
ELSEVIER Theoretical Computer Science 141 (1995) 195-252

Theoretical
Computer Science

On the implementation of concurrent calculi in net calculi:
two case studies*

Roberto Gorrieri”**, Ugo Montanarib

’ Diportimento di Matematica. Universith di Bologna, Piazza di Porta S. Donato 5. I-40100 Bologna, Italy

b Dipartimento di Informatica, Universitb di Piss, Corso Italia 40, I-566125 Piss, Italy

Received April 1992; revised February 1994
Communicated by G. Rozenberg

Abstract

Concurrent calculi, such as CCS, are defined in terms of labelled transition system; similarly,
here we introduce the notion of net (or distributed) calculus, which is defined through
a place/transition Petri net. As a first case study, a simple calculus of nets, called SCONE, is
proposed. Relationships between SCONE and the subset of CCS without restriction and
relabelling, called RCCS, are studied by showing that RCCS can be implemented in SCONE
through a suitable mapping from the transition system for RCCS to net for SCONE. In
particular, the complex CCS operation of global choice is implemented in terms of the SCONE
finer grained operation of local choice, making explicit the fact that certain CCS transition are
implemented as SCONE computations to be executed atomically. The result is a finite net
implementation for RCCS agents. By making the quotient of the RCCS transition system w.r.t.
the implementation mapping, we induce a truly concurrent semantics for RCCS. The second
case study is then concerned with an extension dealing with restriction and relabelling. The
resulting net calculus, called SCONE+, is exploited as an implementation language for full
CCS. The truly concurrent semantics induced by the implementation mapping is proved to
coincide with the so-called “permutation-of-transitions” sematics.

1. Introduction

Among the various approaches to the semantics of concurrency, we distinguish two:

the so-called “interleaving” approach and the “truly concurrent” one. The main merit

of the former is its well-established theory. A concurrent system is described by a

*This paper reports in a coherent way some preliminary results which appeared as [25,26], also reported
as Chs. 7-9 of Gorrieri’s [23] Ph.D. Thesis.

The first author has been partially supported by Exprit BRA no. 9102 COORDINATION, while the
second author by Esprit BRA no. 3011 CEDISYS. Both authors have been also partially supported by
Progetto Finalizzato, Obiettivo Lambrusco.
*Corresponding author. Email: gorrieri@cs.unibo.it.

0304-3975/95/%09.50 0 1995-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(94100073-R

196 R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 19552.52

term of an algebra, which gives rise to a labelled transition system. The states are
themselves terms and the transitions are defined by means of a deductive system in
structural inductive form, as proposed by Plotkin [39] with his structural operational
semantics (SOS for short). Equivalences among states/terms are defined according to
a suitable notion of observation and the useful result is that observational congruen-
ces often have nice axiomatizations. Unfortunately, there is a serious drawback: this
approach relies on the well-known idea of describing system behaviour as sequences
of transitions, a too simplistic view in many practical cases when information about
distribution in space, about causal dependency or about fairness must be provided.
On the other hand, in the “truly concurrent” approach, which started from the
pioneering work of Petri [38], this kind of information can be easily given, but net
theory has not yet reached a completely satisfactory theoretical treatment if compared
with the firm results coming from the interleaving side. Rephrasing and extending the
ideas developed for the interleaving approach to the “truly concurrent” case can be
considered the main goal of a branch of concurrency research. The present paper aims
at giving a contribution in this direction.

Petri nets, at least in their usual formulation, are not very suited for modular
description of concurrent systems, because no general theory of composition and
decomposition is available as there is no (finite) syntax generating them. Therefore, we
shall restrict our attention to a particular class of nets possessing such a syntax, which
thus forms naturally a language for nets. We are interested not only in defining
a language whose formulae specify distributed systems, but also in describing the nets
representing their operational behaviour as a calculus. Hence, extending Plotkin’s
paradigm to distributed systems, formulae of the language would denote markings of
the net, while net transitions would be defined by means of a syntax-driven deductive
system.

The problem is now to find a sufficiently general framework where concurrent
calculi and net (or distributed) calculi can be described uniformly; this would permit
an easy comparison between the two approaches and, in particular, the possibility of
implementing concurrent calculi in net calculi in a (hopefully) direct way. Recently,
several attempts have been made towards a unifying approach to concurrency. In
particular, the work developed in Pisa is mainly concerned with the definition of
a uniform algebraic framework in which specifications based both on transition
systems and on Petri nets fit rather naturally [lo]. This investigation started
with [32], where the basic model of place/transition Petri nets has received a
simple algebraic description by showing that a P/T net can be statically described
as a directed graph equipped with a commutative monoidal operation @ on
nodes (union of markings), and dynamically as a graph with also two opera-
tions on transitions (parallel @ and sequential; composition), together with suitable
axioms for identifying those computations which are observationally identical.

By observing that transition system are nothing but directed graphs with labelled
transitions, we discover that the notion of graph is a possible unifying mathematical
tool for investigating the relationship between the two approaches. Moreover, SOS

R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252 197

specifications [39] can be described in algebraic form: the transition system is
a two-sorted algebra with states and transitions as sorts [35,18]. The states are the
language terms, and the (proofs of the) transitions, being defined through deduc-
tive systems, can be represented as terms of an algebra having the axioms as
generators and the inference rules as operations. Thus, the other common link
between the two approaches is the algebraic structure for nodes and transitions.
Indeed, SOS specifications and Petri nets are both specializations of the graph
concept obtained by adding (different) algebraic structures on nodes and transitions:
thus, graphs defined as two-sorted algebras represent the uniform framework we were
looking for.

A calculus for nets can be introduced by defining an algebra for the nodes of the
graph in such a way that it can be seen as a free algebra of markings, generated by the
places. Therefore, the algebra must possess, among others, also the commutative
monoidal operator @ of union of markings.

As a first case study, we present a simple calculus of nets (SCONE). The operators
generating places are prefixing and nondeterministic choice. The operators generating
net transitions are prefixing, internal choice, and synchronization. The axioms in the
deductive system of the calculus (prefix and internal choice) are the generators of the
algebra and the inference rule (synchronization) is its sole operation, building a new
transition from a pair of given transitions.

The semantics of SCONE is the semantics of a P/T net. Among the various
semantic notions, we mention nonsequential processes (unfoldings of the net from an
initial marking) [21] and commutative processes [3]. In [16] these notions are given
an intuitive algebraic axiomatization on the algebra of net computations [32], where
actually a slight refinement of classical nonsequential processes, called concatenable
processes, is considered. To our aims, we choose concatenable processes because they
faithfully represent causal dependencies and are equipped with an operation of
sequential composition.

RCCS - the subset of CCS [34] without restriction and relabelling - can be
implemented in SCONE, by means of a suitable mapping from its transition system
(in algebraic form) to the Petri net of SCONE. This can be seen as a denotational
semantics for RCCS with SCONE as semantic domain. RCCS agents are mapped to
SCONE markings by considering prefixed (p. E) and nondeterministically composed
(E+E’) agents as places and by interpreting parallel composition as the multiset
union of places. The implementation of RCCS transitions is less immediate and has
been influenced by the categorical formulation of Petri nets in [32], which provides
a flexible tool for relating system descriptions at different levels of abstraction by
means of implementation morphisms in the category of net computations: a net
transition can be mapped to an entire net computation. As a matter of fact, the
combinators of SCONE are sometimes more elementary than those of RCCS, so that
a RCCS transition may be mapped to a SCONE computation. Thus, the semantic
morphism maps transitions to net computations by mapping basic operators of (the
algebra of) RCCS to derived operators of (the algebra of) SCONE. A striking example

198 R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252

is concerned with the implementation of the external nondeterminism of RCCS in
terms of the internal nondeterminism of SCONE. A natural consequence of our
algebraic approach is that the implementation mapping does not affect the granular-
ity of the execution: since a RCCS transition is executed atomically, the execution of
the SCONE computation implementing it must be atomic as well. In other words, the
distributed implementation of a RCCS agent is not a SCONE net, rather an imple-
mentation morphism on a SCONE net.

The relevance of the result is that this mapping can be seen as an instance of
a general algebraic methodology for implementing parallel languages (also in inter-
leaving form) in others (even distributed). Indeed, the second example illustrates this
methodology in the more complex case of full CCS.

As already observed, e.g., [41], the transition system representation of an agent is
usually larger than its net representation. As a matter of fact, not all the RCCS agents
have a finite transition system representation. We prove that for any marking V, the
SCONE subnet reachable from u is always jnite (but not safe). Hence, by means of the
implementation mapping, we show that any RCCS agent is always implemented on
a finite net.

The second case study is concerned with a proper distributed treatment of full CCS.
To this aim, we define a new calculus for nets, SCONE+, extending SCONE with
restriction and relabelling. It is exploited as the target machine through which we give
a distributed implementation of CCS.

In order to deal with restriction correctly, parallel composition is modelled through
a syntactic construction which leads, as side effect, to a l-safe P/T net representation
of the reachable subnet implementing a CCS agent. The price to pay is that such
subnets may be infinite.

It is interesting to study not only the target of the implementation mapping, but
also the effect on the source. We prove that the semantics of CCS agents as factor-
ization of their computations w.r.t. the implementation mapping is the “permutation-
of-transitions” semantics proposed by [S, 183. Our semantics is consistent
and complete with respect to theirs, in this case. On the contrary, in the case of
RCCS, the “quotient” semantics is complete only under some mild assumptions.

Since Boudol and Castellani have proved in [6] that the “permutation-of-
transitions” semantics is equivalent to a variant of Winskel’s [42] event structure
semantics and to a variant of Degano et al.3 [12] distributed choice net semantics for
CCS, indirectly we get a nice correspondence result among all these different truly
concurrent semantics for CCS.

