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Abstract 

Concurrent calculi, such as CCS, are defined in terms of labelled transition system; similarly, 
here we introduce the notion of net (or distributed) calculus, which is defined through 
a place/transition Petri net. As a first case study, a simple calculus of nets, called SCONE, is 
proposed. Relationships between SCONE and the subset of CCS without restriction and 
relabelling, called RCCS, are studied by showing that RCCS can be implemented in SCONE 
through a suitable mapping from the transition system for RCCS to net for SCONE. In 
particular, the complex CCS operation of global choice is implemented in terms of the SCONE 
finer grained operation of local choice, making explicit the fact that certain CCS transition are 
implemented as SCONE computations to be executed atomically. The result is a finite net 
implementation for RCCS agents. By making the quotient of the RCCS transition system w.r.t. 
the implementation mapping, we induce a truly concurrent semantics for RCCS. The second 
case study is then concerned with an extension dealing with restriction and relabelling. The 
resulting net calculus, called SCONE+, is exploited as an implementation language for full 
CCS. The truly concurrent semantics induced by the implementation mapping is proved to 
coincide with the so-called “permutation-of-transitions” sematics. 

1. Introduction 

Among the various approaches to the semantics of concurrency, we distinguish two: 

the so-called “interleaving” approach and the “truly concurrent” one. The main merit 

of the former is its well-established theory. A concurrent system is described by a 
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term of an algebra, which gives rise to a labelled transition system. The states are 
themselves terms and the transitions are defined by means of a deductive system in 
structural inductive form, as proposed by Plotkin [39] with his structural operational 
semantics (SOS for short). Equivalences among states/terms are defined according to 
a suitable notion of observation and the useful result is that observational congruen- 
ces often have nice axiomatizations. Unfortunately, there is a serious drawback: this 
approach relies on the well-known idea of describing system behaviour as sequences 
of transitions, a too simplistic view in many practical cases when information about 
distribution in space, about causal dependency or about fairness must be provided. 
On the other hand, in the “truly concurrent” approach, which started from the 
pioneering work of Petri [38], this kind of information can be easily given, but net 
theory has not yet reached a completely satisfactory theoretical treatment if compared 
with the firm results coming from the interleaving side. Rephrasing and extending the 
ideas developed for the interleaving approach to the “truly concurrent” case can be 
considered the main goal of a branch of concurrency research. The present paper aims 
at giving a contribution in this direction. 

Petri nets, at least in their usual formulation, are not very suited for modular 
description of concurrent systems, because no general theory of composition and 
decomposition is available as there is no (finite) syntax generating them. Therefore, we 
shall restrict our attention to a particular class of nets possessing such a syntax, which 
thus forms naturally a language for nets. We are interested not only in defining 
a language whose formulae specify distributed systems, but also in describing the nets 
representing their operational behaviour as a calculus. Hence, extending Plotkin’s 
paradigm to distributed systems, formulae of the language would denote markings of 
the net, while net transitions would be defined by means of a syntax-driven deductive 
system. 

The problem is now to find a sufficiently general framework where concurrent 
calculi and net (or distributed) calculi can be described uniformly; this would permit 
an easy comparison between the two approaches and, in particular, the possibility of 
implementing concurrent calculi in net calculi in a (hopefully) direct way. Recently, 
several attempts have been made towards a unifying approach to concurrency. In 
particular, the work developed in Pisa is mainly concerned with the definition of 
a uniform algebraic framework in which specifications based both on transition 
systems and on Petri nets fit rather naturally [lo]. This investigation started 
with [32], where the basic model of place/transition Petri nets has received a 
simple algebraic description by showing that a P/T net can be statically described 
as a directed graph equipped with a commutative monoidal operation @ on 
nodes (union of markings), and dynamically as a graph with also two opera- 
tions on transitions (parallel @ and sequential; composition), together with suitable 
axioms for identifying those computations which are observationally identical. 

By observing that transition system are nothing but directed graphs with labelled 
transitions, we discover that the notion of graph is a possible unifying mathematical 
tool for investigating the relationship between the two approaches. Moreover, SOS 
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specifications [39] can be described in algebraic form: the transition system is 
a two-sorted algebra with states and transitions as sorts [35,18]. The states are the 
language terms, and the (proofs of the) transitions, being defined through deduc- 
tive systems, can be represented as terms of an algebra having the axioms as 
generators and the inference rules as operations. Thus, the other common link 
between the two approaches is the algebraic structure for nodes and transitions. 
Indeed, SOS specifications and Petri nets are both specializations of the graph 
concept obtained by adding (different) algebraic structures on nodes and transitions: 
thus, graphs defined as two-sorted algebras represent the uniform framework we were 
looking for. 

A calculus for nets can be introduced by defining an algebra for the nodes of the 
graph in such a way that it can be seen as a free algebra of markings, generated by the 
places. Therefore, the algebra must possess, among others, also the commutative 
monoidal operator @ of union of markings. 

As a first case study, we present a simple calculus of nets (SCONE). The operators 
generating places are prefixing and nondeterministic choice. The operators generating 
net transitions are prefixing, internal choice, and synchronization. The axioms in the 
deductive system of the calculus (prefix and internal choice) are the generators of the 
algebra and the inference rule (synchronization) is its sole operation, building a new 
transition from a pair of given transitions. 

The semantics of SCONE is the semantics of a P/T net. Among the various 
semantic notions, we mention nonsequential processes (unfoldings of the net from an 
initial marking) [21] and commutative processes [3]. In [16] these notions are given 
an intuitive algebraic axiomatization on the algebra of net computations [32], where 
actually a slight refinement of classical nonsequential processes, called concatenable 
processes, is considered. To our aims, we choose concatenable processes because they 
faithfully represent causal dependencies and are equipped with an operation of 
sequential composition. 

RCCS - the subset of CCS [34] without restriction and relabelling - can be 
implemented in SCONE, by means of a suitable mapping from its transition system 
(in algebraic form) to the Petri net of SCONE. This can be seen as a denotational 
semantics for RCCS with SCONE as semantic domain. RCCS agents are mapped to 
SCONE markings by considering prefixed (p. E) and nondeterministically composed 
(E+E’) agents as places and by interpreting parallel composition as the multiset 
union of places. The implementation of RCCS transitions is less immediate and has 
been influenced by the categorical formulation of Petri nets in [32], which provides 
a flexible tool for relating system descriptions at different levels of abstraction by 
means of implementation morphisms in the category of net computations: a net 
transition can be mapped to an entire net computation. As a matter of fact, the 
combinators of SCONE are sometimes more elementary than those of RCCS, so that 
a RCCS transition may be mapped to a SCONE computation. Thus, the semantic 
morphism maps transitions to net computations by mapping basic operators of (the 
algebra of) RCCS to derived operators of (the algebra of) SCONE. A striking example 
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is concerned with the implementation of the external nondeterminism of RCCS in 
terms of the internal nondeterminism of SCONE. A natural consequence of our 
algebraic approach is that the implementation mapping does not affect the granular- 
ity of the execution: since a RCCS transition is executed atomically, the execution of 
the SCONE computation implementing it must be atomic as well. In other words, the 
distributed implementation of a RCCS agent is not a SCONE net, rather an imple- 
mentation morphism on a SCONE net. 

The relevance of the result is that this mapping can be seen as an instance of 
a general algebraic methodology for implementing parallel languages (also in inter- 
leaving form) in others (even distributed). Indeed, the second example illustrates this 
methodology in the more complex case of full CCS. 

As already observed, e.g., [41], the transition system representation of an agent is 
usually larger than its net representation. As a matter of fact, not all the RCCS agents 
have a finite transition system representation. We prove that for any marking V, the 
SCONE subnet reachable from u is always jnite (but not safe). Hence, by means of the 
implementation mapping, we show that any RCCS agent is always implemented on 
a finite net. 

The second case study is concerned with a proper distributed treatment of full CCS. 
To this aim, we define a new calculus for nets, SCONE+, extending SCONE with 
restriction and relabelling. It is exploited as the target machine through which we give 
a distributed implementation of CCS. 

In order to deal with restriction correctly, parallel composition is modelled through 
a syntactic construction which leads, as side effect, to a l-safe P/T net representation 
of the reachable subnet implementing a CCS agent. The price to pay is that such 
subnets may be infinite. 

It is interesting to study not only the target of the implementation mapping, but 
also the effect on the source. We prove that the semantics of CCS agents as factor- 
ization of their computations w.r.t. the implementation mapping is the “permutation- 
of-transitions” semantics proposed by [S, 183. Our semantics is consistent 
and complete with respect to theirs, in this case. On the contrary, in the case of 
RCCS, the “quotient” semantics is complete only under some mild assumptions. 

Since Boudol and Castellani have proved in [6] that the “permutation-of- 
transitions” semantics is equivalent to a variant of Winskel’s [42] event structure 
semantics and to a variant of Degano et al.3 [12] distributed choice net semantics for 
CCS, indirectly we get a nice correspondence result among all these different truly 
concurrent semantics for CCS. 

The paper is organized as follows. Sections 2-4 introduce background material. It 
comprises of an introduction to the basic definitions of category theory used through- 
out the paper (see [29] for more details), an account of the algebraic formulation of 
P/T Petri nets and a brief exposition of CCS in its algebraic formulation. The 
proposed simple calculus of nets is introduced in Section 5. In Section 6 we describe 
the implementation mapping from RCCS to SCONE and then, in Section 7, we prove 
that the induced semantics is consistent with respect to Milner’s and also faithfully 
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represents causality. SCONE+ is introduced (Section 8)’ together with the implemen- 
tation mapping (Section 9). Hence, the comparison with Boudol and Castellani 
semantics is reported in Section 10. Section 11 is concerned with the relationships of 
our investigations with some related works. In particular, we discuss the issue of 
atomicity in giving semantics to CCS [24, 131, other proposals for giving finite net 
representation to RCCS agents [19,22], and some recent results on the connections 
between Petri nets and the chemical abstract machine (CHAM) [2]. 

2. Graphs, categories and monoidal structures 

A (directed) graph G is a tuple N=( V, T, do, a,), where V is the class of states (or 
nodes), T of transitions (or arcs), and a,,, 8, : T+ V are two functions, called source and 
target, respectively. We denote an arc t, such that &(t)=u and d,(t) =u, by the 
shorthand t : u+v. A graph morphism from G to G’ is a pair of functions (f, g),f: T+ T’ 
and g : V-+ V’, which preserve the source and the target functions: g(a,(t))=&(f(t)) 
and g(d,(t)) = a;(f(t)) for all transitions t. 

A category C =( V, T, a,, a,, id, ;) is a graph (V, T, a,, a,), where the states in V and 
the transitions in T are usually called objects and arrows (or morphisms), respectively, 
with in addition: 

an operation id : V-+ T called identity, such that &(id(u) = t, = a, (id(u)), 
a partial operation ; T x T-, T called composition, assigning to each pair of arrows 
t and t’, such that’ &,(t’)=a,(t), an arrow t;t’ such that &,(t;t’)=&,(t), 

a,(t;t’)=a,(t’) 
and the operations satisfy the two axioms (which hold if both members are defined) 

t;(t’; t”)=(t; t’);t” id(u);t=t=t;id(v) 

Moreover, for any pair (u, u), the class C[u, UJ = {t 1 te T, a,,(t) = U, a,(t) = u} is actually 
a set. Let C,D be two categories. A (covariant)finctor I;: C+D is a pair of functions 
FV: Vc4 V,, and Fr: Tc+TD, such that for each t, t’E Tc 

l b(F740) = &@idW (i =O, 1) 

l FT(rd(u))=id(Fv(u)) 
l F,(t ; t’) = F=(t) ; &Jt’). 

Let F, G : C4D be two functors. A natural transformation z : F4G is a function from 
Vc to To assigning to an object u in C an arrow rU in D such that 
l a&,) = F,(u) and a, (TJ = G,(U) 
l Vt in Tc with a,(t)=u and a,(t)=u z,;GT(t)=FT(t);Tv 

’ The reader interested only in this case study can skip most of Section 3, focusing mainly on Definition 3.14. 
‘Note that composition ; is defined following the interpretation of sequential composition of transitions 
(diagrammatic order), which is obvious in computer science, but is in contrast with the tradition in 
mathematics. 
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A transformation r such that each component r, is invertible in D is called a natural 
isomorphism. A strict monoidal category (C, @, e) consists of 
0 a category C, 
l a (left and right) identity object e (i.e. e 631 t=t= t @I e); 
l a bifunctor @ : C x C-+C, thus satisfying the functoriality axioms3 

(tl~tt2);(t;~t;)=(tl;t;)~.(tZ;t;) id(u) @ id(u)=id(u @ u) 

and, additionally, @ is associative, with e as neutral element on objects and id(e) on 
arrows. 

A symmetric strict monoidal category (C, @, e, y) is a strict monoidal category enriched 
with a natural isomorphism y., v : u @J u-w @ u such that the following two equations 
hold: 

Y..u, 0,” ‘Y = id(u @ U) tko @ id(w));(id(v) @ Y~,~)=Y~.~~~ 

Let us consider two arrows t : u-w, t’ : d-w’. An interesting consequence of stating 
that y is a natural isomorphism is 

Yu.u* ; (t’ c3 t) = 0 @ 0 ; Y”.“, 

meaning that the factors can be exchanged in any monoidal composition of arrows, 
provided that suitable exchanges are sequentially composed before and after. 

A strictly symmetric strict monoidal category (C @, e) is a symmetric strict monoidal 
category where y.,” is the identity id(u @ u); hence, @I is commutative, too. 

3. An algebraic view to Petri nets 

We assume the reader is familiar with the basic concepts of net theory (see, e.g. 
[40]). By Petri nets we mean (capacity free) place/transition nets, where the flow 
relation is$nite (the pre- and post-sets of transitions are always finite multisets) and 
every transition has a nonempty pre-set. This section is devoted to recalling the 
categorical approach to Petri nets as graphs with a monoidal structure proposed in 
[32, 161. The basic idea is to consider a transition t as an arrow from its pre-set to its 
post-set, i.e. t: ‘t+t’, and the set of the multisets of places as the free commutative 
monoid over the set of places. In other words, a Petri net is a graph whose set of nodes 
is a free commutative monoid. 

Definition 3.1 (Finite multiset, union and empty multiset). Given a set S, ajinite multiset 
over S is a function M: S+N such that the set (SES 1 M(s)#O) is finite. The 
multiplicity of an element s in M is given by M(s). Given two multisets M and M 

3The first equality holds whenever both members are defined, indeed, due to the fact that ; is a partial 
operation, it may happen that the left member is defined, but not the right one. For the categorical 
associativity axiom, instead, if one of the two members is defined, then also the other is so. 
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over a set S, their union, denoted by M @ M’, is the multiset given by 
M @ M’(s)= M(s) + M’(s). The empty multiset, denoted by 0, is defined by O(s) = 0. 

Since natural number addition is associative and commutative, then also multiset 
union is so. Furthermore, since 0 is the natural element of addition, 0 is the neutral 
element of multiset union. 

Property 3.2 (Multisets asfree commutative monoids). Given a set S, let Se denote the 
set of (finite) multisets over S. With the union operator @ and the element 0, S@ is 
a free commutative monoid over S. 

Definition 33 (Petri nets as graphs with a monoidal structure). A place/transition petri 
net (net, in short) is a graph N=(S@, T,&,,c?,), where S@ is the free commutative 
monoid of nodes over a set of places S. The elements of S@, called also the markings of 
the net N, are represented as formal sums nlal @ -.- $ nkak (aiES, ni is a natural 
number) with the order of the summands being immaterial, where addition is defined 
by (&niai) @ (@m&=(&(ni+m&) and 0 is its neutral element. 

A Petri net morphism h from N =(S8, T,&, ~7’~) to NI=(S’8, T’, 80,31) is a graph 
morphism (i.e. a pair of functions (f, g), f: T+ T’ and g : S @ +S’@, preserving source 
and target) where g is a monoid morphism (i.e. leaving 0 fixed and respecting @). With 
this definition of morphism, nets form a category, called Petri, which is equipped with 
products and coproducts [29]. 

We define an algebra of (finite) computations by considering, as generators, the 
transitions in T and also a set of transitions, called symmetries, defined below. 
Moreover, the operations of the algebra are the associative sequentialization (partial) 
operation ; and a monoidal operation @I on transitions, which is interpreted as 
parallel composition. By imposing suitable axioms on the operations of sequential 
and parallel composition (yielding a monoidal category) we can define equivalence 
classes of net computations. In [16] it is shown that some of the semantic notions on 
Petri nets can be naturally characterized in this axiomatic approach. Here, we will 
present the category every morphism of which turns out to be an equivalence class of 
computations all evaluating to the same concatenable process [16] (a slight variation 
of the Goltz/Reisig nonsequential process [21]). 

