N

N
N

HAL

open science

Average running time of Boyer-Moore-Horspool

algorithm
R.A. Baeza-Yates, Mireille Regnier

» To cite this version:

R.A. Baeza-Yates, Mireille Regnier. Average running time of Boyer-Moore-Horspool algorithm. RR-

1316, INRIA. 1990. inria-00075243

HAL 1d: inria-00075243
https://inria.hal.science/inria-00075243
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075243
https://hal.archives-ouvertes.fr

UNITE DE RECHERCHE
INRIA-ROCQUENCOURT

Institut National
de Recherche
~enInformatique
et en Automatique

- Domaine de Voluceau
g Rocquencourt
BP105
/8153 Le Chesnay Cedex
France

Tel.(1)39635511

Rapports de Recherche

N° 1316

Programme 1
Programmation, Calcul Symbolique
et Intelligence Artificielle

AVERAGE RUNNING TIME OF
BOYER-MOORE-HORSPOOL
ALGORITHM

Ricardo A. BAEZA-YATES
Mireille REGNIER

Octobre 1990

AR

RR.1316

a2

Average Running Time of Boyer-Moore-Horspool
Algorithm

Ricardo A. Baeza-Yates

Depto. de Ciencias de la Computacién, Universidad de Chile
Casilla 2777, Santiago, Chile

Mireille Régnier

INRIA-78 153 Le Chesnay, France *

Abstract

We study Boyer-Moore-type string searching algorithms. First, we analyze the Horspool’s variant. The searching
time is linear. An exact expression of the linearity constant is derived and is proven to be asymptotically a, % <a<
c%l, where c is the cardinality of the alphabet. We exhibit a stationary process and reduce the problem to a word
enumeration. The same technique applies to other variants of the Boyer-Moore algorithm.

Cotit moyen de I'algorithme
de Boyer-Moore-Horspool

Résumé:

Nous étudions I’algorithme de recherche de motifs de Boyer-Moore. En premier lieu, nous analysons la variante de
Horspool. Le temps de recherche est linéaire en la taille du texte. Une expression exacte de la constante de linéarité
est calculée et on montre qu’elle vaut asymptotiquement a,% <a< %, ol c est la cardinalité de ’alphabet. Nous
exhibons un processus stationnaire et nous ramenons a un probléme d’énumération de mots. La méme technique

s’applique & d’autres variantes de I’algorithme de Boyer-Moore.

*The work of the first author was partially supported by the University of Waterloo and INRIA and the second author by the ESPRIT
I1 Basic Research Actions Program of the EC under contract No. 3075 (project ALCOM).

-*)

Average Running Time of the
Boyer-Moore-Horspool Algorithm

Ricardo A. Baeza-Yates

Depto. de Ciencias de la Computacién, Universidad de Chile
Casilla 2777, Santiago, Chile

Mireille Régnier

INRIA-78 153 Le Chesnay, France *

Abstract

We study Boyer-Moore-type string searching algorithms. First, we analyze the Horspool’s
variant. The searching time is linear. An exact expression of the linearity constant is derived
and is proven to be asymptotically a,% <a< c_-?-T’ where ¢ is the cardinality of the alphabet.
We exhiibit a stationary process and reduce the problem to a word enumeration problem. The
same technique applies to other variants of the Boyer-Moore algorithm.

1 Introduction

String searching is an important component of many problems, including text editing, data retrieval
and symbol manipulation. The string matching problem consists in finding one or all occurrences
of a pattern in a text, where the pattern and the text are strings over some alphabet. A good
parameter to evaluate the complexity of string searching algorithms is the number of text-pattern
comparisons of characters. The worst case is well known for most algorithms. Notably, fur the
Boyer-Moore algorithm studied here, the searching time is O(n), for a pattern of length m and a
text of length n, n > m. Moreover, at least n — m + 1 characters must be inspected in the worst
case [Riv77).

