

Edinburgh Research Explorer

Local model checking for infinite state spaces

Citation for published version:
Bradfield, J & Stirling, C 1992, 'Local model checking for infinite state spaces', Theoretical Computer
Science, vol. 96, no. 1, pp. 157 - 174. https://doi.org/10.1016/0304-3975(92)90183-G

Digital Object Identifier (DOI):
http://dx.doi.org/10.1016/0304-3975(92)90183-G

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Theoretical Computer Science

Publisher Rights Statement:
Open archive

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1016/0304-3975(92)90183-G
https://doi.org/10.1016/0304-3975(92)90183-G
https://www.research.ed.ac.uk/en/publications/0c994359-0976-486a-b898-af9b70bbff9f

Theoretical Computer Science 96 (1992) 157-174
Elsevier

157

Local model checking for infinite
state spaces

Julian Bradfield and Colin Stirling
Department of Computer Science, University of Edinburgh, The King’s Buildings,
Edinburgh, EH9 3JZ, UK

Abstract

Bradtield, J. and C. Stirling, Local model checking for infinite spaces, Theoretical
Computer Science 96 (1992) 157-174.

We present a sound and complete tableau proof system for establishing whether a set of
elements of an arbitrary transition system model has a property expressed in (a slight
extension of) the modal mu-calculus. The proof system, we believe, offers a very general
verification method applicable to a wide range of computational systems.

1. Introduction

In the last twenty years many approaches to program verification have
been developed. Hoare’s partial correctness logic for simple while programs
gave an early sound and relatively complete proof system. This approach was
subsequently extended to total correctness and to richer classes of programs.
Dynamic logics offered a more abstract view of Hoare logics, especially in
their propositional versions.

Pnueli pioneered the use of propositional temporal logics as more general
program logics, capable of describing crucial properties of perpetual concur-
rent systems. A variety of temporal logics have been studied, particularly
branching and linear time. Many useful decidability and expressiveness re-
sults (relating logics and automata) have been obtained, as well as sound
and complete axiomatizations of validity.

A slightly earlier tradition in the study of correctness was given by the work
on program schemes where second order logics were advocated, especially
in the form of the mu-calculus due to de Bakker, de Roever and Park. An
elegant generalization of propositional dynamic and temporal logics drawing
on this tradition is the propositional modal mu-calculus, due to Pratt and
Kozen. The modal mu-calculus has been shown to include Propositional

0304-3975/92/$05.00 Q) 1992-Elsevier Science Publishers B.V. All rights reserved

158 J. Bradfield, C. Stirling

Dynamic Logic, Process Logic, linear time temporal logic, TL, as well as
the branching time computation tree logics CTL and CTL* ([7,4]). It also
generalizes Hennessy-Milner logic, while preserving the characterization of
bisimulation equivalence, and thereby provides a natural temporal logic for
process theory ([8,121). In fact, it is closely related in expressive power to
Rabin’s SnS ([61) despite having an elementary decision procedure ([15]).
Consequently, the modal mu-calculus can be viewed as a general purpose
program logic.

A hallmark of modal and temporal logics is that their primary truth de&
nition relates elements of a model (states, runs, or whatever) and formulae.
But when these logics are applied to reason about programs it is common
to abstract from this relative truth. Both Hoare logic and PDL are based on
truth simpliciter, that is, truth at every element in the model or structure.
Moreover, in temporal logic approaches, as advocated in [91, models are dis-
pensed with by coding them in the logic as theories: verifying that elements
of a model have a crucial property reduces to showing that it is formally
derivable within the appropriate theory. This abstraction, however, is not
adopted by the model checking method, as pioneered by Clarke, Emerson
and Sistla. This approach, extended to the modal mu-calculus in [4], hinges
on constructing algorithms for computing all the states of the finite model
which have the relevant property. But as a verification method, it can not
(and is not intended to) cope with arbitrary programs whose state space is
more likely than not to be infinite.

Logically, underpinning model checking is a tableau method for showing
relative truth (rather than for establishing truth or validity as in [51, for in-
stance). Stirling [111 advocates this as an appropriate verification technique
for process theory where compositional proof systems for modal logic are
presented. It was extended to the modal mu-calculus in [13 1. Both of these
capture a notion of local model checking, focussed on establishing whether
particular elements of a model have a property. A clear advantage of this
technique is that it may avoid that exhaustive traversal of a model inher-
ent in standard model checking. It also naturally permits the use of other
techniques that may be specific to the program under consideration (such
as, those offered by the algebraic theory of processes either via equations or
via bisimulation).

In this paper we extend local model checking to arbitrary infinite models.
We present a sound and complete tableau proof system for establishing
whether a set of elements of an arbitrary transition system model has a
property expressed in (a slight extension of) the modal mu-calculus. The
proof system, we believe, offers a very general verification method applicable
to a wide range of computational systems. Section 2 contains an account
of the syntax and semantics of the mu-calculus. In Section 3 we present
the tableau proof system. The proof of soundness and completeness is the

Local model checking 159

topic of Section 5. Finally, Section 4 briefly examines applications of the
verification method including examples drawn from Petri nets and process
theory. We also outline how standard Hoare logic is subsumed by the tableau
proof system.

