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Local model checking for infinite 
state spaces 

Julian Bradfield and Colin Stirling 
Department of Computer Science, University of Edinburgh, The King’s Buildings, 
Edinburgh, EH9 3JZ, UK 

Abstract 

Bradtield, J. and C. Stirling, Local model checking for infinite spaces, Theoretical 
Computer Science 96 (1992) 157-174. 

We present a sound and complete tableau proof system for establishing whether a set of 
elements of an arbitrary transition system model has a property expressed in (a slight 
extension of) the modal mu-calculus. The proof system, we believe, offers a very general 
verification method applicable to a wide range of computational systems. 

1. Introduction 

In the last twenty years many approaches to program verification have 
been developed. Hoare’s partial correctness logic for simple while programs 
gave an early sound and relatively complete proof system. This approach was 
subsequently extended to total correctness and to richer classes of programs. 
Dynamic logics offered a more abstract view of Hoare logics, especially in 
their propositional versions. 

Pnueli pioneered the use of propositional temporal logics as more general 
program logics, capable of describing crucial properties of perpetual concur- 
rent systems. A variety of temporal logics have been studied, particularly 
branching and linear time. Many useful decidability and expressiveness re- 
sults (relating logics and automata) have been obtained, as well as sound 
and complete axiomatizations of validity. 

A slightly earlier tradition in the study of correctness was given by the work 
on program schemes where second order logics were advocated, especially 
in the form of the mu-calculus due to de Bakker, de Roever and Park. An 
elegant generalization of propositional dynamic and temporal logics drawing 
on this tradition is the propositional modal mu-calculus, due to Pratt and 
Kozen. The modal mu-calculus has been shown to include Propositional 
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Dynamic Logic, Process Logic, linear time temporal logic, TL, as well as 
the branching time computation tree logics CTL and CTL* ( [ 7,4] ). It also 
generalizes Hennessy-Milner logic, while preserving the characterization of 
bisimulation equivalence, and thereby provides a natural temporal logic for 
process theory ( [ 8,121). In fact, it is closely related in expressive power to 
Rabin’s SnS ( [ 61) despite having an elementary decision procedure ( [ 15 ] ). 
Consequently, the modal mu-calculus can be viewed as a general purpose 
program logic. 

A hallmark of modal and temporal logics is that their primary truth de& 
nition relates elements of a model (states, runs, or whatever) and formulae. 
But when these logics are applied to reason about programs it is common 
to abstract from this relative truth. Both Hoare logic and PDL are based on 
truth simpliciter, that is, truth at every element in the model or structure. 
Moreover, in temporal logic approaches, as advocated in [ 91, models are dis- 
pensed with by coding them in the logic as theories: verifying that elements 
of a model have a crucial property reduces to showing that it is formally 
derivable within the appropriate theory. This abstraction, however, is not 
adopted by the model checking method, as pioneered by Clarke, Emerson 
and Sistla. This approach, extended to the modal mu-calculus in [4], hinges 
on constructing algorithms for computing all the states of the finite model 
which have the relevant property. But as a verification method, it can not 
(and is not intended to) cope with arbitrary programs whose state space is 
more likely than not to be infinite. 

Logically, underpinning model checking is a tableau method for showing 
relative truth (rather than for establishing truth or validity as in [ 51, for in- 
stance). Stirling [ 111 advocates this as an appropriate verification technique 
for process theory where compositional proof systems for modal logic are 
presented. It was extended to the modal mu-calculus in [ 13 1. Both of these 
capture a notion of local model checking, focussed on establishing whether 
particular elements of a model have a property. A clear advantage of this 
technique is that it may avoid that exhaustive traversal of a model inher- 
ent in standard model checking. It also naturally permits the use of other 
techniques that may be specific to the program under consideration (such 
as, those offered by the algebraic theory of processes either via equations or 
via bisimulation). 

In this paper we extend local model checking to arbitrary infinite models. 
We present a sound and complete tableau proof system for establishing 
whether a set of elements of an arbitrary transition system model has a 
property expressed in (a slight extension of) the modal mu-calculus. The 
proof system, we believe, offers a very general verification method applicable 
to a wide range of computational systems. Section 2 contains an account 
of the syntax and semantics of the mu-calculus. In Section 3 we present 
the tableau proof system. The proof of soundness and completeness is the 
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topic of Section 5. Finally, Section 4 briefly examines applications of the 
verification method including examples drawn from Petri nets and process 
theory. We also outline how standard Hoare logic is subsumed by the tableau 
proof system. 

