree t; of an oriented
series-parallel graph G can be defined in G, in monadic second-order logic. From
this tree, it is not hard to cbtain a tree-decomposition (t,, f) of G, of width at most
2. This tree-decomiposition can be defined in G. One can construct a formula x(x, y)
such that G = x(x, y) iff x represent a node u of t, and v is a vertex in f(u).

This construction extends to disoriented series-parallel graphs (by Theorem 6.12)
and to graphs of tree-width at most 2 (by Theorem 6.18). To summarize, in every
(binary) graph of tree-width at most 2, one can define a tree-decomposition of width
at most 2 of this graph, by a4 monadic second-order formula.

Let us now consider the case where A has symbols of all ranks. It is shown in
(8] that the gzraphs over A can be encoded as binary graphs over a new alphabet
of binary symbols. To be more specific, a graph G is encoded into a graph K(G)
with the same vertices. The (hyperjedges of G are replaced by cliques. It follows
that every tree-decomposition of K(G) is also a tree-decomposition of G.

Given G in FGiA),, one can define K(&G) in G (in the sense of Definition 2.2},
one can define in G a tree-decomposition of K{), of tree-width at most 2 if such
a tree-decomposition does exist. It is not difficult to convert a tree-decomposition
inlo a syntactic trec over an appropriately delined signature of graph operations. O

We hope that these techniques extend to tree-width & for every k, which would
give a proof of Conjecture 2 (see the introduction and the discussion of Conjectures

Maonadic secend-order logic af graphs M

4.12), and, finally, a better understanding of the relutions between definability,
recognizability, and contexi-freeness for sets of graphs.

Acknowledgment

I thank A. Arnotd for his helpful remarks on a first version of this work.

References

{11 S. Amborg, J. Lagergren and [). Seese, Problems ¢asy lor tree-decomposable gruphs, in: JCALPSK,
Lecture Notes in Computer Science 317 (Springer, Herlin, 1988) 18-51.

[2] M. Bauderon and B. Courcelle, Graph expressions and graph rewritings, Matir. Svsiems Theory 200
(1987) 83-127.

[3] 1. Bichi, Weak second order logic and finite awtomata, S. Math, Logik Grundlagen Mailr. 5 (1960)
66-92.

[4] B. Courcelle, Equivalences and transformations of regular systems. Applications to recursive
program schemes and grammars, Thenrer. Compur. Sci. 42 (1986} 1-122.

[5] B. Courcelte, Graph rewriting: an algebraic and logic approach, in: J. van Leeuwen, ed., Handbook
af Thearetical Computer Science, Vol B (Elsevier, Amsterdam, 199() 193-242.

[6] B.Courcelle, The monadic second-order logic of graphs: definable sets of finite graphs, in: Warkshap
on Graph Theoretival Concepts in Compuier Science, Lecture Notes in Computer Science 344
{Springer, Berlin, 1989) 3(-53,

[7] B.Courcelle, The monadic second-order logic of g uphs I: recognizable sets of finite graphs, Infurm.
and Comput. 85 (1990 12-75.

[#] B. Courcelle, The monadic second-order togic ol priphs 11: tree-decompaositions minors, and
complexity issues, 1990, submitted. ’

[9] B. Courcelle, The monadic second-arder logic of graphs 1V: detinability properties of equational
eraphs, Ann. Pure Appl. Lugic 49 (1990) 193-255,

[10] B. Courcelle, On recognizable sets and tree-automata, in: H. Ait-Kaci and M. Nivat, eds., Resolution
of Equations in Algebraic Structures, Vol. 1, Algebraic Technigues { Academic Press, New York, 1959)
93-126.

{11] J. Doner, Tree acceptors und some of their applications, . Comput. Svstenr Sci. 4 119700 406-451.

[12] P. Franchi-Zannetiacet. Attributs sémantigues et schémas de programmes, Thése d’Etat, Bordeausx-1
University, 1982,

[13] F. Gecseg and M. Steinby, Tree- Aummaie | Akademia Kaido, Budapest, 1984).

[14] J. Goguen,). Tharcher, E. Wagner and J. Wright, Initial algebra semantics and continuous algebras,
J.ACM 24 11977) 68-95,

[15] P.Gohon, An algorithm to decide whether a rationa! subset of N* is recognizable, Thearet. Compur.
Sci. 41 11985) S1-59,

[16] A. Habel and H.J. Kreowski, May We Iniroduce (o Yow, Hiperedge Replacemeni, Lecture Notes in
Computer Science 290 (Springer. Berlin, 1987) 15-26,

{17] 1. Leung, J. Witthol and O. Voruberger, On some variations on the bandwidth minimization problem,
SIAM J. Compur. 13 (1984) 650-667.

[18] J. Mezeiand J. Wright, Algebraic automata and context-Tree sets, Inform. and Coentrol 1111967) 3-29,

[19] U. Montanari and F. Rossi, An Efficient Algorithm for the Solution of Hierarchical Nerworks of
Canstraints, Lecture Notes in Computer Science 291 (Springer. Berlin, 1987) 440-457.

[20] N. Robertson and P. Seymour, Some new results on the well-quasi-ordering of graphs, Ann. Discrere
Muth. 23 (1984) 343354,

02 B. Cuourcelle

[21] D. Seese, The structure of the models of decidable monadic theories of graphs, Preprint 1987, Ana.
Pure Appl, Logic. in press.

[22] W. Thomas, Automati on infinite objects, in: J. van Leeuwen, ed., Handbook of Theoretival Computer
Seience, Vol B (Elsevier, Amsterdam, 19901 133191

123} W Tutte, Graph Theany (Addison-Wesley, Reading, MA, 1984).

[24] J. Valdes, E. Lawler and R. Turian, The recognition of series-parallel digraphs, SIAM J. Compur.
T (1981 298-1)%