The average complexity is also of great significance [Yao79, KMP77]. It is interesting to show
(when possible!) that the number of comparisons, C,, is asymptotically K - n; to derive the
linearity constant I for different string searching algorithms and then compare them. One common
characteristic of these algorithms is the dependence on history: the number of comparisons made
on a given character depends on the result of comparisons on its neighbours. Hence, first attempts
to derive asymptotics used Markov chains [Bar84, Sch88, BY89b, BY89c]. Unfortunately. this

*The work of the first author was partially supported by the University of Waterloo and INRIA and the sccond
author by the ESPRIT II Basic Research Actions Program of the EC under contract No. 3075 (project ALCOM).

quickly leads to a combinatorial explosion when the size of the pattern increases. Recently, another
algebraic approach, based on pattern enumeration and combinatorics on words allowed an analysis
of the Knuth-Morris-Pratt algorithm [Reg89).

In this paper, we derive the analysis of the Boyer-Moore-Horspool or BMH algorithm [1{or80].
This algoritlim, described below, proceeds from right to left, a (presumably) efficient method for
large alphabets. The method is rather in the same vein as [Reg89] but the dependence on history is
much tighter. The originality of our approach is the immediate reduction to a stationary process.
The study of this stationary process, using algebraic tools and combinatorics on words, leads to
the linearity constant K. It appears to be a simple function of the cardinality c of the alphabet:
K~1/c+0O(1/c?).

The organization of the paper is as follows. Section 2 briefly presents the BMH algorithm.
In Section 3 we reduce the analysis to the study of a stationary process. Section 4 addresses
the average performance; notably, the expected number of comparisons, C,, ~ K.n, is derived.
Asymptotic bounds on K. are proven, and a conjecture is stated. All these results are in good
agreement with experimental values. The last section is our conclusion. In a preliminary version
of this paper {BYGRI0] we also studied Boyer-Moore automata.

2 The Boyer-Moore-Horspool Algorithm

The Boyer-Moore or BM algorithm positions the pattern over the leftmost characters in the text
and attempts to match it from right to left. If no mismatch occurs, then the pattern has been
found. Otherwise, the algorithm computes a shift, that is an amount by which the pattern is
moved to the right before a new matching attempt is undertaken. This shift can be computed with
two heuristics: the match heuristic and the occurrence heuristic. In this paper we only consider the
second one; it consists in aligning the last mismatching character in the text with the first character
of the pattern matching it. A simplification was proposed in 1980 by Horspool [Hor80]. Iu that
paper, it is pointed out that any character from the text read since the last shift can be used for
the alignment. To maximize the average shift after a mismatch, the character compared with the
last character of the pattern is chosen for the alignment. Empirical results show that this simpler
version is as good as the original algorithm.

The code for the Boyer-Moore-Horspool algorithm is extremely simple and is preseuted in
Figure 1.

For convenience for further analysis, we use a pattern of length m + 1 instead of m. The
occurrence heuristic table is computed associating a shift to any character in the alphabet. Formally

d[2] = min{s|s =m + 1 or (1 < s < m and pattern[m + 1 - s] = z)} .

Note that d[z] is m + 1 for any character not appearing in the m first characters of the pattern,
and notably for the last one if it occurs only once. The shift is always greater than 0. For example,
the d table for the pattern abracadabra is

d[’a’] = 3, d[’b’]) =2, d[’c’]) =6, d4[’4’] =4, d[’r’] =1,
and the valuec for any other character is 11.

Remark that this can be seen as a special automaton, following Knuth, Morris and Pratt
[KMP77] (sce also [BYGR0)).

<t

bmhsearch(text, n, pat, m) /* Search pat[1..m] in text[1..n] */
char text[], patl]l;
int n, m;
{
int A[ALPHABET_SIZE], i, j, k;

for(j = 0; j < ALPHABET_SIZE; j++) d[j] = m; /* Preprocessing */
for(j = 1; j < m; j++) dlpat(jl]) =m - j;
for(i =m; i <= n; i += dltext[i]]) /* Search */
{

k = 1;

for(j = m; j > O && text[k] == pat(jl; j--) k--;
if(j == 0) Report_match_at_position(k + 1);

Figure 1: The Boyer-Moore-Horspool algorithm.

3 A Stationary Process

We turn now to the evaluation of the average performance. Note that, for a given pattern and a
given text, the algorithm is fully deterministic. Nevertheless, for a given pattern and a random
text, we shall point out in this section a stationary process. The next section will be devoted to
the average performance, when both pattern and text are random.

We first state our probabilistic assumptions, i.e. the distribution of the characters appearing in
the text or in the pattern (in the case of a random pattern).

