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In process algebras, bisimulation equivalence is typically defined directly in terms of the operational 

rules of action; it also has an alternative characterization in terms of a simple modal logic (sometimes 

called Hennessy-Milner logic). This paper first defines two forms of bisimulation equivalence for the 

n-calculus, a process algebra which allows dynamic reconfiguration among processes; it then 

explores a family of possible logics, with different modal operators. It is proven that two of these 

logics characterize the two bisimulation equivalences. Also, the relative expressive power of all the 

logics is exhibited as a lattice. The results are applicable to most value-passing process algebras. 

1. Introduction 

This paper presents a logical characterization of process equivalences in the 

x-calculus [6], a process algebra in which processes may change their configuration 

dynamically. In this introduction we place the results in context. First we review the 

corresponding results for process calculi which do not allow this dynamic reconfigura- 

tion. Then we give plausible reasons for introducing modalities and an equality 
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predicate into the logic, in order to extend these results to the x-calculus. In the later 

sections, we prove that these new connectives do indeed provide the characterization. 

For a typical process algebra without mobility, the equivalence relation of strong 

bisimilarity [S] can be characterized by a modal process logic, sometimes called 

Hennessy--Milner logic [2]. To be specific, let 9’ consist simply of the processes 

P given by 

P ::= a.P / 0 / P+P / c. 

where CI ranges over uctions, and C over process constunts. We assume that for each 

C there is a d@niny c~quatiotz C 2’ PC. (Usually, there will also be parallel composi- 

tion and other operators, but we do not need them for this discussion.) We also 

assume that a labelled transition relation 3 is defined over 9 in the usual way. Then 

strong hisitniluritJ> is the largest symmetric relation - over :‘p for which, whenever 

P-Q and PL P’. there exists Q’ such that Q 5 Q’ and P’ - Q’. 

The process logic ./pY has formulae A given by 

A ::= (r)A 1 /j Ai / 1 A, 
it/ 

where I stands for any denumerable set. (The smallest formula is the empty conjunc- 

tion, written true.) ./PY is given a meaning by defining the satkfuction relation 

)= between processes and formulae; in particular, one defines 

P )= (cx) A if, for some P’, P r, P’ and P’ + A. 

It may be shown that two processes are strongly bisimilar iff they satisfy the same 

formulae of 99”; this is the sense in which YY characterizes -. Under mild 

restrictions, such as when every PC in a defining equation is guarded (i.e. contains no 

process constant except within a term of the form r. P), only finite conjunctions in 

99 are needed. 

Before considering what should be included in a logic to characterize equivalences 

over the x-calculus, we must discuss an issue about equivalence which arises in any 

m/w-passiny calculus, of which the n-calculus is a rather special case. In general, in 

any value-passing calculus, an action Y may “carry a value”. By this, we mean that 

there are inpur actions u(x), where a is a link name and x a value variable, and x is 

bound in u(.u).P; there are also output actions de, where e is an expression denoting 

a value. Such calculi have been studied in depth [3, 11, and many different equiva- 

lences have been defined over them. The choice of equivalence is complicated by the 

passing of values. Consider the following two processes: 

R=u(.u).(if r=3 then P else Q)+u(.x).O, 
(1) 

S=rl(s).(if x=3 then P)+u(x).(if .u#3 then Q). 
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We understand the one-armed conditional process “if b then P” to be equivalent to 0 if 

b is false. (The full conditional “if b then P else Q” can be expressed as the sum of two 

one-armed conditionals with conditions b and 1 b.) Now, is R equivalent to S? Both 

answers are possible. 

They are strongly bisimilar in Milner [S], where the calculus with value-passing is 

reduced by translation to a value-free calculus - but with infinite sums. In fact, 

R reduces to 

c a,.&+ c a,.O, (2) 
HEW ,lEW 

where R, = P, and R, = Q for II # 3. (We assume, for simplicity, that P and Q do not 

involve value-passing, so do not contain the variable x.) Correspondingly, S reduces 

to 

1 a,.P,+ c a,.Q,,, (3) 
f7EW ” E (0 

where P3 = P and Q3 = 0, while P, = 0 and Qn = Q for n # 3; this sum is equivalent to (2). 

But there is a different view, according to which R and S are not equivalent’. In this 

view, we do not consider R capable of an infinity of actions a,, one for each natural 

number, but essentially only two actions, one of which is 

R u(x) ifx=3thenPelseQ, 

yielding a family of processes indexed by the variable x. For another process to be 
[l(X) 

equivalent to R, it must yield under - an indexed family which is elementwise 

equivalent to the above family, i.e. equivalent for each value of x. But S does not have 

this property; it yields two indexed families, both different, namely, 

S - ifx=3 then P, 

(5) 

S 2 if x#3 then Q. 

These two equivalences can both be expressed as forms of bisimilarity. For the 

n-calculus, we concentrated on the second - finer ~ equivalence in our original paper 

[7], but also commented on the coarser equivalence. Both seem reasonable. In this 

paper we shall show that both bisimilarities can be elegantly characterized by 

appropriate process logics. Actually, we shall examine a family of 25 logics, defined by 

including any combination of five logical connectives - mostly modalities - over and 

above a fixed set of connectives. It turns out that these yield eleven equivalences 

(several logics being equipotent), including our two bisimilarities. We are not yet 

’ This view amounts to equating processes iff they denote identical communication frees, as defined in 
Milner [J, Chapter 61. The view was not pursued thoroughly there. 



interested in most of these equivalences per se; but the lattice which they form gives 

insight into the power of the various logical connectives. 