2. The modal mu-calculus

Many interesting computational systems may be conveniently modelled
using labelled transition systems, structures 7 = (S, (5 (a E C}) consist-
ing of a possibly infinite set S (or ST) of points together with a family of
binary relations on S indexed by a set C (or Cl) of labels, the sort of 7.
Examples include (concurrent) imperative programs; Petri nets; and CCS
(or CSP) processes with value passing. Transition systems are generated
from imperative programs when they are accorded structured operational
interpretations. The points consist of programs and state information and
the labels actions which may, for instance, also indicate an ability to com-
municate. In the case of Petri nets the points are markings and the labels are
(families of) events, while in CCS the points are processes and the labels are
actions. Usually, instead of the possible transitions from one point (state,
configuration, marking, or process) to another, it is the overall behaviour
of the system which is of interest. This behaviour arises from the runs of
the system, a run being a maximal path & -% El 2 .(. through 7, where
maximality means that either the path has infinite length, or from its fIna
point no transition is possible.

A very rich and succinct logic for expressing program behaviour within
transition systems is a slight extension of the modal mu-calculus, whose
syntax is:

@ ::= z 1 7@ 1 @I A 02 1 [K]@ 1 vz.0

where Z ranges over propositional variables, and K over subsets of a label
set L. In the formula uZ.@, vZ. binds free occurrences of Z in @. A
syntactic restriction on vZ.@ is that each free occurrence of Z in @ lies
within the scope of an even number of negations. The modal mu-calculus is
due to Kozen [7] and Pratt [lo]. ’ The slight extension here is that sets of
labels may appear in the modalities [K] instead of single labels.

Derived operators are defined in the familiar way: tt d&f vZ.Z; ff d&f Ott;
Qir V CD1 dAf ~(4~ A ~0~); (K)@ %f -[K]-0; and pZ.@ Ef ~uZ.~@ [Z :=
1Z] where 0 [Z : = 7Z] is the result of substituting 1Z for every free
occurrence of Z in @. Further useful abbreviations are [-K] @ dAf [C-K] 0;

[al,.. . ,a,]@ dgf [{a1 , . . . ,an}]@; [-IO d&f [L]@; and similarly for (K).

‘Pratt introduces a least root (as in recursive function theory) rather than a least fix-point.

160 J. Bradfield, C. Stirling

Formulae of this logic are interpreted on labelled transition systems (of
sort C) as follows. A model is a pair (7, V) where 7 is a transition
system and U a valuation assigning sets of points to propositional variables:
V(Z) c ST. We assume the customary updating notation: V[&/Z] is the
valuation V’ which agrees with V except that V’ (Z) = E. Finally, the set
of points of 7 having the property @ in the model (7, V) is inductively
defined as]I@]I; (where for ease of notation we drop the index 7 which is
assumed to be fixed):

IIZIIV = V(Z),

IWIIV = 23 - Il@llV>

II@1 A @2llv = Il@lllV n Il@ZllV>

Il[K]@llv = {E E S I VF E S.Vu E K.if E --f+ F then F E Il@\lv},

IlvZ.@llv = uv c s I Il@llV[E/Z] > El.

The expected clause for the derived operator pZ.@ is:

IW.@llv = f-)E c s I IIww/Z] c E].

This logic allows the expression of a very wide range of temporal prop-
erties. The formula uZ.+3 A [-]Z (assuming that @ does not contain Z
free) expresses that @ never becomes true: a point E has this property (in
a model) provided that there is no run from E containing a point with
the property 0. Similarly, vZ. [K]ff A [-]Z expresses that a K action can
never happen. In contrast, pZ.@ V ([-]Z A (-)tt) (assuming again that
@ does not contain Z free) expresses the strong eventuality that @ must
eventually become true. And ,LLZ. [-K]Z A (-)tt expresses that K actions
must eventually happen: a point E fails to have it as a property if there is
an infinite length run from E all of whose labels are drawn from -K.

By using nested fix-points, it is possible to give much more complicated
liveness properties, ranging from

vY.pZ.((@ A (-)Y) V (-)z)

which expresses that cb holds infinitely often on some run of the system, to
the complex fairness requirement (from [141)

vX1.t [-~1x1) A by. [KI I (vX.([-alX)

A ([K2l~Y1.([-alY1) A Y)))

which says that the action a eventually happens on any fair run involving
K, actions and K2 actions infinitely often, a property not expressible in
standard branching time logics such as CTL.

Local model checking 161

As mentioned earlier, the modal mu-calculus incorporates PDL and CTL.
A translation for PDL may be found in [71; a translation for CTL is:

Ax@ = [-I@ A (-)tt,

EX@ = (-)O,

A[@, UO2] = yZ.@ v (d+ A [-]Z A (-)tt),

EIQ1 U02] = yZ.Q2 v (CI+ A (-)Z,.

Similarly, the mu-calculus subsumes Process Logic, linear time logic, LT,
and the full branching and linear time logic CTL* ([4,3]).

3. The tableau system

Assume a fixed mu-calculus model (7, V) where I is a transition system
which may contain an infinite number of points. We wish to provide a
technique for verifying that a set of points & has the temporal property @,
when E G)I@]I;. Below a tableau proof system for verification is presented,
built on sequents of the form E Fd @ where A is a definition list which
keeps track of unrolling of fix-point formulae. A definition has the form
U = Y where U is a propositional constant and Y a fix-point formula. A
finite (perhaps empty) list of definitions (U1 = U:,. . . , U,, = !Pjj) has the
following two properties: first, that each Vi is distinct and second, that each
fi only mentions propositional constants belonging to the set { Ur , . . . , Vi_ I}.