Definition 3.4 (Symmetries). Let us consider a finite set Z labelled by a function 1: Z+S 
which associates to every element x a label/place I(x). When defined up to isomor- 
phisms (i.e. up to label-preserving bijections), set Z corresponds to an element u = nl al 
@.--@nkakin Se, whereni=I{xII(x)=ai}I,i=l,...,k. 

A symmetry p of the labelled set Z is a bijective endofunction p: Z-Z which is 
label-preserving, i.e. such that I(X) = Q(x)). W e can associate it to u and write p : u-w. 
It is clear that, by choosing a linear order for each of the sets (X 1 I(x)=ai), 
i=l , . . . , k, p can be expressed as a vector of permutations. Given u = nl al @ -.- @ nkak 
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in Se, a symmetry p : u-w is a vector of permutations (G,, , . . . , cr,,) with a,,EII(ni), i.e. 
6,, is a permutation of ni elements ( lcro,J =ni). 

We define three operations on symmetries: the sequential composition p ; p’ of two 
symmetries, the parallel composition p @ p’ and the interchange of two objects u and 
u, which gives rise to the symmetry y(u, u). Let p : u-w and p' : u-w; then 

p;p’:u-+ll=(aa,;a~,, . ..) CT (Ik ; c&) where (T ; o’(x) = a’(~+)). 

Let p : u-w and p’ : u-w; then 

P~P’:UOU-‘U~u=(Onl~‘ab*,...,~a,~’~,> 

where 

cr @I a’(x) = 4x) if O<XGICI, 

o’(x-lal)+lcrl otherwise. 

The interchange symmetry y(u, u) : u @ u-w CD u, associated to permutation 
{1+2,2+1} and to u=nlal 0 ... 0 nkak, and u=mlal 8 ... @mkak, is the vector of 
permutations (c~,, . . . , uor) defined by 

%,(X1 = 1 Vlj+X if X<tlj, 

x-q if X>?lj* 

Example 3.5. A suggestive graphical representation of a symmetry p on 3a $2b 

where CI~ = { l-+2,2+3,3 + l} and cl, = { 1+2,2-t l} is depicted in the first operand of 
Fig. l(a). The intuition behind the three operations defined above can be easily 
grasped from Fig. 1. To obtain the sequential comosition p ; p’ of two symmetries on u, 
we have simply to follow the threads of the permutations. Supposing p : u-w and 
4: u-+u, the parallel composition p @ q: u @ u-w 8 u of the two symmetries is 
obtained by putting side by side the permutations regarding the same place. Exchang- 
ing the summands in a node gives rise to an interchange symmetry; if u = 2a OJ b and 
u = 3a @ 2b, then the interchange symmetry is formally denoted by y(u, u) = (co, cb), 
where a,={1+4,2+5,3+1,4+2,5+3} and ob={1+3,2+1,3+2}. 

= 

faaaaa bba 

:2!!!% aaaaa bbb 

Fig. 1. Three operations on symmetries. 
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Both @I and ; are associative but not commutative. If I,~ denotes the identity 
permutation, then for each u in So the symmetry (z,,, . . . . r,, ) :u+u is the identity 
transition id(u). Furthermore, @ and ; satisfy the functoriality equations: 

(p@P’);(4@,‘)=(P;4)G3(P’;4’) id(u) 8 id(u) = id(u 0 u) 

Finally, the interchange y(u, u) is a natural transformation 

satisfying also the axioms of symmetric strict monoidal categories 

Y(U, 4 ; Y(V, 4 = id@ 0 0) (y(u,a)0id(w));(id(u)@y(u,w))=y(u,a0~). 

Given a set S, let Syms be the graph whose nodes are the elements of the 
commutative monoid So and whose transitions are symmetries with the above- 
defined operations of @ and ;. Then, Syms is a category, because identities do exist 
and ; is the arrow composition; Syms is strict monoidal, because the pair (0, @) is 
a bifunctor (0 on nodes and @I on transitions) which is associative and has the neutral 
element; Syms is symmetric since the interchange symmetry associated to the permuta- 
tion 7={1+2,2+1}, y(u,u):u@ U-W @ u, is the required natural isomorphism. 

Proposition 3.6. Syms is a symmetric strict monoidal category, strictly symmetric on 
objects. 

Definition 3.7 (From a net to the category of its processes). Given a net 
N=(S@, T, a,, a,), the category 9[N] of its processes is defined as follows. The 
objects of 9[N] are the nodes of N, i.e. P. P[N] includes Syms as a subcategory, and 
has as additional arrows only those defined by the following rules of inference: 

t:u+u in N 

t:u+u in P[N] 

CI:U+U a’:u’+u’ in P[N] a:u+u /3:v+w in 9[N] 

a@a’:u@u’+u0u’ in 9[N] a;/I:u+w in Y[fl 

and axioms expressing the fact that the arrows form a monoid: 

(a@P)@~==@((B@@ a@id(O)=a 

the fact that P[Nl is a category: 

a;id(8,(a))=id(8&a));a=a (a;B);a=a;(B;@ 

and the fact that (0,@) is a bifunctor: 

(a~a’);(P~B’)=(a;B)~(a’;B’) id(u) 8 id(u)=id(u 0 u). 
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Also, there is an axiom stating that generators (i.e. the transitions of N) are symmetri- 
cal: 

t;p=t where t:u-+v in N and p:v+v in Sym,, 

p;t=t where t:u+v in N and p:u-+u in Sym,. 

Finally, the fact that the interchange symmetry y(uI, u,), associated to the permutation 
y={1-+2,2+1}, d e fi nes the natural isomorphism, where ai : Ui+Vi (i = 1,2): 

y(u,,uz);(a2 @a~r,)=(al @Q);Y(~I,~z). 

Theorem 3.8 (Degano et al. [16]). Given a net N=(S@, T,&,,a,), the category g[N] 
of its process is the quotient of the symmetric, strict monoidal category freely generated 
by the net N (where the monoidal operation is denoted by @I on arrows and by @ on 
objects, the operator of arrow composition is ; , and y(u, v) is the natural isomorphism of 
commutativity), determined by the axioms (Y) below, where t : u+v belongs to N and p is 
a computation involving natural isomorphisms only: 

Objects: 
Zsomorphisms: y(a, b) = id(a @ b) Vu, bES, a # b 

t :p= t where p: V-W is a symmetry as a whole (Y). 
Transitions: 

p;t=t where p:u+u is a symmetry 

This theorem states that 9’ [N] can be obtained by freely generating the symmetric, 
strict monoidal category from the net N =(S@, T, a,, a,), considering a bifunctor 
( ~3, @) which is commutative up to isomorphism. The latter is specified by the 
natural isomorphism y. Then, by identifying the nodes u @ v and v ~3 u which differ 
only by such an isomorphism. As a consequence, the “vector” u @ v becomes now 
a multiset. Analogously, the arrow y(u, v) : u @ v+v @ u, which is a (global) permuta- 
tion, must be transformed into a symmetry (a vector of local permutations). This is 
obtained by adding the equation ~(a, b) = id@ @ b), which states that the permutation 
~(a, b) is in fact the identity of a $ b if a and b are tokens on different places. The last 
equations state that token exchanges do not affect net transitions. 

The arrows of S[v are equivalence classes of net computations: an arrow 
a represents the observation out of any computation in the equivalence class of a. Such 
an observation is a concatenable process [16]. 

Definition 3.9 (Label-indexing ordering). Given a set S with a labelling function 
1: S+S’, a label-indexed ordering function is a family p = {/?,,}, a&, of bijections, where 

B.: Cal-+(L ..a, I[u]~}, with [a]={brzSIl(b)=a). 

Definition 3.10 (Plain processes). A plain process for a net N is a morphism p= (f; g) 
in Petri from a finite occurrence net P to N. The functions f and g map transitions and 
places of P to transitions and places of N, respectively. The places of P which are 
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minimal in the partial ordering associated to it are called origins, the maximal places 
are called destinations. We give plain processes a categorical structure, by taking as 
morphisms 

6:(v:P+N)+(yJ:P’-+N) 

between processes q and fl those Petri morphisms 

p:P+P 

between the supporting occurrence nets such that p; @= q. 

Definition 3.11 (Concatenable processes). A concatenable process for a net N is a triple 
C = ( p, 0, rc), where: 
0 q= (f, g) is a plain process for N, 
l 8 and K are label-indexed ordering functions on the origins and destinations, 

respectively, where the labelling function is g restricted to the respective domains. 
Isomorphic4 concatenable processes are identified. Furthermore, we can associate to 
every concatenable process C of N two multisets of places as follows. The multisets 
O(C) and D(C) are defined as 

O(C)= 5 nisi and D(C)= i MiUi, 
i=l i=l 

where ai are places of N, and ni and mi are the numbers of origins b and destinations 
c of P, respectively, such that g(b)=q =g(c). 

A concatenable process is essentially a finite nonsequential process [21] with, 
additionally, ordered labels on both origins and destinations. This means that the 
origins (destinations) of a concatenable process mapped on the same place are 
distinguished by imposing an ordering on them.5 

We can picture a concatenable process C of N as an arrow C: O(C)+D(C). Also 
concatenable processes may easily be turned into a monoidal category. Indeed, we 
show how concatenable processes can be associated to net transitions and symmet- 
ries, and also how parallel composition and sequential compositions can be defined. 
Thus we have an algebra of concatenable processes. 

Given a transition t : nl aI @ .e+ @ nkuk+n;al @ --a @ n;ak in N, let P be the occur- 
rence net with ZuZ’ as set of places, where Z={(i,j,O)li=l,..., k, j=l,..., ni}, 
Z’={(i,h,l)li=l,..., k, h=l,... , n;}, and t’ as unique transition with &(t’)=Z and 
aI = I’. Then a concatenable process for t is C = (q, 8, rc), where q~= (f, g) is such 

4 Two concatenable processes C and C’ are isomorphic if there is a plain process isomorphism (f”, g”) from 
P to P preserving the label-indexed functions, namely with B(b)=O’(g”(b)) and K(b)= ic’(g”(b)). 
’ Usually, in depicting a process, the ordering on process places mapped to the same net place is implicitly 
given by the “space” (left-to-right) ordering. If a token is both origin and destination (i.e. isolated), then it 
should be explicitly equipped with the ordering annotation (see the representation of a symmetry in Fig. 3). 
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thatf(t’)=t and g((i,j,O))=g((i,h,l))=ai, i=l,..., k, j=l,.._, ni, h=l,,.., n{, and 
the label-indexed ordering functions on the origins and destinations of P are given by 
19,,((i,j,O))=j and rc,,((i,h, l))=h. 

Givenasymmetryp=(o,,,...,a,,):n,a,~...Onkak~n,al~...8nkak,letPbe 
the occurrence net having I = { (i, j) 1 i = 1, . . . , k, j = 1, . . . , ni} as set of places, and no 
transitions. A concatenable process for p is C = ( q, 0, rc) where q= (0, g) is such that 
g( (i, j)) = ui, and the ordering functions on the origins and destinations of P are such 
that g,,((i,j))=j and K,i((i,j))=ca,i(j), respectively. 

In the following definitions of parallel and sequential composition of processes, 
let C=(~,~,~):n~~~$‘~~~nk~k~ml~~~~~~~mk~k and C’=(~,8’,K’):n~a1 
0 ... 0 n;uk+m;ul CJ3 ... 0 m;uk be two concatenable processes for N, with 
P and P’ as occurrence nets of q and @, respectively. We define C @ c’= 
(#,8”,r”):(nr+n;)al O”‘O(nk+n;)Qk~(ml+m;)ai @“‘@(mk+m@k, where 
# is the coproduct of q and # in the category of plain processes, 
fY=(Oolu(nl+&,),..., ~aru(nk+8b~))andK”=(K,,u(nl+ICb,),...,IC.ku(nl,+K~,)). 

Finally, C;C’ is defined only if D(C)=O(C’)=m,a, Q a.. @ mk&. Let us define 
a plain process pp- = (@,g- ) from the occurrence net P- =(S -@, 0,0,@) with 
S-={(i,j)]i=l,..., k,j=l,..., mi} and g - ((i, j)) = ai. TWO plain process morphisms 
p, p’ from q- to Q, and cp’, respectively, are induced by the two functions s and s’ from 
S- to the destinations of P and to the origins of P’, respectively, that satisfy the 
following equations: 

g(s((i,j>))=ut=g’(s’((i,j>)) and K(s((i,j)))=j=~(s’((i,j))). 

It is not difficult to see that s and s’, and therefore p and p’, are defined uniquely. Also, 
it is easy to verify that in the category of processes the pushout construction involving 
p and p’ exists, yielding a new process @ which is obtained, roughly speaking, as the 
disjoint union of a, and #, where for all x, the pairs s(x) and s’(x) have been identified. 
Then, 

Theorem 3.12 (P[N] z%‘9’[N] (Degano et al. [16]). (i) Given a net N, concutenuble 
processes on it form a symmetric strict monoidul category %9j[N] satisfying the 
equation (Y). 

(ii) There is a unique homomorphism H from Y[N] to %9[N] preserving all the 
operations and leaving Njixed when viewed us a subnet of B[N] and of %?9’[N] via the 
obvious inclusions. Furthermore, homomorphism H is actually an isomorphism. 

This theorem proves that any arrow of 9[N] can be represented as a concatenable 
process and any term of the algebra can be evaluated to the concatenable process 
representing its equivalence class. Vice versa, any concatenable process may be 
denoted by a term of the algebra 9[N]. 
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Fig. 2. A net in (a) and two of its processes in (b) and (c). 
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(a) (b) 

Fig. 3. (a) The evaluation in W’[N] of a term of P[N]; the corresponding result is in (b). 

Example 3.13. Let us consider the net in Fig. 2(a). Fig. 2(b) and (c) show two of its 
processes. Term (ti @ cZ);(t3 @ id(c)) corresponds to starting with a token in place 
a and a token in place b and to executing transitions ti and tz simultaneously. One of 
the tokens is then left in c, while the other (the one produced by tl) is used for 
executing transition ta. This term of P[N] corresponds to the process in Fig. 2(b). 
Similarly, the term (tl @ id(b)) ; (id(c) @ tz) ; (t3 @I id(c)) is related to the same process. 

Fig. 3 illustrates through an example that a formal evaluation of terms of concaten- 
able processes can be naturally provided. In this figure, the considered term is 
(tl @ t2);P;(t3 @id(c)), with p=(~~,o~,c~) and CT~=(T*=@ and a,=(1+2,2+1}. 
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The algebraic characterization of concatenable processes can be conveniently 
simplified in the case of l-safe nets [3]. Because each place contains at most one token, 

any symmetry Y., V collapses to the identity id(u @I v). Hence, @I becomes commutative 
and category 9[N] becomes strictly symmetric. As in the second case study the nets 
exploited as implementation for CCS agents are l-safe, we provide also this conve- 
nient characterization, which coincides incidentally with the axiomatization of 
Best/Devillers processes [3], provided in [16] where they are called commutative 
process. 

Definition 3.14 (From a net to the category of its commutative processes). Given a net 
N =(P, T, a,, a,), the category S[N] of its commutative processes is the strictly 
symmetric strict monoidal category freely generated by N. Explicitly, the category 
S[N] is defined by the following rules of inference: 

t:u+v in N u in So 

t:u+v in S[N] id(u):u+u in F[N] 

a:u+v cl’:u’+v’ in F[N] CL:U-W fi:v+w in S[N] 

c~@Lx’:u@u’-w@v’ in Y[N] a;b:u+w in S[N] 

and axioms expressing the fact that the arrows form a commutative monoid: 

(z@B)@‘6=a@(B@4 z@B=B@a a @ id(O)=a 

the fact that S[N] is a category: 

a;id(a,(a))=id(&(a));a=a (a;B);d=z;(B;4 

and the functoriality of @I : 

(a~a’);(B~~B’)=(a;B)~(a’;B’) id(u) @ id(v) = id(u @I v) 

Theorem 3.15. The quotient of category 9’[N] with respect to the axiom below is 
S[N]: 

Isomorphism: r(a, a) = id(a 8 a) Vad 

Proof. This axiom6 is the complement of the axiom given in Theorem 3.8. All 
symmetries are collapsed to identities with the relevant side effect of making @ com- 
mutative on arrows. 0 

‘This axiom is an algebraic description of the swap construction in [3]. As @ is associative and also 
commutative up to natural isomorphism, then the permutation to nonconsecutive a’s can always be 
reduced to the permutation of consecutive a’s, provided that suitable interchange symmetries are 
sequentially composed before and after. 
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Of course, in the case of l-safe nets, the axiom above holds “vacuously”; hence, 
concatenable and commutative’ processes coincide for l-safe nets. 