The paper is organized as follows. Sections 2-4 introduce background material. It
comprises of an introduction to the basic definitions of category theory used through-
out the paper (see [29] for more details), an account of the algebraic formulation of
P/T Petri nets and a brief exposition of CCS in its algebraic formulation. The
proposed simple calculus of nets is introduced in Section 5. In Section 6 we describe
the implementation mapping from RCCS to SCONE and then, in Section 7, we prove
that the induced semantics is consistent with respect to Milner’s and also faithfully

R. Gorrieri, U. Montanari 1 Theoretical Computer Science 141 (199s) 195-252 199

represents causality. SCONE+ is introduced (Section 8)’ together with the implemen-
tation mapping (Section 9). Hence, the comparison with Boudol and Castellani
semantics is reported in Section 10. Section 11 is concerned with the relationships of
our investigations with some related works. In particular, we discuss the issue of
atomicity in giving semantics to CCS [24, 131, other proposals for giving finite net
representation to RCCS agents [19,22], and some recent results on the connections
between Petri nets and the chemical abstract machine (CHAM) [2].

2. Graphs, categories and monoidal structures

A (directed) graph G is a tuple N=(V, T, do, a,), where V is the class of states (or
nodes), T of transitions (or arcs), and a,,, 8, : T+ V are two functions, called source and
target, respectively. We denote an arc t, such that &(t)=u and d,(t) =u, by the
shorthand t : u+v. A graph morphism from G to G’ is a pair of functions (f, g),f: T+ T’
and g : V-+ V’, which preserve the source and the target functions: g(a,(t))=&(f(t))
and g(d,(t)) = a;(f(t)) for all transitions t.

A category C =(V, T, a,, a,, id, ;) is a graph (V, T, a,, a,), where the states in V and
the transitions in T are usually called objects and arrows (or morphisms), respectively,
with in addition:

an operation id : V-+ T called identity, such that &(id(u) = t, = a, (id(u)),
a partial operation ; T x T-, T called composition, assigning to each pair of arrows
t and t’, such that’ &,(t’)=a,(t), an arrow t;t’ such that &,(t;t’)=&,(t),

a,(t;t’)=a,(t’)
and the operations satisfy the two axioms (which hold if both members are defined)

t;(t’; t”)=(t; t’);t” id(u);t=t=t;id(v)

Moreover, for any pair (u, u), the class C[u, UJ = {t 1 te T, a,,(t) = U, a,(t) = u} is actually
a set. Let C,D be two categories. A (covariant)finctor I;: C+D is a pair of functions
FV: Vc4 V,, and Fr: Tc+TD, such that for each t, t’E Tc

l b(F740) = &@idW (i =O, 1)

l FT(rd(u))=id(Fv(u))
l F,(t ; t’) = F=(t) ; &Jt’).

Let F, G : C4D be two functors. A natural transformation z : F4G is a function from
Vc to To assigning to an object u in C an arrow rU in D such that
l a&,) = F,(u) and a, (TJ = G,(U)
l Vt in Tc with a,(t)=u and a,(t)=u z,;GT(t)=FT(t);Tv

’ The reader interested only in this case study can skip most of Section 3, focusing mainly on Definition 3.14.
‘Note that composition ; is defined following the interpretation of sequential composition of transitions
(diagrammatic order), which is obvious in computer science, but is in contrast with the tradition in
mathematics.

200 R. Gorrieri. U. Montanari / Theoretical Computer Science 141 (1995) 195-252

A transformation r such that each component r, is invertible in D is called a natural
isomorphism. A strict monoidal category (C, @, e) consists of
0 a category C,
l a (left and right) identity object e (i.e. e 631 t=t= t @I e);
l a bifunctor @ : C x C-+C, thus satisfying the functoriality axioms3

(tl~tt2);(t;~t;)=(tl;t;)~.(tZ;t;) id(u) @ id(u)=id(u @ u)

and, additionally, @ is associative, with e as neutral element on objects and id(e) on
arrows.

A symmetric strict monoidal category (C, @, e, y) is a strict monoidal category enriched
with a natural isomorphism y., v : u @J u-w @ u such that the following two equations
hold:

Y..u, 0,” ‘Y = id(u @ U) tko @ id(w));(id(v) @ Y~,~)=Y~.~~~

Let us consider two arrows t : u-w, t’ : d-w’. An interesting consequence of stating
that y is a natural isomorphism is

Yu.u* ; (t’ c3 t) = 0 @ 0 ; Y”.“,

meaning that the factors can be exchanged in any monoidal composition of arrows,
provided that suitable exchanges are sequentially composed before and after.

A strictly symmetric strict monoidal category (C @, e) is a symmetric strict monoidal
category where y.,” is the identity id(u @ u); hence, @I is commutative, too.

3. An algebraic view to Petri nets

We assume the reader is familiar with the basic concepts of net theory (see, e.g.
[40]). By Petri nets we mean (capacity free) place/transition nets, where the flow
relation is$nite (the pre- and post-sets of transitions are always finite multisets) and
every transition has a nonempty pre-set. This section is devoted to recalling the
categorical approach to Petri nets as graphs with a monoidal structure proposed in
[32, 161. The basic idea is to consider a transition t as an arrow from its pre-set to its
post-set, i.e. t: ‘t+t’, and the set of the multisets of places as the free commutative
monoid over the set of places. In other words, a Petri net is a graph whose set of nodes
is a free commutative monoid.

Definition 3.1 (Finite multiset, union and empty multiset). Given a set S, ajinite multiset
over S is a function M: S+N such that the set (SES 1 M(s)#O) is finite. The
multiplicity of an element s in M is given by M(s). Given two multisets M and M

3The first equality holds whenever both members are defined, indeed, due to the fact that ; is a partial
operation, it may happen that the left member is defined, but not the right one. For the categorical
associativity axiom, instead, if one of the two members is defined, then also the other is so.

R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252 201

over a set S, their union, denoted by M @ M’, is the multiset given by
M @ M’(s)= M(s) + M’(s). The empty multiset, denoted by 0, is defined by O(s) = 0.

Since natural number addition is associative and commutative, then also multiset
union is so. Furthermore, since 0 is the natural element of addition, 0 is the neutral
element of multiset union.

Property 3.2 (Multisets asfree commutative monoids). Given a set S, let Se denote the
set of (finite) multisets over S. With the union operator @ and the element 0, S@ is
a free commutative monoid over S.

Definition 33 (Petri nets as graphs with a monoidal structure). A place/transition petri
net (net, in short) is a graph N=(S@, T,&,,c?,), where S@ is the free commutative
monoid of nodes over a set of places S. The elements of S@, called also the markings of
the net N, are represented as formal sums nlal @ -.- $ nkak (aiES, ni is a natural
number) with the order of the summands being immaterial, where addition is defined
by (&niai) @ (@m&=(&(ni+m&) and 0 is its neutral element.

A Petri net morphism h from N =(S8, T,&, ~7’~) to NI=(S’8, T’, 80,31) is a graph
morphism (i.e. a pair of functions (f, g), f: T+ T’ and g : S @ +S’@, preserving source
and target) where g is a monoid morphism (i.e. leaving 0 fixed and respecting @). With
this definition of morphism, nets form a category, called Petri, which is equipped with
products and coproducts [29].

We define an algebra of (finite) computations by considering, as generators, the
transitions in T and also a set of transitions, called symmetries, defined below.
Moreover, the operations of the algebra are the associative sequentialization (partial)
operation ; and a monoidal operation @I on transitions, which is interpreted as
parallel composition. By imposing suitable axioms on the operations of sequential
and parallel composition (yielding a monoidal category) we can define equivalence
classes of net computations. In [16] it is shown that some of the semantic notions on
Petri nets can be naturally characterized in this axiomatic approach. Here, we will
present the category every morphism of which turns out to be an equivalence class of
computations all evaluating to the same concatenable process [16] (a slight variation
of the Goltz/Reisig nonsequential process [21]).

Definition 3.4 (Symmetries). Let us consider a finite set Z labelled by a function 1: Z+S
which associates to every element x a label/place I(x). When defined up to isomor-
phisms (i.e. up to label-preserving bijections), set Z corresponds to an element u = nl al
@.--@nkakin Se, whereni=I{xII(x)=ai}I,i=l,...,k.

A symmetry p of the labelled set Z is a bijective endofunction p: Z-Z which is
label-preserving, i.e. such that I(X) = Q(x)). W e can associate it to u and write p : u-w.
It is clear that, by choosing a linear order for each of the sets (X 1 I(x)=ai),
i=l , . . . , k, p can be expressed as a vector of permutations. Given u = nl al @ -.- @ nkak

202 R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (199.5) 195-252

in Se, a symmetry p : u-w is a vector of permutations (G,, , . . . , cr,,) with a,,EII(ni), i.e.
6,, is a permutation of ni elements (lcro,J =ni).

We define three operations on symmetries: the sequential composition p ; p’ of two
symmetries, the parallel composition p @ p’ and the interchange of two objects u and
u, which gives rise to the symmetry y(u, u). Let p : u-w and p' : u-w; then

p;p’:u-+ll=(aa,;a~,, . ..) CT (Ik ; c&) where (T ; o’(x) = a’(~+)).

Let p : u-w and p’ : u-w; then

P~P’:UOU-‘U~u=(Onl~‘ab*,...,~a,~’~,>

where

cr @I a’(x) = 4x) if O<XGICI,

o’(x-lal)+lcrl otherwise.

