

Edinburgh Research Explorer

Modal Logics for Mobile Processes

Citation for published version:
Milner, R, Parrow, J & Walker, D 1993, 'Modal Logics for Mobile Processes', Theoretical Computer Science,
vol. 114, no. 1, pp. 149-171. https://doi.org/10.1016/0304-3975(93)90156-N

Digital Object Identifier (DOI):
10.1016/0304-3975(93)90156-N

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1016/0304-3975(93)90156-N
https://doi.org/10.1016/0304-3975(93)90156-N
https://www.research.ed.ac.uk/en/publications/30530184-6b3f-483e-a63b-f61304e3cd31

Theoretical Computer Science 114 (1993) 149-171

Elsevier

149

Modal logics for mobile processes

Robin Milner”
Dqxtrtmmt of Computer Scicwce. G’nirersity of Edinburgh. The King’.c Building, Edinburgh

EHY 352, UK

Joachim Parrow**

David Walker

Milner, R., J. Parrow and D. Walker, Modal logics for mobile processes, Theoretical Computer
Science 114 (1993) 149-171.

In process algebras, bisimulation equivalence is typically defined directly in terms of the operational

rules of action; it also has an alternative characterization in terms of a simple modal logic (sometimes

called Hennessy-Milner logic). This paper first defines two forms of bisimulation equivalence for the

n-calculus, a process algebra which allows dynamic reconfiguration among processes; it then

explores a family of possible logics, with different modal operators. It is proven that two of these

logics characterize the two bisimulation equivalences. Also, the relative expressive power of all the

logics is exhibited as a lattice. The results are applicable to most value-passing process algebras.

1. Introduction

This paper presents a logical characterization of process equivalences in the

x-calculus [6], a process algebra in which processes may change their configuration

dynamically. In this introduction we place the results in context. First we review the

corresponding results for process calculi which do not allow this dynamic reconfigura-

tion. Then we give plausible reasons for introducing modalities and an equality

Correspondencr to: R. Milner, Department of Computer Science, University of Edinburgh, The King’s

Building, Edinburgh, EH9 352, UK.

* Supported by a Senior Research Fellowship awarded by the British Science and Engineering Research
Council.

**Supported by the Swedish Board of Technical Development under project 89-01218P CONCUR and
by Swedish Telecom under project PROCOM.

0304-3975/93/$06.00 6 1993-Elsevier Science Publishers B.V. All rights reserved

predicate into the logic, in order to extend these results to the x-calculus. In the later

sections, we prove that these new connectives do indeed provide the characterization.

For a typical process algebra without mobility, the equivalence relation of strong

bisimilarity [S] can be characterized by a modal process logic, sometimes called

Hennessy--Milner logic [2]. To be specific, let 9’ consist simply of the processes

P given by

P ::= a.P / 0 / P+P / c.

where CI ranges over uctions, and C over process constunts. We assume that for each

C there is a d@niny c~quatiotz C 2’ PC. (Usually, there will also be parallel composi-

tion and other operators, but we do not need them for this discussion.) We also

assume that a labelled transition relation 3 is defined over 9 in the usual way. Then

strong hisitniluritJ> is the largest symmetric relation - over :‘p for which, whenever

P-Q and PL P’. there exists Q’ such that Q 5 Q’ and P’ - Q’.

The process logic ./pY has formulae A given by

A ::= (r)A 1 /j Ai / 1 A,
it/

where I stands for any denumerable set. (The smallest formula is the empty conjunc-

tion, written true.) ./PY is given a meaning by defining the satkfuction relation

)= between processes and formulae; in particular, one defines

P)= (cx) A if, for some P’, P r, P’ and P’ + A.

It may be shown that two processes are strongly bisimilar iff they satisfy the same

formulae of 99”; this is the sense in which YY characterizes -. Under mild

restrictions, such as when every PC in a defining equation is guarded (i.e. contains no

process constant except within a term of the form r. P), only finite conjunctions in

99 are needed.

Before considering what should be included in a logic to characterize equivalences

over the x-calculus, we must discuss an issue about equivalence which arises in any

m/w-passiny calculus, of which the n-calculus is a rather special case. In general, in

any value-passing calculus, an action Y may “carry a value”. By this, we mean that

there are inpur actions u(x), where a is a link name and x a value variable, and x is

bound in u(.u).P; there are also output actions de, where e is an expression denoting

a value. Such calculi have been studied in depth [3, 11, and many different equiva-

lences have been defined over them. The choice of equivalence is complicated by the

passing of values. Consider the following two processes:

R=u(.u).(if r=3 then P else Q)+u(.x).O,
(1)

S=rl(s).(if x=3 then P)+u(x).(if .u#3 then Q).

Modrrl logics Jar mobile processes 151

We understand the one-armed conditional process “if b then P” to be equivalent to 0 if

b is false. (The full conditional “if b then P else Q” can be expressed as the sum of two

one-armed conditionals with conditions b and 1 b.) Now, is R equivalent to S? Both

answers are possible.

They are strongly bisimilar in Milner [S], where the calculus with value-passing is

reduced by translation to a value-free calculus - but with infinite sums. In fact,

R reduces to

c a,.&+ c a,.O, (2)
HEW ,lEW

where R, = P, and R, = Q for II # 3. (We assume, for simplicity, that P and Q do not

involve value-passing, so do not contain the variable x.) Correspondingly, S reduces

to

1 a,.P,+ c a,.Q,,, (3)
f7EW ” E (0

where P3 = P and Q3 = 0, while P, = 0 and Qn = Q for n # 3; this sum is equivalent to (2).

But there is a different view, according to which R and S are not equivalent’. In this

view, we do not consider R capable of an infinity of actions a,, one for each natural

number, but essentially only two actions, one of which is

R u(x) ifx=3thenPelseQ,

yielding a family of processes indexed by the variable x. For another process to be
[l(X)

equivalent to R, it must yield under - an indexed family which is elementwise

equivalent to the above family, i.e. equivalent for each value of x. But S does not have

this property; it yields two indexed families, both different, namely,

S - ifx=3 then P,

(5)

S 2 if x#3 then Q.