Probability assumptions: The distribution of the characters occurring in the text or in the
pattern is uniform. Le. the random variable of the characters, X, ranging over the c-alphabet A,
satisfies, for any a in A:

We first introduce the key notion of head. A head is a starting point in the text of a right to
left comparison. It is always compared to the last character in the pattern.

Definition 3.1 A character z in the tezt is a head iff it is read immediately after a shift.

Theorem 3.1 For a given fired pattern p of length m + 1, let H; be the probability that the k-th
character be a head. Then, Hy converges to a stationary probability Hy® defined by:

|
= E,[shift])’

where E,[shift] denotes the average shift when the aligned character ranges over the ¢ values in
the alphabet.

Proof: Position £ in a text is a head iff some position k£ — j is a head with an associated shift j.
As such events are not independent, we consider the equivalent expression:

{t{k] # head} = UTL, {t[l — k] = head and shift > j}

Note that if in position & — § we had a shift of less than j, say ¢, that case is considered now in
position k — j 4 ¢ (that is, a different value of j). Thus, we obtain the following linear recurrence

m
He=1 — ZPr{shift > jYHk-; ,

7=1
with initial conditions Hym41 = 1 and Hg = 0, for £ < m. As Pr(shift = 1) # 0, it converges to
1/ 37, Pr{shift > j} which can be rewritten as 1/ Z;":ll JPr{shift = j} (see Figure 2). |

shift > m -1

/Eift—;\

n-m+lln—-—m+2 n—1 n—1 n

text

shift > 1

shift > m — 2

Figure 2: Possible events such that the [-th position is not a head.

Remark: The convergence of such a linear equation is exponential.
In the following proposition, we state a general expression for Epy[shift] as a function ol p and

the distribution of characters in the text.

Proposition 3.1 Let p = p'z be a pattern. There exists a sequence (a1, ...,a;) of characters and
a unique sequencc (wn,...,w;) of words such that:
P = wj...unT
wy € A{ay,...,ai}"{a;}.
Let us denote |w;| by k;. Then, for a uniform character distribution in the text:
71

¢ Eplshift]=j+> (- i)ki+ (c—j)m+1).

i=1

[

If § = ¢ this stmplifies to
c~1
¢ E [shift] = ¢+ Z(c — 1)k .
i=1

Proof: In the BMI algorithm the value of the last letter of the pattern is not used to compute the
next shift; hence, we only consider the prefix p’ of length m. If the last head is the z-th character
y; of p’, it is aligned with the first occurrence of y; in p’; hence the shift is s; = 1+ ky + ...+ ki_y.
In other cases, the shift is m + 1. Each case happens with probability 1/¢. Hence:

¢ Ep[shift] dosit(c—j)(m+1)
i=1

j-1

j+ 220G - kit (-)(m+1)

=1

n
Example: Consider the pattern abcbcbabaazr = abcbe.bab.aaa.xz. Here, k1 = 2 (b), and k; = 3 (¢).
If the last hcad was a, we shift the pattern in one position. Similarly, if it was b (resp. ¢), we shift
three (resp. six) positions. Then,

104+ (e = 3)(m + 1)

E,[shift] =

We are now ready to derive the expected number of comparisons.

Theorem 3.2 Let Cp(p) be the expected number of text-pattern comparisons for a given paltern p
and a random text t. Then:

Cn - 1 1
(p) = H (cf1+E,,[csh,.ﬂ]+0<c—3>> , m>3,

n

Cx(p)

n

:H;°(1+l+3—l) , m=2,
c

Cu(p) _ oo(1) _
n _Hp 1+'C- ,m—l.

When m tends to oco:

cn(p)zlfgo(cc 4 Eolemr]]+o<i)) '

n -1 1- cE,,[C,—,}m cm

Proof: Let us count the number of right to left comparisons performed from position /. We
compute Sy(!), its average value for a given p and random text. Here, this number depends on
history, but we can get very good approximations. A first approximation is [BY89a]:

Sp(l)—1+l+...+_l_.= € <1_ 1)

Hy(l) ~ c cm c—1 cmtl

This assumes no knowledge on left neighbours: comparisons are random. But if the last head
position is attained in a backward reading, a match certainly occurs, and the left neighbour will
also be read. Hence, a second approximation is:

Sp(l) 1 1 1 1 1 c (1_ 1) 1

H,(I — shift) =1+ c Tt cshift + cshift + cshift+1 *ee em=1 o— 1 om cshift

which gives the correcting term: E,[7] — 2.