The interchange symmetry y(u, u) : u @ u-w CD u, associated to permutation
{1+2,2+1} and to u=nlal 0 ... 0 nkak, and u=mlal 8 ... @mkak, is the vector of
permutations (c~,, . . . , uor) defined by

%,(X1 = 1 Vlj+X if X<tlj,

x-q if X>?lj*

Example 3.5. A suggestive graphical representation of a symmetry p on 3a $2b

where CI~ = { l-+2,2+3,3 + l} and cl, = { 1+2,2-t l} is depicted in the first operand of
Fig. l(a). The intuition behind the three operations defined above can be easily
grasped from Fig. 1. To obtain the sequential comosition p ; p’ of two symmetries on u,
we have simply to follow the threads of the permutations. Supposing p : u-w and
4: u-+u, the parallel composition p @ q: u @ u-w 8 u of the two symmetries is
obtained by putting side by side the permutations regarding the same place. Exchang-
ing the summands in a node gives rise to an interchange symmetry; if u = 2a OJ b and
u = 3a @ 2b, then the interchange symmetry is formally denoted by y(u, u) = (co, cb),
where a,={1+4,2+5,3+1,4+2,5+3} and ob={1+3,2+1,3+2}.

=

faaaaa bba

:2!!!% aaaaa bbb

Fig. 1. Three operations on symmetries.

R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252 203

Both @I and ; are associative but not commutative. If I,~ denotes the identity
permutation, then for each u in So the symmetry (z,,, r,,) :u+u is the identity
transition id(u). Furthermore, @ and ; satisfy the functoriality equations:

(p@P’);(4@,‘)=(P;4)G3(P’;4’) id(u) 8 id(u) = id(u 0 u)

Finally, the interchange y(u, u) is a natural transformation

satisfying also the axioms of symmetric strict monoidal categories

Y(U, 4 ; Y(V, 4 = id@ 0 0) (y(u,a)0id(w));(id(u)@y(u,w))=y(u,a0~).

Given a set S, let Syms be the graph whose nodes are the elements of the
commutative monoid So and whose transitions are symmetries with the above-
defined operations of @ and ;. Then, Syms is a category, because identities do exist
and ; is the arrow composition; Syms is strict monoidal, because the pair (0, @) is
a bifunctor (0 on nodes and @I on transitions) which is associative and has the neutral
element; Syms is symmetric since the interchange symmetry associated to the permuta-
tion 7={1+2,2+1}, y(u,u):u@ U-W @ u, is the required natural isomorphism.

Proposition 3.6. Syms is a symmetric strict monoidal category, strictly symmetric on
objects.

Definition 3.7 (From a net to the category of its processes). Given a net
N=(S@, T, a,, a,), the category 9[N] of its processes is defined as follows. The
objects of 9[N] are the nodes of N, i.e. P. P[N] includes Syms as a subcategory, and
has as additional arrows only those defined by the following rules of inference:

t:u+u in N

t:u+u in P[N]

CI:U+U a’:u’+u’ in P[N] a:u+u /3:v+w in 9[N]

a@a’:u@u’+u0u’ in 9[N] a;/I:u+w in Y[fl

and axioms expressing the fact that the arrows form a monoid:

(a@P)@~==@((B@@ a@id(O)=a

the fact that P[Nl is a category:

a;id(8,(a))=id(8&a));a=a (a;B);a=a;(B;@

and the fact that (0,@) is a bifunctor:

(a~a’);(P~B’)=(a;B)~(a’;B’) id(u) 8 id(u)=id(u 0 u).

204 R. Gorrieri. U. Montanari / Theoretical Computer Science 141 (1995) 195-252

Also, there is an axiom stating that generators (i.e. the transitions of N) are symmetri-
cal:

t;p=t where t:u-+v in N and p:v+v in Sym,,

p;t=t where t:u+v in N and p:u-+u in Sym,.

Finally, the fact that the interchange symmetry y(uI, u,), associated to the permutation
y={1-+2,2+1}, d e fi nes the natural isomorphism, where ai : Ui+Vi (i = 1,2):

y(u,,uz);(a2 @a~r,)=(al @Q);Y(~I,~z).

Theorem 3.8 (Degano et al. [16]). Given a net N=(S@, T,&,,a,), the category g[N]
of its process is the quotient of the symmetric, strict monoidal category freely generated
by the net N (where the monoidal operation is denoted by @I on arrows and by @ on
objects, the operator of arrow composition is ; , and y(u, v) is the natural isomorphism of
commutativity), determined by the axioms (Y) below, where t : u+v belongs to N and p is
a computation involving natural isomorphisms only:

Objects:
Zsomorphisms: y(a, b) = id(a @ b) Vu, bES, a # b

t :p= t where p: V-W is a symmetry as a whole (Y).
Transitions:

p;t=t where p:u+u is a symmetry

This theorem states that 9’ [N] can be obtained by freely generating the symmetric,
strict monoidal category from the net N =(S@, T, a,, a,), considering a bifunctor
(~3, @) which is commutative up to isomorphism. The latter is specified by the
natural isomorphism y. Then, by identifying the nodes u @ v and v ~3 u which differ
only by such an isomorphism. As a consequence, the “vector” u @ v becomes now
a multiset. Analogously, the arrow y(u, v) : u @ v+v @ u, which is a (global) permuta-
tion, must be transformed into a symmetry (a vector of local permutations). This is
obtained by adding the equation ~(a, b) = id@ @ b), which states that the permutation
~(a, b) is in fact the identity of a $ b if a and b are tokens on different places. The last
equations state that token exchanges do not affect net transitions.

The arrows of S[v are equivalence classes of net computations: an arrow
a represents the observation out of any computation in the equivalence class of a. Such
an observation is a concatenable process [16].

Definition 3.9 (Label-indexing ordering). Given a set S with a labelling function
1: S+S’, a label-indexed ordering function is a family p = {/?,,}, a&, of bijections, where

B.: Cal-+(L ..a, I[u]~}, with [a]={brzSIl(b)=a).

Definition 3.10 (Plain processes). A plain process for a net N is a morphism p= (f; g)
in Petri from a finite occurrence net P to N. The functions f and g map transitions and
places of P to transitions and places of N, respectively. The places of P which are

R. Gorrieri. U. Monlanari / Theoretical Computer Science 141 (1995) 195-252 205

minimal in the partial ordering associated to it are called origins, the maximal places
are called destinations. We give plain processes a categorical structure, by taking as
morphisms

6:(v:P+N)+(yJ:P’-+N)

between processes q and fl those Petri morphisms

p:P+P

between the supporting occurrence nets such that p; @= q.

Definition 3.11 (Concatenable processes). A concatenable process for a net N is a triple
C = (p, 0, rc), where:
0 q= (f, g) is a plain process for N,
l 8 and K are label-indexed ordering functions on the origins and destinations,

respectively, where the labelling function is g restricted to the respective domains.
Isomorphic4 concatenable processes are identified. Furthermore, we can associate to
every concatenable process C of N two multisets of places as follows. The multisets
O(C) and D(C) are defined as

O(C)= 5 nisi and D(C)= i MiUi,
i=l i=l

where ai are places of N, and ni and mi are the numbers of origins b and destinations
c of P, respectively, such that g(b)=q =g(c).

A concatenable process is essentially a finite nonsequential process [21] with,
additionally, ordered labels on both origins and destinations. This means that the
origins (destinations) of a concatenable process mapped on the same place are
distinguished by imposing an ordering on them.5

We can picture a concatenable process C of N as an arrow C: O(C)+D(C). Also
concatenable processes may easily be turned into a monoidal category. Indeed, we
show how concatenable processes can be associated to net transitions and symmet-
ries, and also how parallel composition and sequential compositions can be defined.
Thus we have an algebra of concatenable processes.

Given a transition t : nl aI @ .e+ @ nkuk+n;al @ --a @ n;ak in N, let P be the occur-
rence net with ZuZ’ as set of places, where Z={(i,j,O)li=l,..., k, j=l,..., ni},
Z’={(i,h,l)li=l,..., k, h=l,... , n;}, and t’ as unique transition with &(t’)=Z and
aI = I’. Then a concatenable process for t is C = (q, 8, rc), where q~= (f, g) is such

4 Two concatenable processes C and C’ are isomorphic if there is a plain process isomorphism (f”, g”) from
P to P preserving the label-indexed functions, namely with B(b)=O’(g”(b)) and K(b)= ic’(g”(b)).
’ Usually, in depicting a process, the ordering on process places mapped to the same net place is implicitly
given by the “space” (left-to-right) ordering. If a token is both origin and destination (i.e. isolated), then it
should be explicitly equipped with the ordering annotation (see the representation of a symmetry in Fig. 3).

206 R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252

thatf(t’)=t and g((i,j,O))=g((i,h,l))=ai, i=l,..., k, j=l,.._, ni, h=l,,.., n{, and
the label-indexed ordering functions on the origins and destinations of P are given by
19,,((i,j,O))=j and rc,,((i,h, l))=h.

Givenasymmetryp=(o,,,...,a,,):n,a,~...Onkak~n,al~...8nkak,letPbe
the occurrence net having I = { (i, j) 1 i = 1, . . . , k, j = 1, . . . , ni} as set of places, and no
transitions. A concatenable process for p is C = (q, 0, rc) where q= (0, g) is such that
g((i, j)) = ui, and the ordering functions on the origins and destinations of P are such
that g,,((i,j))=j and K,i((i,j))=ca,i(j), respectively.

In the following definitions of parallel and sequential composition of processes,
let C=(~,~,~):n~~~$‘~~~nk~k~ml~~~~~~~mk~k and C’=(~,8’,K’):n~a1
0 ... 0 n;uk+m;ul CJ3 ... 0 m;uk be two concatenable processes for N, with
P and P’ as occurrence nets of q and @, respectively. We define C @ c’=
(#,8”,r”):(nr+n;)al O”‘O(nk+n;)Qk~(ml+m;)ai @“‘@(mk+m@k, where
is the coproduct of q and # in the category of plain processes,
fY=(Oolu(nl+&,),..., ~aru(nk+8b~))andK”=(K,,u(nl+ICb,),...,IC.ku(nl,+K~,)).