Lists of definitions can be extended: if U is not declared in A and Y only
mentions constants declared in A then A . U = Y is the definition list that
results from appending U = Y to A. When A is a definition list and U is
declared to be Y in A then we let A (U) = Y.

We assume the interpretation of formulae relative to definition lists
as in [131 by, in effect, treating constants as variables: if A is (U1 =
Y,,... ,U, = Ku,) then ll@~Ilv 7 is defined as I]@ I];fl where VO = V and

Vi+1 = Vi [11 E+ 1 II;l /Vi+ I]. This interpretation accords with the expected
meaning of @4 in terms of syntactic substitution: a routine induction on @
establishes that I]@d.u=~/l]; = I]@ [U := Y]d 11;. (Semantically, restricting
A (U) to be a fix-point formula is unnecessary-in Section 5 we permit the
declaration of other formulae.)

The rules of the tableau system below are inverse natural deduction style
rules. The premise sequent is the goal to be achieved (that E G 110~]I;)
while the consequents are the subgoals. The rules are presented only for
formulae in positive form (where all negations are moved inwards by using
the dual operators V, (K) and ,uZ.). We assume that (7 ranges over {p, v}.

162 J. Bradfield, C. Stirling

In the rule for (K) we assume that f is a function from the set E to the set
f(E) such that VE E E.3a E K.E -% f(E).

E’ = {E 1 3F E Eda E K.F % E}

A’ = A. (U = OZ.@)

Un
& t_d u

Et/, @[z:= u]
A(U) = aZ.@

Thin ’ ” @
&’ k‘d @

I’ > &

To test if every point in E has the property @ (relative to A) one has to
achieve the goal I kA CD by building a tableau, a proof tree whose root is
labelled with this initial sequent. Sequents labelling the immediate successors
of a node are determined by an application of one of the rules. The boolean
and modal rules are straightforward. New constants are introduced when
fix-point formulae are met, and then these are unfolded by rule Un. The
rule Thin allows the set of points to be enlarged (and need only be applied
to sequents whose formula is a constant-see the completeness proof and
definition of canonical tableaux).

An essential missing ingredient is when a node in a proof-tree counts as
a leaf. We assume that the rules above only apply to nodes that are not
terminal. A node n labelled by the sequent F tA !P is terminal if one of the
following conditions holds:

(i) F = 0,
(ii) Y = Z or Y = -Z,

(iii) Y = (K)@ and 3F E F.V’a E K.not(F L),
(iv) !P = U and A (U) = OZ.@ and there is a node above n in the proof

tree labelled E kA’ U with E 2 F.
A node fulfilling condition (iv) is called a a-terminal. A node fulfilling
conditions (i) or (iv) when CJ = v is said to be a successful terminal,
whereas a node fulfilling (iii) is unsuccessful. In the case of (ii) success
depends on the valuation V of the model: if F C I/ (Z) when !P is Z,
or LFG S-V(Z) when !P is -Z, then it is successful; otherwise it is
unsuccessful. The definition of a successful y-terminal, a o-terminal when
~7 = p, is intricate and requires some notation.

Local model checking 163

Suppose a node n is labelled by & F3 @ and n’ labelled E’ F~I 0’ is an
immediate successor of n. We say that E’ E &’ at n’ is a dependunt of E E &
at n if
l the rule applied to n is V, A, aZ., Un or Thin and E = E’, or
l the rule is [K] and E 5 E’ for some a E K, or
l the rule is (K) and E’ = f(E).
Assume that the companion of a a-terminal is the lowest node above it
which makes it a terminal. 2 Next we define a trail to F at a a-terminal m
from E at its companion n to be a sequence of pairs of nodes and points

(nt,El),..., (nk, Ek) with (n,, El) = (n, E) and (nk, Ek) = (m,F) such
that for all i with 1 < i < k either

(i) E , + I at n, + I is a dependant of E, at n,, or
(ii) n, is the immediate predecessor of a a-terminal node n’ (where

n’ # m) whose companion is nJ for some j < i, and n,, I = n, and
E ,+ I is a point at n’ (and so at n,, ,) which is a dependant of E,
at n,.

Then each companion node n of a o-terminal node induces an ordering
C. on its point set E by F C, E if there is a trail to F at a node m
from E at its companion n. (Notice that a node may be a companion of
various o-terminal nodes, and that F E & by definition of companion). A
p-terminal node is succesful if the ordering induced by its companion node
n is well-founded: that is, if there is no infinite descending chain

C, E2 Cn E, 17, Eo.

To illustrate this definition, consider the following tableau (for a system
(7,U) where I = ({A,R,C},{~}) and il L A, A 5 B 5 C and
C % C, and V(P) = {A,C}):

4 {B, C} ky V

2As can be seen from the proof later, it is not necessary to choose the lowest such node-any
suffices. However. the lower the companion the simpler the termination condition, so we decree
that the companion is the lowest.