2. The modal mu-calculus 

Many interesting computational systems may be conveniently modelled 
using labelled transition systems, structures 7 = (S, (5 ( a E C}) consist- 
ing of a possibly infinite set S (or ST) of points together with a family of 
binary relations on S indexed by a set C (or Cl) of labels, the sort of 7. 
Examples include (concurrent) imperative programs; Petri nets; and CCS 
(or CSP) processes with value passing. Transition systems are generated 
from imperative programs when they are accorded structured operational 
interpretations. The points consist of programs and state information and 
the labels actions which may, for instance, also indicate an ability to com- 
municate. In the case of Petri nets the points are markings and the labels are 
(families of) events, while in CCS the points are processes and the labels are 
actions. Usually, instead of the possible transitions from one point (state, 
configuration, marking, or process) to another, it is the overall behaviour 
of the system which is of interest. This behaviour arises from the runs of 
the system, a run being a maximal path & -% El 2 .(. through 7, where 
maximality means that either the path has infinite length, or from its fIna 
point no transition is possible. 

A very rich and succinct logic for expressing program behaviour within 
transition systems is a slight extension of the modal mu-calculus, whose 
syntax is: 

@ ::= z 1 7@ 1 @I A 02 1 [K]@ 1 vz.0 

where Z ranges over propositional variables, and K over subsets of a label 
set L. In the formula uZ.@, vZ. binds free occurrences of Z in @. A 
syntactic restriction on vZ.@ is that each free occurrence of Z in @ lies 
within the scope of an even number of negations. The modal mu-calculus is 
due to Kozen [7] and Pratt [ lo]. ’ The slight extension here is that sets of 
labels may appear in the modalities [K] instead of single labels. 

Derived operators are defined in the familiar way: tt d&f vZ.Z; ff d&f Ott; 
Qir V CD1 dAf ~(4~ A ~0~); (K)@ %f -[K]-0; and pZ.@ Ef ~uZ.~@ [Z := 
1Z ] where 0 [Z : = 7Z ] is the result of substituting 1Z for every free 
occurrence of Z in @. Further useful abbreviations are [-K] @ dAf [C-K] 0; 

[al,.. . ,a,]@ dgf [{a1 , . . . ,an}]@; [-IO d&f [L]@; and similarly for (K). 

‘Pratt introduces a least root (as in recursive function theory) rather than a least fix-point. 
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Formulae of this logic are interpreted on labelled transition systems (of 
sort C) as follows. A model is a pair (7, V) where 7 is a transition 
system and U a valuation assigning sets of points to propositional variables: 
V(Z) c ST. We assume the customary updating notation: V[&/Z] is the 
valuation V’ which agrees with V except that V’ (Z) = E. Finally, the set 
of points of 7 having the property @ in the model (7, V) is inductively 
defined as ]I@ ]I; (where for ease of notation we drop the index 7 which is 
assumed to be fixed): 

IIZIIV = V(Z), 

IWIIV = 23 - Il@llV> 

II@1 A @2llv = Il@lllV n Il@ZllV> 

Il[K]@llv = {E E S I VF E S.Vu E K.if E --f+ F then F E Il@\lv}, 

IlvZ.@llv = uv c s I Il@llV[E/Z] > El. 

The expected clause for the derived operator pZ.@ is: 

IW.@llv = f-)E c s I IIww/Z] c E]. 

This logic allows the expression of a very wide range of temporal prop- 
erties. The formula uZ.+3 A [ -]Z (assuming that @ does not contain Z 
free) expresses that @ never becomes true: a point E has this property (in 
a model) provided that there is no run from E containing a point with 
the property 0. Similarly, vZ. [K]ff A [ - ]Z expresses that a K action can 
never happen. In contrast, pZ.@ V ( [ -]Z A (-)tt) (assuming again that 
@ does not contain Z free) expresses the strong eventuality that @ must 
eventually become true. And ,LLZ. [-K]Z A (-)tt expresses that K actions 
must eventually happen: a point E fails to have it as a property if there is 
an infinite length run from E all of whose labels are drawn from -K. 

By using nested fix-points, it is possible to give much more complicated 
liveness properties, ranging from 

vY.pZ.( (@ A (-)Y) V (-)z) 

which expresses that cb holds infinitely often on some run of the system, to 
the complex fairness requirement (from [ 141) 

vX1.t [-~1x1) A by. [KI I (vX.( [-alX) 

A ([K2l~Y1.([-alY1) A Y))) 

which says that the action a eventually happens on any fair run involving 
K, actions and K2 actions infinitely often, a property not expressible in 
standard branching time logics such as CTL. 
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As mentioned earlier, the modal mu-calculus incorporates PDL and CTL. 
A translation for PDL may be found in [ 71; a translation for CTL is: 

Ax@ = [-I@ A (-)tt, 

EX@ = (-)O, 

A[@, UO2] = yZ.@ v (d+ A [-]Z A (-)tt), 

EIQ1 U02] = yZ.Q2 v (CI+ A (-)Z,. 

Similarly, the mu-calculus subsumes Process Logic, linear time logic, LT, 
and the full branching and linear time logic CTL* ( [ 4,3] ). 