These two equivalences can both be expressed as forms of bisimilarity. For the

n-calculus, we concentrated on the second - finer ~ equivalence in our original paper

[7], but also commented on the coarser equivalence. Both seem reasonable. In this

paper we shall show that both bisimilarities can be elegantly characterized by

appropriate process logics. Actually, we shall examine a family of 25 logics, defined by

including any combination of five logical connectives - mostly modalities - over and

above a fixed set of connectives. It turns out that these yield eleven equivalences

(several logics being equipotent), including our two bisimilarities. We are not yet

’ This view amounts to equating processes iff they denote identical communication frees, as defined in
Milner [J, Chapter 61. The view was not pursued thoroughly there.

interested in most of these equivalences per se; but the lattice which they form gives

insight into the power of the various logical connectives.

Now, what logical connectives should we expect in a logic for the n-calculus? Here,

value expressions and value variables are themselves nothing but link names. All

computation is done with names z, !; . ; thus, input and output actions take the form

X(J) and Sy. It is natural to include some modality for each form of action; in

particular, a modal formula

for input actions, where J’ is bound. In fact, to characterize the finer of our two

bisimilarities, we shall define a modality (.~(y))~ such that

PI= (.Y(J’))~,~ iff for some P’, Pz P’ and for all Z, P’{z/yl +A{z/y)..

The superscript L here stands for “late”. It refers to the lateness of instantiation of the

variable y; P’ is chosen ,fir.st, and then for all instances of y it must satisfy the

corresponding instantiation of A. The coarser equivalence will be reflected by a

modality with superscript E for “early”; this refers to the fact that the instance z of y is

chosen first, and then a different P’ may be chosen for each Z.

It may be expected that, once we have included in our logic a suitable modality for

each form of action, our characterization will be achieved. But this is not so, due to the

special r61e of names in the rc-calculus.

At first sight, the n-calculus may appear to be just a degenerate form of value-

passing calculus, which can then be translated (as above) to a value-free calculus and

hence characterized essentially by the logic 22, for suitable actions 1. But this

neglects a crucial ingredient of Tc-calculus, namely, the process form (x)P, known as

restriction. This combinator gives scopr to names ~ in other words, it allows the

creation of priwte names; it is responsible for much of the power of the 7c-calculus, and

prevents us from treating names as values in the normal way.

Thus the algebra of names cannot be “translated away” from the 7c-calculus, in

the same way that the algebra of (say) integers can be translated away from CCS.

But what is this algebra of names‘? It is almost empty! There are no constant names,

and no operators over names; this explains why only the value expressions are

names themselves (as variables). But what of boolean expressions, and the conditional

form “if h then P”? Well, names have no properties except identity; thus, the only

predicate over names is equality ~ and, indeed, the n-calculus contains the match

expression’

[r=y]P,

2 Hitherto, we have not given much consideration to the negative form [.x#y]P; it requires further

investigation.

Modal loyicsfiw mobile processes 153

which is another way of writing “if x = y then P”. It is therefore reasonable to expect

that, by including an equality predicate in the form of a match formula

Cx=ylA

in our logics, we succeed in characterizing the bisimilarities. This indeed turns out to

be the case. Moreover, the match formula is strictly necessary; furthermore ~ which is

not obvious ~ it is needed in the logic even if the match expression is omitted from the

calculus.

In the next section we present the r-calculus and its operational semantics; the

reader therefore need not refer to previous papers, although familiarity with the

z-calculus will certainly help; we also define the two bisimilarities. In Section 3 we

define all the logical connectives we wish to consider, and derive a complete picture for

the relative power of their different combinations.

2. Mobile processes

In this section we will recapitulate the syntax of agents from [7] and give agents two

kinds of transitional semantics, corresponding to late and early instantiation of input

parameters. Based on these we will define late and early bisimulation equivalences.

2.1. Syntax

Assume an infinite set N of names and let x, y, z, w, U, u range over names. We also

assume a set of agent identijers ranged over by C, where each agent identifier C has

a nonnegative arity r(C).

Definition 2.1. The set of agents is defined as follows (we use P, Q, R to range over

agents):

P::= 0 (inaction)

I Xy.P (output prefix)

I J4YJ.P (input prefix)

I z.P (silent prefix)

I (Y)P (restriction)

I Cx=ylP (match)

I PIQ (composition)

I P+Q (summation)

I C(Y,, ...> Y,(C)) (defined agent).

In each of x(y).P and (y)P the occurrence of y in parentheses is a binding occurrence

whose scope is P. We write fn(P) for the set of names occurring free in P. If

2=x,, x, are distinct and jj= y,, y, then P { j/Z} is the result of simultaneously

154 R. Milrw. J. Parrow. D. Walker

substituting yi for all free occurrences of .xi (i = 1, , n) with change of bound names if

necessary. Each agent constant C has a unique d&zing equation of the form

clef
C(X 1, S,(C)) = P,

where the xi are distinct and fn(P) c .(.Y, , . . , xrccj).

The order of precedence among the operators is the order listed in Definition 2.1.

For a description of the intended interpretation of agents, see 161. In examples, we will

frequently omit a trailing .O; for example, r.O+%~‘.0 will be abbreviated T +Xy.

Also we sometimes write fn (P, Q, . . . x, ~1, . . .) as an abbreviation for fn(P)ufn(Q)u

. ..u{r.y)... 1..

2.2. Trumitiom

A trmsition is of the form

P: Q.

Intuitively, this transition means that P can evolve into Q and, in doing so perform the

~fion a(. In our calculus there will be five kinds of action r: The silent action

T corresponds to an internal computation, and the,fiee-output action Xy and,free-input

action .UJ~ correspond to the transmission and reception of the free name y along x.