Now, what logical connectives should we expect in a logic for the n-calculus? Here, 

value expressions and value variables are themselves nothing but link names. All 

computation is done with names z, !; . ; thus, input and output actions take the form 

X(J) and Sy. It is natural to include some modality for each form of action; in 

particular, a modal formula 

for input actions, where J’ is bound. In fact, to characterize the finer of our two 

bisimilarities, we shall define a modality (.~(y))~ such that 

PI= (.Y(J’))~,~ iff for some P’, Pz P’ and for all Z, P’{z/yl +A{z/y).. 

The superscript L here stands for “late”. It refers to the lateness of instantiation of the 

variable y; P’ is chosen ,fir.st, and then for all instances of y it must satisfy the 

corresponding instantiation of A. The coarser equivalence will be reflected by a 

modality with superscript E for “early”; this refers to the fact that the instance z of y is 

chosen first, and then a different P’ may be chosen for each Z. 

It may be expected that, once we have included in our logic a suitable modality for 

each form of action, our characterization will be achieved. But this is not so, due to the 

special r61e of names in the rc-calculus. 

At first sight, the n-calculus may appear to be just a degenerate form of value- 

passing calculus, which can then be translated (as above) to a value-free calculus and 

hence characterized essentially by the logic 22, for suitable actions 1. But this 

neglects a crucial ingredient of Tc-calculus, namely, the process form (x)P, known as 

restriction. This combinator gives scopr to names ~ in other words, it allows the 

creation of priwte names; it is responsible for much of the power of the 7c-calculus, and 

prevents us from treating names as values in the normal way. 

Thus the algebra of names cannot be “translated away” from the 7c-calculus, in 

the same way that the algebra of (say) integers can be translated away from CCS. 

But what is this algebra of names‘? It is almost empty! There are no constant names, 

and no operators over names; this explains why only the value expressions are 

names themselves (as variables). But what of boolean expressions, and the conditional 

form “if h then P”? Well, names have no properties except identity; thus, the only 

predicate over names is equality ~ and, indeed, the n-calculus contains the match 

expression’ 

[r=y]P, 

2 Hitherto, we have not given much consideration to the negative form [.x#y]P; it requires further 

investigation. 
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which is another way of writing “if x = y then P”. It is therefore reasonable to expect 

that, by including an equality predicate in the form of a match formula 

Cx=ylA 

in our logics, we succeed in characterizing the bisimilarities. This indeed turns out to 

be the case. Moreover, the match formula is strictly necessary; furthermore ~ which is 

not obvious ~ it is needed in the logic even if the match expression is omitted from the 

calculus. 

In the next section we present the r-calculus and its operational semantics; the 

reader therefore need not refer to previous papers, although familiarity with the 

z-calculus will certainly help; we also define the two bisimilarities. In Section 3 we 

define all the logical connectives we wish to consider, and derive a complete picture for 

the relative power of their different combinations. 

2. Mobile processes 

In this section we will recapitulate the syntax of agents from [7] and give agents two 

kinds of transitional semantics, corresponding to late and early instantiation of input 

parameters. Based on these we will define late and early bisimulation equivalences. 

2.1. Syntax 

Assume an infinite set N of names and let x, y, z, w, U, u range over names. We also 

assume a set of agent identijers ranged over by C, where each agent identifier C has 

a nonnegative arity r(C). 

Definition 2.1. The set of agents is defined as follows (we use P, Q, R to range over 

agents): 

P::= 0 (inaction) 

I Xy.P (output prefix) 

I J4YJ.P (input prefix) 

I z.P (silent prefix) 

I (Y)P (restriction) 

I Cx=ylP (match) 

I PIQ (composition) 

I P+Q (summation) 

I C(Y,, ...> Y,(C)) (defined agent). 

In each of x(y).P and (y)P the occurrence of y in parentheses is a binding occurrence 

whose scope is P. We write fn(P) for the set of names occurring free in P. If 

2=x,, . . . . x, are distinct and jj= y,, . . . . y, then P { j/Z} is the result of simultaneously 
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substituting yi for all free occurrences of .xi (i = 1, , n) with change of bound names if 

necessary. Each agent constant C has a unique d&zing equation of the form 

clef 
C(X 1, . . . . S,(C)) = P, 

where the xi are distinct and fn(P) c .(.Y, , . . , xrccj ). 

The order of precedence among the operators is the order listed in Definition 2.1. 

For a description of the intended interpretation of agents, see 161. In examples, we will 

frequently omit a trailing .O; for example, r.O+%~‘.0 will be abbreviated T +Xy. 

Also we sometimes write fn (P, Q, . . . x, ~1, . . . ) as an abbreviation for fn(P)ufn(Q)u 

. ..u{r.y )... 1.. 

2.2. Trumitiom 

A trmsition is of the form 

P: Q. 

Intuitively, this transition means that P can evolve into Q and, in doing so perform the 

~fion a(. In our calculus there will be five kinds of action r: The silent action 

T corresponds to an internal computation, and the,fiee-output action Xy and,free-input 

action .UJ~ correspond to the transmission and reception of the free name y along x. 

The hound-input action u(y) means that any name can be received along x, and (y) 

designates the places where the received name will go. The hound-output X(y) action 

means that a local name designated by ~1 is exported along X. A summary of the 

actions, their,f+ee HLI~I~S fn(a) and hourzd nones bn(cc) can be found in Table 1. We write 

n(x) for fn(cc)ubn(r). 

The silent and free actions are familiar from CCS. In particular, a free-input action 

corresponds to an early instantiation of an input parameter, since it carries both the 

port name and received value. In contrast, a bound-input action carries only a port 

name, implying that the bound parameter will be instantiated at a later stage. The 

Table I 
The actions. 
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bound-output actions are used to infer the so-called scope extrusions; their para- 

meters will never be instantiated to free names so the issue of “late vs. early” does not 

arise. 

In order to define the transitions between agents we first introduce the notions of 

structural congruence and variant. 