Finally, C;C’ is defined only if D(C)=O(C’)=m,a, Q a.. @ mk&. Let us define
a plain process pp- = (@,g-) from the occurrence net P- =(S -@, 0,0,@) with
S-={(i,j)]i=l,..., k,j=l,..., mi} and g - ((i, j)) = ai. TWO plain process morphisms
p, p’ from q- to Q, and cp’, respectively, are induced by the two functions s and s’ from
S- to the destinations of P and to the origins of P’, respectively, that satisfy the
following equations:

g(s((i,j>))=ut=g’(s’((i,j>)) and K(s((i,j)))=j=~(s’((i,j))).

It is not difficult to see that s and s’, and therefore p and p’, are defined uniquely. Also,
it is easy to verify that in the category of processes the pushout construction involving
p and p’ exists, yielding a new process @ which is obtained, roughly speaking, as the
disjoint union of a, and #, where for all x, the pairs s(x) and s’(x) have been identified.
Then,

Theorem 3.12 (P[N] z%‘9’[N] (Degano et al. [16]). (i) Given a net N, concutenuble
processes on it form a symmetric strict monoidul category %9j[N] satisfying the
equation (Y).

(ii) There is a unique homomorphism H from Y[N] to %9[N] preserving all the
operations and leaving Njixed when viewed us a subnet of B[N] and of %?9’[N] via the
obvious inclusions. Furthermore, homomorphism H is actually an isomorphism.

This theorem proves that any arrow of 9[N] can be represented as a concatenable
process and any term of the algebra can be evaluated to the concatenable process
representing its equivalence class. Vice versa, any concatenable process may be
denoted by a term of the algebra 9[N].

R. Gorrieri, U. Monianari / Theoretical Computer Science 141 (1995) 195-252 207

a

d

b

tz

c

(a) (b)

Fig. 2. A net in (a) and two of its processes in (b) and (c).

a b

‘1 ‘2

C C

13

d

d

(a) (b)

Fig. 3. (a) The evaluation in W’[N] of a term of P[N]; the corresponding result is in (b).

Example 3.13. Let us consider the net in Fig. 2(a). Fig. 2(b) and (c) show two of its
processes. Term (ti @ cZ);(t3 @ id(c)) corresponds to starting with a token in place
a and a token in place b and to executing transitions ti and tz simultaneously. One of
the tokens is then left in c, while the other (the one produced by tl) is used for
executing transition ta. This term of P[N] corresponds to the process in Fig. 2(b).
Similarly, the term (tl @ id(b)) ; (id(c) @ tz) ; (t3 @I id(c)) is related to the same process.

Fig. 3 illustrates through an example that a formal evaluation of terms of concaten-
able processes can be naturally provided. In this figure, the considered term is
(tl @ t2);P;(t3 @id(c)), with p=(~~,o~,c~) and CT~=(T*=@ and a,=(1+2,2+1}.

208 R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252

The algebraic characterization of concatenable processes can be conveniently
simplified in the case of l-safe nets [3]. Because each place contains at most one token,

any symmetry Y., V collapses to the identity id(u @I v). Hence, @I becomes commutative
and category 9[N] becomes strictly symmetric. As in the second case study the nets
exploited as implementation for CCS agents are l-safe, we provide also this conve-
nient characterization, which coincides incidentally with the axiomatization of
Best/Devillers processes [3], provided in [16] where they are called commutative
process.

Definition 3.14 (From a net to the category of its commutative processes). Given a net
N =(P, T, a,, a,), the category S[N] of its commutative processes is the strictly
symmetric strict monoidal category freely generated by N. Explicitly, the category
S[N] is defined by the following rules of inference:

t:u+v in N u in So

t:u+v in S[N] id(u):u+u in F[N]

a:u+v cl’:u’+v’ in F[N] CL:U-W fi:v+w in S[N]

c~@Lx’:u@u’-w@v’ in Y[N] a;b:u+w in S[N]

and axioms expressing the fact that the arrows form a commutative monoid:

(z@B)@‘6=a@(B@4 z@B=B@a a @ id(O)=a

the fact that S[N] is a category:

a;id(a,(a))=id(&(a));a=a (a;B);d=z;(B;4

and the functoriality of @I :

(a~a’);(B~~B’)=(a;B)~(a’;B’) id(u) @ id(v) = id(u @I v)

Theorem 3.15. The quotient of category 9’[N] with respect to the axiom below is
S[N]:

Isomorphism: r(a, a) = id(a 8 a) Vad

Proof. This axiom6 is the complement of the axiom given in Theorem 3.8. All
symmetries are collapsed to identities with the relevant side effect of making @ com-
mutative on arrows. 0

‘This axiom is an algebraic description of the swap construction in [3]. As @ is associative and also
commutative up to natural isomorphism, then the permutation to nonconsecutive a’s can always be
reduced to the permutation of consecutive a’s, provided that suitable interchange symmetries are
sequentially composed before and after.

R. Gorrieri, V. Montanari / Theoretical Computer Science 141 (199.5) 195-252 209

Of course, in the case of l-safe nets, the axiom above holds “vacuously”; hence,
concatenable and commutative’ processes coincide for l-safe nets.

4. A calculus of communicating systems

4.1. The classic approach to CCS and RCCS

We begin by recalling briefly a few definitions about Milner’s CCS (we assume the
reader is familiar with [34]). Let A = {a, j&Y...} be a set of action names,
A-= {a, /I?-, y- . . .} the set of action conames and 7 a special silent action. We will call
A= dud- the set of visible actions ranged over by I, while A= AU(T) the set of
actions ranged over by p. The set of recursive terms over the signature Zccs = UnaO Z,
is defined by the following BNF-like notation:

E :: x 1 op(E,,& ,..., Ek) 1 recx.E

where x is any element in a (possibly infinite) set of variables Var, ret x.- is the binding
construct, opcZk and the signature Zccs consists of the following operators:

,X0 = {nil},

Z1={p.~p~JZ}u{\a~a~A}u{[@]I@ is a permutation of

./Z preserving - and 21,

&={I, +>,

Z,=0, Vn>2,

with the agreement to write the set of unary operators {p.) PEA} in prefix form, the
other unary operators in postfix form and the binary operators in infix form. We
assume the reader is familiar with the usual notions offree and bound variables and of
syntactic substitution. A term ret x.E is locally guarded if every occurrence of x in E is
inside the scope of a p-prefixing. A term E is guarded if every recursive subterm of E is
locally guarded. We denote by CCSJ the set of closed (i.e. without free variables)
guarded terms, also called CCS agents, which will be ranged over by the variable E,
with abuse of notation. For the sake of brevity, the ending constant nil is often
omitted, as in a I j?.

The operational semantics of CCS is defined in terms of labelled transition systems

[27], LTS for short. An LTS is a triple (S, -K, { 4 I pzM}) where S is a set of states,

‘In general, commutative processes seem to supply too abstract a description of computations of
place/transition nets. Because of commutativity of 8, multiple tokens in a place s become definitely
“indistinguishable”, thus making it impossible to describe correctly the causal dependencies between the
transitions producing tokens in s and the transitions consuming these tokens. For instance, the net in Fig.
2(a) after the execution of tl and t,, we have two tokens in c which cannot be distinguished, hence, both
concatenable processes in Fig. 2(b) and (c) are considered equivalent, i.e. correspond to the same com-
mutative process (see [3, 163 for more details).

210 R. Gorrieri. U. Montanari 1 Theoretical Computer Science 141 (1995) 195-252

4 is a set of actions and each -1: is a binary transition relation on S. We will write
s 4 s’ instead of (s, S’)E 4. Hence, an LTS is a graph with labelled transitions.
Every transition s 1: s’ specifies that the system in the state s can transit to the state
s’ by performing the action p.

A relevant breakthrough in the definition of operational semantics for languages
was due to Plotkin [39] with his structured operational semantics (SOS for short).
According to this technique, the terms of the language constitute themselves the states,
and the transitions are defined by means of a deductive system in structural inductive
form, making the definition of an abstract machine rather an easy task. The labelled
transition system Fees = (CCS,, J%, { % 1 pA?}) defining the CCS operational se-
mantics has agents as states and the transition relations are defined as follows.

Definition 4.1. The transition relation {s 1 pod} is defined as the least relation

satisfying the following axiom and inference rules:

(Act) p.E 1: E

E&E ESE
WI when & (a, a-} (Rel)

E\ci 1: E’\u EC@1 *Elp1

EIsEE; E2-1:E;
(Sum) (Sum2)

E,+E2 ‘:E; EI+E21:E;

E ‘%;E
@yn)

El&E 1 2 2

VW
E [ret x.E/x] 4 El

The subset of CCS which does not comprise restriction and relabelling we call
RCCS. Hence, syntactically, CRccs = Cccs - ({\a, aEA} u { [@I, @ is a permutation of
.4 preserving - and r}), and the closed guarded RCCS terms form the set RCCSd.

Semantically, the LTS &ccs =(RCCSd, .&Z, { % I PEA%}) is obtained by Defini-
tion 4.1, by dropping rules (Res) and (Rel).

According to Milner’s two-step approach, agents must be identified if they give rise
to the same behaoiour. Such a notion is defined in terms of the more elementary notion
of observation: the behaviour of an agent is what can be observed from it. The

observation out of a transition s 4 s’ is action p. A standard tool for defining
behavioural equivalences of this kind relies upon the notion of interleaving strong
bisimulation [37,34]: s and s’ are equivalent iff, for all pe.,U, each p-sucessor of s is

R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 19.5-252 211

equivalent to some ysuccessor of s’, and vice versa. Maximal strong bisimulation is
a congruence over CCS agents. Among the various equations which are sound for
strong congruence, we mention that parallel composition is associative, commutative
and having nil as neutral element.