The hound-input action u(y) means that any name can be received along x, and (y)

designates the places where the received name will go. The hound-output X(y) action

means that a local name designated by ~1 is exported along X. A summary of the

actions, their,f+ee HLI~I~S fn(a) and hourzd nones bn(cc) can be found in Table 1. We write

n(x) for fn(cc)ubn(r).

The silent and free actions are familiar from CCS. In particular, a free-input action

corresponds to an early instantiation of an input parameter, since it carries both the

port name and received value. In contrast, a bound-input action carries only a port

name, implying that the bound parameter will be instantiated at a later stage. The

Table I
The actions.

Modal logics for mobile processes 155

bound-output actions are used to infer the so-called scope extrusions; their para-

meters will never be instantiated to free names so the issue of “late vs. early” does not

arise.

In order to define the transitions between agents we first introduce the notions of

structural congruence and variant.

Definition 2.2. The structural congruence = on agents is the least congruence satisfy-

ing the following clauses:

(1) If P and Q differ only in the choice of bound names, i.e. they are alpha-

equivalent in the standard sense, then P E Q,

(2) plQ=Qlp>
(3) P+Q-Q+P,
(4) [x=x]PsP,

,(5) If C(.f)E'P then C(j)sP{j/f}.

A variant of the transition P 5 Q is a transition which differs only in that P and

Q have been replaced by structurally congruent agents, and a has been alpha-

converted, where a name bound in CI includes Q in its scope.

As an example, the following transitions are variants of each other:

X(Y).&
-a) _

- YZ,

X(Y).YZ
x(u) _

- uz,

.x0’) [x = x] x(y) . yz - yz,

s(u) _ [x = x] x(y) jz - uz.

The second transition differs from the first in that the name y has been alpha-

converted to u in the action and in the agent after the arrow. The third transition

differs from the first in that x(y). jz has been replaced by a structurally congruent

agent, and the fourth transition combines these changes.

Below, we will give two sets of rules for inferring transitions, one set corresponding

to early and one corresponding to late instantiation. In each rule, the transition in the

conclusion stands for all variants of the transition. We begin with the set of rules in [7]

which can now be rendered as follows.

Definition 2.3. The set of rules LATE consists of the following:

P:Pp'
ACT: SUM:

c?.P>P P+Q:PP'

156 R. Milnrr, J. Parrow, D. Walker

P>Pp’
PAR: , bn(r)nfn(Q)=@

PlQ:f'lQ

pzp’ QwlQ, pw9p, Qe)Q,

L-COM: CLOSE:

W2hQ'b/4 PlQhW"lQ')

PLPp’
.Y I

PAP’
RES:

(y)P:(y)P”

.dW OPEN:

(y)P?!!!+ p”
y#.X

We write P 2 L Q to mean that the transition P $ Q can be inferred from LATE.

A reader familiar with the rules in [7] will note that LATE is more concise,

yet it generates the same transitions. The use of variants and structural congru-

ence makes it possible to formulate the rules without explicit alpha-conversions

in the rules generating bound actions, and special rules for identifiers and matching

are unnecessary because of clauses 4 and 5 in Definition 2.2. For example, we can

infer

.l(U) _
[x=x]x(y).Jz-uz

\()‘I _
since this transition is a variant of x(y)._& - J’Z, which is an instance of ACT. This

effect of “factoring” all issues related to structural congruence from the rules of action

can also be obtained by a special structural rule

U(U)
For example, the transition above can be inferred with this rule since x(u). Uz - Uz is

an instance of ACT and [s = s] .u(y).jz c x(u). Uz.

In LATE the name bound by an input prefix form x(y). P becomes instantiated

in L-COM when a communication between two agents is inferred. Note that no

rule in LATE generates a free-input action. In contrast, with an rurly-instantiarion

scheme, the bound name J’ is instantiated when inferring an input transition from

x(y).P.

Modal logics for mobile processes 157

Definition 2.4. The set of rules EARLY is obtained from LATE by replacing the rule L-COM

with the following two rules:

_ pzp’ QzQQ’

E-INPUT: E-COM:

x(y).P~Pp(w/y} PlQhjQ’

We write P & Q to mean that the transition P -% Q can be inferred from EARLY.

The new rule E-INPUT admits an instantiation to any name w, so there will always

be a suitable free-input action available as a premise in E-COM. Note that the

rule ACT remains in EARLY, so an input prefix may still generate bound-input

actions - these are needed with the rules OPEN and CLOSE to achieve scope extrusions

such as

x(Y).PI(Y)~Y.Q L,E (YWIQ).

The following example highlights the different operations of LATE and EARLY.

Assume that we want to infer a communication in the agent

(We write “P(y)” to signify that P depends on y, and similarly for Q.) Using LATE,

we need a new name z in the PAR rule to avoid conflicts with the free names in

Q(Y, u):

x(y).P(y) -=J_ P(z) _

x(Y).P(Y)IQ(Y,~ ~LWIQ(Y.~ 2U.R %R

Using EARLY, the same communication can be inferred:

X(Y).P(Y) As P(u) _

~(Y).P(Y)IQ(Y, 4 =EP(~)IQ(y,~) C.Rz,R

158 R. Milner. J. Parrow. D. Walker

The following lemma shows how f, and 3, are related.

Lemma 2.5.

(4) PZE p’ $/” jp”, b’: p -xc”) -L P”, with P’= P”{y/w),

(5) PJ+ P’ gP:‘L P’.

Proof. A standard induction over LATE and EARLY. The proof of (2) uses (l), and the

proof of (5) uses all of (l))(4).

In view of this lemma, it will not be necessary to distinguish between +E and -tL,

and we will simply write -+ for +E from now on.

2.3. Lute and curly hisimulutions

We first recall the definition of bisimulation in [7].

Definition 2.6. A binary relation .Y on agents is a late simulation if PY’Q implies that

(1) if P: P’ and x is 7, Xz or X(y) with y$fn(P, Q), then for some Q’, Q: Q’ and

P’cYQ’;

(2) if P-+ ‘(I‘) P’ and y$fn(P, Q), then for some Q’, Qz Q’ and for all w,

P’{w~/y} sTfQ’(~/y}.