Definition 2.2. The structural congruence = on agents is the least congruence satisfy- 

ing the following clauses: 

(1) If P and Q differ only in the choice of bound names, i.e. they are alpha- 

equivalent in the standard sense, then P E Q, 

(2) plQ=Qlp> 
(3) P+Q-Q+P, 
(4) [x=x]PsP, 

,(5) If C(.f)E'P then C(j)sP{j/f}. 

A variant of the transition P 5 Q is a transition which differs only in that P and 

Q have been replaced by structurally congruent agents, and a has been alpha- 

converted, where a name bound in CI includes Q in its scope. 

As an example, the following transitions are variants of each other: 

X(Y).& 
-a) _ 

- YZ, 

X(Y).YZ 
x(u) _ 

- uz, 

.x0’) [x = x] x( y) . yz - yz, 

s(u) _ [x = x] x( y) jz - uz. 

The second transition differs from the first in that the name y has been alpha- 

converted to u in the action and in the agent after the arrow. The third transition 

differs from the first in that x(y). jz has been replaced by a structurally congruent 

agent, and the fourth transition combines these changes. 

Below, we will give two sets of rules for inferring transitions, one set corresponding 

to early and one corresponding to late instantiation. In each rule, the transition in the 

conclusion stands for all variants of the transition. We begin with the set of rules in [7] 

which can now be rendered as follows. 

Definition 2.3. The set of rules LATE consists of the following: 

P:Pp' 
ACT: SUM: 

c?.P>P P+Q:PP' 
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P>Pp’ 
PAR: , bn(r)nfn(Q)=@ 

PlQ:f'lQ 

pzp’ QwlQ, pw9p, Qe)Q, 

L-COM: CLOSE: 

W2hQ'b/4 PlQhW"lQ') 

PLPp’ 
.Y I 

PAP’ 
RES: 

(y)P:(y)P” 

.dW OPEN: 

(y)P?!!!+ p” 
y#.X 

We write P 2 L Q to mean that the transition P $ Q can be inferred from LATE. 

A reader familiar with the rules in [7] will note that LATE is more concise, 

yet it generates the same transitions. The use of variants and structural congru- 

ence makes it possible to formulate the rules without explicit alpha-conversions 

in the rules generating bound actions, and special rules for identifiers and matching 

are unnecessary because of clauses 4 and 5 in Definition 2.2. For example, we can 

infer 

.l(U) _ 
[x=x]x(y).Jz-uz 

\()‘I _ 
since this transition is a variant of x(y)._& - J’Z, which is an instance of ACT. This 

effect of “factoring” all issues related to structural congruence from the rules of action 

can also be obtained by a special structural rule 

U(U) 
For example, the transition above can be inferred with this rule since x(u). Uz - Uz is 

an instance of ACT and [s = s] .u( y).jz c x(u). Uz. 

In LATE the name bound by an input prefix form x(y). P becomes instantiated 

in L-COM when a communication between two agents is inferred. Note that no 

rule in LATE generates a free-input action. In contrast, with an rurly-instantiarion 

scheme, the bound name J’ is instantiated when inferring an input transition from 

x(y).P. 
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Definition 2.4. The set of rules EARLY is obtained from LATE by replacing the rule L-COM 

with the following two rules: 

_ pzp’ QzQQ’ 

E-INPUT: E-COM: 

x(y).P~Pp(w/y} PlQhjQ’ 

We write P & Q to mean that the transition P -% Q can be inferred from EARLY. 

The new rule E-INPUT admits an instantiation to any name w, so there will always 

be a suitable free-input action available as a premise in E-COM. Note that the 

rule ACT remains in EARLY, so an input prefix may still generate bound-input 

actions - these are needed with the rules OPEN and CLOSE to achieve scope extrusions 

such as 

x(Y).PI(Y)~Y.Q L,E (YWIQ). 

The following example highlights the different operations of LATE and EARLY. 

Assume that we want to infer a communication in the agent 

(We write “P(y)” to signify that P depends on y, and similarly for Q.) Using LATE, 

we need a new name z in the PAR rule to avoid conflicts with the free names in 

Q(Y, u): 

x(y).P(y) -=J_ P(z) _ 

x(Y).P(Y)IQ(Y,~ ~LWIQ(Y.~ 2U.R %R 

Using EARLY, the same communication can be inferred: 

X(Y).P(Y) As P(u) _ 

~(Y).P(Y)IQ(Y, 4 =EP(~)IQ(y,~) C.Rz,R 
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The following lemma shows how f, and 3, are related. 

Lemma 2.5. 

(4) PZE p’ $/” jp”, b’: p -xc”) -L P”, with P’= P”{y/w), 

(5) PJ+ P’ gP:‘L P’. 

Proof. A standard induction over LATE and EARLY. The proof of (2) uses (l), and the 

proof of (5) uses all of (l))(4). 

In view of this lemma, it will not be necessary to distinguish between +E and -tL, 

and we will simply write -+ for +E from now on. 

2.3. Lute and curly hisimulutions 

We first recall the definition of bisimulation in [7]. 

Definition 2.6. A binary relation .Y on agents is a late simulation if PY’Q implies that 

(1) if P: P’ and x is 7, Xz or X(y) with y$fn(P, Q), then for some Q’, Q: Q’ and 

P’cYQ’; 

(2) if P-+ ‘(I‘) P’ and y$fn(P, Q), then for some Q’, Qz Q’ and for all w, 

P’{w~/y} sTfQ’(~/y}. 

The relation .V is a lute hisimulation if both ,Y and 9-l are late simulations. 

We define late bisimilurity P LL Q to mean that P 9 Q for some late bisimula- 

tion .Y’. 