3. The tableau system 

Assume a fixed mu-calculus model (7, V) where I is a transition system 
which may contain an infinite number of points. We wish to provide a 
technique for verifying that a set of points & has the temporal property @, 
when E G )I@ ]I;. Below a tableau proof system for verification is presented, 
built on sequents of the form E Fd @ where A is a definition list which 
keeps track of unrolling of fix-point formulae. A definition has the form 
U = Y where U is a propositional constant and Y a fix-point formula. A 
finite (perhaps empty) list of definitions ( U1 = U:,. . . , U,, = !Pjj ) has the 
following two properties: first, that each Vi is distinct and second, that each 
fi only mentions propositional constants belonging to the set { Ur , . . . , Vi_ I}. 

Lists of definitions can be extended: if U is not declared in A and Y only 
mentions constants declared in A then A . U = Y is the definition list that 
results from appending U = Y to A. When A is a definition list and U is 
declared to be Y in A then we let A (U) = Y. 

We assume the interpretation of formulae relative to definition lists 
as in [ 131 by, in effect, treating constants as variables: if A is ( U1 = 
Y,,... ,U, = Ku,) then ll@~Ilv 7 is defined as I]@ I];fl where VO = V and 

Vi+1 = Vi [ 11 E+ 1 II;l /Vi+ I]. This interpretation accords with the expected 
meaning of @4 in terms of syntactic substitution: a routine induction on @ 
establishes that I]@d.u=~/l]; = I]@ [U := Y]d 11;. (Semantically, restricting 
A (U) to be a fix-point formula is unnecessary-in Section 5 we permit the 
declaration of other formulae.) 

The rules of the tableau system below are inverse natural deduction style 
rules. The premise sequent is the goal to be achieved (that E G 110~ ]I;) 
while the consequents are the subgoals. The rules are presented only for 
formulae in positive form (where all negations are moved inwards by using 
the dual operators V, (K) and ,uZ.). We assume that (7 ranges over {p, v}. 
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In the rule for (K) we assume that f is a function from the set E to the set 
f(E) such that VE E E.3a E K.E -% f(E). 

E’ = {E 1 3F E Eda E K.F % E} 

A’ = A. (U = OZ.@) 

Un 
& t_d u 

Et/, @[z:= u] 
A(U) = aZ.@ 

Thin ’ ” @ 
&’ k‘d @ 

I’ > & 

To test if every point in E has the property @ (relative to A) one has to 
achieve the goal I kA CD by building a tableau, a proof tree whose root is 
labelled with this initial sequent. Sequents labelling the immediate successors 
of a node are determined by an application of one of the rules. The boolean 
and modal rules are straightforward. New constants are introduced when 
fix-point formulae are met, and then these are unfolded by rule Un. The 
rule Thin allows the set of points to be enlarged (and need only be applied 
to sequents whose formula is a constant-see the completeness proof and 
definition of canonical tableaux). 

An essential missing ingredient is when a node in a proof-tree counts as 
a leaf. We assume that the rules above only apply to nodes that are not 
terminal. A node n labelled by the sequent F tA !P is terminal if one of the 
following conditions holds: 

(i) F = 0, 
(ii) Y = Z or Y = -Z, 

(iii) Y = (K)@ and 3F E F.V’a E K.not(F L), 
(iv) !P = U and A (U) = OZ.@ and there is a node above n in the proof 

tree labelled E kA’ U with E 2 F. 
A node fulfilling condition (iv) is called a a-terminal. A node fulfilling 
conditions (i) or (iv) when CJ = v is said to be a successful terminal, 
whereas a node fulfilling (iii) is unsuccessful. In the case of (ii) success 
depends on the valuation V of the model: if F C I/ (Z ) when !P is Z, 
or LFG S-V(Z) when !P is -Z, then it is successful; otherwise it is 
unsuccessful. The definition of a successful y-terminal, a o-terminal when 
~7 = p, is intricate and requires some notation. 
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Suppose a node n is labelled by & F3 @ and n’ labelled E’ F~I 0’ is an 
immediate successor of n. We say that E’ E &’ at n’ is a dependunt of E E & 
at n if 
l the rule applied to n is V, A, aZ., Un or Thin and E = E’, or 
l the rule is [K] and E 5 E’ for some a E K, or 
l the rule is (K) and E’ = f(E). 
Assume that the companion of a a-terminal is the lowest node above it 
which makes it a terminal. 2 Next we define a trail to F at a a-terminal m 
from E at its companion n to be a sequence of pairs of nodes and points 

(nt,El),..., (nk, Ek) with (n,, El) = (n, E) and (nk, Ek) = (m,F) such 
that for all i with 1 < i < k either 

(i) E , + I at n, + I is a dependant of E, at n,, or 
(ii) n, is the immediate predecessor of a a-terminal node n’ (where 

n’ # m) whose companion is nJ for some j < i, and n,, I = n, and 
E ,+ I is a point at n’ (and so at n,, , ) which is a dependant of E, 
at n,. 