4. A calculus of communicating systems 

4.1. The classic approach to CCS and RCCS 

We begin by recalling briefly a few definitions about Milner’s CCS (we assume the 
reader is familiar with [34]). Let A = {a, j&Y...} be a set of action names, 
A-= {a, /I?-, y- . . .} the set of action conames and 7 a special silent action. We will call 
A= dud- the set of visible actions ranged over by I, while A= AU(T) the set of 
actions ranged over by p. The set of recursive terms over the signature Zccs = UnaO Z, 
is defined by the following BNF-like notation: 

E :: x 1 op(E,,& ,..., Ek) 1 recx.E 

where x is any element in a (possibly infinite) set of variables Var, ret x.- is the binding 
construct, opcZk and the signature Zccs consists of the following operators: 

,X0 = {nil}, 

Z1={p.~p~JZ}u{\a~a~A}u{[@]I@ is a permutation of 

./Z preserving - and 21, 

&={I, +>, 

Z,=0, Vn>2, 

with the agreement to write the set of unary operators {p. ) PEA} in prefix form, the 
other unary operators in postfix form and the binary operators in infix form. We 
assume the reader is familiar with the usual notions offree and bound variables and of 
syntactic substitution. A term ret x.E is locally guarded if every occurrence of x in E is 
inside the scope of a p-prefixing. A term E is guarded if every recursive subterm of E is 
locally guarded. We denote by CCSJ the set of closed (i.e. without free variables) 
guarded terms, also called CCS agents, which will be ranged over by the variable E, 
with abuse of notation. For the sake of brevity, the ending constant nil is often 
omitted, as in a I j?. 

The operational semantics of CCS is defined in terms of labelled transition systems 

[27], LTS for short. An LTS is a triple (S, -K, { 4 I pzM}) where S is a set of states, 

‘In general, commutative processes seem to supply too abstract a description of computations of 
place/transition nets. Because of commutativity of 8, multiple tokens in a place s become definitely 
“indistinguishable”, thus making it impossible to describe correctly the causal dependencies between the 
transitions producing tokens in s and the transitions consuming these tokens. For instance, the net in Fig. 
2(a) after the execution of tl and t,, we have two tokens in c which cannot be distinguished, hence, both 
concatenable processes in Fig. 2(b) and (c) are considered equivalent, i.e. correspond to the same com- 
mutative process (see [3, 163 for more details). 
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4 is a set of actions and each -1: is a binary transition relation on S. We will write 
s 4 s’ instead of (s, S’)E 4. Hence, an LTS is a graph with labelled transitions. 
Every transition s 1: s’ specifies that the system in the state s can transit to the state 
s’ by performing the action p. 

A relevant breakthrough in the definition of operational semantics for languages 
was due to Plotkin [39] with his structured operational semantics (SOS for short). 
According to this technique, the terms of the language constitute themselves the states, 
and the transitions are defined by means of a deductive system in structural inductive 
form, making the definition of an abstract machine rather an easy task. The labelled 
transition system Fees = (CCS,, J%, { % 1 pA?}) defining the CCS operational se- 
mantics has agents as states and the transition relations are defined as follows. 

Definition 4.1. The transition relation {s 1 pod} is defined as the least relation 

satisfying the following axiom and inference rules: 

(Act) p.E 1: E 

E&E ESE 
WI when & (a, a-} (Rel) 

E\ci 1: E’\u EC@1 *Elp1 

EIsEE; E2-1:E; 
(Sum) (Sum2) 

E,+E2 ‘:E; EI+E21:E; 

E ‘%;E 
@yn) 

El&E 1 2 2 

VW 
E [ret x.E/x] 4 El 

The subset of CCS which does not comprise restriction and relabelling we call 
RCCS. Hence, syntactically, CRccs = Cccs - ({\a, aEA} u { [@I, @ is a permutation of 
.4 preserving - and r} ), and the closed guarded RCCS terms form the set RCCSd. 

Semantically, the LTS &ccs =(RCCSd, .&Z, { % I PEA%}) is obtained by Defini- 
tion 4.1, by dropping rules (Res) and (Rel). 

According to Milner’s two-step approach, agents must be identified if they give rise 
to the same behaoiour. Such a notion is defined in terms of the more elementary notion 
of observation: the behaviour of an agent is what can be observed from it. The 

observation out of a transition s 4 s’ is action p. A standard tool for defining 
behavioural equivalences of this kind relies upon the notion of interleaving strong 
bisimulation [37,34]: s and s’ are equivalent iff, for all pe.,U, each p-sucessor of s is 
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equivalent to some ysuccessor of s’, and vice versa. Maximal strong bisimulation is 
a congruence over CCS agents. Among the various equations which are sound for 
strong congruence, we mention that parallel composition is associative, commutative 
and having nil as neutral element. 

4.2. An algebraic view of CCS operational semantics 

Now we present the operational definition in terms of a graph NccS= 

(vccs, Tees, o a ,a,) with labelled transitions for CCS, where both Vccs, Tees are 
algebras. Following [35,18,17-j, an SOS specification, and thus its associated 
transition system, can be described as a two-sorted algebra, where the sorts are states 
and transitions. 

As far as states are concerned, it is immediate to observe that the CCS terms form 
an algebra. However, only a part of them is relevant for the operational semantics: the 
closed guarded terms, called agents, which are the states of Milner’s transition 
system.s 

Definition 4.2 (The algebra of CCS states). The set Vccs of CCS states, ranged over by 
U, v, w, is obtained by making the quotient of CCS agents through the following axiom 
which captures the essence of recursion, i.e. that of “unfolding”: 

ret x.E = E [ret xX/x] 

In other words, the set of nodes I/ ccs is composed of all the recursive terms, freely 
generated by the syntax modulo the recursion axiom, which are closed and guarded. 

The CCS transitions in SOS style, having the format v 4 v’, have been defined by 
a set of axioms and inference rules, i.e. by a deductive system. Here, we characterize 
the set of transitions as an algebra: the axioms represent the set of the generators 
and the inference rules are the operations. In this way, the terms of the algebra 
Tms denote the proofs of the transitions in the corresponding SOS specification (see 
also [S] for a transition system of proved transitions). Furthermore, every term of 
Tees is labelled with an action in LI u {r}. To help intuition, a transition is represented 
in the format 

t : v 3 v’, where t is a proof term and v 3 v’ is the corresponding SOS triple. 

In CCS not all transitions can be synchronized, but only those labelled by com- 
plementary actions. Nonetheless, we want to define a total operation of synchron- 
ization; thus, we introduce a special symbol *, labelling error transitions. The choice 

s In a sense, the algebra is partial, or better it is total but we restrict our attention only those terms 

which are well-typed, i.e. closed and guarded. Recently, typed algebras and equational type logic have 
been proposed to this aim [30]; therefore, we could more rigorously redefine the algebra in this setting, 
which however gives rise sometimes to rather boring definitions when nontrivial examples are taken into 
account. 
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of a CCS-like synchronization algebra is part of our case study, but also different 
synchronization algebras (and different operators) might be considered as well. 

Definition 4.3 (The algebra of transitions). Tees is the free algebra generated by the 

following constants (determined by Act) and operations, where t: v1 4 u2 and 

t’ : u; If; u; range over transitions and u over Vccs. 

(Act) [p,u):/Lu1:u for any PE_~ u (r) 

(Sum < ) t<+u:ul+u4u2 

(Sum > ) u+ >t:u+u, -%u2 

(RN t\ci : Ul \a s u2\u with $:=if p$( a, a-} then p else* 

(Rel) tC@l : Vl [@I -@(PbUz [@I 
(Corn-) tJu:u~~u1:u2~u 

Om-L ) UL t:vlul -S 24~~ 

(Sync) tlt’:ullu; ~u2~u; with CL” := if p’ = p- then r else * 

where * is a special error symbol. We restrict our attention to transitions which are 
not *-labelled.g 

In order to properly define graph N ccs=(Vccs, Tees, a,,, a,), functions 8, and 8, 
remain to be defined. Nonetheless, their definition is implicityly given in the algebra of 
transitions: if t:u-p+v, then &,(t)=u and a,(t)=v. With N&E) we denote the 
subgraph of Nccs reachable from E. 

As already mentioned, a term of the algebra denotes a derivation of a transition in 
the SOS deductive system in Definition 4.1. In general, an SOS transition has 
associated more than one proof term, as many derivations can give rise to the same 

SOS triple. For example, the SOS transition cr.nil+cr.nil % nil has two possible 

derivations, denoted by the proof terms [a,nil) < + u and LY + > [a,nil). 
Graph Nccs induces an obvious LTS Xccs, where the set of states is Vccs, JZ the 

set of labels and a (SOS) transition u1 1: u2 does exist iff there exists a (proved) 
transition t : u1 4 u2. This means that the set of transition in _Vccs is isomorphic to 
the quotient of the algebra of transitions in NcB with respect to the following 

conditional axiom, where t : u1 1: u2 and t’ : II; % II;: 

t=t’ if ul=u\, u2=u; and P=,u’. 

It is immediate to observe that JV ccs and 9ccs are bisimilar. Indeed, even though 
Vccs is the quotient of the states of Y ccs via the recursion axiom, the states involved in 

‘Also in this case we should exploit typed algebras for dealing with the inherently partial operation of 
synchronization. For the sake of simplicity in the exposition, we prefer to work with an explicit representa- 
tion of the error element. 
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the axiom are bisimilar in Yccs. On the other hand, transitions in Mccs and Yccs are 
the same, up to the recursion axiom. Therefore, we can safely continue our investiga- 
tion considering the algebraic view of CCS operational semantics in place of its classic 
set-theoretic formulation. 

5. SCONE: a simple calculus of nets 

In this section we introduce our simple calculus of nets (SCONE), following as 
much as possible the algebraic formulation of Plotkin’s paradigm, exemplified in the 
previous section. 

Definition 5.1 (7’he algebra of SCONE markings). The set of recursive terms over 
ZScONE = &, Z” is defined by the following BNF-like notation: 

M ::= x 1 op(El,E2, . . . . I&) 1 recx.M 

where x is any element in a (possibly infinite) set of variables Var, ret x.- is the binding 
construct, opt& and the signature ZScONE consists of the following operators: 

Z,={nil}, &=Ww.4, 

&={cD,+}, &=$!I, Vn>2. 

The algebra is quotiented by the following axioms: 

M@M’=M’@M M@(M’@M”)=(M@M’)@M” M QJ nil=M, 

recx.M=M[recx.M/x] 

Only a subset of the terms is relevant for the operational semantics: those closed and 
guarded, which are the markings of our net. Markings are ranged over by u, D, w (with 
abuse of notation). 

The set of nodes Vs,,, is composed of all the closed, guarded terms, freely 
generated by the syntax modulo the axioms. Let SsCoNE be the set of the terms in 
V,,,, generated by the following syntax: 

N ::=p.M ( M+M 

Thus, VSWNE = (SW,,,) @. v SCONE is the free commutative monoid of nodes over a set 
of placesto SSCONE, having nil as neutral element. Hence, l’s,,, has, on nodes, the 
algebraic structure of a net. 

Intuitively, ,U.U is the place from which a CL-labelled transition reaches marking V; 
u + d is a place from which two choice transitions reach u and u’, respectively; u Q u’ is 
the multiset union of u and u’. Term nil, being the neutral element, is not considered 
a place, rather, it denotes absence of a place. 

lo Because of the recursion axiom, ret x.v is a place if and only if v [ret x.v/x] is so. 
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The general syntactical form of SCONE transitions is t : v 1: v’, where v and v’ are 
the source and the target of the transition, respectively, p is its label, and t is a term of 
the algebra of transition proofs, whose operations are in a one-to-one correspondence 
with the inference rules of the calculus and whose generators are the axioms of the 
calculus. 

Definition 5.2 (Algebra of SCONE Transitions). Let E be a special unobservable 
action, +A. The transitions in TsCoNE are generated by the following constants and 

operation (determined by sync), where t : v1 4 v2 and t’ : vi < vi range over 
. . 

transitions and v over Vsco,,. 

(4 [p, v) : p.v 1: v for any PEA u {r} 

(sum-<) v< +v’:v+v’ 5 V 

(sum->) u’+ ~v:v’+v~v 

(sync) t 1 t’ : VI 0 v; f5 v2 @ v; with $’ :=if p’ =p- then z else * 

where E is a special unobservable action and * is the error symbol; furthermore, the 
operation of synchronization is subject to the following axiom of commutativity: 

The generators of the algebra are of two kinds: action prefixing and local, internal 
choice transitions. The only operation for building new transitions from existing ones 
is synchronization. The intuition behind tlI t2 is that it is a new transition, whose 
source and target are the multiset union of the two and whose label is the synchroniza- 
tion of the two. This commutativity axiom is imposed because both.transitions tl 1 t2 

and t2 1 t 1 have the same pre-set, the same post-set and the same label, and there is no 
observable reason for considering them different. 

It could be interesting to give a look at the shape of net transitions. Transitions may 
have several post-places (sometimes none), but either one pre-place (in the case of 
action prefixing and internal choice) or two pre-places (in the case of synchroniza- 
tion” of two transitions). Moreover, also loop transitions are allowed, due to 
recursion. Transitions which are *-labelled may have more than two pre-places; 
however, the study of an algebra of shape-constructors representing all possible net 
transitions (and in general the study of an algebra generating richer classes of nets) is 
outside the scope of the paper. 

SCONE is a place/transition Petri net NscONE = ( I/SCONE, TsCONE, d,,, aI ) because 
V SCONE is the free commutative monoid over SSCONE, TScoNE is the set of transitions 

and &al: TSCONE+~SCONE are defined as usual: given a transition t : u 1: v’, d,(t) = v 

and a,(t)=v’. 

I1 Of course, this shape does strictly depend on the chosen CCS synchronization algebra. We recall that 
such a choice is motivated only by our interest in showing the implementation mapping from CCS to 

SCONE in the next section. 
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Being SCONE a net, we can apply the algebraic construction of Section 3 to gain 
the symmetric strict monoidal category B[N scoNE] of its computations observed as 
concatenable processes. In this setting, the notion of reachability of places and 
transitions can be naturally defined in B[N WONE]: a place s (transition t) is reachable 
from a marking v if and only if there exists a computation 5 starting from u and ending 
u such that s occurs in u (t is a subterm of 5). 

SCONE enjoys a nice property: the subpart of the global SCONE net reachable 
starting from a certain marking u is finite, for any o. Given a marking u, let 
N,=(S,“, T,,c?,,,~,,) denote the subnet of NsCoNE reachable from u. For a finite 
subnet we mean a net where the set S,, contained in SscONE, and the set T,, contained 
in TsCONE, are finite. Therefore, we have to first define how to associate a finite set S, to 
a SCONE marking v; then, to prove that all the computations starting from u reach 
markings in Sz. This is a sufficient condition because, by construction, the set T, is 
finite, Infact, a place u’+u” has exactly two transitions starting from it, while a place 
p.u’ has one (local) p-transition, plus a set of synchronization transitions, one for each 
place of the form p-.u” in S,. By a pure combinatorial analysis, since S, is always 
finite, there must be a finite set of reachable transitions. Therefore, N, = (Sf , a,,,, d,,) is 
definitely a finite net. 

Definition 5.3 (Places associated to a marking). Let u be a closed, guarded marking. 
Let [uj be the set of the subterms of u defined below: 

[IFUll = hl u [VII ~u+u~~=~u+u~)u~u~u~u~~ 

[U 8 uq = IUD u cd] [ret x.u] = Iv-j [ret x.0/x] 

where, in the rule of recursion, the free variable x is to be replaced by recx.u. 