164 J. Bradfield, C. Stirling

We need to consider 71. Now B I1 C because of the simple trail marked
in solid lines; but also A I1 C because of the trail marked in dashed lines,
in which we go from (1, A) to (3, A) and then invoke (ii) to jump up to
(2, B) and then go down to (5, C) along the solid trail.

Finally, we say that a tableau is successful if it is finite and all its leaves are
successful terminals. The following theorem states that the tableau technique
is both sound and complete for arbitrary (infinite) transition systems. The
proof is presented in Section 5.

Theorem 3.1. E td 0 is the root of a successful tableau on (7, V) iff& G

II@‘4 11;.

The tableau rules presented above are in fact more general than is needed
for Theorem 3.1 to hold. As mentioned earlier, the Thin rule, while essential
for completeness, is only required for thinning constants, and this could be
incorporated into the rules by omitting Thin and replacing Un by the three-
stage rule

Un Ekd u

&’ FA u
‘?kA @[z := u]

Another restriction arises from the desire to ensure that tableaux are
finite: while the system as presented is intended to allow the user flexibility
in developing proofs, it does not guarantee that the tableau construction
terminates. However, it is the case that an infinite tableau can only arise
from infinitely many unfoldings of some constant, so one can consider
restricting to k, say, the number of applications of Un to any one constant,
which can be included in the rules by adding

(v) Y = U and there are k applications above n of the Un rule to nodes
labelled by sequents of the form &’ kdJ U

to the conditions for 3 k_d IF/ to be terminal.
Such a tableau is said to be of degree k, and since the proof of Theorem 3.1

in Section 5 gives completeness by constructing a canonical tableau of
degree 1, we have the following theorem.

Theorem 3.2. The system restricted to degree k is sound and complete, and
its tableaux are Jnite.

Restricting k to 1 gives a system in which constants can be dispensed
with (see [1] for such an account); but, of course, any complete system is
undecidable: canonical tableaux are in general neither unique nor effectively

Local model checking 165

constructible-hence the use of reasoning outside the system proper to show
success.

A different restriction allows us to recapture the model checker of [13]
(for finite state systems) by omitting the rule Thin, limiting the sets of
elements E of sequents to singleton sets, and then replacing the [K] rule
with

{El Ed [Kl@
[K1’ {E,}kd @...{E,}k~ 0

{El,..., En} = {F 1 3a E K.E 5 F}.

Note that now all y-terminals are unsuccessful as there must be a trail
from E at the companion n to itself at a terminal, giving a cyclic C,.

4. Applications

In this section we illustrate the generality of the tableau proof system by
applying it to disparate examples. The first example, given in more detail
in [2 1, is a CCS representation of a slot-machine, for which we shall prove
that it is possible to win a million pounds infinitely often. The slot machine
is the process SMs, defined by the following equations:

7
IO ef slot.bank.(lost.loss.IO + release(y).wzn(y).ZO),

B, ‘%f bank.EEE(n + l).left(y).B,,

D%f max(z).(Zost.left(z).D + C release(y).left(z - y).D),
l,<Y<Z

SA4n%f (IOIB, ID)\K.

where K = {bank(v),max(v),left(v),release(v) 1 %r E N}. The parameter
n represents the amount of money in the machine’s bank, and the three
components IO, B,, D handle respectively taking in and paying out money,
the bank’s holdings, and deciding the payout.

The property of SMa we wish to prove is

7
VY.pZ.((wzn(106))Y) V (-)Z.

A successful canonical tableau for this is presented in Fig. 1.
Here, E is the set of derivatives of {SM, 1 n B O}; the vital rules in this

tableau are the disjunction at node 1, where El is exactly those processes
7

capable of performing a wzn(1 06) action, and EZ is the remainder; and
the (K) rule at node 3, where f is defined to ensure that El is eventually
reached: for processes with less than lo6 in the bank, f chooses events
leading towards loss, so as to increase the amount in the bank; and for

166 J. BradJield, C. Stirling

7
{SMO} I() vY.pZ.(wzn(106))Y v (-)Z

{SM, I n 2 0) k()
7

YY./LZ.(WZ?z(106))Y v (-)Z
T

E k() vY./LZ.(wzn(106))Y v (-)Z

Et-/l u
d=o~(c’=vY.~z.(~(Io~))Yv(-)z)

Fig. 1.

processes with more than 1 06, f chooses to release(106). The formal proof
requires partitioning &2 into several classes, each parametrized by an integer
n, and showing that while y1 < 106, y1 is strictly increasing over a cycle
through the classes; then when n = 106, f selects a successor that is not
in &2, and so a chain E0 2 . through nodes 1, 2, 3, 4 terminates, and
therefore C4 is well-founded.