This sequence of approximations easily generalizes. The k-th approximation will yield a cor-
recting term:

1 1
c3l+--~+3k"(k‘1) + 0 (cm—(k—l)> ’

provided that sy + ...+ s < m. Noticing that:

1 k

k-1
¢ Ep[cshijt] ’

1
EP [csl +...+sk—(k—l)] =
the result stated follows.

Let us turn now to small patterns. For 2-patterns, i.e. when m = 1, the right to left comparisons
always stop at step 1 (or 2) with probability % (or %) Hence, Sp(1) = HP(1+ LY. For 3-patterns,
i.e. when m = 2, one has a correcting term iff shift + 1 < m, or shift = 1, which occurs with
probability 1. Hence, the result: 1+ 1+ % — L. Notice that this also is: —%7 + Ep[k7] + O(%).

|

4 Average Performance

4.1 Some formalism

Here, we introduce some notations. From Proposition 3.1, it appears that we are led to enuwmerate
patterns associated to sequences (k;). We do so using generating functions. Let W be a set of
words, and |w| the size of a word w € W. Let s, be the number of words w of length n. The
generating function enumerating words of W is:

S(z) = anz" .

Proposition 4.1 We denote by D;(21,..., 2;) the generating function of words with exactly j < ¢
different characters, and by F(zy,...,z.) the generating function of words over a c-alphabet. They
satisfy

w w; ! 2]
Dj(z1,...,2;) = E 7ozl = Cll—z T
P=wy..w1.T 1 7

?

and

r

<

Proof: Applying classical rules [F1a88], the generating function for words w; is z,l . Concate-

nation translates to a product, and we havee¢(c—1)...(c—j+1)=c L choices for the sequence
(a,...,a;). Note that the generating function of all strings of length m, F,(z1,...,2) is the
restriction to ky + ...+ k. = m of F(z,...,2.), where k; is the degree of 2; in F,.

Notably, all possible patterns of length m are given by the coefficient of degree m in F(z, ..., 2),
namely Fi,(1,...,1) or ¢™. For example, for ¢ = 2 (binary alphabet) we have

22 m—2
Fm(ZI,ZQ)ZQZ;n‘*'%(2 (229)™ 1) = 221" 4+ 2202 Z J(2z;; ym-2- =3
320

The total number of patterns is Fy,(1,1) = 2™.

4.2 Average number of heads

We now assume that both text and pattern are random. We first study the average number of
heads for patterns of length m + 1. Then we derive an asymptotic expression when m tends to oo
and study its asyniptotic behaviour when the alphabet size, ¢, tends to oo.

Theorem 4.1 The probability of being a head, when p ranges over all patterns of length m + 1 on

a c-ary alphabet is:
= (3)" ()"
HeE

Dki+ (c—7)(m+ 1)

‘e
H(e,m)=c¢ E () E
j=1 J ki >1 .7 + E
kit tkj-1<m

Moreover:
= ()"
I'h(c) = lim H(e,m)=c Mkl L +0((2 = 1/c)™/m) .
Jim 2 yEle ok
i=1,...,c~1

Corollary 4.1 For a binary alphabet, one has:

Ph(c) = 8In2-5 ~ 0.5452 .

Proof:
. ky }fJ . .
H(c,m) = ZJ:MZ ——Epagzern[shzft] (21" .- 27| Dj(21, - -5 25) -
As [z8 . 2 ’]H(c m) = & [1IZ 1()k jm and 1/ Ey[shift] = 1/(c+ Y521 (¢ -)k;), the expirssion

of H(c,m) fullows For large patterns only the last term does not converge to 0 when m goes to
infinity, and Ph(c) follows.
For a binary alphabet (¢ = 2), the expected shift is E,[shift] = M Then:

2 2 w2 gm=i-2 1
H(2,m)= — | ———+25Y T ——] = -
(2,m) = o ((m+2)+ Jgo J+3) 8In?2 5+O<m2m)

m+1 2 3 4 5

.666667 .600000 .571429 .555556
583333 476190 .433333 410256
.558333 .421958 .368094 .339860
.550000 .395198 .332003 .299440
.547024 .381249 .310381 .273988
.545908 .373737 .296842 .257047
545474 369597 .288135 .245365
9 | .545300 .367275 .282438 .237120
10 | .545229 .365954 .278663 .231206
15 | .545178 .364246 .271961 .218487
20 | .545177 364118 .270950 .215601
25 | .545177 .364108 .270783 .214899
30 | 545177 .364107 .270754 .214722

O O U N

Table 1: Exact values for H(c,m).