The relation .V is a lute hisimulation if both ,Y and 9-l are late simulations.

We define late bisimilurity P LL Q to mean that P 9 Q for some late bisimula-

tion .Y’.

Note that late simulations do not require anything of free-input actions. Instead,

there is a strong requirement on bound-input actions: the resulting agents P’ and Q’

must continue to simulate for all instances w of the bound name. The term “late” refers

to the fact that these ~2 are introduced after the simulating derivative Q’ has been

chosen. The algebraic theory of LL is explored in [7].

The natural bisimulation equivalence for early instantiation will use free-

input actions rather than the extra requirement (clause 2) on bound-input

actions:

Modal loyics.for mobile processrs 159

Definition 2.7. A binary relation .Y on agents is an early simulation if PYQ implies

that

if PAP’ and tl is any action with bn(x)nfn(P,Q)=& then for some Q’,

Q$Q and P’,YQ’.

The relation Y is an early bisimulation if both Y and .Y - ’ are early simulations. We

define early bisimilarity P AE Q to mean that P.YQ for some early bisimulation .Y.

So, in an early simulation different instances of an input transition (i.e. different free

inputs) may be simulated by different Q’. Late and early bisimilarities represent the

two different views of equivalence presented in the introduction. To see that these two

equivalences are different consider the following example:

P=x(u).s+x(u),

Q=P+.x(u).[u=z]T.

Then P &E Q, but P 4 ,_ Q. The reason is the transition

Q- “‘) [U=Z]T. (6)

P has no transition which simulates (6) for all instantiations of U. However, for all

free-input actions there is a simulating transition: for z it is

xz
P-T

(since ([u = z] T) {Z/U} = T) and for all other names it is

(since ([u = z] T) AE 0 for all u # 2).

We will now support our claim from [7] that NE can be obtained by commuting the

quantifiers in clause 2 of Definition 2.6.

Definition 2.8. A binary relation 9’ on agents is an alternative simulation if P,YQ

implies that

(1) if P: P’ and M is T, Xz or X(y) with y$fn(P, Q), then for some Q’, Q 5 Q’ and

P’YQ’;

(2) if PZ P’ and y$fn(P, Q), then for all w, there is Q’ such that Q 2 Q’ and

P’lwl~I.YQ’jwl~).
The relation 9’ is an alternative bisimulation if both ,Y and 9-l are altern-

ative simulations. We define P -‘Q t o mean that P.YQ for some alternative bi-

simulation 9.

160 R. Milner. J. Parrow, D. Walker

It is obvious that every late simulation is also an alternative simulation, so Ai_ E A’.

Furthermore, we have the following lemma.

Lemma 2.9. A’= LE.

Proof. From Lemma 2.5(4) it follows that the following two requirements on any

relation 9 are equivalent:

VP, Q, x, y, P’: if P’l-, P’ then 3Q’: Q 3 Q’ and P’YQ’.

VP, Q, x, MI, P”: if P - Y(M.’ PU then vyjQ”: Q 2 Q” and

Hence, Y is an alternative simulation iff it is an early simulation.

Thus, LE is strictly weaker than A,_. We will not explore the theory of AE here. Just

like LvL it is an equivalence relation and is preserved by all operators except input

prefix, and if P {w/y) AE Q{w/yj for all MI then x(y).P LVE.x(y).Q.

3. Modal logics

In this section we establish characterizations of late and early bisimilarities in terms

of properties expressible in various modal logics. In addition we compare in detail the

distinguishing power of a number of logics. We begin by introducing a logic en-

compassing all those we consider and establishing some properties of its satisfaction

relation.

3.1. Connectiues

Definition 3.1. The logic .c3 is a subset, specified below, of the set of formulae given by

A ::= /jiErAi (1 a denumerable set)

ITA
1 [x=~l]A

I (&)A (a=?, xy, xy, X(y), x(y))

I <JOY) >LA
I (.x(y) >” A.

In each of (T(y))A, (.x(y)) A, (x(~))~A and (x(~))~A, the occurrence of y in

parentheses is a binding occurrence whose scope is A. The set of names occurring free

in A is written fn(A). The logic .d consists of those formulae A with fn(A) finite.

Modal 1ogicsJor mobile processes 161

In Definition 3.3 we shall introduce a satisfaction relation + between agents and

formulae of d. Although the definition will be a little more complex, the relation will

have the following simple characterization.

Proposition 3.2. For all agents P,

pI= /\isrAi ifSfOr all iEl, P(= Ai,

PI=1A if not PI= A,

P(= [x=y]A ifs $x=y then P(= A,

P(= (a)A iff for some P’, P : P’ and P’ /= A , for a = T, Xy, XY

and, assuming that the name y is not free in P,

PI= (Z(y))A ifl,.for some P’, P- “‘) P’ and P’ ,= A,

PI= <x(y))A $f for some P’, P----t ‘(‘) P’ and for some z, P’{z/y} + A{z/y},

P(= (x(y))!-A [flfSfor some P’, P- ‘(‘) P’ andfor all z, P’{z/y} I= A{z/y),

PJ= (x(~))~A iff for a/l z there is P’ such that Pz P’ and

P’{z/Y 1 I= A {Z/Y}.

The assumption on y is no constraint since Lemma 3.4(a) asserts that alpha-

convertible formulae are logically equivalent.

Before embarking on the formal definitions, we will explain the intuition behind the

connectives. Conjunction, negation, and the silent, output and free-input modalities

work as in the logic 92 described in the Introduction. We will write true for the

empty conjunction and false for 1 true. Note that an atomic equality predicate on

names can be defined in terms of the matching connective [x= y]; the formula

7 [x = y] false

holds for P precisely when x = y, regardless of P. Conversely, if an atomic equality

predicate (x = y) on names were taken as primitive, [x = y] A could be derived as

-i((x=y)Al A).