Note that late simulations do not require anything of free-input actions. Instead, 

there is a strong requirement on bound-input actions: the resulting agents P’ and Q’ 

must continue to simulate for all instances w of the bound name. The term “late” refers 

to the fact that these ~2 are introduced after the simulating derivative Q’ has been 

chosen. The algebraic theory of LL is explored in [7]. 

The natural bisimulation equivalence for early instantiation will use free- 

input actions rather than the extra requirement (clause 2) on bound-input 

actions: 
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Definition 2.7. A binary relation .Y on agents is an early simulation if PYQ implies 

that 

if PAP’ and tl is any action with bn(x)nfn(P,Q)=& then for some Q’, 

Q$Q and P’,YQ’. 

The relation Y is an early bisimulation if both Y and .Y - ’ are early simulations. We 

define early bisimilarity P AE Q to mean that P.YQ for some early bisimulation .Y. 

So, in an early simulation different instances of an input transition (i.e. different free 

inputs) may be simulated by different Q’. Late and early bisimilarities represent the 

two different views of equivalence presented in the introduction. To see that these two 

equivalences are different consider the following example: 

P=x(u).s+x(u), 

Q=P+.x(u).[u=z]T. 

Then P &E Q, but P 4 ,_ Q. The reason is the transition 

Q- “‘) [U=Z]T. (6) 

P has no transition which simulates (6) for all instantiations of U. However, for all 

free-input actions there is a simulating transition: for z it is 

xz 
P-T 

(since ([u = z] T) {Z/U} = T) and for all other names it is 

(since ([u = z] T) AE 0 for all u # 2). 

We will now support our claim from [7] that NE can be obtained by commuting the 

quantifiers in clause 2 of Definition 2.6. 

Definition 2.8. A binary relation 9’ on agents is an alternative simulation if P,YQ 

implies that 

(1) if P: P’ and M is T, Xz or X(y) with y$fn(P, Q), then for some Q’, Q 5 Q’ and 

P’YQ’; 

(2) if PZ P’ and y$fn(P, Q), then for all w, there is Q’ such that Q 2 Q’ and 

P’lwl~I.YQ’jwl~). 
The relation 9’ is an alternative bisimulation if both ,Y and 9-l are altern- 

ative simulations. We define P -‘Q t o mean that P.YQ for some alternative bi- 

simulation 9. 
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It is obvious that every late simulation is also an alternative simulation, so Ai_ E A’. 

Furthermore, we have the following lemma. 

Lemma 2.9. A’= LE. 

Proof. From Lemma 2.5(4) it follows that the following two requirements on any 

relation 9 are equivalent: 

VP, Q, x, y, P’: if P’l-, P’ then 3Q’: Q 3 Q’ and P’YQ’. 

VP, Q, x, MI, P”: if P - Y(M.’ PU then vyjQ”: Q 2 Q” and 

Hence, Y is an alternative simulation iff it is an early simulation. 

Thus, LE is strictly weaker than A,_. We will not explore the theory of AE here. Just 

like LvL it is an equivalence relation and is preserved by all operators except input 

prefix, and if P {w/y) AE Q{w/yj for all MI then x(y).P LVE.x(y).Q. 

3. Modal logics 

In this section we establish characterizations of late and early bisimilarities in terms 

of properties expressible in various modal logics. In addition we compare in detail the 

distinguishing power of a number of logics. We begin by introducing a logic en- 

compassing all those we consider and establishing some properties of its satisfaction 

relation. 

3.1. Connectiues 

Definition 3.1. The logic .c3 is a subset, specified below, of the set of formulae given by 

A ::= /jiErAi (1 a denumerable set) 

ITA 
1 [x=~l]A 

I (&)A (a=?, xy, xy, X(y), x(y)) 

I <JOY) >LA 
I (.x(y) >” A. 

In each of (T(y))A, (.x(y)) A, (x(~))~A and (x(~))~A, the occurrence of y in 

parentheses is a binding occurrence whose scope is A. The set of names occurring free 

in A is written fn(A). The logic .d consists of those formulae A with fn(A) finite. 
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In Definition 3.3 we shall introduce a satisfaction relation + between agents and 

formulae of d. Although the definition will be a little more complex, the relation will 

have the following simple characterization. 

Proposition 3.2. For all agents P, 

pI= /\isrAi ifSfOr all iEl, P(= Ai, 

PI=1A if not PI= A, 

P(= [x=y]A ifs $x=y then P(= A, 

P(= (a)A iff for some P’, P : P’ and P’ /= A , for a = T, Xy, XY 

and, assuming that the name y is not free in P, 

PI= (Z(y))A ifl,.for some P’, P- “‘) P’ and P’ ,= A, 

PI= <x(y))A $f for some P’, P----t ‘(‘) P’ and for some z, P’{z/y} + A{z/y}, 

P(= (x(y))!-A [flfSfor some P’, P- ‘(‘) P’ andfor all z, P’{z/y} I= A{z/y), 

PJ= (x(~))~A iff for a/l z there is P’ such that Pz P’ and 

P’{z/Y 1 I= A {Z/Y}. 

The assumption on y is no constraint since Lemma 3.4(a) asserts that alpha- 

convertible formulae are logically equivalent. 

Before embarking on the formal definitions, we will explain the intuition behind the 

connectives. Conjunction, negation, and the silent, output and free-input modalities 

work as in the logic 92 described in the Introduction. We will write true for the 

empty conjunction and false for 1 true. Note that an atomic equality predicate on 

names can be defined in terms of the matching connective [x= y]; the formula 

7 [x = y] false 

holds for P precisely when x = y, regardless of P. Conversely, if an atomic equality 

predicate (x = y) on names were taken as primitive, [x = y] A could be derived as 

-i((x=y)Al A). 