For instance, [recx.a.xn = Ia.xn [recx.x/x] =( {a.~} u Ixn)[rec x.u./x] = {a.~} 
[ret x.a.x/x] = {a.(rec x.a.x)}; moreover, [ret x.(a.x @ fi.x)j = [a.x @ B.xn [ret x.(a.x @ 
~.x/x]=({a.x}u{~.x})[recx.(a.x~~.x)/x]=(a.recx.(a.x @j?.x),/3.recx.(a.x0 /3.x)} 

Lemma 5.4. Let v be a closed and guarded marking. Then, the following hold: 

6) [u]lG &ONE? 
(ii) Iun is jnite, 

(iii) U'E[uI] implies u’ is a closed and guarded place, 
(iv) u~luJ@, i.e. u is a marking on the set of places [u]I, 
(V) U'E[Up if and Ody if[U'jC[Un . 

Proof. Immediate by structural induction. 0 
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Fig. 4. The relevant SCONE subnet for the marking (a+ p) @(a- +a). 

Theorem 5.5 ([u] is closed w.r.t. computations). For any computation <E~)CN~~~~~], 
a,(<)=~, a,(l)=w, we hoe that wE[u]l”. 

Proof. By induction on the structure of 5. The base cases are symmetries and net 
transitions. For symmetries, the thesis is immediate by Lemma 54(iv). For net 
transitions, we have to proceed by induction on the structure of the transition. If t is 

[~,u):~.u~u, then UE[~.U]@ since, by Definition 5.3, [p.u]I ={p.u} u[uJ and 

UE m @ by Lemma 54(iv). With a similar argument, the thesis holds also when 

t is u~+u’:u+u’~u and u’+~u:u’fu~u. In the case of tlt’:u@u’~u@u’, 

we have by inductive hypothesis that uE[uj @ and u’E[u’j@. Thus, 
u @ U’E( [u] u [u’] )o, from which u @ U’E [U @ a’] o by Definition 5.3. If the computa- 
tion is tl;&, where &,(5r)=u, a,(tr)= U, and &(&)=u, a,((,)=~, then we[uje by 
observing that u~[uj @ and we WE [u] @ by inductive hypothesis; in fact, by Lemma 
5.4(v) Iwj c lull E Euj, f rom which the thesis follows. The last case considers the 
computation c1 @I t2, where &,(51)=u1, a,({,)=~,, and &,(52)=uz, a1(c2)=w2. By 
inductive hypothesis we have w 1 E [ul ] @ and w2 E [u2 ]I @. Like in the case of synchroni- 
zation, w1 @ w2~[ul @ u2jo. q 

Example 5.6. The reachable subnet for the making (a + /I) + (cx- + S) is depicted’? in 
Fig. 4. 

Example 5.7. The second example shows the subnet reachable from y +(LX QJ fi), 
depicted in Fig. 5. This marking corresponds to the RCCS agent y +(a1 /I), which is 

r20f course when describing nets graphically, we abandon the presentation of nets as graphs with 
algebraic structure for a more traditional representation as bipartite graphs. Note that transitions labelled 
by E denote local choices. Note also that, since nil is the neutral element, it does not have a corresponding 
place. 
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Fig 5. The SCONE subnet for y+(a $8). 

0 V 

?I E 

/ 

a 0 Pv 3 P 

V 

k E 

a 

8 

0 Pv 

a 

Cd (b) 

Fig. 6. (a) The SCONE subset for the place v = ret x.y +(a $ B.x). (b) The process in P[i&& associated 
to the computation (Y + %-(a CB Bv));(a 0 CB,v>); (a @ (Y+ %(a CB Bv>)));(a C3 (Cad> @J b9). 

considered a difficult agent to model in terms of net theory because of an interweaving 
of nondeterministic and parallel operators (see Example 10.1). 

Example 5.8. The third example shows the net (in Fig. 6(a)) reachable from the place 
corresponding to the evaluation of the recursive term v = ret x.7 +(a @ /3.x). In 
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Fig. 6(b) is shown a graphical representation of the process in BINscoNE] associated 
to the computation ’ 3 

(Y+ B (a 63 @));(a @ CB, u));(a 8 (Y+ B-b 8 B@));(a @(C:c,niO 03 Ml 

This example also illustrates that the finiteness result stated in Theorem 5.5 is also due 
to the fact that the nets are not l-safe. Indeed, in this example many tokens may be 
stored in the place a when playing the token game from the initial l-safe marking u. 

6. Implementing RCCS into SCONE 

Relating different languages whose operational semantics have been defined in 
terms of graphs with algebraic structure is now an easy task: we have simply to give 
a denotational semantics of the first in terms of the second, i.e. we have to define 
a (two-sorted theory) morphism between the two graphs. In this way, not only the 
terms of the languages (the nodes of the graph) are mapped, but also their operational 
behaviour is pointwise translated. Furthermore, if the target language is a Petri net 
calculus, then we get a distributed implmentation for the language. 

Here, we provide RCCS with a distributed implementation over the net of SCONE. 
Formally, the mapping is a pair of functions (f,g), where g maps RCCS states to 
SCONE markings andfmaps RCCS transitions to arrows of BINscoNE]. While the 
definition of g is immediate,fis nontrivial, as some RCCS operations have no obvious 
counterpart in SCONE. For instance, any RCCS external choice transition is implem- 
nted as a SCONE computation composed of internal choice(s) ending with an action 
prefix. This idea is related to the notion of implementation morphism of [32]. The 
analogy is expressed by the fact that our denotational semantics maps basic operators 
of the algebra of RCCS transitions to derived operators of the algebra of SCONE 
computations as well as an implementation morphism maps transitions to net 
computations. As the implementation of an agent E via (f, g) is an algebraic theory in 
9[NscONE], the underlying net for E is the SCONE net composed of those places and 
transitions used to build (f,g) (N,,(E)). 

Let us try to define the mapping with an example, just to point out some technical 
problems. Consider the RCCS agent (a f /?)[(a-+ 6), which can be mapped to the 
SCONE marking (a + fi) Q (a-+ 6) ( see Example 5.6). The RCCS transition 

([a,nil> < +/?)l([a-,nil> < +6) 

which represents the synchronization of a and a- (thus an elementary step in the 
transition system for RCCS) should be mapped to the net computation (thus to 
a derived operator) 

(a+/3@a-$ +6);([a,nil)I[a,nil>) 

I3 In the following, for the sake of simplicity, we often use the coercion “state for its identity”, i.e, u for id(u). 
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where firstly the internal choices are executed in parallel and then the synchronization 
is performed. 

We work out how the mapping is defined by induction on the syntax. For CCS 
generators the mapping is trivial: f( [a, nil)) = [a, nil), f( [LY-, nil)) = [K, nil). Then, 
in the case of nondeterministic choice we have an interesting situation of nontrivial 
mapping: 

f([a,nil) < +/3)=a4 +/?;f([a,nil))=a*j?;[a,nil), 

f([a-,nil) < +6)=a-4 +s;f([a-,nil))=a-$ +6;[a,nil). 

The choice operator is mapped to a derived operator, i.e. to a suitable combination 
of local choice and sequential composition, so that a global choice CCS transition 
is implemented as a sequence of (at least two) transitions, the first of which is a 
local choice, resulting in a many-step computation of SCONE. Indeed, any global 
choice can be seen as composed of two steps: the choice of the subcomponents and 
the execution of an action from the selected components. However, in order to 
preserve the correct semantics of the language, these steps are to be executed 
atomically (see Section 1 l), and the mappingfis the right mean to express this notion. 
Finally. 

f(([a,nil> < +/3)l([a-,nil) < +6))=f([a,nil) < +j?)lj([a-,nil) < +6). 

Now notice that f( [a, nil) < + fl) lf( [a-, nil) < + 6) is not defined in SINscONE], 
since the operator of synchronization is not definedfor computations, but only for net 
transitions! Therefore, we should define an algebra ‘ZZNsooNe, obtained enriching the 
algebra of category BINSCONE] with the operator of synchronization, and expressing 
which net computation the termj(tl)lf(tz) should represent. 

6.1. Transactions and synchronization 

Defining an operator of synchronization for concatenable processes is a difficult 
task, since the operation seems to be intrinsically nondeterministic. As an example, it 
is not clear what should be the result of the synchronization of a transition t with the 
parallel composition t’ @I t”. We might say that either the synchronization is not 
possible, or t can be synchronized with either t’ or t”, or even with both, but 
apparently there is no sensible choice. Luckily, in the present case, only a restricted 
family of concatenable processes is interesting for synchronization: the processes in 
BINscONE] which are the targets of RCCS transitions according to function& For this 
family, it turns out that a deterministic operation of synchronization can be defined 
which exactly reflects our intuition about CCS synchronization. 

The class of the relevant processes we call transactions, is formed by those concaten- 
able processes C = ( p, 8, K) where, additionally, the underlying plain process has the 
property that there is a (unique) basic transition, called commit, which is greater than 
all the others in the partial ordering. 
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Definition 6.1 (Net transactions and RCCS transactions). A net transaction for a net 
N is an equivalence class of terms in B[N] such that there are no terms in the class of 
the form q;(u @ t @ t’);p, i.e. with two concurrent finall transitions. A RCCS 

transaction is a net transaction for SCONE where all the transitions are .s-labelled, 
with the exception of the commit transition. A RCCS transaction with the p-labelled 
commit transition is also called a p-transaction. 

We will often use the convenient shorthand q ; (u 0 t) ; p - where q is a computation, 
t is the commit, u an identity and p a symmetry - for a transaction (but also 
computations which are not transactions can have the same form). Indeed, it is 
easy to see that any computation 5 can be always reduced to the format 

Po;(&@~l);P1;,.*.; p. _ 1 ; (u, @ t.) ; pn by applying functoriality of @. The commit 
transition, being caused by all the others, will always be the last one. Now we want to 
prove that there is some standard representative for transactions. To this aim, we need 
some auxiliary definitions and results. 

Definition 6.2 (Merge symmetry). A symmetry p : u 03 v+u @ v, p = <o,, , . . . , a,,,) is 
a (u, v)-merge, where u=nla, @ ..a @ nkak and v=mlal 8 a.. $ mkak, iff o,(i)<o,,(j) 

whenever 1 <i<j<nh or nh+ 1 <i<j<nh+mh, h= 1, . . ..k. 

A merge symmetry is an arbitrary merge of two identity symmetries, the former on 
u and the latter on v. As the condition a,,(i)<o,,(j) holds in the two intervals 
1 < i < j < nh and nh + 1 < i <j < nh + mh, we are sure that no exchange k possible within 
u or within v. Indeed, any symmetry on u @ u can be seen as composed of two local 
exchaging symmetries followed by a (u,v)-merge. 

Lemma 6.3 (Unique decomposition of symmetries). Given u and v, any symmetry 

p:u@v+u@~canbeuniquelydecomposedasp=(p~ @pPz);p’withpl:u+u,pZ:v+v, 

and p’ being a (u,v)-merge. 

Lemma 6.4 (Unique decomposition of transaction, up to). Any transaction r can be 
uniquely decomposed in right-standard form n’ ;(u @ t) ;p’ where t : w+v and p’ is 

a (u,v)-merge, up to equivalence of n’. 

Proof. Given a transaction in the form q ;(u 8 t) ;p, symmetry p can be decom- 
posed as (pl @ p2);p’ due to Lemma 6.3; hence, <=q;(u @ t);(pt 8~~); 
p’ = n ;(pI 8 w) ; (u @ t ; p2)) ; p’ = n’ ; (u @ t) ; p’ due to the axiom stating that gener- 
ators absorb symmetries. The decomposition q’ ; (u 8 t) ; p’ is unique, up to equiva- 
lence of $. In fact, two equivalent right-standard decompositions q ; (u @ t) ;p and 
q’ ; (u’ @ t’) ; p’ must evaluate to the same concatenable process C = (cp, 0, K). Since no 
endomorphism may map the commit to another transition, then u =u’ and t = t’. 

14As the commit transition is caused by all the others, there exists no transition concurrent with the 
commit. 
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Furthermore, the induced labelling rc on the destinations which are post-conditions of 
t uniquely determines p =p’. Finally, q and q’, which must evaluate to the same 
concatenable process, need not be the same term in general. 0 

Of course, we are not forced to leave t on the right; indeed, for any transaction 
5 there is also a left-standard form r,+’ ;(t @I u) ; p” where p” is a (v, @-merge. 

With this notion in mind, a natural deterministic definition of synchronization 
between two transactions consists of putting in parallel the two processes but syn- 
chronizing the two commits to become the commit for the resulting process. This 
operation is associative, and commutative up to natural isomorphism [23, p. 2141. In 
the next definition we introduce a new algebra by enriching BINscoNE] with a derived 
operation [ ] of synchronization defined on standard representatives of transactions, 
expressing the fact that the synchronization of two transactions is again a transaction. 

Definition 6.5 earn PINscoNE] to a,_). YN,,=( VscoNE,T, a,, a,) is the same 
graphi as BINsCoNE] with the extra partiali operation [ ] defined on transactions. 
The operation is subject to the following axiom, which defines it as a derived operator 
inside the algebra of 9[iVSCONE]: if two transactions < =q;(u @ t);p and 
5’ = q’ ; (t’ @ a’) ; p’ are in standard form (right- and left-respectively), then 

Before entering into the details of the results we prove, we will clarify the definition 
of this operation. The simpler case is when the RCCS transactions consist of exactly 
one step and there are no symmetries. In such a case, the operation states that 
identities do not participate to synchronizations. 

This example also shows that for net transitions, which are transactions in standard 
form, t’ [ ] t’ = t 1 t’. The synchronization operation represents a kind of composition of 
transactions where the two commits are synchronized. This is one of the few determin- 
istic ways of synchronizing two net computations, and certainly the only one mean- 
ingful for RCCS transactions. 

Theorem 6.6 (Synchronizations of transactions are transactions) (see Fig. 7). (i) Giuen 

two transactions 5 and c, 5 [ ] 5’ is a transaction. 

(ii) Given a A-transaction < and a l--transaction r’, 5 [ ] 5’ is a z-transaction. 

I5 To be more rigorous, we should say that the two algebras are different but induce the same underlying 

graph. 
r6 Note that this kind of partiality is different of that of sequential composition. In fact, [] is defined only on 
a restricted subset of computations (i.e. transactions), whilst ; is defined on all the computations provided 
that the constraints on source and target states are respected. 
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Fig. 7. A graphical representation of the synchronization operation. 

Proof. (i) Let 5 = q ; (u 8 t) ; p and 5’ = q’ ; (t’ @I u’) ; p’ be transactions. By the synchro- 
nization axiom, we know that 5 [ 15’ is the computation q @I q’ ; u 8 (t 1 t’) @ u’ ; p @ p’ 
which is a transaction, since t 1 t’ is the maximal transition in the associated concaten- 
able process. In fact, t 1 t’ is caused by all the transitions which caused either t or t’. 

(ii) Immediate. 0 

6.2. Mapping RCCS transitions to SCONE computalions 

Now, we are ready to define the evaluation morphism from the two-sorted algebra 
of RCCS to the two-sorted algebra of gNscoNa. 

Definition 6.7 (Implementing RCCS in SCONE). The 

f: TRCCS +T and g : V,,, +VsSCONE, is defined as follows, 

g(ni1) = nil g(x) = * 

s(~*4=/W(4 g(rec x.0) = ret x.g(u) 

&+~‘)=gW+&‘) &W=g(9@gW 

I(cu~>)=cPL,gW 

pair <~,~~~:NRcCS+~N,..~ 

where t : u-w. 

f(t< +u)=gW4 +gw;.m f(u+ >o=m+ %gW;f(Q 

.fCuL 4 = g(u) @_m) f(t J 4 =fW @ g(u) 

f(~ll~2)=f(~l)CIf(~2)=(?1~‘2);~1~(~ll~2)~.2;(Pl~PPZ) 

wheref(tl)=ql;(ul 6 tl);pl andf(t2)=q2;(t2 @ u2);p2 are in standard form. 

It is easy to see that function g is surjective (given any marking M, transform all the 
occurrences of @ into 1, thus gaining a RCCS agent), but not injective (due to the fact 
that 1 is implemented via the commutative monoidal operation @). Moreover, 
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a.nil + nil 

J a a.nile 

nil 

?I 
a 

ad + nil a.nil + nil 

E 

anil ,‘- a 

a) b) 

Fig. 8. 

d 

functionfis neither injective (e.g. due to the noninjectivity of g, [p, g(u)) and [,u, g(v’)) 
can be the same SCONE transition) nor surjective. This latter case is very interesting, 
as it illustrates that certain SCONE transitions - e.g. a.nil-4 +B.nil - cannot be the 
image of any RCCS transition, rather only a part of its image. Furthermore, we want 
to show that certain internal choice transitions are not even part of the image of any 
RCCS transition. 