There are three kinds of bound-irmJ\t modality. They all require an agent to have

a bound-input transition of type P + P’ but they differ in the requirements on P’.

The basic bound-input modality (x(y)) A merely requires that P’ satisfies A for some

instantiation of the parameter y. The late modality (x(y))” is stronger; it requires P’

to satisfy A for all such instantiations. Finally, the early modality (~(y))~ is weaker

162 R. Milner, J. Purrow, D. Walker

than the late modality; it allows difSeerent derivatives P’ to satisfy A for the different

instantiations of y. As an example, let

A = (.u(y))i (7) true,

~I~=(x(y))~i (r)true,

~I~=(x(y))~i (7)true.

First put

Pi =x(y).[y=u]r.

It then holds that

PI I= A.

The derivative P’ is here [y = u] 7 and there are instantiations of y, namely all but u,

where P’ has no z-transition and, thus, satisfies l(7) true. But for y = u there is such

a transition: hence, Pi satisfies neither A, nor A,_. Next assume that u # u and consider

Pz=x(y).[y=u]7+x(y).[y=o]7.

Here there are two possible derivatives under the bound-input action x(y). The

derivative corresponding to the left branch lacks a 7 transition for y # u, while the right

branch lacks a 7 transition for y fu. It follows that for any instantiation of y we can

choose a derivative lacking a r; thus,

P2 I= A,.

Of course, P2 also satisfies A, but it does not satisfy AL since no single derivative lacks

a 7 for all instantiations of y. Finally, consider

p3 =x(y).

Then P3 satisfies all of A, A, and A,.

The dual operators [CC], [x(y)IL and [x(y)lE of (a), (x(Y))~ and (~(y)>~ are

defined in the standard way: [a] A=1 (a)-~ A, etc. We note, in particular, the

following properties:

P k [x(y)] A iff for all P’, if P + u(r) P’ then for all z, P’{z/y} /= A{z/y},

P)= [x(y)]” A iff for all P’, if P- ‘(‘) P’ then for some z, P’ (z/y} I= A {z/y},

PI= [x(y)lEA iff there is z such that for all P’, if P% P’ then

P’(z/Y> I= A (Z/Y}.

So [.] signifies universal quantification over derivatives, whereas (.) implies existen-

tial quantification. Note that with the three bound-input modalities and their duals all

Modal loyics .for mobile procrssrs 163

combinations of existential/universal quantifications of derivatives and parameter

instantiation are covered.

We now return to the formal definition of the satisfaction relation.

Definition 3.3. The satisfaction relation between agents and formulae of .02 is given by

PI= ~\ic,Ai if for all iE1, PI= Ai,

PklA if not P j= A,

P+ [x=y]A if if x=y then PI= A,

PI= (cx)A if for some P’, P 2 P’ and P’ k A, for CI = 7, .Cy, xy,

P+ (x(y)).4 if for some P’ and w$fn(A)-{y}, P ZP’ and

P’I= A{wly},

S(M’)
PI= (x(y))A if for some P’ and w, Pd P’ and for some z,

P’{zlw} I= A {Z/Y)3

P I= (x(y))” A if for some P’ and w, P 2 P’ and for all z,

P’(zlw) I= A {Z/Y),

P + (x(~))~A if for all z there are P’ and w such that P= P’ and

P’izlw) I= A {Z/Y 1.

Recall that by Lemma 2.4 we may combine the late and early schemes in giving and

working with this definition. Before commenting on it in detail we note the following

facts. We write = for alpha-equivalence of formulae.

Lemma 3.4. (a) Zf P I= A and A = B then P + B.

(b) IfP I= A and u$fn(P, A) then P(u/u> + A (U/U}.

Proof. The two assertions are proved together by showing, by induction on A that if

P(= A, A-B and u#fn(P, A) then P{u/u} + B{u/u). The proof, although not unduly

difficult, contains some points of technical interest and requires careful attention to

detail. It is given in the appendix. 0

The final four clauses in the definition of satisfaction are complicated by the

inclusion of the name w. This is required to define Pk A in the case that a name

occurs bound in A and free in P. For suppose the clause for the bound output

modality were simplified to that given in Proposition 3.2. If P=(w)Xw. y(z) and

164 R. Milner, J. Parrow, D. Walker

,4=(X(y)) true then according to Definition 3.3, PI= A; but under the simplified

definition, P* A. A similar difficulty arises with the other three clauses.

However, by Lemma 3.4(a), when considering an assertion P + A, given any name

x bound in A, we may always assume that x is not free in P. This assumption, which

we make from now on, leads to a simple proof of the more elegant characterization

given above in Proposition 3.2. This characterization helps to make clear the signihc-

ant points in the definition. Note in particular that the clause for (X(y)) may be

subsumed under that for (CC) for x = 5, Xy, xy. The need for the condition on w in the

clause for (X(y)) can be seen by considering P = (y)Xy and A 3 (X(y))-~ [y = w] false.

Under Definition 3.3, P 6 A. If the condition on w were removed, we would have

P/= A, but the bound output clause of Proposition 3.2 would no longer hold.

The following useful lemma describes some relationships among the modalities.

Lemma 3.5. (a) Suppose w$fn(A, y). Then

P+ (xy)A iff PI= (X(W))L[W=y]A

ifs P)= (x(w))E[w =y] A

{fPp(= (_~(W))l[W=y]-lA,

(b) PI= (x(~))~A ifSfor all z, P + (xz)A(z/y},

(c) P (= (x(y)) A iffor some 2, P + (xz)A {z/y).

Proof. Straightforward from the definitions. See the appendix. 0

3.2. Characterizations of equivalences

Suppose X is a sublogic of d. Then Y(P)= {AEX 1 P I= A}. We write =.X for the

equivalence relation determined by X: P =.I Q iff X(P) = X(Q). We say X charac-
terizes a relation W if =,I =W.