4.2. An algebraic view of CCS operational semantics

Now we present the operational definition in terms of a graph NccS=

(vccs, Tees, o a ,a,) with labelled transitions for CCS, where both Vccs, Tees are
algebras. Following [35,18,17-j, an SOS specification, and thus its associated
transition system, can be described as a two-sorted algebra, where the sorts are states
and transitions.

As far as states are concerned, it is immediate to observe that the CCS terms form
an algebra. However, only a part of them is relevant for the operational semantics: the
closed guarded terms, called agents, which are the states of Milner’s transition
system.s

Definition 4.2 (The algebra of CCS states). The set Vccs of CCS states, ranged over by
U, v, w, is obtained by making the quotient of CCS agents through the following axiom
which captures the essence of recursion, i.e. that of “unfolding”:

ret x.E = E [ret xX/x]

In other words, the set of nodes I/ ccs is composed of all the recursive terms, freely
generated by the syntax modulo the recursion axiom, which are closed and guarded.

The CCS transitions in SOS style, having the format v 4 v’, have been defined by
a set of axioms and inference rules, i.e. by a deductive system. Here, we characterize
the set of transitions as an algebra: the axioms represent the set of the generators
and the inference rules are the operations. In this way, the terms of the algebra
Tms denote the proofs of the transitions in the corresponding SOS specification (see
also [S] for a transition system of proved transitions). Furthermore, every term of
Tees is labelled with an action in LI u {r}. To help intuition, a transition is represented
in the format

t : v 3 v’, where t is a proof term and v 3 v’ is the corresponding SOS triple.

In CCS not all transitions can be synchronized, but only those labelled by com-
plementary actions. Nonetheless, we want to define a total operation of synchron-
ization; thus, we introduce a special symbol *, labelling error transitions. The choice

s In a sense, the algebra is partial, or better it is total but we restrict our attention only those terms

which are well-typed, i.e. closed and guarded. Recently, typed algebras and equational type logic have
been proposed to this aim [30]; therefore, we could more rigorously redefine the algebra in this setting,
which however gives rise sometimes to rather boring definitions when nontrivial examples are taken into
account.

212 R. Gowieri. U. Montanari / Theoretical Computer Science 141 (1995) 195-252

of a CCS-like synchronization algebra is part of our case study, but also different
synchronization algebras (and different operators) might be considered as well.

Definition 4.3 (The algebra of transitions). Tees is the free algebra generated by the

following constants (determined by Act) and operations, where t: v1 4 u2 and

t’ : u; If; u; range over transitions and u over Vccs.

(Act) [p,u):/Lu1:u for any PE_~ u (r)

(Sum <) t<+u:ul+u4u2

(Sum >) u+ >t:u+u, -%u2

(RN t\ci : Ul \a s u2\u with $:=if p$(a, a-} then p else*

(Rel) tC@l : Vl [@I -@(PbUz [@I
(Corn-) tJu:u~~u1:u2~u

Om-L) UL t:vlul -S 24~~

(Sync) tlt’:ullu; ~u2~u; with CL” := if p’ = p- then r else *

where * is a special error symbol. We restrict our attention to transitions which are
not *-labelled.g

In order to properly define graph N ccs=(Vccs, Tees, a,,, a,), functions 8, and 8,
remain to be defined. Nonetheless, their definition is implicityly given in the algebra of
transitions: if t:u-p+v, then &,(t)=u and a,(t)=v. With N&E) we denote the
subgraph of Nccs reachable from E.

As already mentioned, a term of the algebra denotes a derivation of a transition in
the SOS deductive system in Definition 4.1. In general, an SOS transition has
associated more than one proof term, as many derivations can give rise to the same

SOS triple. For example, the SOS transition cr.nil+cr.nil % nil has two possible

derivations, denoted by the proof terms [a,nil) < + u and LY + > [a,nil).
Graph Nccs induces an obvious LTS Xccs, where the set of states is Vccs, JZ the

set of labels and a (SOS) transition u1 1: u2 does exist iff there exists a (proved)
transition t : u1 4 u2. This means that the set of transition in _Vccs is isomorphic to
the quotient of the algebra of transitions in NcB with respect to the following

conditional axiom, where t : u1 1: u2 and t’ : II; % II;:

t=t’ if ul=u\, u2=u; and P=,u’.

It is immediate to observe that JV ccs and 9ccs are bisimilar. Indeed, even though
Vccs is the quotient of the states of Y ccs via the recursion axiom, the states involved in

‘Also in this case we should exploit typed algebras for dealing with the inherently partial operation of
synchronization. For the sake of simplicity in the exposition, we prefer to work with an explicit representa-
tion of the error element.

R. Gorrieri. U. Montanari / Theoretical Computer Science 141 (1995) 195-252 213

the axiom are bisimilar in Yccs. On the other hand, transitions in Mccs and Yccs are
the same, up to the recursion axiom. Therefore, we can safely continue our investiga-
tion considering the algebraic view of CCS operational semantics in place of its classic
set-theoretic formulation.

5. SCONE: a simple calculus of nets

In this section we introduce our simple calculus of nets (SCONE), following as
much as possible the algebraic formulation of Plotkin’s paradigm, exemplified in the
previous section.

Definition 5.1 (7’he algebra of SCONE markings). The set of recursive terms over
ZScONE = &, Z” is defined by the following BNF-like notation:

M ::= x 1 op(El,E2, I&) 1 recx.M

where x is any element in a (possibly infinite) set of variables Var, ret x.- is the binding
construct, opt& and the signature ZScONE consists of the following operators:

Z,={nil}, &=Ww.4,

&={cD,+}, &=$!I, Vn>2.

The algebra is quotiented by the following axioms:

M@M’=M’@M M@(M’@M”)=(M@M’)@M” M QJ nil=M,

recx.M=M[recx.M/x]

Only a subset of the terms is relevant for the operational semantics: those closed and
guarded, which are the markings of our net. Markings are ranged over by u, D, w (with
abuse of notation).

The set of nodes Vs,,, is composed of all the closed, guarded terms, freely
generated by the syntax modulo the axioms. Let SsCoNE be the set of the terms in
V,,,, generated by the following syntax:

N ::=p.M (M+M

Thus, VSWNE = (SW,,,) @. v SCONE is the free commutative monoid of nodes over a set
of placesto SSCONE, having nil as neutral element. Hence, l’s,,, has, on nodes, the
algebraic structure of a net.

Intuitively, ,U.U is the place from which a CL-labelled transition reaches marking V;
u + d is a place from which two choice transitions reach u and u’, respectively; u Q u’ is
the multiset union of u and u’. Term nil, being the neutral element, is not considered
a place, rather, it denotes absence of a place.

lo Because of the recursion axiom, ret x.v is a place if and only if v [ret x.v/x] is so.

214 R. Gorrieri. U. Montanari / Theoretical Computer Science 141 (1995) 195-252

The general syntactical form of SCONE transitions is t : v 1: v’, where v and v’ are
the source and the target of the transition, respectively, p is its label, and t is a term of
the algebra of transition proofs, whose operations are in a one-to-one correspondence
with the inference rules of the calculus and whose generators are the axioms of the
calculus.

Definition 5.2 (Algebra of SCONE Transitions). Let E be a special unobservable
action, +A. The transitions in TsCoNE are generated by the following constants and

operation (determined by sync), where t : v1 4 v2 and t’ : vi < vi range over
. .

transitions and v over Vsco,,.

(4 [p, v) : p.v 1: v for any PEA u {r}

(sum-<) v< +v’:v+v’ 5 V

(sum->) u’+ ~v:v’+v~v

(sync) t 1 t’ : VI 0 v; f5 v2 @ v; with $’ :=if p’ =p- then z else *

where E is a special unobservable action and * is the error symbol; furthermore, the
operation of synchronization is subject to the following axiom of commutativity:

The generators of the algebra are of two kinds: action prefixing and local, internal
choice transitions. The only operation for building new transitions from existing ones
is synchronization. The intuition behind tlI t2 is that it is a new transition, whose
source and target are the multiset union of the two and whose label is the synchroniza-
tion of the two. This commutativity axiom is imposed because both.transitions tl 1 t2

and t2 1 t 1 have the same pre-set, the same post-set and the same label, and there is no
observable reason for considering them different.

It could be interesting to give a look at the shape of net transitions. Transitions may
have several post-places (sometimes none), but either one pre-place (in the case of
action prefixing and internal choice) or two pre-places (in the case of synchroniza-
tion” of two transitions). Moreover, also loop transitions are allowed, due to
recursion. Transitions which are *-labelled may have more than two pre-places;
however, the study of an algebra of shape-constructors representing all possible net
transitions (and in general the study of an algebra generating richer classes of nets) is
outside the scope of the paper.

SCONE is a place/transition Petri net NscONE = (I/SCONE, TsCONE, d,,, aI) because
V SCONE is the free commutative monoid over SSCONE, TScoNE is the set of transitions

and &al: TSCONE+~SCONE are defined as usual: given a transition t : u 1: v’, d,(t) = v

and a,(t)=v’.

I1 Of course, this shape does strictly depend on the chosen CCS synchronization algebra. We recall that
such a choice is motivated only by our interest in showing the implementation mapping from CCS to

SCONE in the next section.

R. Gorrieri. U. Montanari / Theoretical Computer Science 141 (1995) 195-252 215

Being SCONE a net, we can apply the algebraic construction of Section 3 to gain
the symmetric strict monoidal category B[N scoNE] of its computations observed as
concatenable processes. In this setting, the notion of reachability of places and
transitions can be naturally defined in B[N WONE]: a place s (transition t) is reachable
from a marking v if and only if there exists a computation 5 starting from u and ending
u such that s occurs in u (t is a subterm of 5).