There are three kinds of bound-irmJ\t modality. They all require an agent to have 

a bound-input transition of type P + P’ but they differ in the requirements on P’. 

The basic bound-input modality (x(y)) A merely requires that P’ satisfies A for some 

instantiation of the parameter y. The late modality (x(y))” is stronger; it requires P’ 

to satisfy A for all such instantiations. Finally, the early modality (~(y))~ is weaker 
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than the late modality; it allows difSeerent derivatives P’ to satisfy A for the different 

instantiations of y. As an example, let 

A = (.u(y))i (7) true, 

~I~=(x(y))~i (r)true, 

~I~=(x(y))~i (7)true. 

First put 

Pi =x(y).[y=u]r. 

It then holds that 

PI I= A. 

The derivative P’ is here [y = u] 7 and there are instantiations of y, namely all but u, 

where P’ has no z-transition and, thus, satisfies l(7) true. But for y = u there is such 

a transition: hence, Pi satisfies neither A, nor A,_. Next assume that u # u and consider 

Pz=x(y).[y=u]7+x(y).[y=o]7. 

Here there are two possible derivatives under the bound-input action x(y). The 

derivative corresponding to the left branch lacks a 7 transition for y # u, while the right 

branch lacks a 7 transition for y fu. It follows that for any instantiation of y we can 

choose a derivative lacking a r; thus, 

P2 I= A,. 

Of course, P2 also satisfies A, but it does not satisfy AL since no single derivative lacks 

a 7 for all instantiations of y. Finally, consider 

p3 =x(y). 

Then P3 satisfies all of A, A, and A,. 

The dual operators [CC], [x(y)IL and [x(y)lE of (a), (x(Y))~ and (~(y)>~ are 

defined in the standard way: [a] A=1 (a)-~ A, etc. We note, in particular, the 

following properties: 

P k [x(y)] A iff for all P’, if P + u(r) P’ then for all z, P’{z/y} /= A{z/y}, 

P )= [x(y)]” A iff for all P’, if P- ‘(‘) P’ then for some z, P’ (z/y} I= A {z/y}, 

PI= [x(y)lEA iff there is z such that for all P’, if P% P’ then 

P’(z/Y> I= A (Z/Y}. 

So [ .] signifies universal quantification over derivatives, whereas ( .) implies existen- 

tial quantification. Note that with the three bound-input modalities and their duals all 
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combinations of existential/universal quantifications of derivatives and parameter 

instantiation are covered. 

We now return to the formal definition of the satisfaction relation. 

Definition 3.3. The satisfaction relation between agents and formulae of .02 is given by 

PI= ~\ic,Ai if for all iE1, PI= Ai, 

PklA if not P j= A, 

P+ [x=y]A if if x=y then PI= A, 

PI= (cx)A if for some P’, P 2 P’ and P’ k A, for CI = 7, .Cy, xy, 

P+ (x(y)).4 if for some P’ and w$fn(A)-{y}, P ZP’ and 

P’I= A{wly}, 

S( M’) 
PI= (x(y))A if for some P’ and w, Pd P’ and for some z, 

P’{zlw} I= A {Z/Y)3 

P I= (x(y))” A if for some P’ and w, P 2 P’ and for all z, 

P’(zlw) I= A {Z/Y ), 

P + (x(~))~A if for all z there are P’ and w such that P= P’ and 

P’izlw) I= A {Z/Y 1. 

Recall that by Lemma 2.4 we may combine the late and early schemes in giving and 

working with this definition. Before commenting on it in detail we note the following 

facts. We write = for alpha-equivalence of formulae. 

Lemma 3.4. (a) Zf P I= A and A = B then P + B. 

(b) IfP I= A and u$fn(P, A) then P(u/u> + A (U/U}. 

Proof. The two assertions are proved together by showing, by induction on A that if 

P(= A, A-B and u#fn(P, A) then P{u/u} + B{u/u). The proof, although not unduly 

difficult, contains some points of technical interest and requires careful attention to 

detail. It is given in the appendix. 0 

The final four clauses in the definition of satisfaction are complicated by the 

inclusion of the name w. This is required to define Pk A in the case that a name 

occurs bound in A and free in P. For suppose the clause for the bound output 

modality were simplified to that given in Proposition 3.2. If P=(w)Xw. y(z) and 
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,4=(X(y)) true then according to Definition 3.3, PI= A; but under the simplified 

definition, P* A. A similar difficulty arises with the other three clauses. 

However, by Lemma 3.4(a), when considering an assertion P + A, given any name 

x bound in A, we may always assume that x is not free in P. This assumption, which 

we make from now on, leads to a simple proof of the more elegant characterization 

given above in Proposition 3.2. This characterization helps to make clear the signihc- 

ant points in the definition. Note in particular that the clause for (X(y)) may be 

subsumed under that for (CC) for x = 5, Xy, xy. The need for the condition on w in the 

clause for (X(y) ) can be seen by considering P = (y)Xy and A 3 (X( y))-~ [ y = w] false. 

Under Definition 3.3, P 6 A. If the condition on w were removed, we would have 

P/= A, but the bound output clause of Proposition 3.2 would no longer hold. 

The following useful lemma describes some relationships among the modalities. 

Lemma 3.5. (a) Suppose w$fn(A, y). Then 

P+ (xy)A iff PI= (X(W))L[W=y]A 

ifs P )= (x(w))E[w =y] A 

{fPp(= (_~(W))l[W=y]-lA, 

(b) PI= (x(~))~A ifSfor all z, P + (xz)A(z/y}, 

(c) P (= (x(y)) A iffor some 2, P + (xz)A {z/y). 