Example 6.8. Consider the RCCS agent E = a.nil + nil and Fig. 8. The LTS Nccs(E), in 
(a), is composed of one transition only, [a, nil) < +nil. Its associated marking is 
a.nil + nil, a single place. However, the subnet reachable from this place, in (b), has 
more transitions. For example, a.nil4 + nil is a choice transition which is only part of 
the image of [a, nil) < + nil. Conversely, a, nil + @nil is not even part of the image. 
The subnet in (c) represents the underlying net of (f;g)(N&E)). Notice, however, 
that this net is not the implementation, but only its support. The implementation 
needs also function f which specifies that e.g., a.nil4 +nil is not a legal transition 
per se. 

Proposition 6.9. For each RCCS transition t, f (t) is always a RCCS transaction. 

Proof. By structural induction (symmetric cases are omitted). 
f ([CL, 0)) = @, g(u)): In this case the net computation is simply a net transition, 
which is of course a RCCS transaction. 
f (t < + u) =g(u) $ +g(o) ;f (t): By inductive hypothesis, f (t) is a RCCS transaction. 
As the s-transition g(u) 6 + g(u) causes all the transitions off(t), and in particular its 
commit, the thesis holds. 

f (t _I 4 =f (t) @ g(u): As f(t) is a RCCS transaction, f(t) @ g(u) is so, because g(u) 
generates no transition in the process associated to the transaction. 
f (tl 1 tz)=f (tl) [] f (tz): By inductive hypothesis and Theorem 6.6. 0 
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Proposition 6.10. The pair (f; g) : NRCCS+YNmm is u graph morphism, i.e. g(ai,(t)) = 
ai,,(f(t)), i = 0, 1, for all transitions t. 

Proof. By structural induction (only two relevant cases are reported). For the sake of 
simplicity, 8, denotes aiRcar, while ai, denotes a,,.. 

<aol(f(t < +u)), Uf(r < + u))> 

=(Jo,(s(M +s(u);f(t)),a,,(g(U)~ +g(u);f(r))) 

=@o,(g(n)$ +g(u)),al,(f(t))>=(S(u)+g(u),g(a,”(t)))= (g(u+u),g(&,(r))) 

= <s@,,(r) +~),g@l.(r < + 0))) = Wo,(t < + a)), s(&,(r < + u))), 

<ao,(f(t M)A,(J-0 MD 

Example 6.11. Consider E =(a+@I(a-+S) and the SCONE subnet in Fig. 4. The 
initial marking of the subnet we are interested in is g(E)=(a+fi) @(a-+6). 
Transitions are mapped to computations as follows: 
0 f( [o, nil)) = [a, nil) for (TE {a, /I, a-, S}, 
l f( [a, nil) < + /?) = a 4 /I ;f( [a, nil)) = a + /3 ; [a, nil) and similarly for the other 

choices, 

0 f(([a,nil> <+/I) J(a-+6))=f([a,nil) c +B)@g(a-+6) 
= (a + +/I ; [a, nil)) @(a-+ 6) and similarly for other asynchronous moves, 

0 f(([a,nil) < +/?)I([~-,nil> < +@)=f([a,nil> < +j?)[]f([a-,nil> < +6) 
=(a4 +jI;[a,nil))[] (a-4 +6;[a,nil)) 
=(a4 +/?@a-4 +6);([a,nil)I[a,nil)). 

Summing up, 

f([a,nil) < +/.3I[a,nil) < +8)=(6!*/3@a-4 +6);([a,nil)l[a,nil)), 

i.e. the choices are executed in parallel and then the synchronization is performed. Of 
course, the choices can also be done in any order, as proved through the following 
identification: 

(a<< +/?@(a-+6));(a@(a-< +G));([a,nil>I[a,nil>) 

= ((a << + j? ; a) @ (a-+ 6 ; a- 4 + 6)) ; ([a, nil) I [a-, nil)) (applying functoriality) 

= (a a +/I @I a-< + 6) ; ([a, nil))1 [a-nil)) (cancelling identities) 

=((a+/l;ae +B)@(a-4 +s;a-));([a,nil))l[a,nil)) (introducing identities) 

=((a + /I) @ a-Q + 6); (a Q + j? @ a-) ;( [a,nil))l [a-nil)) (applying functoriality) 
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In the previous section we have pointed out that, for any SCONE marking U, its 
reachable subnet N, is finite. Here we have mapped the whole RCCS transition system 
to the whole” SCONE net, via a graph morphism (f, g). As an immediate corollary 
we have that the subnet implementing any RCCS agent is always finite. 

Corollary 6.12. For any RCCS agent E, the SCONE subnet underlying (f;g) 
(NRC&E)) is jnite. 

Proof. The net underlying (f, g) (N-(E)) is a subnet of N,=(S$‘, TV, &,,,d,,), where 
u=g(E), by Proposition 6.10. N, is finite by Theorem 5.5. •i 

7. Distributed semantics of RCCS 

The semantics of RCCS is investigated via the mapping (f,g) : NRCCS+SNmNB, 
which induces a quotient of states and computations of Naccs. The quotient on states 
is determined by the axioms stating that 1 is a commutative, monoidal, with nil as 
neutral element, as @ is so. Some transitions are identified (e.g. [a,nil) jfl and 
/3L [a, nil)), even if an axiomatic characterization within RCCS is not so easy. Here we 
show that if we extend homomorphically fto RCCS computations, the mapping will 
equate all the computations obtained by permuting transitions generating indepen- 
dent events. 

Proposition 7.1. Let o and V’ be two states in V,,,. Zf g(u)=g(u’) then u and u’ are 
interleaving strong bisimulation equivalent. 

Proof. By induction on the structure of u. It is based on the fact that the associativity, 
commutativity and “nil as neutral element” properties of the parallel operator 1 hold 
for strong congruence. 0 

Proposition 7.2. Let t and t’ be two transitions in T RCCS. Zff(t)=f(t’) then t and t’ have 
the same label. 

Proof. By Proposition 6.9, f(t) =f(t’) is a RCCS transaction. It is easy to prove by 
induction that the labels oft and the commit off(t) are the same. Since the commit is 
unique, the thesis follows. Cl 

It is not easy to characterize the identifications, induced byf, on RCCS transitions. 
Consider, e.g., two states u and u’ such that g(u)=g(u’); then,f( [A u))=f( [p, u’)), as 

“To be precise, this is untrue as certain SCONE transitions are never executable, as shown in Example 6.8. 
Asf maps transitions to p-transactions, the part of SCONE we are interested in is the part covered by 
p-transactions. 
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forf(C~,alB))=C~L,aOB)=C~L,BOa)=f(C~L,BIa)). A ssociativity of @ induces fur- 
ther identifications, e.g.,f((t Ju) Jw)=f(t J(z+v)). Moreover, because of the synchroni- 
zation axiom, we have that, e.g., f((uL t)l t’)=f(uL(tlt’)). As a consequence, it may 
seem that we could axiomatize these identifications within the algebra of RCCS 
transitions: a conditional axiom for action prefixing and nine axioms relating the three 
RCCS operators for parallel composition in all the possible ways for associativity. 
However, some form of commutativity is also possible. For example, 
f( [a, nil) I [a-, nil)) =f( [a-, nil) 1 [a, nil)) due to the commutativity of the SCONE 
synchronization. Nonetheless, in general f(tr lt2) #f(tz I tl), e.g. [a, nil) I(aL [a-, nil)) 

and(aLCa,W)lC a, nil) do not give rise to the same transaction, because the synchro- 
nized a is different in the two transitions. Even if commutativity of SCONE synchroni- 
zation is included, other identifications based on some form of commutativity, not 
easily expressible within the algebra of RCCS, are possible; e.g. f(([a,nil) 
I [a-, nil)) 1 a) =f( [anil) I(a L [a-, nil))). This example shows the intuitive fact that, 
when the first a is to be synchronized with a-, the relative position of the second 
a w.r.t. a- is irrelevant. As a matter of fact, an axiomatization for the identifications on 
transitions is already available! It is enough to interpret the algebra of RCCS inside 
the algebra of Y,,,,, as specified by the implementation morphism (f,g). In this way, 
we exploit the finer grain of the operations in the algebra of gNsooNe. Indeed, two CCS 
transitions t and t’ are identified if and only if they give rise to the same CCS 
transaction, i.e. if we can provef(t)=f(t’) in the equational theory consisting of the 
axioms in BINscoNE] together with those arising from the definition of (1 g), which 
define the CCS operations as derived operations in the algebra of BINscoNE]. 

Once verified by Propositions 6.10, 7.1 and 7.2 that interleaving bisimulation 
semantics is respected, we would like to check whether the semantics induced by the 
implementation morphism is sound w.r.t. the intuitive notion of causality. To this aim, 
we can homomorphically extend the implementation morphism (f, g) also to RCCS 
computations, and then observe what kind of identifications are made on them. We 
will show that whenever two RCCS computations are different only for the ordering 
of causally independent transitions, they are identified and, vice versa (even if only 
under some mild assumption) whenever two RCCS computations are identified, they 
differ only for the ordering of causally independent transitions. 

Definition 7.3 (Category of RCCS computations). Let Cat(AJ,,& denote the category 
obtained by adding an identity arc to each node of NRccs and closing freely w.r.t. the 
(partial) operation -; - of sequential composition of its transitions, adding the usual 
categorial axioms (where, of course, the equality holds whenever both members are 
defined) 

t;(t’;t”)=(t;t’);t” id(u);t=t=t;id(v) 

Note that the algebraic structure of RCCS has not been extended to computations. 
The arrows of category Cat(N,,,) are only computations composed of NRccs 
transitions. 
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Themawing UCJ):NRCCS+~N~~ can be extended homomorphically to become 
a mapping from Cat(Nac& to g&,,= by further adding the equation f(ti ; tz) = 

f(tl);f(tz). In this way we obtain a quotient of RCCS (states and) computations. 

Definition 7.4. Category Conaca is obtained from Cat(N,,,) by the quotient map 
induced by (f,g). 

Example 75. Let us consider the RCCS term (a + fi)l(cr-+ 6) and the net in Fig. 4. The 
RCCS computation 

(([a,nil) < +/I)&-+6));(nil L([a-,nil) < +6)):(a+/?)l(a-+6)5nillnil 

denotes the execution of an a followed by an a-. It is mapped to the SCONE 
computation 

((a4 +B);Ca,nil>)~(a-+6);((a-~ +s);[a-,nil)), 

which, by functoriality and cancelling identities, is equivalent to the parallel execution 

((a< +B);[snil>)@((a-G +d);[a,nil)), 

which, by introducing identities and applying functoriality, is equal to their execution 
in reverse order 

Notice that this net computation is the image of the RCCS computation 

((a+fi)L([a,nil) c +@);(([a,nil) < +/?)Jnil):(a+/I)l(a-+6)“-rnillnil, 

thus inducing an identification between the former and the latter RCCS computa- 
tions. 

A relation x, called concurrency relation, between computations of length two 
(denoted as ti then t2) relates computations differing just for permuting the order of 
independent transitions. This relation proposed in [17,18], rephrases in algebraic 
terms a previous proposal by Boudol and Castellani [S, 63. Nonetheless, the present 
formulation is, in our view, a bit simpler and more direct. First of all, [6] uses 
SOS transitions labelled by their proofs, whilst here we directly introduce a more 
manageable algebra of transitions (proofs themselves are transitions); moreover, 
whilst they define the permutation equivalence in two steps (first the definition 
of a concurrency relation on transitions outgoing from the same state, and then of 
the real equivalence on diamond computations), here the equivalence is obtained 
in one single step by (conditional) axioms since sequential composition is an operation 
of the algebra. 
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Definition 7.6 (Concurrency relation). Let -then-X-then_ be a quaternary relation on 
. . 

transltlons of NRccs defined as the least 1,2 t, 3.4 commutative’* relation satisfying 
the following axiom and inference rules, where ao(ti)=Ui, ai( Vi, i= 1, . . . . 4, and 
8,(t) = U, 8,(t) = 0. 

t1 JuZ then ulL t2 x u1 L t2 then tl Jv2 

tl then t2 x t3 then t4 tl then t2 x t3 then t4 

t,<wtheot2Xt3<+wthent, w+ >tl thent2xw+ >t,thent, 

tl then t2 x t3 then t4 tl then t2 x t3 then t4 

tl Jw then t2 Jw xt3 Jw then t4 Jw wLtlfhenwLt2XwLt3fhenwLt4 

t 1 then t2 x t3 then t4 tl then t2 ,y t3 then t4 

tlItthent2 Juxt3Jufhent,lt t(t1thenvLt2XuLt3fhentlt, 

tl then t2 x t3 then t4 and t; then t; x tj then tl, 

tl 1 t; then t2 I t; x t3 I t; then t4( tk 

Proposition 7.7. Given four transitions tl, t2, t3 and t4 in NRccs such that 

tl then t2 x t3 then t4, the fotfowing hofd: 
(i) tl ; t2 and t3 ; t4 are defined; 

(ii) Wt,)=W3) and 4(tA=&(t4); 
(iii) tl and to (t2 and t3) have the same label. 

Proof. Immediate by induction on the proof of tl then t2 x t3 then t4. Cl 

The concurrency relation singles out a “diamond” in the transition system 
NRccs which is due to the different order of execution of independent transitions. The 
axiom algebraically singles out the basic diamonds, and the other rules reproduce the 
diamonds in all the other possible contexts. 

Theorem 7.8 (Completeness w.r.t. the truly concurrent semantics for RCCS). Gioen 
four basic transitions of Cat(N,,), i.e. tl, t2, t3 and t4 in NRCCS, then we have 

tl then t2 x t3 then t4 implies f (tl ; t2)=f(t3; t4) 

The proof, long and boring, proceed by induction on the proof of 
tl then t2 x t3 then t4. It is reported in [23, p. 222-2241. The proof is essentially the same 
we will give in the next part (Theorem 10.3), where, even if full CCS is considered, the 
proof is less heavy because we can exploit the simpler algebraic characterization of 
concatenable processes in the case of l-safe nets. 

“Namely, tl theot2Xt3 thent, iff t3 then t.,x tl theat2. 
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The reverse of the above theorem is false, in general, as the following example 
shows. Let us consider the four NRccs transitions below: 

tl=([a,nil))l[a,nil)) Ja tz = (nil 1 nil)L [a, nil) 

t3 =( [a,nil)]a) 1 [a-, nil) t4 = (nil L[a,nil))lnil 

It is immediate to verify that f(tl ; tz)=f(t3 ; t4). Nonetheless, t1 then t2 x t3 then t4 is 
false. Indeed, Proposition 7.7 ensures that &&,) = i&) and d,(t,) = d,(t,) whenever 
the x relation holds, which is trivially false in this case. However, the reverse of 
Theorem 7.8 holds if the constraint i&(t,)=~&) is imposed. Also this proof is not 
reported, because it is essentially the same we provide for the next study (Theorem 
10.4), where this constraint is satisfied as g is injective. 

Theorem 7.9 (Consistency w.r.t the truly concurrent semantics for RCCS). Let 

tl, t2, t3 and t4 be four difierent transitions in NRccs such that &,(t,)= &,(t,). Then 

f(tl ; t2) =f(t3 ; t4) implies tl then t2 x t3 tben t4 

Finally, let us examine what happens in case commutative processes are used in 
place of the more concrete concatenable processes. First of all, we observed in 
footnote 7 that causality is not well-represented and so we cannot specify what 
a transaction (and its commit) is. Consequently, we should restrict to the RCCS 
sublanguage without synchronization (called RCCS- ), as its corresponding operation 
[ ] cannot be defined in 2 [iVscoNE]. Hence, (h, g) : NRccs- +2 [NSCONE] is defined as 
(f, g) of Definition 6.7, where the case of synchronization is omitted. 

When using h, Theorem 7.8 obviously holds, because f(tl ; t2) =f(t3 ; t4) implies 
h(t, ; t2) = h(t3 ; t4). Conversely, Theorem 7.9 does no longer hold. 