SCONE enjoys a nice property: the subpart of the global SCONE net reachable
starting from a certain marking u is finite, for any o. Given a marking u, let
N,=(S,“, T,,c?,,,~,,) denote the subnet of NsCoNE reachable from u. For a finite
subnet we mean a net where the set S,, contained in SscONE, and the set T,, contained
in TsCONE, are finite. Therefore, we have to first define how to associate a finite set S, to
a SCONE marking v; then, to prove that all the computations starting from u reach
markings in Sz. This is a sufficient condition because, by construction, the set T, is
finite, Infact, a place u’+u” has exactly two transitions starting from it, while a place
p.u’ has one (local) p-transition, plus a set of synchronization transitions, one for each
place of the form p-.u” in S,. By a pure combinatorial analysis, since S, is always
finite, there must be a finite set of reachable transitions. Therefore, N, = (Sf , a,,,, d,,) is
definitely a finite net.

Definition 5.3 (Places associated to a marking). Let u be a closed, guarded marking.
Let [uj be the set of the subterms of u defined below:

[IFUll = hl u [VII ~u+u~~=~u+u~)u~u~u~u~~

[U 8 uq = IUD u cd] [ret x.u] = Iv-j [ret x.0/x]

where, in the rule of recursion, the free variable x is to be replaced by recx.u.

For instance, [recx.a.xn = Ia.xn [recx.x/x] =({a.~} u Ixn)[rec x.u./x] = {a.~}
[ret x.a.x/x] = {a.(rec x.a.x)}; moreover, [ret x.(a.x @ fi.x)j = [a.x @ B.xn [ret x.(a.x @
~.x/x]=({a.x}u{~.x})[recx.(a.x~~.x)/x]=(a.recx.(a.x @j?.x),/3.recx.(a.x0 /3.x)}

Lemma 5.4. Let v be a closed and guarded marking. Then, the following hold:

6) [u]lG &ONE?
(ii) Iun is jnite,

(iii) U'E[uI] implies u’ is a closed and guarded place,
(iv) u~luJ@, i.e. u is a marking on the set of places [u]I,
(V) U'E[Up if and Ody if[U'jC[Un .

Proof. Immediate by structural induction. 0

216 R. Gorrieri. U. Montanari / Theoretical Computer Science 141 (1995) 195-252

Fig. 4. The relevant SCONE subnet for the marking (a+ p) @(a- +a).

Theorem 5.5 ([u] is closed w.r.t. computations). For any computation <E~)CN~~~~~],
a,(<)=~, a,(l)=w, we hoe that wE[u]l”.

Proof. By induction on the structure of 5. The base cases are symmetries and net
transitions. For symmetries, the thesis is immediate by Lemma 54(iv). For net
transitions, we have to proceed by induction on the structure of the transition. If t is

[~,u):~.u~u, then UE[~.U]@ since, by Definition 5.3, [p.u]I ={p.u} u[uJ and

UE m @ by Lemma 54(iv). With a similar argument, the thesis holds also when

t is u~+u’:u+u’~u and u’+~u:u’fu~u. In the case of tlt’:u@u’~u@u’,

we have by inductive hypothesis that uE[uj @ and u’E[u’j@. Thus,
u @ U’E([u] u [u’])o, from which u @ U’E [U @ a’] o by Definition 5.3. If the computa-
tion is tl;&, where &,(5r)=u, a,(tr)= U, and &(&)=u, a,((,)=~, then we[uje by
observing that u~[uj @ and we WE [u] @ by inductive hypothesis; in fact, by Lemma
5.4(v) Iwj c lull E Euj, f rom which the thesis follows. The last case considers the
computation c1 @I t2, where &,(51)=u1, a,({,)=~,, and &,(52)=uz, a1(c2)=w2. By
inductive hypothesis we have w 1 E [ul] @ and w2 E [u2]I @. Like in the case of synchroni-
zation, w1 @ w2~[ul @ u2jo. q

Example 5.6. The reachable subnet for the making (a + /I) + (cx- + S) is depicted’? in
Fig. 4.

Example 5.7. The second example shows the subnet reachable from y +(LX QJ fi),
depicted in Fig. 5. This marking corresponds to the RCCS agent y +(a1 /I), which is

r20f course when describing nets graphically, we abandon the presentation of nets as graphs with
algebraic structure for a more traditional representation as bipartite graphs. Note that transitions labelled
by E denote local choices. Note also that, since nil is the neutral element, it does not have a corresponding
place.

R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252 211

Fig 5. The SCONE subnet for y+(a $8).

0 V

?I E

/

a 0 Pv 3 P

V

k E

a

8

0 Pv

a

Cd (b)

Fig. 6. (a) The SCONE subset for the place v = ret x.y +(a $ B.x). (b) The process in P[i&& associated
to the computation (Y + %-(a CB Bv));(a 0 CB,v>); (a @ (Y+ %(a CB Bv>)));(a C3 (Cad> @J b9).

considered a difficult agent to model in terms of net theory because of an interweaving
of nondeterministic and parallel operators (see Example 10.1).

Example 5.8. The third example shows the net (in Fig. 6(a)) reachable from the place
corresponding to the evaluation of the recursive term v = ret x.7 +(a @ /3.x). In

218 R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252

Fig. 6(b) is shown a graphical representation of the process in BINscoNE] associated
to the computation ’ 3

(Y+ B (a 63 @));(a @ CB, u));(a 8 (Y+ B-b 8 B@));(a @(C:c,niO 03 Ml

This example also illustrates that the finiteness result stated in Theorem 5.5 is also due
to the fact that the nets are not l-safe. Indeed, in this example many tokens may be
stored in the place a when playing the token game from the initial l-safe marking u.

6. Implementing RCCS into SCONE

Relating different languages whose operational semantics have been defined in
terms of graphs with algebraic structure is now an easy task: we have simply to give
a denotational semantics of the first in terms of the second, i.e. we have to define
a (two-sorted theory) morphism between the two graphs. In this way, not only the
terms of the languages (the nodes of the graph) are mapped, but also their operational
behaviour is pointwise translated. Furthermore, if the target language is a Petri net
calculus, then we get a distributed implmentation for the language.

Here, we provide RCCS with a distributed implementation over the net of SCONE.
Formally, the mapping is a pair of functions (f,g), where g maps RCCS states to
SCONE markings andfmaps RCCS transitions to arrows of BINscoNE]. While the
definition of g is immediate,fis nontrivial, as some RCCS operations have no obvious
counterpart in SCONE. For instance, any RCCS external choice transition is implem-
nted as a SCONE computation composed of internal choice(s) ending with an action
prefix. This idea is related to the notion of implementation morphism of [32]. The
analogy is expressed by the fact that our denotational semantics maps basic operators
of the algebra of RCCS transitions to derived operators of the algebra of SCONE
computations as well as an implementation morphism maps transitions to net
computations. As the implementation of an agent E via (f, g) is an algebraic theory in
9[NscONE], the underlying net for E is the SCONE net composed of those places and
transitions used to build (f,g) (N,,(E)).

Let us try to define the mapping with an example, just to point out some technical
problems. Consider the RCCS agent (a f /?)[(a-+ 6), which can be mapped to the
SCONE marking (a + fi) Q (a-+ 6) (see Example 5.6). The RCCS transition

([a,nil> < +/?)l([a-,nil> < +6)

which represents the synchronization of a and a- (thus an elementary step in the
transition system for RCCS) should be mapped to the net computation (thus to
a derived operator)

(a+/3@a-$ +6);([a,nil)I[a,nil>)

I3 In the following, for the sake of simplicity, we often use the coercion “state for its identity”, i.e, u for id(u).

R. Gorrieri. U. Montanari / Theoretical Computer Science 141 (1995) 195-252 219

where firstly the internal choices are executed in parallel and then the synchronization
is performed.

We work out how the mapping is defined by induction on the syntax. For CCS
generators the mapping is trivial: f([a, nil)) = [a, nil), f([LY-, nil)) = [K, nil). Then,
in the case of nondeterministic choice we have an interesting situation of nontrivial
mapping:

f([a,nil) < +/3)=a4 +/?;f([a,nil))=a*j?;[a,nil),

f([a-,nil) < +6)=a-4 +s;f([a-,nil))=a-$ +6;[a,nil).

The choice operator is mapped to a derived operator, i.e. to a suitable combination
of local choice and sequential composition, so that a global choice CCS transition
is implemented as a sequence of (at least two) transitions, the first of which is a
local choice, resulting in a many-step computation of SCONE. Indeed, any global
choice can be seen as composed of two steps: the choice of the subcomponents and
the execution of an action from the selected components. However, in order to
preserve the correct semantics of the language, these steps are to be executed
atomically (see Section 1 l), and the mappingfis the right mean to express this notion.
Finally.

f(([a,nil> < +/3)l([a-,nil) < +6))=f([a,nil) < +j?)lj([a-,nil) < +6).

Now notice that f([a, nil) < + fl) lf([a-, nil) < + 6) is not defined in SINscONE],
since the operator of synchronization is not definedfor computations, but only for net
transitions! Therefore, we should define an algebra ‘ZZNsooNe, obtained enriching the
algebra of category BINSCONE] with the operator of synchronization, and expressing
which net computation the termj(tl)lf(tz) should represent.

6.1. Transactions and synchronization

Defining an operator of synchronization for concatenable processes is a difficult
task, since the operation seems to be intrinsically nondeterministic. As an example, it
is not clear what should be the result of the synchronization of a transition t with the
parallel composition t’ @I t”. We might say that either the synchronization is not
possible, or t can be synchronized with either t’ or t”, or even with both, but
apparently there is no sensible choice. Luckily, in the present case, only a restricted
family of concatenable processes is interesting for synchronization: the processes in
BINscONE] which are the targets of RCCS transitions according to function& For this
family, it turns out that a deterministic operation of synchronization can be defined
which exactly reflects our intuition about CCS synchronization.