Proof. Straightforward from the definitions. See the appendix. 0 

3.2. Characterizations of equivalences 

Suppose X is a sublogic of d. Then Y(P)= {AEX 1 P I= A}. We write =.X for the 

equivalence relation determined by X: P =.I Q iff X(P) = X(Q). We say X charac- 
terizes a relation W if =,I =W. 

A number of sublogics of &’ will be considered. They share a common basis do 

consisting of the formulae of .c4 built from conjunction, negation and the modalities 

(T), (5~) and (X(y)). The sublogics of .01 extending do are named by indicating 

which of <x(y)), (~(y))~, (xy), (x(Y))~ and [x=y] are added to do, using the 

letters ?8;, 8, 9, 9 and _&, respectively. For instance, _Y’_X is the extension of ~9’~ 

obtained by adding the late bound-input modality (x(Y))~ and matching [x= y], 

while 9 is obtained by adding the free-input modality (xy) alone. 

We now give the main characterizations of AL and LE. 

Theorem 3.6. YA’ characterizes AL 

Proof. The proof follows a standard pattern but contains some novelty. First we show 

that LL E =y,u by proving by induction on A in .YC&’ that if P LL Q then P k A iff 
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Q I= A. The argument for the converse amounts to a proof that if P + r Q then there is 

A E P&Z(P) - _.Y’&? (Q), with fn(A) c fn(P, Q). The principal point of interest is the use 

of a combination of the late bound-input modality (x(Y))~ and matching. The proof 

is given in the appendix. 0 

We need infinite conjunction only if the transition system is not image-finite (up 

to z). In particular, if all recursive definitions are guarded then finite conjunction 

suffices. Recalling the quantifier switch in the semantic clauses for (x(Y))~ and 

(~(y))~, in view of the preceding theorem it may be expected that 8.4 characterizes 

LE. In fact, we have the following theorem. 

Theorem 3.7. Each of &A?‘, F and 39~2 characterizes LE. 

Proof. By utilizing the characterization of LE in the early scheme, Lemma 2.9, a proof 

that 9 characterizes AE is easily obtained. That d&V and &?A also characterize NE 

then follows using Lemma 3.5. For details, see the appendix. 0 

We have seen that B characterizes LE and that the free-input modality corres- 

ponds to combinations of the bound-input modalities and matching. A natural 

question concerns the power of the bound-input modalities in the absence of match- 

ing. We give a sequence of examples which establish the relationships among the 

various logics. These are summarized in Fig. 1. 

Lemma 3.8. P =ey Q but P ZJ Q, where 

P = X(Y)> 

Proof. Note that if A = [x(y)]1 (t) true then P b A but Q & A. To see that P =By Q, 

we prove by induction on A in 8-Y that P I= A iff Q + A. See the appendix. 0 

Lemma 3.9. P NE Q but P Zv Q, where 

P=x(Y)+x(Y).(cy=zl7+cY=wl7), 

Q=x(y).[y=z]z+x(y).[y=w]r. 

Proof. Clearly, P LE Q. To see that P f9 Q, simply note that if A = (x(~))~i (7) true 

then P + A but Q E A. 0 

Lemma 3.10. P=,, Q but P Zg. Q, where 

P=x(y).[y=z]7+x(y).([y=zl7+[Y=wl7), 

Q=x(y).[y=z]r+x(y).[y=w]7. 
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Proof. To see that P fr Q, note that if A 3 (.x(y))“i (z) true then Q /= A but P I# A. 

To see that P zdi/’ Q, we prove by induction on A in 989 that P k A iff Q I= A. See the 

appendix. 0 

Lemma 3.11. P = ?Ar y, Q hut P & E Q, where 

P=s(l‘).[4‘=z]t, 

Q=x(y).[y=w]~. 

Proof. Clearly, P qt Q. To see that P =d,5y, Q, we prove by induction on A in 9M’P’ 

that PI= A iff Q I= A. The proof is similar to that of Lemma 3.10. We omit the 

details. 0 

Lemma 3.12. P = F y Q hut P + ,_ Q, where 

P=x(y)+.u(y).r, 

Proof. Clearly, P + ,_ Q. To see that P = FY’ Q, we prove by induction on A in F-1% 

that PI= A iff Q I= A. The proof is similar to that of Lemma 3.10. We omit the 

details. 3 

To complete the picture, we note the following. Let us say that two logics .Y and 

,X are equipotent if = 7- = = * . 

Lemma 3.13. Let Z he trn~ comhinution of .‘A, 8, <P, 9, c N. Then in an obvious notation 

(a) .9 + Z, .d.“i + Z and A.9 + Z NTC’ equipotent. 

(b) ~4~ N + Z, 6. N + Z and 9;. N + Z are equipotent. 

(c) Y’, N + Z and .9.Yz-‘. L/ + Z are equipotent. 

(d) Finally, /I und do me equipotent. 

Proof. See the appendix. G 

We summarize the relationships among the logics established by the preceding 

results in the following theorem. 

Theorem 3.14. In Fig. 1 each point represents a distinct relation. A line between two 

relations signifies inclusion, while the absence of a line sign$es that they are incompar- 

able. By “etc.” we meon uny other combination equipotent by Lemma 3.13. 

The examples in Lemmas 3.8-3.12 all involve the match expression of the calculus. 

However, its use is in each case inessential. For example, Lemma 3.8 asserts that 
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LL , CM, etc. 

I 
3C, E3C, etc. 

I\ 
UEC &E, EM, 3, UM, etc. 

/l\l 

Fig. 1. 

P =nYJ Q but P #a Q, where P=x(y)and Q=x(y)+x(y).[y=z]r. Alternatively, we 

can take 

P=x(y).(j.z+z.j), 

Q=x(y).(j.z+z.j)+x(y).(jlz). 

Similar modifications can be made to the other examples. 