Then each companion node n of a o-terminal node induces an ordering 
C. on its point set E by F C, E if there is a trail to F at a node m 
from E at its companion n. (Notice that a node may be a companion of 
various o-terminal nodes, and that F E & by definition of companion). A 
p-terminal node is succesful if the ordering induced by its companion node 
n is well-founded: that is, if there is no infinite descending chain 

C, E2 Cn E, 17, Eo. 

To illustrate this definition, consider the following tableau (for a system 
(7,U) where I = ({A,R,C},{~}) and il L A, A 5 B 5 C and 
C % C, and V(P) = {A,C}): 

4 {B, C} ky V 

2As can be seen from the proof later, it is not necessary to choose the lowest such node-any 
suffices. However. the lower the companion the simpler the termination condition, so we decree 
that the companion is the lowest. 
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We need to consider 71. Now B I1 C because of the simple trail marked 
in solid lines; but also A I1 C because of the trail marked in dashed lines, 
in which we go from (1, A) to (3, A) and then invoke (ii) to jump up to 
(2, B) and then go down to (5, C) along the solid trail. 

Finally, we say that a tableau is successful if it is finite and all its leaves are 
successful terminals. The following theorem states that the tableau technique 
is both sound and complete for arbitrary (infinite) transition systems. The 
proof is presented in Section 5. 

Theorem 3.1. E td 0 is the root of a successful tableau on (7, V) iff& G 

II@‘4 11;. 

The tableau rules presented above are in fact more general than is needed 
for Theorem 3.1 to hold. As mentioned earlier, the Thin rule, while essential 
for completeness, is only required for thinning constants, and this could be 
incorporated into the rules by omitting Thin and replacing Un by the three- 
stage rule 

Un Ekd u 

&’ FA u 
‘?kA @[z := u] 

Another restriction arises from the desire to ensure that tableaux are 
finite: while the system as presented is intended to allow the user flexibility 
in developing proofs, it does not guarantee that the tableau construction 
terminates. However, it is the case that an infinite tableau can only arise 
from infinitely many unfoldings of some constant, so one can consider 
restricting to k, say, the number of applications of Un to any one constant, 
which can be included in the rules by adding 

(v) Y = U and there are k applications above n of the Un rule to nodes 
labelled by sequents of the form &’ kdJ U 

to the conditions for 3 k_d IF/ to be terminal. 
Such a tableau is said to be of degree k, and since the proof of Theorem 3.1 

in Section 5 gives completeness by constructing a canonical tableau of 
degree 1, we have the following theorem. 

Theorem 3.2. The system restricted to degree k is sound and complete, and 
its tableaux are Jnite. 

Restricting k to 1 gives a system in which constants can be dispensed 
with (see [ 1 ] for such an account); but, of course, any complete system is 
undecidable: canonical tableaux are in general neither unique nor effectively 
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constructible-hence the use of reasoning outside the system proper to show 
success. 

A different restriction allows us to recapture the model checker of [ 13 ] 
(for finite state systems) by omitting the rule Thin, limiting the sets of 
elements E of sequents to singleton sets, and then replacing the [K] rule 
with 

{El Ed [Kl@ 
[K1’ {E,}kd @...{E,}k~ 0 

{El,..., En} = {F 1 3a E K.E 5 F}. 

Note that now all y-terminals are unsuccessful as there must be a trail 
from E at the companion n to itself at a terminal, giving a cyclic C,. 

4. Applications 

In this section we illustrate the generality of the tableau proof system by 
applying it to disparate examples. The first example, given in more detail 
in [ 2 1, is a CCS representation of a slot-machine, for which we shall prove 
that it is possible to win a million pounds infinitely often. The slot machine 
is the process SMs, defined by the following equations: 

7 
IO ef slot.bank.(lost.loss.IO + release(y).wzn(y).ZO), 

B, ‘%f bank.EEE(n + l).left(y).B,, 

D%f max(z).(Zost.left(z).D + C release(y).left(z - y).D), 
l,<Y<Z 

SA4n%f (IOIB, ID)\K. 

where K = {bank(v),max(v),left(v),release(v) 1 %r E N}. The parameter 
n represents the amount of money in the machine’s bank, and the three 
components IO, B,, D handle respectively taking in and paying out money, 
the bank’s holdings, and deciding the payout. 

The property of SMa we wish to prove is 

7 
VY.pZ.((wzn(106))Y) V (-)Z. 

A successful canonical tableau for this is presented in Fig. 1. 
Here, E is the set of derivatives of {SM, 1 n B O}; the vital rules in this 

tableau are the disjunction at node 1, where El is exactly those processes 
7 

capable of performing a wzn( 1 06) action, and EZ is the remainder; and 
the (K) rule at node 3, where f is defined to ensure that El is eventually 
reached: for processes with less than lo6 in the bank, f chooses events 
leading towards loss, so as to increase the amount in the bank; and for 



166 J. BradJield, C. Stirling 

7 
{SMO} I() vY.pZ.(wzn( 106))Y v (-)Z 

{SM, I n 2 0) k() 
7 

YY./LZ.(WZ?z( 106))Y v (-)Z 
T 

E k() vY./LZ.(wzn( 106))Y v (-)Z 

Et-/l u 
d=o~(c’=vY.~z.(~(Io~))Yv(-)z) 

Fig. 1. 

processes with more than 1 06, f chooses to release( 106). The formal proof 
requires partitioning &2 into several classes, each parametrized by an integer 
n, and showing that while y1 < 106, y1 is strictly increasing over a cycle 
through the classes; then when n = 106, f selects a successor that is not 
in &2, and so a chain E0 2 . through nodes 1, 2, 3, 4 terminates, and 
therefore C4 is well-founded. 