Example 7.10. Consider the agent a.y 1 /I.y and the net in Fig. 2 (interpreting a = a.y, 

b = fi.y, c = y, l(tl) = a, I(t2) = /3 and I&) = y, where I(t) is the labelling oft, and ignoring 
place d = nil). Assume that transition [a,y > J /?.y is executed. Then, the reached state is 
y1fi.y. The four RCCS transitions are: 

tl= Cy,ni0 J B.Y ~2=nilL13,y> 

h = Y L mr > t4 = Y I_ CY, nil) 

It is clear that [a,y) @ 8.y; h(t, ; t2) corresponds to the concatenable process in 
Fig. 2(b), whilst [a,~) @I /?.y ; h(t3 ; t4) to the concatenable process in Fig. 2(c). 
Nonetheless, they are the same commutative process. Hence, h(t, ; t2) = h(t3 ; t4); 

nonetheless, t1 then t2 x t3 then t4 cannot be proved (observe, e.g., that 8, (t2) #a,@,)). 

This example shows that commutative processes are not appropriate when one 
wants to use SCONE as a system model for executions of RCCS- agents: the intuitive 
notion of causality is not respected and computations which should be intuitively 
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distinguished are identified instead. However, if one is interested only in detecting 
diamonds due to the different order of execution of independent transitions in the 
RCCS- transition system, then also the quotient induced by (h, g) is consistent and 
complete. Indeed, the following proposition can be proved similarly to Theorem 10.4; 
notice that the conditions &,(t,)=&,(t,) and a,(~,)= a,@,) are crucial for the only $ 
part, as Example 7.10 shows. 

Proposition 7.11. Let tl, tz, t3 and t4 be four difSerent transitions in NRccs such that 

Wt1)=4&) and &W=&(k): 

h(t, ; tz) = h(t3 ; t4) if and only if tl then t2 x t3 then t4 

8. SCONE+ : a calculus of nets 

With this section we begin the presentation of our second case study. There are 
some major differences when considering full CCS. First of all, we have to cope with 
the complexity of other operations. Restriction and relabelling may be modelled by 
means of a syntactic construction which leads, as a side effect, to a l-safe P/T net 
representation of the reachable subnet implementing a CCS agent. However, the 
resulting net associated to a CCS agent may be infinite. 

On the other hand, we can exploit the simpler algebra of concatenable processes in 
the case of l-safe nets. Indeed, the rather complex treatment of token exchanges can be 
removed in favour of a more accessible semantics which assumes commutative the 
operation of parallel composition of processes. 

Now we introduce our enriched simple calculus of nets, we call SCONE+. Since the 
definition of sensible SCONE+ operations depends on the possibility of mapping 
correctly CCS on the SCONE+ net, we explain through an example why, in our 
opinion, some auxiliary operators (w.r.t those included in SCONE) are needed. The 
example concerns the troublesome interplay between parallelism and restriction. To 
be more concrete, let us consider the CCS agent (ala-)\a which cannot perform 
asynchronously the two actions o! and a-, but only the r-labelled communication step. 
The mapping for the restriction operator should be defined by function g from CCS 
states to SCONE+ markings as follows: 

do\4 = s(u)\a- 

Thus, the SCONE+ marking associated to the CCS agent (a 1 a-)\a might become 

s((ala-)\a)=g(aIa-)\a=(a 0 O\a. 

On the other side, SCONE+ must have a distributive axiom for restriction of the form 

(II Cl3 o’)\a = u\a @ u’\a 
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as, otherwise, (u 8 ~‘)\a would represent a single place, in constrast with the intuition 
that actions executed by v and u’ are neither causally dependent, nor in conflict; 
indeed, whenever a parallel operator is present, we should get a multiset union of 
places from its components. However, the distributive axiom would induce false 
equalities, e.g. (~[cI-)\~=cL\cLIcI-\cI where the latter agent is deadlocked, Thus, our 
interpretation of 1 as multiset union is too simplistic now. Disjoint union is the answer 
to our problem. We introduce two unary operators for both nodes and transitions, 
idl_ and -Iid (called right and left context), with the intuition that vlid makes u the left 
part of a larger system. The mapping is 

g(vIv’)=g(t@d @idIs 

and now distributivity of restriction w.r.t. multiset union preserves the intended 
semantics. In our example, we get g((0: 1 a-)\a) =(crlid)\or $ (idlcx-)\a, which represents 
two places, each one independently stuck but able to cooperate for synchronization. 
The idea of using these auxiliary context operators for correctly dealing with the 
interplay between restriction and parallel composition dates back to [ 1 l] and has 
been used by other authors [36,41]. 

Definition 8.1 (The algebra of SCONE+ markings). The SCONE+ terms are gener- 
ated by the following syntax: 

M ::= 0 I ml I x 1 p.M I M+ M 1 M\a I MC@] I Mlid 1 idIM 1 M 0 M I 

ret x. M 

The algebra is quotiented by the following axioms: 

M@M’=M’@M MQ3(M’@M”)=(M@M’)@M” M@O=M 

(M@M’)\a=M\a@M’\a O\a=O 

WG3M’)C@1=MC@l@M’C~l O[@]=O 

(M @ M’)lid = Mlid @ M’lid 

idl(M @ M’)=idllM Q idIM 

Olid=O 

idlO=O 

ret x. M = M [ret x. M/x] 

Only a subset of the terms, however, is relevant for the operational semantics: the 
closed, guarded terms (ranged over by u, u, w, with abuse of notation) which are the 
markings of the net. 

The set of nodes Vs,,,+ is composed of all the closed, guarded terms, freely 
generated by the syntax modulo the axioms. Let SScONE+ be the set of the terms in 
VscoNE+ generated by the following syntax: 

N ::= nil I p_M I M+ M I N\a 1 NC@] I Nlid I idIN 
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Thus, VSCONE + = &CONE + )‘P i.e. FscoNu+ is the free commutative monoid of nodes 
over a set of places SwoNu + , having 0 as neutral element.rg FWoN,+ has, on nodes, the 
algebraic structure of a net. 

Intuitively, cl.0 and V+ V’ are places with the same intuition as before; u\a may 
perform any transition of u, provided that it is not labelled a or a-; o[@] performs the 
transitions of u, where the label has been relabelled by @ u)id can execute the same 
transitions as u, and makes explicit that u is part of a larger system connected on its 
own right, and symmetrically for idlu (see the synchronization operator on transition); 
u Q3 u’ is the multiset union of the two markings u and u’. 

Definition 8.2 (Algebra of SCONE+ transitions). Let T=_.Hu {E}, ranged over by y, 
where E is a special unobservable and unrestricted action preserved by any relabelling 
function @. The transitions in T SCONE+ are generated by the following constants 
(determined by act, sum- <, sum- >) and operations (determined by res, rel,/id, id/, 

sync), where t: ulL u2 and t’: u; 21; u; range over transitions and u over FscoNs+: 

(act) 
(sum- < ) 

(sum- >) 

(res) 

(rel) 

0 

(id/) 

(sync) 

[p.u) : p.u 4 u 

u* +u’:u+u’ 5 u 

u’+~u:u’+u~u 

for any PLEA 

,I 
t\a : ul\a L u2\a 

t[@]:ul[@]p%z[@] 

tlid : u1 lid A u2 lid 

idlt: idlul 3 idluz 

with y”:= if y#{ a,a-} then y else * 

tit’ : ul lid CD id)u; 2 u21id @ idlu; with y”+ if y’ = y- then r else * 

where * is the error symbol. Again, we will consider only transitions which are not 
*-labelled. 

The generators of the algebra are of two kinds: action prefixing ([,u, u) : p.u -L: u) and 

local choice transitions (u 4 + u’ : u + u’ f u and u’ + 9 u: u’ + u 5 u). The operations for 

restriction, relabelling and left-, right-context are trivial. The intuition behind tl I tz is 
that it is a new transition, whose source and target are the disjoint (because of tags 
“idl” and “lid”) set union (because of @) of the two and whose label is the synchroniza- 
tion of the two. 

SCONE+ is a P/T net NscoNE+ =(V,scoNE+, TscoNE+,ao,al) because I’scoN,+ is 
the free commutative monoid over the set of places SscoNu+. 

Example 8.3. The reachable subnet for (a + jl)lid $ idI (a-+ 6) is depicted in Fig. 9(a). 
Note the similarities with the net for the SCONE marking (a +/3) @ (a-+ 6) reported 

‘9Notice that nil is not the neutral element in this case. To this aim, we have added a new element 0, which 
will be the image of no CCS state. 
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a) b) 

Fig. 9. The SCONE+ subnet for the marking (a+fi)lid @ idl(a- +6) in (a) and ((a+/?)lid @I idj(a- +S))\a 
in (b). 

((v IId)iid)\a ((av kd)kd)\a ((id law)lid)\a ((id 1 w)hd)\a 

(@v Id)!4d)\U 

Fig. 10. A finite SCONE+ subnet for a recursive behaviour. 

in Fig. 4. Fig. 9(b) reports the net for the SCONE+ marking 
idl(a-+ &)\a. 

((a + BW CD 

Example 8.4. Fig. 10 represents the finite subnet reachable from the marking corres- 
ponding to the CCS term 

E = (( (ret x.ax +/3x) 1 ret x.ax + yx)l ret x.a-x)\a 

The initial marking is composed of three places: 

((vlid)lid\a where u = ret x.ax + /Ix 

((idlw)(id\a where w = ret x.ax + yx 

(idlu)\a where u = ret x.a-x 

Example 8.5. The initial part of the infinite reachable subnet for the recursive term 
v = ret x.y +(alid @ idlj?.x), which will correspond to the CCS agent ret x.7 + (al/Lx) (see 
also Example 5.8), is drawn in Fig. 11. 
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Fig. 11. The initial part of the infinite SCONE+ subnet for v=recx.y+(alid ~3 id1b.x). 

9. Distributed implementation of CCS 

In analogy to what was done in Section 6, here we map CCS states and transitions 
into SCONE+ markings and computations, thus providing CCS with a distributed 
implementation. 

9.1. Implementing states 

Definition 9.1 (From CCS states to SCONE+ markings). Let g: VCCS+V~~ONE+ be 
defined as follows: 

g(ni1) = nil g(x) = x 

g(rec x.u) = ret x.g(v) 

Mapping g is injective and invertible; any place in g(u) occurs at most once, and 
from the set of places composing g(u) we can recover the original CCS agents u by 
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means of a sort of unification procedure, where various occurrences of id should be 
intended as different variables. Indeed, g is a decomposition function which keeps 
track of the topological structure of subsystem interconnections via the auxiliary 
operators -(id and idi-. A marking which is image of a CCS state is called complete 
[13]. Complete markings enjoy a nice property: a marking reachable from a complete 
marking is, in turn, complete. Therefore, since complete markings are l-safe, the 
reachable subnet is l-safe. 

Definition 9.2. A marking w is complete if there exists a CCS term u such that g(u) = w. 

Property 9.3 (i) If a marking u is complete, then it is composed of a set of places (i.e. it 
is l-safe). 

(ii) Function g defines a bijection between CCS terms and complete markings of 
SCONE + . 

Theorem 9.4. Given a complete marking u and a computation e : u + u in FINsCoNE+], 
u is a complete marking. 

Proof. By induction on the structure of the complete marking u. If u=nil, then 5 can 
only be id(ni1) and the thesis holds trivially. If u=p.u’, then u’ is also a complete 
marking by definition of g; thus, the thesis holds for u’ by inductive hypothesis; hence, 
also for u because the unique initial transition [,u.u’) reaches u’. If u = u’ + u”, then u’ and 
u” are also complete; thus, the thesis holds for both u’ and u” by inductive hypthesis; 
hence, the thesis holds for u because the only two initial transitions from u’ + u” reach u’ 
and u”, respectively. If u = u’lid $ idlu”, then u’ and u” are complete and the thesis holds 
by inductive hypothesis for u’ and u”, Note that whenever u’ and a” are complete, then 
u’jid @ idlu” is complete; therefore, any transition enabled by u’lid reaches a marking 
which is completed with idlu” (similarly for any transition enabled by idlu” and also for 
synchronizations, needing tokens from both sides). Sequential composition and (dis- 
joint, i.e. -lid @ idl-) parallel composition of enabled computations satisfying the 
thesis produce enabled computations satisfying the thesis. Hence, the thesis holds for 
u. The simple cases for restriction and relabelling are omitted. No case for recursion is 
needed because of the recursion axiom. 

Corollary 9.5. The SCONE+ subnet reachable from a complete marking is l-safe. 

9.2. Implementing transitions 

As the part of SCONE+ relevant to our aims is a l-safe net, the algebraic 
construction of Definition 3.14, yielding the strictly symmetric strict monoidal cat- 
egory YINscoNE+], can be exploited, as we know that for l-safe nets this simple 
algebraic characterization is equivalent to the one for concatenable processes. Let us 
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try to define the mapping from CCS transitions to the arrows of YINscoNE+ 1. We 
start with some examples, pointing out some technical problems. Formally, the 
mapping is to be defined in a purely syntax-driven way. However, some CCS 
transitions have no obvious counterpart in SCONE+. For example, consider (a 1 fi)\a; 
its sole transition is (4 [/I,nil))\a; let us try to map it to a SCONE+ computation: 

f(c?J [b,nil)) = alid @I idlf( [j?,nil)) = alid @I idI [$nil) 

which is not a transition, rather a computation (parallel composition of a net 
transition with an identity), and thus restriction must be extended to computations: 

f(d CB,nib\a)=(alid C3 idl CB,W)\a 

Indeed, restriction is not defined in Y[N ScoNE+]. Similar arguments also hold for 
relabelling and for the two unary context operators. Therefore, we should define an 

algebra gN,,.+ obtained enriching the algebra of category YINscoNE+ ] with the 
auxiliary idl_ and -lid, restriction and relabelling, and expressing which net computa- 
tions the terms idlf(t),f(t)lid,f(t)\ a andf(t)[@] should represent. For these operators, 
the solution is immediate: it is enough to add a distributive axiom, e.g. 

(tl @ M\a=rl\a 8 t2\a, 

stating that the restriction of a parallel execution of two transitions is the parallel 
execution of the restricted transitions. Back to our example, 

f(d [@il)\a) =(alid 03 idI [j?,nil))\a =(alid)\a @I (id1 [fi,nil))\a 

which is the parallel composition of a net transition and of an identity. 
The next problem is concerned with nondeterminism, and its solution is in perfect 

analogy with the solution presented in Section 6. Any external choice is seen as 
composed of two steps: the choice of a subcomponent and the execution of an action 
from the selected component. 

Further example presents the harder problem of synchronization. As expected, the 
mapping of a CCS transition tl I t2 should be the net computation f(tl ) tz)= 

f(tl)lf(tz), but unfortunatelyf(tl)lf(tz) is not defined in YINscoNE+]. Therefore, the 

algebra %v,,.+ should be further enriched with the synchronization operation. Also in 
this case, a deterministic synchronization operation is defined through the transaction 
concept. As in Section 6, a transaction is a concatenable process such that there is 
a net transition, called the commit, which is larger than all the others in the partial 
ordering. 

Definition 9.6 (Net transactions and CCS transactions). A net transaction for a net N is 
an equivalence class of terms in S[N] such that there are no terms in the class of the 
form’? ; (u @ t @I t’), i:e. with two concurrent final transitions. A CCS transaction, also 
called p-transaction, is a net transaction for the net of SCONE+ where all the 
transitions are labelled by E, with the exception of the CL-labelled commit transition. 
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The shorthand ‘1; (u @?I t) for a transaction can be conveniently used, where q is 
a computation, t is the commit and IA an identity (but also net computations which are 
not transactions can have the same form). ” This is a standard form, as the decomposi- 
tion rl ;(u @I r) is unique, up to equivalence of rl (provable similarly to what we did in 
Section 6). With this notion in mind, a natural deterministic definition of synchroniz- 
ation between two transactions consists of putting in parallel the two processes but 
synchronizing the two commit transitions to become the commit for the resulting process. 

In the following definition we introduce a new algebra by enriching F[iVscoNE+ ] 

with some derived operations (i.e. by extending these operations to net computations). 
Among them, the most important is the operator [ ] of synchronization, expressing 
the intuitive fact that the synchronization of two transactions is again a transaction. 
In this way, a generalized notion of computation is defined. 