4. Future work 

The logic we have introduced no doubt has interesting intrinsic properties, which 

we have not begun to study. Here we only wish to mention two questions about its 

relationship with the Ic-calculus which appear to be of immediate interest. 

First, what happens when we introduce the mismatch form 

CXZYIP 

into the calculus? Note that the corresponding mismatch connective 

CXZYIA 

does not add power to our logic since it already has matching and negation. 

Second, considering the input modalities, can we factor out their quantificational 

content? It is attractive to factor (x(Y))~; thus, 

(x(Y)>~A Ef (x)(VyA). 



Now, to express the satisfaction relation, we appear to need also to factor the input 

prefix .x(y) of the calculus; thus, 

In other words, we need to give proper status to (i.-)abstractions, which abstract 

names from processes. This step has considerable interest, since there are other 

independent advantages to be gained from it. 

Appendix 

This section contains the proofs omitted from the main text. Some results from [7, 

Section 31 concerning the transition system are used. 

Proof of Lemma 3.4. We prove the two assertions by showing by induction on A that 

if PI= A, A=B and u$fn(P, A), then P{u/cJ (= B{u/cJ. 

Let c= {U/C). 

The conjunction case is trivial. 

Suppose A =l A’; so, B ~1 B’, with A’ = B’. Since P I& A’, by induction hypothesis 

P I+ B’ and so P I= B. Hence, if u = 1’ the claim holds. Suppose u # 11 so u$fn(Pa, Ba). If 

PO I# BCJ then PCJ + B’a, so by induction hypothesis PoC ’ + B’oa-‘, so PI= B’. 

Then again by induction hypothesis P j= A’, a contradiction. Hence, Pa I= Ba. 

Suppose A E [x=yJ A’; so, BG [_x=y]B’, with A’EB’. If x#y then certainly 

Pa )= BCJ since Bc = [.x0 = JV] B’cr and xo # ya. If x = y then P I= A’ and, by induction 

hypothesis, PO )= B’o; so, again Pa I= Ba. 

Suppose A = (cc) A’, where x = r, .Yy, .x):; so, BE (cx) B’, with A’ = B’. Since P I= A, 

there is P’ such that P: P’ and P’/= A’. Then Paz P’a and, by induction 

hypothesis, P’a + B’cT. Hence, Pa I= Bo since Bo = (ro)B’a. 

Suppose A=(f(y))A’; so Bo-(xo(y’))B’a, where A’{y’/y)=B’ and y’ is fresh. 

Since P I= A, there are P’ and nz$fn (A) ~ { y ) such that P \:I P’ and P’ )= A’(w/y}. 

Choose &$fn(P, A, u). Then P - r(‘“‘) p” e p’ { +>) and, by induction hypothesis, 

PI’ I= B’{w’/y’). Also Pa % P”CJ and again, by induction hypothesis, 

P”o )= B’{ w/y’} CJ. H ence, Pa I= Ba since B’(~!‘/y’la= B’o{w’/y’i. 

Suppose A- (.x(~))~A’; so. Bo- (m(y’))~,~,, ‘CT, where A’ { y’/y > F B’ and y’ is fresh. 

Since P + A, there are P’ and u’ such that P - P’ and, for all z, P’(z/w} /= A’{z/y}. 

Choose \v’$fn(P, A). Then P ““‘) - P” z P’ {d/w) and, by induction hypothesis, for all z, 

P”jz/w’) /= B’(z/y’). (*) 

Now Pa- 
WM.‘) p,,o. 
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Claim. For all z, P”o(z/w’} I= B’a{z/y’}. 

Proof of Claim. If u = u the claim is immediate from (*), so suppose u # u. 

Case 1: z#u,v. Then P”c7{z/w’}-P”{ / z w’ D and B’a(z/y’} = B’{z/y’} CJ. By induc- 1 
tion hypothesis and (*), P”c(z/w’} c~ I= B’{z/y’}o since u$fn(P”{z/w’}, B’{z/y’}). 

Hence again by induction hypothesis, P”jz/w’}a + B'a(z/y' j. 
Case 2: z=u. Now P”a{u/w’)=P”{ / ‘} u w CJ and B’o{u/y’}~B’{o/y’}o. By (*), 

P” {u/w’} I= B’ (u/y’}; so, by induction hypothesis, P”{u/w’)a + B’{u/y’}a since 

u$fn(P”{u/w’}, B’{u/y’}). H ence, by induction hypothesis, P” {u/w’} CJ + B’a { u/y’}. 
Case 3: z=u. Then P”c~{u/w’}~P”{t/w’}~{u/t} and B’~{u/y’)~B’{t/y’}a{u/t} 

where t is fresh. By ( *) and the induction hypothesis applied twice, 

P”a { u/w’} I= B’o( u/y’}. 
This completes the proof of the Claim and, hence, of the case (x(Y))~. The cases 

A = (x(Y))~.~’ and A = (x(y)) A’ involve similar arguments. 17 

Proof of Lemma 3.5. First note that if w # y then 

Pk (Xw)LCW=YIA 

iff P+ (~(w))~[w=y]A 

iff P+ (x(w))7 [w=y]iA 

iff for some P’, P __f X(“‘) P’ and P' { y/w} I= A {y/w}. 

Now suppose, w#fn(A, y). If P I= (xy)A then for some P’, Pz P’ and P’ I= A. Then 
X(W) 

P - P” with P”{ y/w) = P’. Since P”{ y/w} I= A { y/w} s A it follows by the above 

that P (= (x(w))~ [w = y] A, etc. Conversely, if P --+ X(M) P” and P”{ y/w} )= A (y/w} then 

P~Pp’=P”{y/w} and P’b A; so, P+ (xy)A. 0 

Proof of Theorem 3.6. We first show by induction on structure that for all A in L?Jz~‘, if 

P LL Q then P I= A iff Q )= A. Suppose P + A. The conjunction and negation cases are 

trivial. 