The second example is taken from [ 11, and is a Petri net system im- 
plementing multiple-read-single-write interlock. The net is shown in Fig. 2. 
We prove a strong liveness property, that any process that wants to write, 
eventually will write. Regarding the net as a transition system whose points 
are markings M, and whose transitions are generated by the firing of a 
(single) net-transition, this property is 

VY.[-]Y A [U,,](,LLZ.(Wjo = 1) V ([-]Z A (-)tt) 

for a particular writer j,, where (W,, = 1) is an atomic formula which is 
true at any marking in which the place Wj, holds one token, and similarly 
for other such formulae. In Fig. 3 we give a successful tableau to show 
that this property is true at the initial marking MO shown in Fig. 2; the 
notation { @} means the set of markings satisfying 0. In this tableau, 0 is 
an invariant of the net, given by 

QdAfl\(Uj+Vj+Vj 
J 

= l)A/\(Ri+S, = 11 

A (Q + MEW, +CRi=m)A(P+CI-Jj=l) 
J i j 

and !?’ dzf (Uj, = 1) A (P = 0) and Y’ dzf Y V (WjO = 1). 
The success of the tableau requires the inclusion condition to hold at 

nodes 1 and 4, which it does, and the relation ~2 to be well-founded: 
for this, suppose that A4 l2 M’ I2 M”. Then we have that P = 0 and 
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r------ --1 

r------- 
I 
I 
I 
I 
I 
I 

I R I ’ 

L______________J 

Legend 
(For m reader processes and n 

S not reading “.I not writing 

rl starts reading w, starts writing 

R, reading W, writing 

s, stops reading v, stops writing 

j = l,...,n 

writer processes) 
Q the resource 
P an interlock 

UJ requests write access 
U, waiting to write 

Fig. 2. 

Uj, = 1 and WjO = 1 for both A4 and M’ (from node 3, since A4 goes 
to M’ via node 3). Combining these conditions with the invariants in @ 
tells us that the only transitions that may fire to give M’ from A4 are vj 
and si, for any i, j; now if we assign a nonnegative measure 6 to markings 
by 6(M) = CiRi + mCjVj, we see that 6(M) < 6(M), and SO C2 is 
well-founded. 

Finally, we sketch how Floyd-Hoare methods can be translated into the 
tableau system. Consider a simple while language, with atomic programs a, 
and the constructors cl ; c2, if b then cl else ~2, and while b do c. Taking 
memories as points and transitions to be labelled by atomic programs, 
we can translate Hoare assertions of the form c{ !P} (by which we mean 
the weakest precondition for c with respect to ul) into the mu-formulae 
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{MO) k() VY.l-IYA l~,,l(~~.(w,O = 1) v l-IZ) 

{@} k() vY.[-IY A [u,,l(,uz.(W,o = 1) v I-IZ) Ll=(L’=uY.[-]Y 

101 Ed lJ 
A[u,,l~~z.~w,~=l~v~-lz~~ 

I@) kd I-IUA [u,,lw.(W,o = 1) v [LIZ) 

{@)kd [-IU I@) FA [~jolw.(W,o = 1) v [-IZ) 

I {CD A @‘} b‘g u {@ A y} kd /LZ.(W,,, = 1) V [-]z 

{CD A ul} k,! v 

2 {aJ A P’} E/f’ v 

{@AY/‘}k/,, (W,, = I)V[-]f’ 

{@A~yIA(W,, = l)}t,~ (Wjo = 1) 3{@A’PA(W,, =O)}kd, [-lb’ 

4 {@ A (Y”V (W,, = 1))) kd, i’ 

Fig. 3. 

Tr(c{ Y}) thus: 

Tr(a{y}) = [sly, 

Tr(cl ;c2{~}) = Tr(cl{‘Wc2{~)))), 

Tr(if b then cl else c:!{!P}) = (b A Tr(ct{Y})) 

V (-b A Tr(c2{y})), 

Tr(while b do c{!P}) = vZ.(lb A Y) V (b r\Tr(c{Z})). 