Table 1 gives some exact values for this probability.
From Table 1, it seems that H(c,m) quickly converges. We will prove a theorem and set a
conjecture:

Theorem 4.2 Let Ph(c) be limm_oo H(c,m), where H(c,m) is the probability of being « head,
when p ranges over all possible patterns of length m 4+ 1 on a c-ary alphabet. Then:

1 2
< < ;
c‘Ph(C)"c+1

Conjecture: When ¢ — oo, then Ph(c) — 1.
Proof: For any pattern, the shift on the i-th different character is greater than or equal to <.
Hence:

cE fshift] > 1424+ ...4¢ = c(c;—l) ,c<m.
If ¢ > m, one gets the tighter bound: 1+ ...+ m + (¢ — m)(m + 1). The lower bound is a direct
consequence of Jensen’s inequality [Fel68], that can be expressed as: E %) > _E_%s_) |

Practically, the computations in Table 1 show that the lower bound is very tight. We arc cur-
rently working to exhibit the underlying process and the random variables involved. We conjecture
that some variant of the Central Limit Theorem should apply.

4.3 Average number of comparisons

We prove here:

i A

Theorem 4.3 Lel Cy ., be the exzpected number of text-pattern comparisons for random tcits of
size n and random patterns of length m + 1. Then:

Cum _ 1,2, (L
Sem —wem) (145 + 2+0(3))

or, for large patterns:
Cn - pi)(1+1+3+o<i)>
n ¢ c c? 3))

Corollary 4.2 For a binary alphabet, the average number of comparisons is very close to:

(261n2 - 8In3 —12—7>nzl.2782n

with a differcnce not exceeding 0.02n.

Proof: One wants to derive:
s € 1 1
Eall patterns[Hp (Z_—_l + Ep[m] + 0(6_3))] .

Now, the rightmost character contributes by % to Ep[;;ﬂ—;ﬁ] and is found with probability % Other

1yl

) = O(C—E;-) Now, summing over all patterns

characters contribute by at most: (217 + ;1; + ...+
yields the correction:

Eoil patterns [H,‘,x’ (le_ + 0(6"3)>] = H(¢c,m) (21; + O(c‘3)>)

|
Table 2 gives some values for the second order approximation of Cy ., /n for differents ¢ und m.
Note that only for ¢ = 2 the expected number of comparisons increases with m.
Figure 3 shows the theoretical results compared with experimental results for ¢ = 2 and « = 4.
The experimental results are the average of 100 trials for searching 100 random patterns in a riindom
text of 50000 characters.

5 Concluding Remarks

In this paper, we realized an extensive study of a Boyer-Moore-type string scarching algorithm.
We derived an average analysis of the Boyer-Moore-Horspool algorithm. The expected nuniher of
text-pattern comparisons, Cy, is linear in the size of the text, and we derived the linearity constant
K = an when n goes to infinity. We first addressed the case of a given pattern. Then, averaging
over all patterns, we derived K. Finally, we pointed out a tight asymptotic development, nainely
K~ %, where ¢ is the cardinality of the alphabet.

The approach combines two different tools. First, probability theory is used to point aut a
stationary process. This avoids combinatorial explosion which limited other Markov-type an:lyses,
due to the variety of searched patterns to be considered; hence, this approach allows to achicve the

m+1 2 3 4 3
2 {.916667 .711111 .633929 .595556
3| 1.07813 .707819 .577734 .513477
4 | 1.16927 .671381 .512026 .437875
5| 1.22044 .643041 .466753 .388051
6
7
8

1.24812 .625051 .437543 .355491
1.26270 .614318 418757 .3335%4
1.27025 .608056 .406556 .318453

9 | 1.27412 .604426 .398543 .307757
10 | 1.27609 .602321 .393227 .300084
15| 1.27804 .599555 .383782 .283581
20 | 1.27810 .599347 .382357 .279837
25 | 1.27811 .599329 .382122 .278927
30 | 1.27811 .599328 .382081 .278696

Table 2: Expected number of comparisons per character

analysis. Probabilities also provide an asymptotic development of the linearity constant. Sccond,
the analysis reduced to a word enumeration problem and algebraic tools such as generating functions
appear powcrful. These theoretical results appear to be very close to experimental results obrained
by simulation [BY89a]. Moreover, their convergence to the asymptotic results is very fast. Our
results also prove that the bigger ¢ is, the better Boyer-Moore perfoms (as expected!).