The second example is taken from [11, and is a Petri net system im-
plementing multiple-read-single-write interlock. The net is shown in Fig. 2.
We prove a strong liveness property, that any process that wants to write,
eventually will write. Regarding the net as a transition system whose points
are markings M, and whose transitions are generated by the firing of a
(single) net-transition, this property is

VY.[-]Y A [U,,](,LLZ.(Wjo = 1) V ([-]Z A (-)tt)

for a particular writer j,, where (W,, = 1) is an atomic formula which is
true at any marking in which the place Wj, holds one token, and similarly
for other such formulae. In Fig. 3 we give a successful tableau to show
that this property is true at the initial marking MO shown in Fig. 2; the
notation { @} means the set of markings satisfying 0. In this tableau, 0 is
an invariant of the net, given by

QdAfl\(Uj+Vj+Vj
J

= l)A/\(Ri+S, = 11

A (Q + MEW, +CRi=m)A(P+CI-Jj=l)
J i j

and !?’ dzf (Uj, = 1) A (P = 0) and Y’ dzf Y V (WjO = 1).
The success of the tableau requires the inclusion condition to hold at

nodes 1 and 4, which it does, and the relation ~2 to be well-founded:
for this, suppose that A4 l2 M’ I2 M”. Then we have that P = 0 and

Local model checking 167

r------ --1

r-------
I
I
I
I
I
I

I R I ’

L______________J

Legend
(For m reader processes and n

S not reading “.I not writing

rl starts reading w, starts writing

R, reading W, writing

s, stops reading v, stops writing

j = l,...,n

writer processes)
Q the resource
P an interlock

UJ requests write access
U, waiting to write

Fig. 2.

Uj, = 1 and WjO = 1 for both A4 and M’ (from node 3, since A4 goes
to M’ via node 3). Combining these conditions with the invariants in @
tells us that the only transitions that may fire to give M’ from A4 are vj
and si, for any i, j; now if we assign a nonnegative measure 6 to markings
by 6(M) = CiRi + mCjVj, we see that 6(M) < 6(M), and SO C2 is
well-founded.

Finally, we sketch how Floyd-Hoare methods can be translated into the
tableau system. Consider a simple while language, with atomic programs a,
and the constructors cl ; c2, if b then cl else ~2, and while b do c. Taking
memories as points and transitions to be labelled by atomic programs,
we can translate Hoare assertions of the form c{ !P} (by which we mean
the weakest precondition for c with respect to ul) into the mu-formulae

168 J. Bradfield, C. Stirling

{MO) k() VY.l-IYA l~,,l(~~.(w,O = 1) v l-IZ)

{@} k() vY.[-IY A [u,,l(,uz.(W,o = 1) v I-IZ) Ll=(L’=uY.[-]Y

101 Ed lJ
A[u,,l~~z.~w,~=l~v~-lz~~

I@) kd I-IUA [u,,lw.(W,o = 1) v [LIZ)

{@)kd [-IU I@) FA [~jolw.(W,o = 1) v [-IZ)

I {CD A @‘} b‘g u {@ A y} kd /LZ.(W,,, = 1) V [-]z

{CD A ul} k,! v

2 {aJ A P’} E/f’ v

{@AY/‘}k/,, (W,, = I)V[-]f’

{@A~yIA(W,, = l)}t,~ (Wjo = 1) 3{@A’PA(W,, =O)}kd, [-lb’

4 {@ A (Y”V (W,, = 1))) kd, i’

Fig. 3.

Tr(c{ Y}) thus:

Tr(a{y}) = [sly,

Tr(cl ;c2{~}) = Tr(cl{‘Wc2{~)))),

Tr(if b then cl else c:!{!P}) = (b A Tr(ct{Y}))

V (-b A Tr(c2{y})),

Tr(while b do c{!P}) = vZ.(lb A Y) V (b r\Tr(c{Z})).

Proving a partial correctness assertion { @}c{ ul} then amounts to finding a
tableau for {@} t-d Tr(c{Y}) (where {CD} as before means the set of points
satisfying +j). The Hoare rules can then be viewed as rules for generating
tableaux. As an illustration, consider the Hoare rule for while loops:

{I}while b do c{I A -b}

Associated with it is a successful tableau of the form:

{I} k() vZ.(Tb A I) v (b A Tr(c{Z}))

(1) FA u

d=(c/=vZ.(~br\I)v(brTr(c{Z})))

{I} !-A C-b A I) V (b A Tr(c{U}))

{I A -b} Ed lb A I {I A b} Ed b A Tr(c{U})

{I A b} kd b {I A b) FA WC{ U})

(1) Ed, u . . . (1) ELI, u

Local model checking 169

The soundness of the Hoare rules is then reflected by the fact that this
procedure builds successful tableaux. This extends to total correctness: then
the translation for while uses p rather than V, and Floyd’s method of well-
founded sets is exactly a method for showing well-foundedness of the C
relations in the resulting tableaux.

In the case of partial correctness, Cook completeness of the Hoare rules
follows from the requirement that there is always a formula expressing
Tr(c{ Y}) for any c and Y. This raises the very intricate question of com-
pleteness of the tableau proof system relative to particular presentations of
point sets, a topic which is currently being examined for the case of Petri
nets, and which has scope for much further investigation. Other important
topics for future research are the incorporation of modular reasoning tech-
niques, and the use of system-specific techniques such as algebraic process
theory.

5. Proof of soundness and completeness

In this section we present a proof of the main result of the paper. First,
we recall the standard notion of ordinal approximants of fixed points. Let QI
range over ordinals, and /z over limit ordinals. We add inlinitary disjunction
and conjunction to the language and define the formula ~“2.0 as follows:

yOz.O d2f ff, VOZ.0 d2f tt,

CJ n+‘.@ Ef @ [Z := a”Z.@],

,U!@ %f V{p^Z.@ 1 a < A}, vi.@ dGf /j{u”Z.@ 1 0. < A.}.