Proving a partial correctness assertion { @}c{ ul} then amounts to finding a 
tableau for {@} t-d Tr(c{Y}) (where {CD} as before means the set of points 
satisfying +j ). The Hoare rules can then be viewed as rules for generating 
tableaux. As an illustration, consider the Hoare rule for while loops: 

{I}while b do c{I A -b} 

Associated with it is a successful tableau of the form: 

{I} k() vZ.(Tb A I) v (b A Tr(c{Z})) 

(1) FA u 

d=(c/=vZ.(~br\I)v(brTr(c{Z}))) 

{I} !-A C-b A I) V (b A Tr(c{U})) 

{I A -b} Ed lb A I {I A b} Ed b A Tr(c{U}) 

{I A b} kd b {I A b) FA WC{ U}) 

(1) Ed, u . . . (1) ELI, u 
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The soundness of the Hoare rules is then reflected by the fact that this 
procedure builds successful tableaux. This extends to total correctness: then 
the translation for while uses p rather than V, and Floyd’s method of well- 
founded sets is exactly a method for showing well-foundedness of the C 
relations in the resulting tableaux. 

In the case of partial correctness, Cook completeness of the Hoare rules 
follows from the requirement that there is always a formula expressing 
Tr(c{ Y} ) for any c and Y. This raises the very intricate question of com- 
pleteness of the tableau proof system relative to particular presentations of 
point sets, a topic which is currently being examined for the case of Petri 
nets, and which has scope for much further investigation. Other important 
topics for future research are the incorporation of modular reasoning tech- 
niques, and the use of system-specific techniques such as algebraic process 
theory. 

5. Proof of soundness and completeness 

In this section we present a proof of the main result of the paper. First, 
we recall the standard notion of ordinal approximants of fixed points. Let QI 
range over ordinals, and /z over limit ordinals. We add inlinitary disjunction 
and conjunction to the language and define the formula ~“2.0 as follows: 

yOz.O d2f ff, VOZ.0 d2f tt, 

CJ n+‘.@ Ef @ [Z := a”Z.@], 

,U!@ %f V{p^Z.@ 1 a < A}, vi.@ dGf /j{u”Z.@ 1 0. < A.}. 

The following proposition is a consequence of the Knaster-Tarski fixed 
point theorem, where Ordr is the set of ordinals whose cardinality is less 
than, or equal to, the cardinality of ST, and where V is interpreted as union 
U and A as n in the usual way: 

Proposition 5.1. 

(i) Il@.@~llC = II i/b”Z.@~ 

(ii) ((vZ.@dIIc = II A{PZ.@A 

Next we introduce some terminology and a little notation. A constant U 
is active in @A if either U occurs in @ or if V occurs in @ and U is active 
in d(V) for some constnt V. The definition of a list d guarantees that 
this is noncircular. Moreover, there is at most a finite number of active 
constants in @A, for any @ and d. Suppose U,, . . . , U,, with II > 0 are all 
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the active v-constants (p-constants) in 0~ in order of declaration (so Vi is 
declared before Uj in d when i < j). Then let 0 (Up’ . . . Utn )d denote ~0~’ 
where d’(V) = d(V) when I/ $ {Ul,...,Un} and if A(Ui) = aZ.Y then 
A’(Ui) = o”~Z.Y. We say that CX~...Q, is then a u-signature (p-signature) 
for @pd. We assume that < is the lexicographical ordering on signatures. The 
following is an easy consequence of Proposition 5.1. 

Proposition 5.2. (i) Z_ E $ 110~ 11; then there exists a v-signature LY~ . . . a,, 

such that 

E 4 Il@(U;‘...U;n),II;: 

and for all 13, . . . /?,, < Q 1.. . a,, 

E E Il@(U/‘...Ufi)&. 

(ii) Zf E E llGd 11; then there exists a p-signature aI . . . a, such that 

E E Il@(U;‘...U~)& 

andforall~l...~m~cul...a,, 

E $ IlO(U/’ . . . Us)&. 

Notice that for both parts of this proposition, no CE, in the least signature 
(3yi . . . a’n is a limit ordinal. In the sequel we abbreviate CD (UP’ . . . U,“” )A to 
@(iY)d and cyI...cyn to a. 

Given these preliminary results, we prove soundness: 

Theorem 5.3. Zf & kA @ has a successful tableau on (7, V) then E 2 ll@~ 115. 

Proof. From now on we drop the indices 7 and V from ll@~IIc which we 
assume to be fixed. Suppose that E kd @ has a successful tableau 7 on (7, V) 
but that ~5 g ll@~Il. We show that, therefore, there is an infinite sequence of 
the form: 

Y = (no,Eo,~o(U~)Ao),..., h,E/dh(U~).&.. 

with the properties: 
(i) each n, is a node of 7 and no is the root, 

(ii) n2, = n2j+l and nzj+z is an immediate successor of n2, in 7, 

(iii) if nJ is labelled by .7= kz. Y in 7 then Ej E 3, C = A,, and Y = @j, 
(iv) Ej $ II @, (U/” )A, II where a, is a v-signature, 
(v) each n; is not a terminal in 7. 
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But this is impossible as r has finite depth. We now construct y from r, 
letting yi denote the ith member of y. 