Definition 9.7 (from YINXoNE+] to gN,,+). YNYX)NB+=(~CoNE+,T,ao,a,) is the 
same graph as FICNsCoNE+] with the extra four operations -\a, -[@],_lid, idl_ and the 
partial operation _[ ]- on transactions. These operations are subject to the following 
axioms, which reduce them to the fundamental operations inside the algebra of 

2r- CNSCONE + I: 

Let 

(5 @ S’)\a=t\a@ tl’\a (5;5’)\a=5\a;t’\a 

(~c3~r’)c@l=5c@16o~‘c@l (~;~‘)c@l=5c@l;~‘c@1 

(t @I c)lid= <Iid @ r’lid (5 ; <‘)lid = (Iid ; t’lid 

idl(< @ r’) = idI5 8 idI<’ idl(t;l’)=idl<;idl<’ 

id(u)\a = id(u\a) id(u)[@] =id(u[@]) 

id(u) = id(u(id) idlid = id(idlu) 

< = tf ; (u @I t) and 5’ = rl’ ; (u’ @I t’) be two transactions, then 

< [ ] <’ = (qlid @I idif) ; (ulid @ id/u @ t I t’) 

Proposition 98 (Synchronizations of transactions are transactions). (i) Given two 

transactions 5 and r, < [ ] 5’ is a transaction. 

(ii) Given a I-transaction 5 and a A--transaction r’, 5 [ ] 5’ is a z-transaction. 

Definition 9.9 (From CCS transitions to SCONE+ generalized computations). Let 

f: Tees +T be defined as follows, where g is the mapping of Definition 9.1. and t : u-w: 

f(Cw>)=cM?W 

f(t-= +e=m+ +du);fW f(u+ >t)=d9+ %-cm;f@) 

“Indeed, it is easy to see that any computation r can be always reduced to the format (ul 8 tl);...; (u, @ t.) 
by applying functoriality of the commutative parallel operation 8. 
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f(uL t) = stu)lid 8 idl f(t) ftt Iv) =ftW C3 WgW 

f(t\a) =fW\a f@C@l)=f(t)C@l 

f~~~I~~~=f~~~~Clf~~~~=~rl~l~~~~~lrt~~;~~~l~~~~~l~~~~l~‘~ 

wheref(tI)=ql;h @ 0 andf(t2)=vz;(u2 63 t’) 

It is an easy task to prove, by structural induction, that f is injective; this is 
essentially due to the fact that g is injective (hence, no two CCS prefix transitions can 
be confused). Nonetheless,f is not surjective; the instance reported in Example 6.8 
applies also to CCS (adding the place for nil). 

Proposition 9.10. For each CCS transition t, f (t) is always a CCS transaction. 

Of course, also the reverse is true, i.e. any CCS transaction is the image of a CCS 
transition. The following important proposition states that (f,g) is a graph mor- 
phism. 

Proposition 9.11. The pair (f,g): N,, + YNsoNB+ is a graph morphism, i.e. go ai_= 

aiWnB+ of, ,i=O, 1. 

Proof. By structural induction (only two cases are reported). For the sake of 
simplicity, a,,,+ is shortened to ai,+ and ai, to ai,. 

(a,,+(f(t\a)), a,,+ (f(r\a)) 

= (aos+ (f(r)\,4 aIs+ (f(t)\4) =a,,+(f(t))\4 a,,+(f(t))\a) 

=(s(aoc(t))\a,s(a,.(t))\a>=(g(aoc(t)\a),g(alc(t)\a)) 

= <g(ao,(r\4), g(al, (W)>, 

(ao,+f(tlitz)),a,,+cf(t,lt2))) 

= (ao,+tf(tl) c if(t2)), alo,*(f(tl) c if(tz))) 

= @o,+UItIW @ Wo,+W2)), a,,+WdMd @ iWI,+UW)> 

= <dao,(h)W ~3 W(ao,@2)), d&,(hNlid @id IdaI,@2)D 

=(g(ao,(t,It2)),g(a,.(t,lt2))>. 0 

10. Distributed semantics of CCS 

CCS semantics is investigated through the implementation mapping (f, g) : 

Nccs -, ‘%smm+, in order to study the effects on the source Nccs of the identifications 
induced by (f, g). Since g andfare both injective, no different CCS agents are mapped 
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to the same marking nor CCS transitions are identified. Thus, in this case the quotient 

of Nccs through (f, g) is Nccs itself. Nonetheless, the mapping will equate (all and 
only) those computations obtained by permuting transitions generating independent 
events. To prove this fact, we can homomorphically extend the implementation 
morphism (f, g) also to CCS computations, and then observe what kind of identifica- 
tions are made on them. 

Similarly to what was done in Definition 7.3, let Cat(N& denote the category of 
CCS computations, obtained by adding an identity arc to each node of Nccs and 
closing freely w.r.t. the operation _;_ of composition (modulo the usual categorical 
axioms). Observe that the algebraic structure of CCS has not been extended to 
computations, i.e. the arrows of Cat(N& are only computations composed of 
Nccs transitions. The mapping (S, g) : Nccs + YN,_+ can be extended homomorphi- 
tally to become a mapping from Cat(Nccs) to ‘2rNaa+ by further adding the equation 
f(tr ; tz)=f(tl);f(t2), which is defined as (f,g) is a graph morphism. Category 
Conccs is the resulting quotient graph. 

Example 10.1. An interesting test to measure the reliability of a true concurrent 
semantics is represented by the CCS agent E = y +(a l/I), where an interweaving of 
nondeterministic and parallel operators may cause the possible loss of causal indepen- 
dency between the concurrent actions a and j? (see [13,14] for more details). The place 
y +(alid 8 idI/?) is the image of E, and the two CCS transitions 

Y+ =+(Ca,nil> JB):r+(aI8)~*W, 

y+ >([d [j%nil)):y+(alB) Aalnil 

are mapped to the following two net computations, respectively: 

(y + %(alid @ idW));( [a,nil)lid 63 idIp), 

(y + %(alid $ idl/3));(alid @I idl [B,nil>). 

The image of the CCS computation (y + > ([anil) J /?)) ; (nil L [j&nil)) is the net compu- 
tation 

(y + %( alid 8 idI/?)) ; ([a,nil) lid @I idly?) ; (nillid @I idI [B, nil)), 

where actions a and /I are in fact causally independent. This net computation is 
equivalent to 

(Y + Wid G3 idIS)) ; (alid 63 idl [B,nil)) ; ([a,nil)lid @I idlnil), 

which is the image of the computation (y + >(aL [j?, nil))) ; ([anil) J nil) of CCS. 
Therefore, the two CCS computations are identified by the mappingf, i.e. they denote 
the same arrow in Con,-cs. 
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Fig. 12. The transition system and the net for the agent y +aljI. Notice that both tI ; t2 and r3;t4 are 
mapped to the same process, enclosed in the box. 

Now we want to prove that the identifications on CCS computations due to the 
implementation mapping are the same obtained via a set of axioms proposed in 
[18,17]. The concurrency relation x introduced in Definition 7.6. must be extended to 
the further operators of restriction and relabelling. 

Definition 10.2 (Concurrency relation). Let _ then-x- then- be the quaternary rela- 
tion on transition of Nccs defined as the least 1,2~3,4 commutative relation 
satisfying the following inference rules, in addition to those in Definition 7.6: 

tI then tz x t3 then t4 tI then tz x tJ then t4 

t,\uthentz\uXtg\afhent4\a tl [@I then tz [@I x t3 [@I then t4[@] 

Similarly to Proposition 7.7, we can prove that, if we are given four transitions 
t,,t2,t3andt,inNccs such that tl then t2 x t3 then t4, then tI ; t2 and t3 ; t4 are defined, 
&(tl)=&,(t3) and a,(t,)=a,(t,), as well as that tl and t4 (t2 and t3) have the same 
label. 

Theorem 10.3 (Completeness w.r.t. the truly concurrent semantics of CCS). Given 

four basic transitions of Cat(Nccs), i.e. tl, t2, t3 and t4 in Nccs, then we have 

tl then t2 x t3 then t4 implies f(tl ; t2)=f(t3 ; t4) 

Proof. The proof is by induction on the proof of tl then t2 x t3 then t4. Actually, in 
order to be able to prove the theorem in a completely syntactical manner, we prove 
a stronger result: 

tl then t2 x t3 then t4 implies f(tl)=(c; (T’ @ u”)) @ w,f(t2) 

=(o’ @ T”) @ w,f(t3)=(r;(u’ 8 T”)) @ w andf(t4)=(T’ @ u”) @w 
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where w and 5 are optional (but if, e.g., w is present in one of the f(ti), then it is 
present in all the others), and T’ : u’ + u’, T” : u” + u” are transactions. Sequentially 
composing the two processes, we obtain f(tl ; tz) = (< ; (T’ @ u”) ; (u’ @I T”) @w = 

(5 ; (T’ @I T”)) @I w = (5 ; (u’ @I T”) ; (T’ @I u”)) @ w =f(t3 ; t4). This means that, apart 
from a possible initial common segment (represented by the optional l) and some idle 
tokens (represented by the optional w), t1 ;tz generates two independent (non-s- 
labelled) events which are generated in reverse order by t3 ; t4. The order exchange is 
expressed by functoriality. The “commutativity” condition on x holds because 
equality is a commutative relation. 

The base case is the axiom; we have to prove thatf(ti Juz ; ulL tz)=f(ulL t2 ; tl Ju2). 

In this case, w and 5 are not present. Indeed, as f(ti Ju2)=f(t1)lid@id(g(u2), 
T’=f(t,)lid and u”=idlg(u2); moreover, asf(ulLt2)=g(ul)~id @ idIf( u’=g(ul)lid 
and T” =idlf(t,). Finally, it is easy to observe that f(uiL t2)=u’ @ T” and 
f(ti Ju2) = T’ @ u”. The thesis can be proved directly as follows: 

=(du~W;f(tdlid) ~3 @W(h) ;idldG 

=(shW @ i4f@~));Cf(~dli~ @ idlg W)=fhLt~;t~ Jd. 

For restriction, we have to prove that f(t1\a;t2\tl)=f(t3\cc;t4\~), knowing that 
f(ti ; t2)=f(t3 ; t4) by inductive hypothesis. Hence, the thesis holds because of the 
distributive axioms of restriction: 

f(h\a)=.f(h)\a=((5 0 63 ~“1) 63 w)\a=(t\a;(T’\a C3 ~“\a)) @ w\a 
f(t2\a)=f(t2)\a=((u’ 63 T”) @ w)\a=(u’\a @ T”\a) @I w\a 

f(t3\4=f(h)\a=((< ;(u’ 8 T”)) 69 w)\a=(t\a;(u’\a C3 T”\a)) 63 w\a 

f(t4\a)=f(t4)\a=((T’ @ u”) 63 w)\a=(T’\a ~$3 #\a) @I w\a 

which are all of the required form. The thesis can be also proved directly as follows: 

=_f(b ; t2)\a=f(t3 ;t4)\a=(f(h) ; f(t4)\a=fO3) \5f@4)\a 
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The similar case of relabelling is omitted. In the case of the rule for nondeterminism, 

we have to prove thatf(w + > t1 ; tz)=f(w + > t3 ; td), knowing that_/& ; t~)=f(h ; td 

by inductive hypothesis: 

f(w+ =-t1)=((g(w)+ Bg(Ul));f(rl))=(g(w)+ %-g(u1);(S;(T’@u”))@ w 

=((g(w)+ %g(u,);5 G0 w);(T’@ UN 63 4) 

f(tz) = u’ @ T" @I w 

f(w+ =-M=((g(w)+ ~g(u3));f(t3))=(g(w)+~g(U3);(5;(#'~ T")@w 

=((g(w)+ %&);t@.w);(u'C3 T"C34) 

f(L$)=T'@lY @w 

which are all of the required form (the new < is (g(w)+ %g(q); < @ w), the new T' is 
T’ @w, the new T" is T" and the new w is 0). The thesis holds also because 
ul=&,(t1)=&,(t3)=u3. Directly, 

f(w+ >r1;rz)=((g(w)+ %g(ul));f(rl));f(rz)=(g(w)+ ~dul));(f(~l);f(~2) 

=(dw)+ %-dul));f(b ;t2)=(dw)+ %-du3));f(t3;Ld 

=(dw)+ %d~l));(_m3);_f-(Ld)=((dw)+ ~dU3)m3))dW 

=“f(w + > t3 ; t‘+). 

The proof for the symmetric nondete*rministic rule is omitted. 
In the case of synchrony, we have to prove that f(w Ltr ; w Lt2)=f(w Lt3 ; w Lt4). In 

this case, we simply add extra idle tokens g(w)lid. For the sake of brevity, we provide 
only the direct proof. 

f(wLt1 vLt2) 

=(s(w)lid @ idlf(tl));(g(w)lid~idlf(t2))=(g(w);g(w))lid 63 Wf(h);f@d) 

=g(w)lid 8 W(~I;~2)=dwW C3 W(t3;M) 

=(dw);dw))lid CO idl (f(h); f@d) 

-(gWIid;gWlW ~3 04f@d;WM) 

=kWlid @ Wf(t3));(sWlid 63 W@d) 

=“f(w Lt3 ; w Lb). 

The proof of the symmetric rule is omitted. In the subsequent case, we have to prove 
that f(tllt;t2Ju)=f(t3Ju;t41 t). Assume f(t)=?;@ @ z) and &(f(t))=g(&(t))=u, 

~,(f(t))=g(~,(tI))=u. Finally, let a,(()=~ 0 u” and a,(~)=~,,. Let us firstly show an 
intermediate result: 

f(t1)C lf(O=((5;(t’ c3 u”)) @ 4 c lh;(t c3 4) 

=((5 69 WIG@ @ u” @ w))C I(1 ;(t 63 4) 

=(W~5);(W~U”~t’)Cl(lf;(t~zZ)) 
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=[((w@ ~);(w@u’@u”))~id@id~~];[(w@u”)lid@ t’lt@idlz] 

= [(w @ 5) lid @I idly] ; [(w @I u”)lid @ t’ I t 63 idlz]. 

Thus, we have that 

f(tl It ; bl4 =(fh) C If(O) ;f@dlid 8 i44 

= [(w @ <)lid @ idly] ; [(w @ u”)lid @ t’lt @ idlz] ; 

[(w @I t” @ u’)lid @ idlu] 

= [(w @ r)lid 6 idly] ; [wlid @I u”)id 0 t’l t @ idlz] ; 

[wlid @ t”lid @I u’lid @I idlu] 

= [(w 63 Qlid @ idly] ; [wlid @ t”)id 8 t’lt @I id(z] 

= [(w @ 5)lid 631 idly] ; [wlid @I t”lid @I u’lid 631 idlu,] ; 

[wlid 8 u”lid @ t’lt @ idlz] 

= [(w ~$3 5)lid 63 idly] ; [(w @ t” @ u’)lid 63 id(u,] ; 

[(w @I u”)Jid @ t’lt @I idlz] 

= [((w @ r);(w GO u’ 8 t”))jid @I idly]; [(w @ u”)lid @ t’lt @ idlz] 

= [(({ ; (u’ @I t”)) 6 w)lid @I idlu] ; [(w @ u” 63 u’)lid @I idly] ; 

[(w @I u”)lid 8 t’lt @ idlz] 

=(f(t3)lid @I idlu); [(w @ u” 8 u’)lid @ idly] ; 

[(w @ u”)lid 8 t’l t @ idlz] 

=Wdlid ~3 i44; CM 63 u” @ 0 C 1 v;@ C3 4 

= .f% M; uw c If@)) 

The proof of the symmetric rule is omitted. 
Finally, in the case of synchronization, we have to prove that f(tl It; ; t2 I t;) = 

f(blG;~~lCd. Assume that f(~d=(t;(~~@d)@wW, f(b)=h@U@w, f(b)= 
(5;h ~~tz))~ww,f(t4)=(tl~u2)~wW,f(t;)=(r);(t; c34))@“,S(~;)=vl @&I63 
w’, f&)=(5’ ;(u; @ ti)) @ w’ and f(tk)=(t; @I u;) @ w’. Some intermediate results 
first. 

f@l)C l_tw=((5;(~1@ %)I 63 w)C l((5’;vl 63 4)) @w’) 

=((5 63 4 ; (Cl c3 k2 c3 4) c I(@ 63 w’); (6 c3 4 c3 w’)) 

= C(5’ @ 4W 63 Wr’ C3 ~71; C(uz @ w)lid 63 tl It; 0 idl(u; @I w’)] 



244 R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252 

f(h) c If@;) = (@I @ a 63 w c I((4 63 c2) 8 w’) 

= Ch 60 w)lid 6 hlti 60 idl(ui @ w’)]. 