The class of the relevant processes we call transactions, is formed by those concaten-
able processes C = (p, 8, K) where, additionally, the underlying plain process has the
property that there is a (unique) basic transition, called commit, which is greater than
all the others in the partial ordering.

220 R. Gorrieri. U. Montanari / Theoretical Computer Science 141 (1995) 195-2.52

Definition 6.1 (Net transactions and RCCS transactions). A net transaction for a net
N is an equivalence class of terms in B[N] such that there are no terms in the class of
the form q;(u @ t @ t’);p, i.e. with two concurrent finall transitions. A RCCS

transaction is a net transaction for SCONE where all the transitions are .s-labelled,
with the exception of the commit transition. A RCCS transaction with the p-labelled
commit transition is also called a p-transaction.

We will often use the convenient shorthand q ; (u 0 t) ; p - where q is a computation,
t is the commit, u an identity and p a symmetry - for a transaction (but also
computations which are not transactions can have the same form). Indeed, it is
easy to see that any computation 5 can be always reduced to the format

Po;(&@~l);P1;,.*.; p. _ 1 ; (u, @ t.) ; pn by applying functoriality of @. The commit
transition, being caused by all the others, will always be the last one. Now we want to
prove that there is some standard representative for transactions. To this aim, we need
some auxiliary definitions and results.

Definition 6.2 (Merge symmetry). A symmetry p : u 03 v+u @ v, p = <o,, , . . . , a,,,) is
a (u, v)-merge, where u=nla, @ ..a @ nkak and v=mlal 8 a.. $ mkak, iff o,(i)<o,,(j)

whenever 1 <i<j<nh or nh+ 1 <i<j<nh+mh, h= 1,k.

A merge symmetry is an arbitrary merge of two identity symmetries, the former on
u and the latter on v. As the condition a,,(i)<o,,(j) holds in the two intervals
1 < i < j < nh and nh + 1 < i <j < nh + mh, we are sure that no exchange k possible within
u or within v. Indeed, any symmetry on u @ u can be seen as composed of two local
exchaging symmetries followed by a (u,v)-merge.

Lemma 6.3 (Unique decomposition of symmetries). Given u and v, any symmetry

p:u@v+u@~canbeuniquelydecomposedasp=(p~ @pPz);p’withpl:u+u,pZ:v+v,

and p’ being a (u,v)-merge.

Lemma 6.4 (Unique decomposition of transaction, up to). Any transaction r can be
uniquely decomposed in right-standard form n’ ;(u @ t) ;p’ where t : w+v and p’ is

a (u,v)-merge, up to equivalence of n’.

Proof. Given a transaction in the form q ;(u 8 t) ;p, symmetry p can be decom-
posed as (pl @ p2);p’ due to Lemma 6.3; hence, <=q;(u @ t);(pt 8~~);
p’ = n ;(pI 8 w) ; (u @ t ; p2)) ; p’ = n’ ; (u @ t) ; p’ due to the axiom stating that gener-
ators absorb symmetries. The decomposition q’ ; (u 8 t) ; p’ is unique, up to equiva-
lence of $. In fact, two equivalent right-standard decompositions q ; (u @ t) ;p and
q’ ; (u’ @ t’) ; p’ must evaluate to the same concatenable process C = (cp, 0, K). Since no
endomorphism may map the commit to another transition, then u =u’ and t = t’.

14As the commit transition is caused by all the others, there exists no transition concurrent with the
commit.

R. Gorrieri. U. Montanari / Theoretical Computer Science 141 (1995) 195-252 221

Furthermore, the induced labelling rc on the destinations which are post-conditions of
t uniquely determines p =p’. Finally, q and q’, which must evaluate to the same
concatenable process, need not be the same term in general. 0

Of course, we are not forced to leave t on the right; indeed, for any transaction
5 there is also a left-standard form r,+’ ;(t @I u) ; p” where p” is a (v, @-merge.

With this notion in mind, a natural deterministic definition of synchronization
between two transactions consists of putting in parallel the two processes but syn-
chronizing the two commits to become the commit for the resulting process. This
operation is associative, and commutative up to natural isomorphism [23, p. 2141. In
the next definition we introduce a new algebra by enriching BINscoNE] with a derived
operation [] of synchronization defined on standard representatives of transactions,
expressing the fact that the synchronization of two transactions is again a transaction.

Definition 6.5 earn PINscoNE] to a,_). YN,,=(VscoNE,T, a,, a,) is the same
graphi as BINsCoNE] with the extra partiali operation [] defined on transactions.
The operation is subject to the following axiom, which defines it as a derived operator
inside the algebra of 9[iVSCONE]: if two transactions < =q;(u @ t);p and
5’ = q’ ; (t’ @ a’) ; p’ are in standard form (right- and left-respectively), then

Before entering into the details of the results we prove, we will clarify the definition
of this operation. The simpler case is when the RCCS transactions consist of exactly
one step and there are no symmetries. In such a case, the operation states that
identities do not participate to synchronizations.

This example also shows that for net transitions, which are transactions in standard
form, t’ [] t’ = t 1 t’. The synchronization operation represents a kind of composition of
transactions where the two commits are synchronized. This is one of the few determin-
istic ways of synchronizing two net computations, and certainly the only one mean-
ingful for RCCS transactions.

Theorem 6.6 (Synchronizations of transactions are transactions) (see Fig. 7). (i) Giuen

two transactions 5 and c, 5 [] 5’ is a transaction.

(ii) Given a A-transaction < and a l--transaction r’, 5 [] 5’ is a z-transaction.

I5 To be more rigorous, we should say that the two algebras are different but induce the same underlying

graph.
r6 Note that this kind of partiality is different of that of sequential composition. In fact, [] is defined only on
a restricted subset of computations (i.e. transactions), whilst ; is defined on all the computations provided
that the constraints on source and target states are respected.

R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252

Fig. 7. A graphical representation of the synchronization operation.

Proof. (i) Let 5 = q ; (u 8 t) ; p and 5’ = q’ ; (t’ @I u’) ; p’ be transactions. By the synchro-
nization axiom, we know that 5 [15’ is the computation q @I q’ ; u 8 (t 1 t’) @ u’ ; p @ p’
which is a transaction, since t 1 t’ is the maximal transition in the associated concaten-
able process. In fact, t 1 t’ is caused by all the transitions which caused either t or t’.

(ii) Immediate. 0

6.2. Mapping RCCS transitions to SCONE computalions

Now, we are ready to define the evaluation morphism from the two-sorted algebra
of RCCS to the two-sorted algebra of gNscoNa.

Definition 6.7 (Implementing RCCS in SCONE). The

f: TRCCS +T and g : V,,, +VsSCONE, is defined as follows,

g(ni1) = nil g(x) = *

s(~*4=/W(4 g(rec x.0) = ret x.g(u)

&+~‘)=gW+&‘) &W=g(9@gW

I(cu~>)=cPL,gW

pair <~,~~~:NRcCS+~N,..~

where t : u-w.

f(t< +u)=gW4 +gw;.m f(u+ >o=m+ %gW;f(Q

.fCuL 4 = g(u) @_m) f(t J 4 =fW @ g(u)

f(~ll~2)=f(~l)CIf(~2)=(?1~‘2);~1~(~ll~2)~.2;(Pl~PPZ)

wheref(tl)=ql;(ul 6 tl);pl andf(t2)=q2;(t2 @ u2);p2 are in standard form.

It is easy to see that function g is surjective (given any marking M, transform all the
occurrences of @ into 1, thus gaining a RCCS agent), but not injective (due to the fact
that 1 is implemented via the commutative monoidal operation @). Moreover,

R. Gorrieri, 6’. Montanari / Theoretical Computer Science 141 (1995) 195-252 223

a.nil + nil

J a a.nile

nil

?I
a

ad + nil a.nil + nil

E

anil ,‘- a

a) b)

Fig. 8.

d

functionfis neither injective (e.g. due to the noninjectivity of g, [p, g(u)) and [,u, g(v’))
can be the same SCONE transition) nor surjective. This latter case is very interesting,
as it illustrates that certain SCONE transitions - e.g. a.nil-4 +B.nil - cannot be the
image of any RCCS transition, rather only a part of its image. Furthermore, we want
to show that certain internal choice transitions are not even part of the image of any
RCCS transition.

Example 6.8. Consider the RCCS agent E = a.nil + nil and Fig. 8. The LTS Nccs(E), in
(a), is composed of one transition only, [a, nil) < +nil. Its associated marking is
a.nil + nil, a single place. However, the subnet reachable from this place, in (b), has
more transitions. For example, a.nil4 + nil is a choice transition which is only part of
the image of [a, nil) < + nil. Conversely, a, nil + @nil is not even part of the image.
The subnet in (c) represents the underlying net of (f;g)(N&E)). Notice, however,
that this net is not the implementation, but only its support. The implementation
needs also function f which specifies that e.g., a.nil4 +nil is not a legal transition
per se.

Proposition 6.9. For each RCCS transition t, f (t) is always a RCCS transaction.

Proof. By structural induction (symmetric cases are omitted).
f ([CL, 0)) = @, g(u)): In this case the net computation is simply a net transition,
which is of course a RCCS transaction.
f (t < + u) =g(u) $ +g(o) ;f (t): By inductive hypothesis, f (t) is a RCCS transaction.
As the s-transition g(u) 6 + g(u) causes all the transitions off(t), and in particular its
commit, the thesis holds.

f (t _I 4 =f (t) @ g(u): As f(t) is a RCCS transaction, f(t) @ g(u) is so, because g(u)
generates no transition in the process associated to the transaction.
f (tl 1 tz)=f (tl) [] f (tz): By inductive hypothesis and Theorem 6.6. 0

224 R. Gorrieri. U. Montanari / Theoretical Computer Science 141 (1995) 195-252

Proposition 6.10. The pair (f; g) : NRCCS+YNmm is u graph morphism, i.e. g(ai,(t)) =
ai,,(f(t)), i = 0, 1, for all transitions t.