The following proposition is a consequence of the Knaster-Tarski fixed
point theorem, where Ordr is the set of ordinals whose cardinality is less
than, or equal to, the cardinality of ST, and where V is interpreted as union
U and A as n in the usual way:

Proposition 5.1.

(i) Il@.@~llC = II i/b”Z.@~

(ii) ((vZ.@dIIc = II A{PZ.@A

Next we introduce some terminology and a little notation. A constant U
is active in @A if either U occurs in @ or if V occurs in @ and U is active
in d(V) for some constnt V. The definition of a list d guarantees that
this is noncircular. Moreover, there is at most a finite number of active
constants in @A, for any @ and d. Suppose U,, . . . , U,, with II > 0 are all

170 J. Bradfield, C. Stirling

the active v-constants (p-constants) in 0~ in order of declaration (so Vi is
declared before Uj in d when i < j). Then let 0 (Up’ . . . Utn)d denote ~0~’
where d’(V) = d(V) when I/ $ {Ul,...,Un} and if A(Ui) = aZ.Y then
A’(Ui) = o”~Z.Y. We say that CX~...Q, is then a u-signature (p-signature)
for @pd. We assume that < is the lexicographical ordering on signatures. The
following is an easy consequence of Proposition 5.1.

Proposition 5.2. (i) Z_ E $ 110~ 11; then there exists a v-signature LY~ . . . a,,

such that

E 4 Il@(U;‘...U;n),II;:

and for all 13, . . . /?,, < Q 1.. . a,,

E E Il@(U/‘...Ufi)&.

(ii) Zf E E llGd 11; then there exists a p-signature aI . . . a, such that

E E Il@(U;‘...U~)&

andforall~l...~m~cul...a,,

E $ IlO(U/’ . . . Us)&.

Notice that for both parts of this proposition, no CE, in the least signature
(3yi . . . a’n is a limit ordinal. In the sequel we abbreviate CD (UP’ . . . U,“”)A to
@(iY)d and cyI...cyn to a.

Given these preliminary results, we prove soundness:

Theorem 5.3. Zf & kA @ has a successful tableau on (7, V) then E 2 ll@~ 115.

Proof. From now on we drop the indices 7 and V from ll@~IIc which we
assume to be fixed. Suppose that E kd @ has a successful tableau 7 on (7, V)
but that ~5 g ll@~Il. We show that, therefore, there is an infinite sequence of
the form:

Y = (no,Eo,~o(U~)Ao),..., h,E/dh(U~).&..

with the properties:
(i) each n, is a node of 7 and no is the root,

(ii) n2, = n2j+l and nzj+z is an immediate successor of n2, in 7,

(iii) if nJ is labelled by .7= kz. Y in 7 then Ej E 3, C = A,, and Y = @j,
(iv) Ej $ II @, (U/”)A, II where a, is a v-signature,
(v) each n; is not a terminal in 7.

Local model checking 171

But this is impossible as r has finite depth. We now construct y from r,
letting yi denote the ith member of y.

First, we define 70. As E g l]@d]I there is an EO E E such that EO $ ll@d]I.
By Proposition 5.2 there is a least v-signature a such that EO $]I@ (U”)d I].
So ye = (no, Eo, 0 (Ua)d 1. Clearly conditions (i)-(iv) hold. Moreover, (v)
must hold too. Otherwise f kd 0 is a successful terminal of r and so @ = Z
or 7Z or [K] Y which would contradict that E g ll@d II.

Suppose yk has been constructed for k Q 2j. y2j+l is defined as follows.
First, if n2, is not a companion in r then y2j+ 1 = ~2,. Otherwise, @2j = U
and n2j is a companion. Let E;/ = {F I E2j I&, F}. If U is a v-constant
then let E2j+l be any member of E;, such that E2,+r $]1@2, (Utj)~2,]I with
least v-signature p. SO y2j+ 1 is the triple (nzj, E2j+ 1,02j (U$j)d2,). Notice
that fl G a2/. If U is a y-constant then let E2j+1 be any member of
E;, which is least with respect to c,, and which has the feature that
E2j+l +! IIOzj (UtT)A*, 11. There are such members as Cnz, is well-founded

and E2, qf II@~,(~~~)AJ. Let Y2j+I = (n2,,E2j+I,~2j(U~~)d2,). In both
these cases y2j+ 1 fulfills properties (i)-(v).

Next we examine the construction for y2,, j > 0, given yk has been built
when k < 2j, which is determined by the rule applied to nzj-1 in r. If
the rule is V then @2j-1 = Yi V !Pz. Hence E+1 6 llY[(Uy)A,,_,/(and

E2j-1 4 I16(U~)~~,_IIl h w ere al (a2) is the signature a2j_1 restricted to
the active v-constants in Yr (Yz). Consider any immediate successor of
nzj-i in r, say nzj, labelled by F td2, Yi with E2j_1 E 3: there is at least one
of the two successors with this feature. Let y2j = (nz,, E,j_ 1, fi (UT)A*,). It
is clear that conditions (i)-(iv) hold (condition (v) is considered below). If
the rule is A then 02,-l = Yi AYE. Hence E2j-1 $ Ilul, (U~'),,,_,II or E2j-1 4