Suppose A E [x = y] A’. If x # y then certainly Q )= A. Otherwise, P I= A’ and, by 

induction hypothesis, Q I= A’ and, so, Q + A. 

Suppose A E (LX) A’, where c1= z, Xy or X(z) where z$fn(P, Q). Then there is P’ such that 

P : P’ and P’ + A’. Since PA, Q, there is Q’ such that Q : Q’ and P ’ AL Q’. By 

induction hypothesis, Q’ + A’; so, Q I= A. 

Suppose A E (x(Y))~ A’, where y$n(P, Q). Then there is P’ such that P 2 P’ and 

for all z, P’{z/y} I= A’{z/y}. Since P ALQ, there is Q’ such that Q 2 Q’ and for all z, 

P’{z/y} LL Q’{z/y}. By induction hypothesis, for all z, Q’(z/y} (= A’{z/y}; so, Q + A. 
Hence, LL c,.,. 



For the converse, it suffices to show that ,Y’ is a late bisimulation, where P Y Q iff for 

all A in Y%N, with fn(A)cfn(P, Q), P/= A 8 Q + A. Suppose P.YQ. 

Suppose P L P’, where 3 = r. SJ or X(Z) with -$n(P, Q). Let (Qi)iE, be an enumer- 

ation of (Q’IQ2QQ’), and suppose, that for all i, not P.YQi. Choose (A;) with, for 

each i, AiE~./l’(P’)-_~.N(Qi) and fn(Ai)sfn(P’,Qi). Set Az(cx)I\~~,A~. Then 

AE~‘~N(P)-~~~‘/(Q) and fn(A)sfn(P, Q); so. not PYQ, a contradiction. 

Suppose 
Y(Y) 

PAP’, where y$n(P, Q), Let (Qi) be an enumeration of 

{Q~IQZ Q,;, and suppose that. for each i, there is z such that not 

P’[z/J) 9Qi(z/~j. Set N=fn(P,Q,y), SO that fn(P’)&N and fn(Qi)GN for each i. 

Proof of Claim. Suppose z$N and fn(A)cfn(P’{z/y), Qi{;/y)). If P'{z/y}l= A 

then, since _t*$fn(P’ (z;J,~, A), by Lemma 3.4(b), P’ )= A{ J~,‘z). Hence, since 

fn(AIJ’l!:))Efn(P’.Qi) and P’.YQi, QI I= A(yjzj. So, again by Lemma 3.4(b), 

QI (~/,t~i I= A. Similarly, Qi [Z/J’) I= A implies P’ (Z/J). I= A. This completes the proof of 

the Claim. 1‘ 

From the Claim and the fact that for each i there is z such that not 

P'(z/J') .yQi ;-_/J), it follows that for each i there is Zion such that not 

P’(zijyj YQi(zii’y), For each i, take B, with fn(B;)sfn [P’(z,/y), Qi(zi/y)), 

P’(=ji.l’) /= Bi and Qij=il!.1.) I# Bi. Set A;rB;(y/zi). for each i, and 

A=(.x(J))~~~[J~=~~]A~. Note that fn(A)sfn(P,Q). Moreover, Pj= A since, for all 

I, P’(ziy) + Ai[:=zi] Ai (Z/J,). But Q I# A since, for each i, Qi {ii/ll) I+ 

[zi = =i] Ai (zi!y 1. Hence, not P .‘Y Q, a contradiction. 

Hence, ,Y is a late bisimulation: so. = Y ,, G .V G LL. i7 

Proof of Theorem 3.7. Recall the characterization of LF. in the early scheme, Lemma 

2.9. Using this characterization. the proof is similar in structure, and in much detail, to 

that of Theorem 3.6, but is more straightforward due to the simpler clause for 

free-input actions. These arc treated exactly as bound-output actions. 

To show that GE G A. N, .#. N. we show, by an induction similar to that in the proof 

of Theorem 3.6, that for all A in .ti&.//‘, if P LEQ then P + A iff Q /= A. For the 

converse, we use the fact that .P characterizes L, and the relationships between the 

modalities and matching in Lemma 3.5. fl 

Proof of Lemma 3.8. To see that P =iy Q, we first note, by induction on A in &QY, 

that for all substitutions c, 0 I= A iff 0 )= Au. Then we show, again by induction, that 

for A in 8Y’, P (= A iff Q I= A. We consider only the case A = (.x(JJ))~A’. Clearly, if 

P + A then Q /= A. If Q + A but P I+ A then, amongst other things, it must be the case 

that [J-=z]r I= A’, so 0 I= A’. but, for some M’, 0 I# A’ (tv/yj, contradicting the above 

observation. The case A E (.x(J,))~A’ uses a similar argument. II 
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Proof of Lemma 3.10. The argument is somewhat similar to that in the proof of 

Lemma 3.8. Recall that, for all A in &I6725 and all substitutions (T, 0 + A iff 0 + Aa. 

Similarly, we show, by induction on A in g!bY, that T I= A iff r I= ACJ. Then we prove 

by induction on A in 999, that PI= A iff Q I= A. Suppose A~(x(y))~.4’. Let 

P’E [y=z]z + [y= w]t and Q’c [y=z]t. Using the properties of 0 and T stated 

above, it suffices to show by case analyses that for all v, P’{v/y} I= A’{v/y} iff for all v, 

Q’{o/y} k A’{o/y}. The reader may care to check the details. The case A = (x(y))A’ is 

similar. 0 

Proof of Lemma 3.13. (a) Follows from Lemma 3.5(b) and (c). (b) and (c) then follow 

from (a) and Lemma 3.5(a). Finally, (d) is proved by a trivial induction. 0 
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