A number of sublogics of &’ will be considered. They share a common basis do

consisting of the formulae of .c4 built from conjunction, negation and the modalities

(T), (5~) and (X(y)). The sublogics of .01 extending do are named by indicating

which of <x(y)), (~(y))~, (xy), (x(Y))~ and [x=y] are added to do, using the

letters ?8;, 8, 9, 9 and _&, respectively. For instance, _Y’_X is the extension of ~9’~

obtained by adding the late bound-input modality (x(Y))~ and matching [x= y],

while 9 is obtained by adding the free-input modality (xy) alone.

We now give the main characterizations of AL and LE.

Theorem 3.6. YA’ characterizes AL

Proof. The proof follows a standard pattern but contains some novelty. First we show

that LL E =y,u by proving by induction on A in .YC&’ that if P LL Q then P k A iff

Modal loyics for mobile processes 165

Q I= A. The argument for the converse amounts to a proof that if P + r Q then there is

A E P&Z(P) - _.Y’&? (Q), with fn(A) c fn(P, Q). The principal point of interest is the use

of a combination of the late bound-input modality (x(Y))~ and matching. The proof

is given in the appendix. 0

We need infinite conjunction only if the transition system is not image-finite (up

to z). In particular, if all recursive definitions are guarded then finite conjunction

suffices. Recalling the quantifier switch in the semantic clauses for (x(Y))~ and

(~(y))~, in view of the preceding theorem it may be expected that 8.4 characterizes

LE. In fact, we have the following theorem.

Theorem 3.7. Each of &A?‘, F and 39~2 characterizes LE.

Proof. By utilizing the characterization of LE in the early scheme, Lemma 2.9, a proof

that 9 characterizes AE is easily obtained. That d&V and &?A also characterize NE

then follows using Lemma 3.5. For details, see the appendix. 0

We have seen that B characterizes LE and that the free-input modality corres-

ponds to combinations of the bound-input modalities and matching. A natural

question concerns the power of the bound-input modalities in the absence of match-

ing. We give a sequence of examples which establish the relationships among the

various logics. These are summarized in Fig. 1.

Lemma 3.8. P =ey Q but P ZJ Q, where

P = X(Y)>

Proof. Note that if A = [x(y)]1 (t) true then P b A but Q & A. To see that P =By Q,

we prove by induction on A in 8-Y that P I= A iff Q + A. See the appendix. 0

Lemma 3.9. P NE Q but P Zv Q, where

P=x(Y)+x(Y).(cy=zl7+cY=wl7),

Q=x(y).[y=z]z+x(y).[y=w]r.

Proof. Clearly, P LE Q. To see that P f9 Q, simply note that if A = (x(~))~i (7) true

then P + A but Q E A. 0

Lemma 3.10. P=,, Q but P Zg. Q, where

P=x(y).[y=z]7+x(y).([y=zl7+[Y=wl7),

Q=x(y).[y=z]r+x(y).[y=w]7.

166 R. Miher, J. Purrmv, D. Walker

Proof. To see that P fr Q, note that if A 3 (.x(y))“i (z) true then Q /= A but P I# A.

To see that P zdi/’ Q, we prove by induction on A in 989 that P k A iff Q I= A. See the

appendix. 0

Lemma 3.11. P = ?Ar y, Q hut P & E Q, where

P=s(l‘).[4‘=z]t,

Q=x(y).[y=w]~.

Proof. Clearly, P qt Q. To see that P =d,5y, Q, we prove by induction on A in 9M’P’

that PI= A iff Q I= A. The proof is similar to that of Lemma 3.10. We omit the

details. 0

Lemma 3.12. P = F y Q hut P + ,_ Q, where

P=x(y)+.u(y).r,

Proof. Clearly, P + ,_ Q. To see that P = FY’ Q, we prove by induction on A in F-1%

that PI= A iff Q I= A. The proof is similar to that of Lemma 3.10. We omit the

details. 3

To complete the picture, we note the following. Let us say that two logics .Y and

,X are equipotent if = 7- = = * .

Lemma 3.13. Let Z he trn~ comhinution of .‘A, 8, <P, 9, c N. Then in an obvious notation

(a) .9 + Z, .d.“i + Z and A.9 + Z NTC’ equipotent.

(b) ~4~ N + Z, 6. N + Z and 9;. N + Z are equipotent.

(c) Y’, N + Z and .9.Yz-‘. L/ + Z are equipotent.

(d) Finally, /I und do me equipotent.

Proof. See the appendix. G

We summarize the relationships among the logics established by the preceding

results in the following theorem.

Theorem 3.14. In Fig. 1 each point represents a distinct relation. A line between two

relations signifies inclusion, while the absence of a line sign$es that they are incompar-

able. By “etc.” we meon uny other combination equipotent by Lemma 3.13.

The examples in Lemmas 3.8-3.12 all involve the match expression of the calculus.

However, its use is in each case inessential. For example, Lemma 3.8 asserts that

Modal logics for mobile processes 167

LL , CM, etc.

I
3C, E3C, etc.

I\
UEC &E, EM, 3, UM, etc.

/l\l

Fig. 1.

P =nYJ Q but P #a Q, where P=x(y)and Q=x(y)+x(y).[y=z]r. Alternatively, we

can take

P=x(y).(j.z+z.j),

Q=x(y).(j.z+z.j)+x(y).(jlz).

Similar modifications can be made to the other examples.

4. Future work

The logic we have introduced no doubt has interesting intrinsic properties, which

we have not begun to study. Here we only wish to mention two questions about its

relationship with the Ic-calculus which appear to be of immediate interest.

First, what happens when we introduce the mismatch form

CXZYIP

into the calculus? Note that the corresponding mismatch connective

CXZYIA

does not add power to our logic since it already has matching and negation.

Second, considering the input modalities, can we factor out their quantificational

content? It is attractive to factor (x(Y))~; thus,

(x(Y)>~A Ef (x)(VyA).