IlfiW3~+,Il h w ere as above a1 (a2) is the signature a2j_1 restricted to
the active Y-constants in Yr (Y2) . Consider any immediate successor of n2j- 1

in r, say n2j, labelled by 3 kdz, U: such that EzJ-r q! IIU:(U~)A,,J. Let
~2~ = (nzj, EIj_1, fl(UF),2,). Again ~2, fulfills conditions (i)-(iv). If the
rule is [K] then @*j-i = [K]Y. As E2,-, q! II [K]Y(UTp:f)AJ there is an

E2j and an a E K such that E2j-1 L E2, and E2j $ Il’J’(UT:‘_f)~~,_,ll. Con-
sider the immediate successor of nlj_1 in r, say n2j labelled by F l-d*, Y’.
Then clearly, E2, E F’, and Y’ =
If the rule is (K) then 02,_,

Y. So ~2, = (nzj,E2j, Y(UtFIi)A*,).
= (K)Y. As E2j-1 $ II(K)Y(UTT!;)~~,_,I1

we know that f (E2j_1) $ I/Y (UzJ':,')d,,_, II where f is the function given
by the (K) rule. The immediate successor of n2,-1 in r is n2j labelled
3 td2, Y and f(E+1) E J=‘. SO Y2j = (nZJ,f(E2j-1), Y(U~~~j),,,,). If the
rule applied is aZ. then @2j_1 = aZ.Y and the immediate successor n2j
in r is labelled 3 t-dz, U. If G = ,u then ~2, = (n2j,E2,_,, U(U~~:~)~J.
If D = v then instead y2, = (nq, E2,-_1, U (UtF:; U”)~z,) where u: is the
least ordinal such that E2j_1 $ II U (UT?:; Un)d2, II. By Proposition 5.1

172 J. Bradfield, C. Stirling

there is such a least Q. If the rule applied is Un then Q2j-i = U.
So 42,-i (U) = a2.Y. Let n2, be the immediate successor of n2j_1 in
r. If G = p then Y2j = (nzj,EI;-i,Y[Z := u](UTy:i)d2,). Clearly,
Ezj-1 4]]Y[Z := U](U~~~~),,,]]. If 0 = v and lJ~~~~ = UP’...Up then

U = U,. Let Y2j = (n2], E2,-,,Y[Z := U](U;‘...U,, “n--l)A~,) : clearly, as Q~
is not a limit ordinal, and is greater than 0, then E2j_ I q! 11 U (Up’ . . . Ufn)dz, 11

iff Ezj_1 $ IlY[Z := (1 I U](U, . ..U. ‘rn-l)A*, II. Finally, if the rule applied is
Thin then Y2j = Y2j-i except that n2j_1 is replaced by its immediate suc-
cessor tl2j.

The only outstanding property to show is that n2, is not a terminal in r.
Clearly, it can not label a sequent 3 kdz, Y in r which is successful because
Y = Z or Y = 7Z or Y = [K] Y’, as this contradicts condition (iv) of
y. Moreover, by construction n2j can not label a a-terminal. For suppose it
does, then its companion is n2k in Y2k, k < j. But consider the construction
of Y2k+ 1. First, by definition of a trail E2k + 1 Jn2, E2, . If n2j labels a p-
terminal then the signature at Y2k + , is less than or equal to the signature at
y2j (since it never increases for the same active constant sequence). But this
contradicts Y2k + k as E2j E E;k, and ~72, $ 11@2k+l Cuy$:)A~~+, II. Similarly,

if n2j labels a v-terminal then the signature at y2k+, is strictly less than the
signature at Y2j (as the constant is then unfolded at node n2k+ I). And this
also contradicts the construction of &+ 1 as E2j E E;k. 0

Next we prove completeness in a stronger version utilizing canonical
tableaux. Moreover, the proof also appeals to the notation CD (U”), where
now 01 is a p-signature for @A.

Theorem 5.4. If & g Il@dllc then E td @ has a successful canonical tableau
on (7,V).

Proof. We construct a canonical tableau r for E Ed @ on (7, V) with the
property that if node ni of r is labelled with Ei kd, @, then li C]]@id,]];.
As before we drop the indices 5. The root no of T is labelled with I kd @.
Assume that nodes no,. . . , nj have been constructed and nk, k < j, is
a frontier node that is not a terminal, labelled F t-Z. Y. We proceed by
defining the immediate successors of nk, depending on the form of Y. If
Y = Yi A Y2 then two successors nl and n2 are introduced labelled with
the sequents F t-z Yi and F t-x Y2. Clearly, F C]]Yl:c]]. If Y = Yi V Y2

then again two immediate successors nl and n2 are introduced labelled
with the sequents Fi t-z Yi and -73 Ez Y2 where Fi u F2 = 3. We define
when F E 3j, j = 1,2. By Proposition 5.2 (ii), when F E 3 there is
a least p-signature a such that F E II Y (U”), II. Hence F E I(Yl (Uf’)zll
or F E ll%UU~)~ll, where aj is the signature a restricted to the active