Let us abbreviate 9= [(< @ w)lid @ idl(t’ @ w’)]. Hence 

f@llfl ;~zl~;)=u-(h) c Ifvl));u-(~2) c 1.m)) 

= 3; C(u2 C3 Wd 69 tl I G 63 W4 C3 ~‘11; Ch C3 w)lid @ tz I 

t; @ id@; @ w’)] 

= 9; [u&d @ w/id @ tI 1 t; @ idlu; 8 idlw’] ; 

[qlid @I wlid @ t2 It; @I idlo; @ idlw’] 

= 9; [wlid @I tl I t; @ t2 I t; @ idlw’] 

f(b)ClfW =((tf;(w 63 b))O w)CI((S’;wl c3 c2))@w’) 

=((5~~W);(~10~2~W))Cl((r’~~‘);(~;~~t;OW’)) 

= CC5 60 w)lid 0 idl(5’ @ 41; Ch 63 did 63 cz I ti @ idl(4 @ 41 

=~;C(Q C341id@~21t~@W4 @w’)l 

f@4)CIfW=((h 63 uz)@ w)Cl(vl s4 8 w’) 

= C(u2 03 did 0 t, I ti C3 idl(4 C3 w’)] 

f(~3I~~;~4I~k)=Cf(~3)ClS(t;));(f(~4)Clf(tk)) 

= 8; Ch 63 Wd 0 h Iti ~3 W4 @ w’)l ; 

Cb 69 did C3 cl Iti 63 W4 63 ~‘11 

=J;[u,lid 0 wlid @ t21t; @I idlu; @ idlw’]; 

[u,lid @ wlid @I cl It; @ idIt& @ idlw’] 

= 9; [wlid 0 t2 I t; ~$3 tl It; @ idlw’] 

=.mlG ;tzlM. 0 

Theorem 10.4 (Consistency w.r.t the truly concurrent semantics for CCS). Given four 
dlzerent basic transitions tl, t2, t3 and t4 in Nccs, then we haue 

f (tl ; t2) =f (t3 ; t4) implies tl then t2 x t3 then t4. 

Proof. We know that tl ; t2 = t3 ; t4 in Con- if and only if the two computations are 
mapped to the same concatenable process. Moreover, since we are assuming that the 
four transitions are different, we can prove that the process comprises only two 
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(non-.s-labelled) events, and these two events are causally independent. The proof of 
this fact is by induction on the structure of t1 (and thus t3). 
l tl = [p.u): In this case there is no transition t3, different from ti, starting from p.u, 

and thus the premise of the thesis is not satisfied. 

l tl=tl<+& where t:ul 4~: In this case there can be several candidate 

transitions t3. 

(a) t3 = u1 + > t’, where t’ : u; 1: 0;. Impossible, because t1 and t3 generate different 

concatenable processes (alternative choices). 

(b) t3 = t” c + t&, where t”: u’; ? 0’;. The problem is then reduced to the simpler 

case t ; t2 = t” ; t4 implies t then t2 x t” then t2 x t” then t4 

which holds by inductive hypothesis. 

l ti = u; + > t, where t : u1 3 u2 : symmetrically. 

l tl = t’\a: In this case, all the other involved transitions must have a similar format, 
ti = t’\a, and thus the problem is reduced to the inductive case 
t’ ; tZ = t3 ; t4 implies t’ then tZ x t3 then t4. 

l tl = t’ [CD]: Analogously to the previous case. 

l tl=tJul, where t:ull:u,: 

In this case there can be several candidate transitions t3. 

(a) t3=ulLt’, where t’:ul 1:~~. In order to have tl ;tz= t3; t4, it is necessary that t2 

produces the same event generated by t3, and t4 the same by tl. This univocally 
forces the following assignments: 

tz = u2L t’ t4=t Ju2. 

It is patent that this case corresponds to the axiom in Definition 7.6. 

(b) t3 = t” jul, where t” : ul 1: u’;. In order to be able to generate the same process, 

both tz and t4 have 1 as principal operator. Therefore, the problem is reduced to 
the simpler check on the left (sub) transitions. 

(c) t3 = t”J t’. Again, the same concatenable process can be generated only if t2 

produces the same event generated by t3, and t4 the same by tl. This forces the 
definition of the two transitions; moreover, this means that we need an inductive 
check on the left subtransitions. 

l tl=ulLt, where t:u, 4u 2: Symmetrically, to the previous case. 

l tl = tJ t’: There are three cases. Two of them (when t3 is an asynchronous move) 
are already covered by the previous two cases. The last is when t3 = t”l t*. Again, 
by generating the same concatenable process, t2 and t4 have a fixed defini- 
tion; moreover, we need two checks on both the right and the left sub- 
transitions. 

Hence, we have exhaustively checked all the possible cases (recursion is ignored 
because of the recursion axiom), and it is easy to recognize in the proof the same 
axiom and rules of Definition 7.6. 0 
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11. Comparisons and related works 

In this section we will discuss the relationship with previous proposals in the area, 
in order to emphasize the analogies and the differences. 

11.1. Algebras vs. calculi of nets 

There is a relevant line of research in net theory which sets as its goal the definition 
of algebras of nets, yielding compositionality as its main achievement. Some of these 
algebras have been shown to be useful as semantic domain in a denotational net 
semantics for CCS-like languages. In this line, we mention only a few early proposals 
[28,20,43,19,9], where a Petri net can be specified by a formula of the proposed 
algebra. 

On the contrary, here we follow the line of defining a calculus of nets, i.e. a deductive 
system made of axioms and inference rules, similarly to what Milner [34] did with 
CCS, which, in our perspective, can be considered as a calculus of transition systems. 
CCS is defined as a single whole transition system by means of an SOS specification; 
analogously, our net calculus defines a single whole net. Moreover, if one is interested 
in the behaviour of a particular CCS agent, the relevant piece of transition system is 
the part reachable from the state corresponding to the agent; similarly, we can single 
out a subnet corresponding to a SCONE (or SCONE+) marking. This is a fairly new 
result in the context of nets. Indeed, the “algebra of nets” approach lacks the pleasant 
feature of having a single net comprising all the agent subnets. Recent ideas proposed 
by Degano et al. [ll, 12,14,15] go in the direction of transforming concurrent calculi, 
like CCS, TCSP and ACP, into net calculi. In a sense, here we try to algebraically 
formalize some of the ideas developed there and in other related works [36,41]. 

There are at least two main advantages in considering a calculus instead of an 
algebra. First, infinite nets are never produced as a whole, but only on a by-need basis; 
indeed, SOS specifications provide finite intensional descriptions for possibly infinite 
semantic objects. Second, an SOS specification is a natural guide for building an 
abstract interpreter of the language. 

11.2. Distributed implementations of CCS 

At first sight, one could think that the distributed implementation of a CCS agent 
E is determined by g; i.e. the implementation of E is the subnet reachable from the 
marking g(E). This is wrong, as shown in Example 6.8, where certain transitions in the 
reachable subnet are not to be included. Nonetheless, one could think that the 
implementation of E is the net underlying (Jg)(Nccs(E)), i.e. the support net of the 
image of the transition system through the mapping. Again, this is wrong, as certain 
computations in the net do not have a corresponding computation in the transition 
system. Consider the net in Fig. 9(b), which is the net underlying (f; g) (Nccs(E)) for 
E = ((a + /_I)1 (a-+ @)\a. It is clear that the net may deadlock (when, e.g., the left token 



R. Gorrieri. U. Montanari / Theoretical Computer Science I41 (1995) 195-252 241 

chooses to enable /? and the right one to enable the synchronization), but no 
similar phenomenon happens in Nccs(E). As a matter of fact, the implementation 
of E is not simply the net underlying (f,g) (N&E)), rather such a net plus 
the morphism f; which specifies which net computations are to be considered. 
Indeed, in our approach CCS is given two operational semantics describing the 
evolution of its agents at two different levels of detail. On the one hand, the 
CCS transition system specifies the control level, in the sense that it defines the 
atomic actions of the systems, and thus also the states which can be tested by 
an observer. On the other hand, its net implementation determines the descrip- 
tion level, i.e. it defines the actual steps the machine has to perform, although the states 
the machine passes through may not be observable. In this perspective, the mapp- 
ingfis the natural means of imposing an atomicity constraint on the executions of 
the net, resulting in what we have called net transactions (see Section 11.3 for more 
details). 

This is a natural consequence of our algebraic approach, where the algebra of 
CCS transitions is mapped to an algebraic theory of SCONE+ computations. 
Indeed, this is what happens in most denotational semantic definitions, where 
basic operators of the language are mapped to derived operators of the semantic 
domain. Often, some basic operators of the semantic domain are not in the image 
of the mapping. To be more explicit, consider the following simple example on 
the algebra d of natural numbers (0 is the constant and ’ is the successor function). 
We define an implementation mapping f: d+d defined as follows: 

f(0) = 0 f(d) =f(x)l 

Hence,fmaps each number x to its double 2x. The algebraic theoryf(s8) contains all 
(and only) even numbers; hence,f(d) does not contain the successor operation, but 
only the +2 operator, defined as derived in terms of the successor one. Similarly, 
SCONE internal choice is not an operation of the algebraic theory on YNsCoH. but it is 
used to express its derived operators, i.e. its transactions. 

The problem of giving a distributed implementation of concurrent calculi has 
been studied by assuming that the abstraction level of the net is the same as the one 
of the transition system (i.e. each action is always represented by a single transi- 
tion). Some proposals by Degano, De Nicola, Montanari and Olderog [12,36] 
respect such a requirement, but the price they pay is to obtain an involved net 
semantics because of the distribution of choice. In our view, the present solution 
is simpler: it rejects the assumption that the control and the description level 
coincide and makes an extensive ‘use of the atomicity constraint, formalized 
through the implementation mapping. 

As a final comment, we want to stress that our distributed implementation of CCS 
has the interesting effect - on the source transition system - of reducing the true 
concurrency of the language, defined through relation x, to the true concurrency of 
a model, expressed in algebraic terms by the functoriality axioms. 
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11.3. Atomicity and transactions 

The idea of representing the sophisticated nondeterministic operator CCS in terms 
of local choice has been already proposed in the literature. The problem was attacked 
in [24], which described a new interleaving semantics for CCS where the inference 
rules for nondeterminism and recursion have been replaced by the corresponding 
axioms of internal choice (like in SCONE) and recursion unwinding. Of course, 
a calculus more generous than CCS is obtained, where certain derivable transitions 
are forbidden in Milner’s transition system. To prevent such “erroneous” transitions, 
a subagent performing an internal choice should have priority w.r.t. the other 
concurrent subagents willing to perform nonchoice actions. In this way, a sort of 
atomicity constraint is imposed on the calculus, which hence becomes equivalent to 
CCS. In fact, it represents a lower level description of CCS where each internal choice 
and recursion unwinding is seen as a separate move. The interesting point is that this 
atomicity constraint is ingrained in the syntax-driven deductive” system. 

In [ 133, a distributed semantics for CCS is proposed, which looks like our present 
proposal. Indeed, the modelled language has internal choice only. In order to recover 
the correct CCS semantics, a mechanism of atomicity has to be put on the net. The 
authors suggested a notion of p-transaction, essentially coincident to the one pro- 
posed in Definition 9.6, to denote the atomic steps on the net, with the intuition that 
these are the sole feasible moves on the net. In this way, a direct consistency with 
Mimer’s interleaving semantics is easily preserved and also the correct causal depend- 
encies between concurrent actions are faithfully reproduced. The main difference 
between [13] and our proposal relies on the fact that restricting the behaviour of the 
net to CL-transactions is more naturally expressed by the morphism f: Tccs+T. Of 
course, the definition of such a morphism is possible only in the completely algebraic 
framework we are working in. The atomicity constraint is guaranteed by the defini- 
tion of the basic CCS operations as derived operators of the SCONE+ theory. 

A first attempt in giving a morphism from the CCS transition system to a Petri net 
with internal nondeterminism only is reported in [4]. 

11.4. Finite net implementation of RCCS agents 

The construction we have presented in this paper for giving a finite (nonsafe) 
representation to RCCS agents has analogies with similar proposals in the literature. 
In particular, Goltz [19] was the first who generalized to the case of nets the 
construction for the recursive combinator given by Milner in [33) for transition 
systems. Our proposal differs from this mainly w.r.t. the nondeterministic operation, 
which is centralized in our approach and distributed there. Unfortunately, her 

*I Note that we have not addressed the problem of defining a “prioritized” token game on the 
SCONE+ net, to ensure that only CCS transactions are executable. This problem is outside the scope of the 
paper. 
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Fig. 13. The net for recx.(y+(a $8.~) as proposed in [19]. 

construction is sometimes inadequate, as the following counterexample (proposed by 
the author herself) shows. Consider the RCCS agent ret x.(y + (a 18.x)) and its SCONE 
implementation depicted in Fig. 6(a). The net depicted in Fig. 13 is the one Goltz 
associates to this recursive term. Unfortunately, it is incorrect, because action y may 
be enabled by tokens which remain in place r. To be more precise, let 
o=recx.y+(a~/I.x), which corresponds in the net to the marking r @ s. According 
to the operational semantics in Section 4, transition y-i- >(aL [b,u)) is labelled 
by /I and reaches state alu, corresponding to 2r @ s. Then, transition 
(aL (y + >( [a,nil) J#I.o)) is labelled by a and reaches alni1lfi.u from which actions 
a and /I only can be performed. The simulation of these two steps on the net leads 
erroneously to marking r @ r’ @ s where y is enabled, too. Instead, our solution, 
depicted in Fig. 6(b), correctly represents the intuitive causality and the possible 
conflicts among the three actions. 

An interesting recent report by Goltz and Rensink [22] shows that, by assuming 
that each action is implemented exactly as one net transition (i.e. that the abstraction 
levels of the transition system and of the net are the same), no finite net representation 
for RCCS agents is possible when a causal semantics is to be respected. Hence, it gives 
evidence that the assumptions of our solution are strictly necessary. 

RCCS implementation mapping enjoys an interesting property. The theory (f, g) 
(iVccs@)) and its underlying net have “essentially” the same semantics: each com- 
putation on the underlying net can always be extended to become the image of 
a RCCS computation viaf: In other words, the atomicity constraint imposed byfis 
somehow superfluous, as no deadlock, due to conflicting internal choices, can be 
reached. To help intuition, compare the differences between the nets in Figs. 4 and 
9(b), where the presence of the restriction operator in the latter example produces 
possible deadlocks. 

Is it possible to find out a finite P/T net representation for any CCS agent? It has 
been recognized [20,41] that finite representations for full CCS do not exist since full 
CCS is “Turing-powerful” whilst finite P/r nets are not. Nonetheless, since non l-safe 
representations are usually smaller, it would be interesting to discover if it is possible 
to deal with restriction without introducing l-safe nets. A recent proposal [44] shows 
that this can be done with the help of inhibitor arcs. 
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I1 S. Programming by multiset transformation 

There has been a recent deep interest in finding inherently “truly concurrent” 
abstract machines which resulted in a series of proposals [l, 8,7] ending with the 
chemical abstract machine by Berry and Boudol [a]. The basic paradigm of all 
these proposals can be called “programming by multiset transformation”, where 
the sequential components of a system are organized in a multiset, each of which 
can autonomously proceed or interact. Anyway, Petri nets are abstract machines 
which do work by multiset transformation: indeed, the reaction law of the chemical 
abstract machine just corresponds to the definition of net transitions and the 
chemical law is simply another way of saying that the token game can be played 
in parallel. More abstractly, as Meseguer pointed out in [31], all these models 
are rewriting systems where the application of rewriting rules may be done in 
parallel. 

If we consider SCONE and its net semantics, we can observe that it can be seen 
as an algebraic (hence structural) representation of the basic features of the 
chemical abstract machine, namely concurrency and communication. Indeed, the 
parallel rule is multiset union, reaction corresponds to the operation of com- 
munication, and inaction cleanup accounts for nil as neutral element in multiset 
union. 

When considering SCONE+, a relevant difference arises concerning the treat- 
ment of restriction. The chemical abstract machine introduces to this aim two new 
concepts, namely membranes and airlocks, which allow to give an environment- 
like structure to the system. These two concepts do not have any correspond- 
ing concept in the classical net theory. Indeed, Degano, De Nicola and Montanari 
proposed an alternative solution, which we have followed here: parallel composi- 
tion is modelled as disjoint union via the auxiliary unary operators of context 
-lid and idI_. It is not clear to us which of the two solutions is more amenable. 
On the one hand, the notion of membrane and airlock is appealing because it 
more faithfully describes the structure of restriction at the machine level. On 
the other hand, the mechanism is rather heavy (a lot of rewritings are needed in 
order to create an ion in a solution ready to reaction) if compared with the 
direct definition of communication transitions we give also in the presence of 
restriction. 
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