Now, to express the satisfaction relation, we appear to need also to factor the input

prefix .x(y) of the calculus; thus,

In other words, we need to give proper status to (i.-)abstractions, which abstract

names from processes. This step has considerable interest, since there are other

independent advantages to be gained from it.

Appendix

This section contains the proofs omitted from the main text. Some results from [7,

Section 31 concerning the transition system are used.

Proof of Lemma 3.4. We prove the two assertions by showing by induction on A that

if PI= A, A=B and u$fn(P, A), then P{u/cJ (= B{u/cJ.

Let c= {U/C).

The conjunction case is trivial.

Suppose A =l A’; so, B ~1 B’, with A’ = B’. Since P I& A’, by induction hypothesis

P I+ B’ and so P I= B. Hence, if u = 1’ the claim holds. Suppose u # 11 so u$fn(Pa, Ba). If

PO I# BCJ then PCJ + B’a, so by induction hypothesis PoC ’ + B’oa-‘, so PI= B’.

Then again by induction hypothesis P j= A’, a contradiction. Hence, Pa I= Ba.

Suppose A E [x=yJ A’; so, BG [_x=y]B’, with A’EB’. If x#y then certainly

Pa)= BCJ since Bc = [.x0 = JV] B’cr and xo # ya. If x = y then P I= A’ and, by induction

hypothesis, PO)= B’o; so, again Pa I= Ba.

Suppose A = (cc) A’, where x = r, .Yy, .x):; so, BE (cx) B’, with A’ = B’. Since P I= A,

there is P’ such that P: P’ and P’/= A’. Then Paz P’a and, by induction

hypothesis, P’a + B’cT. Hence, Pa I= Bo since Bo = (ro)B’a.

Suppose A=(f(y))A’; so Bo-(xo(y’))B’a, where A’{y’/y)=B’ and y’ is fresh.

Since P I= A, there are P’ and nz$fn (A) ~ { y) such that P \:I P’ and P’)= A’(w/y}.

Choose &$fn(P, A, u). Then P - r(‘“‘) p” e p’ { +>) and, by induction hypothesis,

PI’ I= B’{w’/y’). Also Pa % P”CJ and again, by induction hypothesis,

P”o)= B’{ w/y’} CJ. H ence, Pa I= Ba since B’(~!‘/y’la= B’o{w’/y’i.

Suppose A- (.x(~))~A’; so. Bo- (m(y’))~,~,, ‘CT, where A’ { y’/y > F B’ and y’ is fresh.

Since P + A, there are P’ and u’ such that P - P’ and, for all z, P’(z/w} /= A’{z/y}.

Choose \v’$fn(P, A). Then P ““‘) - P” z P’ {d/w) and, by induction hypothesis, for all z,

P”jz/w’) /= B’(z/y’). (*)

Now Pa-
WM.‘) p,,o.

Modal logicsfor mobile processes 169

Claim. For all z, P”o(z/w’} I= B’a{z/y’}.

Proof of Claim. If u = u the claim is immediate from (*), so suppose u # u.

Case 1: z#u,v. Then P”c7{z/w’}-P”{ / z w’ D and B’a(z/y’} = B’{z/y’} CJ. By induc- 1
tion hypothesis and (*), P”c(z/w’} c~ I= B’{z/y’}o since u$fn(P”{z/w’}, B’{z/y’}).

Hence again by induction hypothesis, P”jz/w’}a + B'a(z/y' j.
Case 2: z=u. Now P”a{u/w’)=P”{ / ‘} u w CJ and B’o{u/y’}~B’{o/y’}o. By (*),

P” {u/w’} I= B’ (u/y’}; so, by induction hypothesis, P”{u/w’)a + B’{u/y’}a since

u$fn(P”{u/w’}, B’{u/y’}). H ence, by induction hypothesis, P” {u/w’} CJ + B’a { u/y’}.
Case 3: z=u. Then P”c~{u/w’}~P”{t/w’}~{u/t} and B’~{u/y’)~B’{t/y’}a{u/t}

where t is fresh. By (*) and the induction hypothesis applied twice,

P”a { u/w’} I= B’o(u/y’}.
This completes the proof of the Claim and, hence, of the case (x(Y))~. The cases

A = (x(Y))~.~’ and A = (x(y)) A’ involve similar arguments. 17

Proof of Lemma 3.5. First note that if w # y then

Pk (Xw)LCW=YIA

iff P+ (~(w))~[w=y]A

iff P+ (x(w))7 [w=y]iA

iff for some P’, P __f X(“‘) P’ and P' { y/w} I= A {y/w}.

Now suppose, w#fn(A, y). If P I= (xy)A then for some P’, Pz P’ and P’ I= A. Then
X(W)

P - P” with P”{ y/w) = P’. Since P”{ y/w} I= A { y/w} s A it follows by the above

that P (= (x(w))~ [w = y] A, etc. Conversely, if P --+ X(M) P” and P”{ y/w})= A (y/w} then

P~Pp’=P”{y/w} and P’b A; so, P+ (xy)A. 0

Proof of Theorem 3.6. We first show by induction on structure that for all A in L?Jz~‘, if

P LL Q then P I= A iff Q)= A. Suppose P + A. The conjunction and negation cases are

trivial.

Suppose A E [x = y] A’. If x # y then certainly Q)= A. Otherwise, P I= A’ and, by

induction hypothesis, Q I= A’ and, so, Q + A.

Suppose A E (LX) A’, where c1= z, Xy or X(z) where z$fn(P, Q). Then there is P’ such that

P : P’ and P’ + A’. Since PA, Q, there is Q’ such that Q : Q’ and P ’ AL Q’. By

induction hypothesis, Q’ + A’; so, Q I= A.

Suppose A E (x(Y))~ A’, where y$n(P, Q). Then there is P’ such that P 2 P’ and

for all z, P’{z/y} I= A’{z/y}. Since P ALQ, there is Q’ such that Q 2 Q’ and for all z,

P’{z/y} LL Q’{z/y}. By induction hypothesis, for all z, Q’(z/y} (= A’{z/y}; so, Q + A.
Hence, LL c,.,.