First, we define 70. As E g l]@d]I there is an EO E E such that EO $ ll@d]I. 
By Proposition 5.2 there is a least v-signature a such that EO $ ]I@ (U”)d I]. 
So ye = (no, Eo, 0 ( Ua)d 1. Clearly conditions (i)-(iv) hold. Moreover, (v) 
must hold too. Otherwise f kd 0 is a successful terminal of r and so @ = Z 
or 7Z or [K] Y which would contradict that E g ll@d II. 

Suppose yk has been constructed for k Q 2j. y2j+l is defined as follows. 
First, if n2, is not a companion in r then y2j+ 1 = ~2,. Otherwise, @2j = U 
and n2j is a companion. Let E;/ = {F I E2j I&, F}. If U is a v-constant 
then let E2j+l be any member of E;, such that E2,+r $ ]1@2, (Utj)~2,]I with 
least v-signature p. SO y2j+ 1 is the triple (nzj, E2j+ 1,02j ( U$j)d2, ). Notice 
that fl G a2/. If U is a y-constant then let E2j+1 be any member of 
E;, which is least with respect to c,, and which has the feature that 
E2j+l +! IIOzj (UtT )A*, 11. There are such members as Cnz, is well-founded 

and E2, qf II@~,(~~~)AJ. Let Y2j+I = (n2,,E2j+I,~2j(U~~)d2,). In both 
these cases y2j+ 1 fulfills properties (i)-(v). 

Next we examine the construction for y2,, j > 0, given yk has been built 
when k < 2j, which is determined by the rule applied to nzj-1 in r. If 
the rule is V then @2j-1 = Yi V !Pz. Hence E+1 6 llY[ (Uy )A,,_,/( and 

E2j-1 4 I16(U~)~~,_IIl h w ere al (a2 ) is the signature a2j_1 restricted to 
the active v-constants in Yr (Yz). Consider any immediate successor of 
nzj-i in r, say nzj, labelled by F td2, Yi with E2j_1 E 3: there is at least one 
of the two successors with this feature. Let y2j = (nz,, E,j_ 1, fi (UT )A*, ). It 
is clear that conditions (i)-(iv) hold (condition (v) is considered below). If 
the rule is A then 02,-l = Yi AYE. Hence E2j-1 $ Ilul, (U~'),,,_,II or E2j-1 4 

IlfiW3~+,Il h w ere as above a1 (a2 ) is the signature a2j_1 restricted to 
the active Y-constants in Yr ( Y2 ) . Consider any immediate successor of n2j- 1 

in r, say n2j, labelled by 3 kdz, U: such that EzJ-r q! IIU:(U~)A,,J. Let 
~2~ = (nzj, EIj_1, fl(UF),2,). Again ~2, fulfills conditions (i)-(iv). If the 
rule is [K] then @*j-i = [K]Y. As E2,-, q! II [K]Y(UTp:f )AJ there is an 

E2j and an a E K such that E2j-1 L E2, and E2j $ Il’J’(UT:‘_f )~~,_,ll. Con- 
sider the immediate successor of nlj_1 in r, say n2j labelled by F l-d*, Y’. 
Then clearly, E2, E F’, and Y’ = 
If the rule is (K) then 02,_, 

Y. So ~2, = (nzj,E2j, Y(UtFIi )A*,). 
= (K)Y. As E2j-1 $ II(K)Y(UTT!; )~~,_,I1 

we know that f (E2j_1) $ I/Y (UzJ':,')d,,_, II where f is the function given 
by the (K) rule. The immediate successor of n2,-1 in r is n2j labelled 
3 td2, Y and f(E+1) E J=‘. SO Y2j = (nZJ,f(E2j-1), Y(U~~~j),,,,). If the 
rule applied is aZ. then @2j_1 = aZ.Y and the immediate successor n2j 
in r is labelled 3 t-dz, U. If G = ,u then ~2, = (n2j,E2,_,, U(U~~:~)~J. 
If D = v then instead y2, = (nq, E2,-_1, U ( UtF:; U”)~z, ) where u: is the 
least ordinal such that E2j_1 $ II U (UT?:; Un)d2, II. By Proposition 5.1 
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there is such a least Q. If the rule applied is Un then Q2j-i = U. 
So 42,-i (U) = a2.Y. Let n2, be the immediate successor of n2j_1 in 
r. If G = p then Y2j = (nzj,EI;-i,Y[Z := u](UTy:i)d2,). Clearly, 
Ezj-1 4 ]]Y[Z := U](U~~~~),,,]]. If 0 = v and lJ~~~~ = UP’...Up then 

U = U,. Let Y2j = (n2], E2,-,,Y[Z := U](U;‘...U,, “n--l )A~, ) : clearly, as Q~ 
is not a limit ordinal, and is greater than 0, then E2j_ I q! 11 U ( Up’ . . . Ufn )dz, 11 

iff Ezj_1 $ IlY[Z := (1 I U](U, . ..U. ‘rn-l )A*, II. Finally, if the rule applied is 
Thin then Y2j = Y2j-i except that n2j_1 is replaced by its immediate suc- 
cessor tl2j. 