Recently, Sunday [Sun90] suggested to use the character of the text after the character corre-
sponding to the last position of the pattern to address the d table. The analysis presented here
applies for this case considering a pattern of length m + 1 for the head probability, and a pattern
of length m [or the expected number of comparisons.

Our analytic results easily generalize to non-uniform distributions, when one considers a given
pattern. Averaging over all patterns is more intricate and is the object of a current work. Also, we
are extending this kind of analysis to new multiple string searching and two dimensional pattern
matching algorithins [BYR90].

References

[Bar84] G. Barth. An analytical comparison of two string searching algorithms. Inf. Proc.
Letters, 18:249-256, 1984.

[BY89a] R. Bacza-Yates. Improved string searching. Software-Practice and Ezpcricnce,
19(3):257-271, 1989.

[BY89b] R.A. Baeza-Yates. Efficient Text Searching. PhD thesis, Dept. of Computer Scicence,
University of Waterloo, May 1989. Also as Research Report CS-89-17.

10

‘L

Ca
n~m+1 0.8
0.3 T T T T T T T T | — T T |
2 3 4 5 6 7 8 9 10 11 12 13 14 15
Length of the Pattern (m)
Figure 3: Experimental vs. theoretical values for C,, ..,/ n.
[BY89c] I.A. Baeza-Yates. String searching algorithms revisited. In F. Dehne, J.-R. Sack, and

[BYGR90)]

[BYRY0]

(Flag8)

N. Santoro, editors, Workshop in Algorithms and Data Structures, pages 75-96, O11awa,
Canada, August 1989. Springer Verlag Lecture Notes on Computer Science 382.

. Baeza-Yates, G. Gonnet, and M. Regnier. Analysis of Boyer-Moore-type ~tring
searching algorithms. In Ist ACM-SIAM Symposium on Discrete Algorithms, pages
328-343, San Francisco, January 1990.

R. Bacza-Yates and M. Regnier. Fast algorithms for two dimensional and multiple
pattern matching. In R. Karlsson and J. Gilbert, editors, 2nd Scandinavian Workshop
in Algorithmic Theory, SWAT’90, Lecture Notes in Cowputer Science 447, pages 332-
347, Bergen, Norway, July 1990. Springer-Verlag.

I'. Flajolet. Mathematical methods in the analysis of algorithins and data structures.
In Egon Borger, editor, Trends in Theoretical Computer Science, chapter 6, pages 225-
304. Computer Science Press, Rockville, Maryland, 1988. (Lecture Notes for A Groduate
Course in Computation Theory, Udine, 1984).

11

[Hor80)

[KMP77]

[Reg89]

[Riv77]

[Sch8s§]

[Sun90]

[Yao79]

R. N. Horspool. Practical fast searching in strings. Software - Practice and Experience,
10:501-506, 1980.

N.E. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings. SIAM J on
Computing, 6:323-350, 1977.

M. Regnier. Knuth-Morris-Pratt algorithm: An analysis. In MFCS5’89, Lecture Nules in
Computer Science 379, pages 431-444, Porabka, Poland, August 1989. Springer-Verlag.
Also as INRIA Report 966, 1989.

R. Rivest. On the worst-case behavior of string-searching algorithms. SIAM J on
Computing, 6:669-674, 1977.

R. Schaback. On the expected sublinearity of the Boyer-Moore algorithm. SIAM J on
Computing, 17:548-658, 1988.

1D.M. Sunday. A very fast substring search algorithm. Communications of the ACM,
33(8):132-142, Aug 1990.

A.C. Yao. The complexity of pattern matching for a random string. SIAM J on
Clomputing, 8:368-387, 1979.

12

Imprimé en France
ar .
_Plnstitut National de Recherche en Informatique et en Automatique .

#

LY

ISSN 0249-6399