Local model checking 113

constants in Yj: if F E llYj(U~)zl/ then F E 35. If Y = [K]Yi then one
immediate successor nl is introduced labelled with the sequent 3’ kz. Yi
where 3’ = {F’ 1 3F E 3.3a E K.F 5 F’}. If Y = (K)Y, then again one
immediate successor nl is introduced labelled with the sequent f (3) kz Yi .
The function f is defined as follows: for each F E 3 consider the least
p-signature a such that F E II!? (U”)zll. Hence 3F’.3a E K.F 5 F’ and
F’ E IlY,(U”)~ll: choose any such F’ to be f(F). If Y = aZ.Yi then
one immediate successor is introduced labelled 3 k,r! U where C’ = C .
U = (aZ.Yi). Clearly, 3 5 I] Uz, I]. Finally, if Y = U then two nodes nl
and n2 are introduced where nl is the immediate successor of nk and is
labelled 3’ k~. U and n2 is the immediate successor of nl and is labelled
3’ kz u/i [Z : = U] given that C(U) = oZ.Y,. The set 3’ is defined as

follows. For each F E 3, R(F) = {F’ I3n 3 0.3al . ..a., E C;.F ‘3 F’}.
So R(F) is the set of reachable points from F (including F) in 7. Now
let 3’ = U{R(F) I F E 3’) n IjUzl(: a more subtle account could be given
by defining the reachable points relative to the formula U. By definition
3’ & llU~[l and as 3 5 (I Uzll it follows that 3 G 3’.

The remainder of the proof establishes that this construction yields a
successful canonical tableau T. First, z is both finite and canonical as there
can only be one unfolding of any constant U: a node labelled 3 k.d U is
terminal if there are nodes n, and n,l (the immediate successor of nj)
above it labelled 3, k~’ U and 32 k;1) U as 3 5 32 (since by construction
32 is all points reachable from 3i and satisfying U). Consequently, the
only possibility of failure of 7 as a successful tableau is if 1” for some
companion n of a p-terminal is not well-founded: suppose Eo 1. Ei 7,

... 7n E,, 1” ..., and that n is labelled by the sequent 3 1~. U. Let aj
be the least p-signature associated with El at n: so E, E IlU(UF)zl(and
for all fi < a], El 4 11 U (Uf)z II. Clearly, by the construction of 7 (as the
immediate successor of n is determined by an unfolding of U) aj > ak

when j < k. But this is impossible. 0

References

[I] J.C. Bradfield, Proving temporal properties of Petri nets, in: G. Rozenberg, ed., Advances
in Petri Nets 1991, Lecture Notes in Computer Science, Vol. 524 (Springer, Berlin, 199 1)
29-47.

[2] J.C. Bradfield and C.P. Stirling, Verifying temporal properties of processes, in:
J.C.M. Baeten and J.W. Klop, eds., Proc. CONCUR ‘90, Lecture Notes in Computer
Science, Vol. 458 (Springer, Berlin, 1990) 115-125.

[31 M.F. Dam, CTL* and ECTL* as fragments of the modal ~-calculus, in: Proc. CAAP 1992,
to appear.

[4] E.A. Emerson and C.-L. Lei, Efficient model checking in fragments of the propositional
mu-calculus, in: Proc. 1st IEEE Symp. on Logic in Computer Science (1986) 267-278.

[5] M. Fitting, Proof Methods for Modal and Intuitionistic Logics (Reidel, Dordrecht, 1983).

174 J. Bradfield, C. Stirling

[6] H. Hiittel, SnS can be modally characterized, Theoret. Comput. Sci. 74 (1990) 239-248.
[7] D. Kozen, Results on the propositional mu-calculus, Theoret. Comput. Sci. 27 (1983)

333-354.
[8] K. Larsen, Proof systems for satisfiability in Hennessy-Mimer logic with recursion,

Theoret. Comput. Sci. 72 (1990) 265-288.
[9] Z. Manna and A. Pnueli, The anchored version of the temporal framework, in: J.W. de

Bakker, W.-P. de Roever and G. Rozenberg, eds., Proc. Workshop on Linear Time,
Branching Time and Partial Order in Logics for Concurrency, Lecture Notes in Computer
Science, Vol. 354 (Springer, Berlin, 1989) 201-284.

[lo] V. Pratt, A decidable mu-calculus, in: Proc. 22nd Ann. ACM Symp. on Foundation of
Computer Science (198 1) 42 l-427.

[111 C.P. Stirling, Modal logics for communicating systems, Theoret. Comput. Sci. 49 (1987)
31 l-347.

[121 C.P. Stirling, Temporal logics for CCS, in: J.W. de Bakker, W.-P. de Roever and G.
Rozenberg, eds., Proc. Workshop on Linear Time, Branching Time and Partial Order in
Logics for Concurrency, Lecture Notes in Computer Science, Vol. 354 (Springer, Berlin,
1989) 660-672.

[131 C.P. Stirling and D.J. Walker, Local model checking in the modal mu-calculus, Theoret.
Comput. Sci. 89 (1991) 161-177.

[14] C.P. Stirling and D.J. Walker, A general tableau technique for verifying temporal
properties of concurrent programs, in: Proc. Internat. BCS-FACS Workshop on Semantics
for Concurrency, Workshops in Computing (Springer, Berlin, 1990) l-15.

[151 R.S. Streett and E.A. Emerson, An automata-theoretic decision procedure for the
propositional mu-calculus, Inform. and Comput. 81 (1989) 249-264.