The only outstanding property to show is that n2, is not a terminal in r. 
Clearly, it can not label a sequent 3 kdz, Y in r which is successful because 
Y = Z or Y = 7Z or Y = [K] Y’, as this contradicts condition (iv) of 
y. Moreover, by construction n2j can not label a a-terminal. For suppose it 
does, then its companion is n2k in Y2k, k < j. But consider the construction 
of Y2k+ 1. First, by definition of a trail E2k + 1 Jn2, E2, . If n2j labels a p- 
terminal then the signature at Y2k + , is less than or equal to the signature at 
y2j (since it never increases for the same active constant sequence). But this 
contradicts Y2k + k as E2j E E;k, and ~72, $ 11@2k+l Cuy$: )A~~+, II. Similarly, 

if n2j labels a v-terminal then the signature at y2k+, is strictly less than the 
signature at Y2j (as the constant is then unfolded at node n2k+ I ). And this 
also contradicts the construction of &+ 1 as E2j E E;k. 0 

Next we prove completeness in a stronger version utilizing canonical 
tableaux. Moreover, the proof also appeals to the notation CD (U”), where 
now 01 is a p-signature for @A. 

Theorem 5.4. If & g Il@dllc then E td @ has a successful canonical tableau 
on (7,V). 

Proof. We construct a canonical tableau r for E Ed @ on (7, V) with the 
property that if node ni of r is labelled with Ei kd, @, then li C ]]@id,]];. 
As before we drop the indices 5. The root no of T is labelled with I kd @. 
Assume that nodes no,. . . , nj have been constructed and nk, k < j, is 
a frontier node that is not a terminal, labelled F t-Z. Y. We proceed by 
defining the immediate successors of nk, depending on the form of Y. If 
Y = Yi A Y2 then two successors nl and n2 are introduced labelled with 
the sequents F t-z Yi and F t-x Y2. Clearly, F C ]]Yl:c]]. If Y = Yi V Y2 

then again two immediate successors nl and n2 are introduced labelled 
with the sequents Fi t-z Yi and -73 Ez Y2 where Fi u F2 = 3. We define 
when F E 3j, j = 1,2. By Proposition 5.2 (ii), when F E 3 there is 
a least p-signature a such that F E II Y (U”), II. Hence F E I( Yl (Uf’ )zll 
or F E ll%UU~)~ll, where aj is the signature a restricted to the active 
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constants in Yj: if F E llYj(U~)zl/ then F E 35. If Y = [K]Yi then one 
immediate successor nl is introduced labelled with the sequent 3’ kz. Yi 
where 3’ = {F’ 1 3F E 3.3a E K.F 5 F’}. If Y = (K)Y, then again one 
immediate successor nl is introduced labelled with the sequent f (3) kz Yi . 
The function f is defined as follows: for each F E 3 consider the least 
p-signature a such that F E II!? (U”)zll. Hence 3F’.3a E K.F 5 F’ and 
F’ E IlY,(U”)~ll: choose any such F’ to be f(F). If Y = aZ.Yi then 
one immediate successor is introduced labelled 3 k,r! U where C’ = C . 
U = (aZ.Yi ). Clearly, 3 5 I] Uz, I]. Finally, if Y = U then two nodes nl 
and n2 are introduced where nl is the immediate successor of nk and is 
labelled 3’ k~. U and n2 is the immediate successor of nl and is labelled 
3’ kz u/i [Z : = U ] given that C(U) = oZ.Y,. The set 3’ is defined as 

follows. For each F E 3, R(F) = {F’ I3n 3 0.3al . ..a., E C;.F ‘3 F’}. 
So R(F) is the set of reachable points from F (including F ) in 7. Now 
let 3’ = U{R(F) I F E 3’) n IjUzl(: a more subtle account could be given 
by defining the reachable points relative to the formula U. By definition 
3’ & llU~[l and as 3 5 (I Uzll it follows that 3 G 3’. 

The remainder of the proof establishes that this construction yields a 
successful canonical tableau T. First, z is both finite and canonical as there 
can only be one unfolding of any constant U: a node labelled 3 k.d U is 
terminal if there are nodes n, and n,l (the immediate successor of nj) 
above it labelled 3, k~’ U and 32 k;1) U as 3 5 32 (since by construction 
32 is all points reachable from 3i and satisfying U). Consequently, the 
only possibility of failure of 7 as a successful tableau is if 1” for some 
companion n of a p-terminal is not well-founded: suppose Eo 1. Ei 7, 

... 7n E,, 1” ..., and that n is labelled by the sequent 3 1~. U. Let aj 
be the least p-signature associated with El at n: so E, E IlU( UF)zl( and 
for all fi < a], El 4 11 U (Uf)z II. Clearly, by the construction of 7 (as the 
immediate successor of n is determined by an unfolding of U) aj > ak 

when j < k. But this is impossible. 0 
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