For the converse, it suffices to show that ,Y’ is a late bisimulation, where P Y Q iff for

all A in Y%N, with fn(A)cfn(P, Q), P/= A 8 Q + A. Suppose P.YQ.

Suppose P L P’, where 3 = r. SJ or X(Z) with -$n(P, Q). Let (Qi)iE, be an enumer-

ation of (Q’IQ2QQ’), and suppose, that for all i, not P.YQi. Choose (A;) with, for

each i, AiE~./l’(P’)-_~.N(Qi) and fn(Ai)sfn(P’,Qi). Set Az(cx)I\~~,A~. Then

AE~‘~N(P)-~~~‘/(Q) and fn(A)sfn(P, Q); so. not PYQ, a contradiction.

Suppose
Y(Y)

PAP’, where y$n(P, Q), Let (Qi) be an enumeration of

{Q~IQZ Q,;, and suppose that. for each i, there is z such that not

P’[z/J) 9Qi(z/~j. Set N=fn(P,Q,y), SO that fn(P’)&N and fn(Qi)GN for each i.

Proof of Claim. Suppose z$N and fn(A)cfn(P’{z/y), Qi{;/y)). If P'{z/y}l= A

then, since _t*$fn(P’ (z;J,~, A), by Lemma 3.4(b), P’)= A{ J~,‘z). Hence, since

fn(AIJ’l!:))Efn(P’.Qi) and P’.YQi, QI I= A(yjzj. So, again by Lemma 3.4(b),

QI (~/,t~i I= A. Similarly, Qi [Z/J’) I= A implies P’ (Z/J). I= A. This completes the proof of

the Claim. 1‘

From the Claim and the fact that for each i there is z such that not

P'(z/J') .yQi ;-_/J), it follows that for each i there is Zion such that not

P’(zijyj YQi(zii’y), For each i, take B, with fn(B;)sfn [P’(z,/y), Qi(zi/y)),

P’(=ji.l’) /= Bi and Qij=il!.1.) I# Bi. Set A;rB;(y/zi). for each i, and

A=(.x(J))~~~[J~=~~]A~. Note that fn(A)sfn(P,Q). Moreover, Pj= A since, for all

I, P’(ziy) + Ai[:=zi] Ai (Z/J,). But Q I# A since, for each i, Qi {ii/ll) I+

[zi = =i] Ai (zi!y 1. Hence, not P .‘Y Q, a contradiction.

Hence, ,Y is a late bisimulation: so. = Y ,, G .V G LL. i7

Proof of Theorem 3.7. Recall the characterization of LF. in the early scheme, Lemma

2.9. Using this characterization. the proof is similar in structure, and in much detail, to

that of Theorem 3.6, but is more straightforward due to the simpler clause for

free-input actions. These arc treated exactly as bound-output actions.

To show that GE G A. N, .#. N. we show, by an induction similar to that in the proof

of Theorem 3.6, that for all A in .ti&.//‘, if P LEQ then P + A iff Q /= A. For the

converse, we use the fact that .P characterizes L, and the relationships between the

modalities and matching in Lemma 3.5. fl

Proof of Lemma 3.8. To see that P =iy Q, we first note, by induction on A in &QY,

that for all substitutions c, 0 I= A iff 0)= Au. Then we show, again by induction, that

for A in 8Y’, P (= A iff Q I= A. We consider only the case A = (.x(JJ))~A’. Clearly, if

P + A then Q /= A. If Q + A but P I+ A then, amongst other things, it must be the case

that [J-=z]r I= A’, so 0 I= A’. but, for some M’, 0 I# A’ (tv/yj, contradicting the above

observation. The case A E (.x(J,))~A’ uses a similar argument. II

Modal loyicsfor mobile processes 171

Proof of Lemma 3.10. The argument is somewhat similar to that in the proof of

Lemma 3.8. Recall that, for all A in &I6725 and all substitutions (T, 0 + A iff 0 + Aa.

Similarly, we show, by induction on A in g!bY, that T I= A iff r I= ACJ. Then we prove

by induction on A in 999, that PI= A iff Q I= A. Suppose A~(x(y))~.4’. Let

P’E [y=z]z + [y= w]t and Q’c [y=z]t. Using the properties of 0 and T stated

above, it suffices to show by case analyses that for all v, P’{v/y} I= A’{v/y} iff for all v,

Q’{o/y} k A’{o/y}. The reader may care to check the details. The case A = (x(y))A’ is

similar. 0

Proof of Lemma 3.13. (a) Follows from Lemma 3.5(b) and (c). (b) and (c) then follow

from (a) and Lemma 3.5(a). Finally, (d) is proved by a trivial induction. 0

References

[l] M. Hennessy, AIyehraic Theory of Processes (MIT Press, Cambridge, MA 1988).

[Z] M. Hennessy and R. Milner, Algebraic Laws for non-determinism and concurrency, J. ACM 32 (1985)

137-161.

[3] C.A.R. Hoare, Communicating Sequential Processes (Prentice-Hall, Englewood Cliffs, NJ, 1985).

147 R. Milner, A Calculus of Communicariny Systems, Lecture Notes in Computer Science, Vol. 92

(Springer, Berlin, 1980).

[S] R. Milner, Communication and Concurrency (Prentice-Hall, Englewood Cliffs, NJ, 1989).

[6] R. Milner, J. Parrow and D. Walker, A calculus of mobile processes, Part I, Inform. and Comput. 100

(1992) 140.

[7] R. Milner, J. Parrow and D. Walker, A calculus of mobile processes, Part II, Inform. and Comput. 100

(1992) 41-77.

[8] D.M.R. Park, Concurrency and Automata on Infinite Sequences, Lecture Notes in Computer Science,
Vol. 104 (Springer, Berlin, 1980).