Proof. By structural induction (only two relevant cases are reported). For the sake of
simplicity, 8, denotes aiRcar, while ai, denotes a,,..

<aol(f(t < +u)), Uf(r < + u))>

=(Jo,(s(M +s(u);f(t)),a,,(g(U)~ +g(u);f(r)))

=@o,(g(n)$ +g(u)),al,(f(t))>=(S(u)+g(u),g(a,”(t)))= (g(u+u),g(&,(r)))

= <s@,,(r) +~),g@l.(r < + 0))) = Wo,(t < + a)), s(&,(r < + u))),

<ao,(f(t M)A,(J-0 MD

Example 6.11. Consider E =(a+@I(a-+S) and the SCONE subnet in Fig. 4. The
initial marking of the subnet we are interested in is g(E)=(a+fi) @(a-+6).
Transitions are mapped to computations as follows:
0 f([o, nil)) = [a, nil) for (TE {a, /I, a-, S},
l f([a, nil) < + /?) = a 4 /I ;f([a, nil)) = a + /3 ; [a, nil) and similarly for the other

choices,

0 f(([a,nil> <+/I) J(a-+6))=f([a,nil) c +B)@g(a-+6)
= (a + +/I ; [a, nil)) @(a-+ 6) and similarly for other asynchronous moves,

0 f(([a,nil) < +/?)I([~-,nil> < +@)=f([a,nil> < +j?)[]f([a-,nil> < +6)
=(a4 +jI;[a,nil))[] (a-4 +6;[a,nil))
=(a4 +/?@a-4 +6);([a,nil)I[a,nil)).

Summing up,

f([a,nil) < +/.3I[a,nil) < +8)=(6!*/3@a-4 +6);([a,nil)l[a,nil)),

i.e. the choices are executed in parallel and then the synchronization is performed. Of
course, the choices can also be done in any order, as proved through the following
identification:

(a<< +/?@(a-+6));(a@(a-< +G));([a,nil>I[a,nil>)

= ((a << + j? ; a) @ (a-+ 6 ; a- 4 + 6)) ; ([a, nil) I [a-, nil)) (applying functoriality)

= (a a +/I @I a-< + 6) ; ([a, nil))1 [a-nil)) (cancelling identities)

=((a+/l;ae +B)@(a-4 +s;a-));([a,nil))l[a,nil)) (introducing identities)

=((a + /I) @ a-Q + 6); (a Q + j? @ a-) ;([a,nil))l [a-nil)) (applying functoriality)

R. Gorrieri, V. Montanari / Theoretical Computer Science 141 (1995) 195-252 225

In the previous section we have pointed out that, for any SCONE marking U, its
reachable subnet N, is finite. Here we have mapped the whole RCCS transition system
to the whole” SCONE net, via a graph morphism (f, g). As an immediate corollary
we have that the subnet implementing any RCCS agent is always finite.

Corollary 6.12. For any RCCS agent E, the SCONE subnet underlying (f;g)
(NRC&E)) is jnite.

Proof. The net underlying (f, g) (N-(E)) is a subnet of N,=(S$‘, TV, &,,,d,,), where
u=g(E), by Proposition 6.10. N, is finite by Theorem 5.5. •i

7. Distributed semantics of RCCS

The semantics of RCCS is investigated via the mapping (f,g) : NRCCS+SNmNB,
which induces a quotient of states and computations of Naccs. The quotient on states
is determined by the axioms stating that 1 is a commutative, monoidal, with nil as
neutral element, as @ is so. Some transitions are identified (e.g. [a,nil) jfl and
/3L [a, nil)), even if an axiomatic characterization within RCCS is not so easy. Here we
show that if we extend homomorphically fto RCCS computations, the mapping will
equate all the computations obtained by permuting transitions generating indepen-
dent events.

Proposition 7.1. Let o and V’ be two states in V,,,. Zf g(u)=g(u’) then u and u’ are
interleaving strong bisimulation equivalent.

Proof. By induction on the structure of u. It is based on the fact that the associativity,
commutativity and “nil as neutral element” properties of the parallel operator 1 hold
for strong congruence. 0

Proposition 7.2. Let t and t’ be two transitions in T RCCS. Zff(t)=f(t’) then t and t’ have
the same label.

Proof. By Proposition 6.9, f(t) =f(t’) is a RCCS transaction. It is easy to prove by
induction that the labels oft and the commit off(t) are the same. Since the commit is
unique, the thesis follows. Cl

It is not easy to characterize the identifications, induced byf, on RCCS transitions.
Consider, e.g., two states u and u’ such that g(u)=g(u’); then,f([A u))=f([p, u’)), as

“To be precise, this is untrue as certain SCONE transitions are never executable, as shown in Example 6.8.
Asf maps transitions to p-transactions, the part of SCONE we are interested in is the part covered by
p-transactions.

226 R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (199.5) 195-252

forf(C~,alB))=C~L,aOB)=C~L,BOa)=f(C~L,BIa)). A ssociativity of @ induces fur-
ther identifications, e.g.,f((t Ju) Jw)=f(t J(z+v)). Moreover, because of the synchroni-
zation axiom, we have that, e.g., f((uL t)l t’)=f(uL(tlt’)). As a consequence, it may
seem that we could axiomatize these identifications within the algebra of RCCS
transitions: a conditional axiom for action prefixing and nine axioms relating the three
RCCS operators for parallel composition in all the possible ways for associativity.
However, some form of commutativity is also possible. For example,
f([a, nil) I [a-, nil)) =f([a-, nil) 1 [a, nil)) due to the commutativity of the SCONE
synchronization. Nonetheless, in general f(tr lt2) #f(tz I tl), e.g. [a, nil) I(aL [a-, nil))

and(aLCa,W)lC a, nil) do not give rise to the same transaction, because the synchro-
nized a is different in the two transitions. Even if commutativity of SCONE synchroni-
zation is included, other identifications based on some form of commutativity, not
easily expressible within the algebra of RCCS, are possible; e.g. f(([a,nil)
I [a-, nil)) 1 a) =f([anil) I(a L [a-, nil))). This example shows the intuitive fact that,
when the first a is to be synchronized with a-, the relative position of the second
a w.r.t. a- is irrelevant. As a matter of fact, an axiomatization for the identifications on
transitions is already available! It is enough to interpret the algebra of RCCS inside
the algebra of Y,,,,, as specified by the implementation morphism (f,g). In this way,
we exploit the finer grain of the operations in the algebra of gNsooNe. Indeed, two CCS
transitions t and t’ are identified if and only if they give rise to the same CCS
transaction, i.e. if we can provef(t)=f(t’) in the equational theory consisting of the
axioms in BINscoNE] together with those arising from the definition of (1 g), which
define the CCS operations as derived operations in the algebra of BINscoNE].

Once verified by Propositions 6.10, 7.1 and 7.2 that interleaving bisimulation
semantics is respected, we would like to check whether the semantics induced by the
implementation morphism is sound w.r.t. the intuitive notion of causality. To this aim,
we can homomorphically extend the implementation morphism (f, g) also to RCCS
computations, and then observe what kind of identifications are made on them. We
will show that whenever two RCCS computations are different only for the ordering
of causally independent transitions, they are identified and, vice versa (even if only
under some mild assumption) whenever two RCCS computations are identified, they
differ only for the ordering of causally independent transitions.

Definition 7.3 (Category of RCCS computations). Let Cat(AJ,,& denote the category
obtained by adding an identity arc to each node of NRccs and closing freely w.r.t. the
(partial) operation -; - of sequential composition of its transitions, adding the usual
categorial axioms (where, of course, the equality holds whenever both members are
defined)

t;(t’;t”)=(t;t’);t” id(u);t=t=t;id(v)

Note that the algebraic structure of RCCS has not been extended to computations.
The arrows of category Cat(N,,,) are only computations composed of NRccs
transitions.

R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252 221

Themawing UCJ):NRCCS+~N~~ can be extended homomorphically to become
a mapping from Cat(Nac& to g&,,= by further adding the equation f(ti ; tz) =

f(tl);f(tz). In this way we obtain a quotient of RCCS (states and) computations.

Definition 7.4. Category Conaca is obtained from Cat(N,,,) by the quotient map
induced by (f,g).

Example 75. Let us consider the RCCS term (a + fi)l(cr-+ 6) and the net in Fig. 4. The
RCCS computation

(([a,nil) < +/I)&-+6));(nil L([a-,nil) < +6)):(a+/?)l(a-+6)5nillnil

denotes the execution of an a followed by an a-. It is mapped to the SCONE
computation

((a4 +B);Ca,nil>)~(a-+6);((a-~ +s);[a-,nil)),

which, by functoriality and cancelling identities, is equivalent to the parallel execution

((a< +B);[snil>)@((a-G +d);[a,nil)),

which, by introducing identities and applying functoriality, is equal to their execution
in reverse order

Notice that this net computation is the image of the RCCS computation

((a+fi)L([a,nil) c +@);(([a,nil) < +/?)Jnil):(a+/I)l(a-+6)“-rnillnil,

thus inducing an identification between the former and the latter RCCS computa-
tions.

A relation x, called concurrency relation, between computations of length two
(denoted as ti then t2) relates computations differing just for permuting the order of
independent transitions. This relation proposed in [17,18], rephrases in algebraic
terms a previous proposal by Boudol and Castellani [S, 63. Nonetheless, the present
formulation is, in our view, a bit simpler and more direct. First of all, [6] uses
SOS transitions labelled by their proofs, whilst here we directly introduce a more
manageable algebra of transitions (proofs themselves are transitions); moreover,
whilst they define the permutation equivalence in two steps (first the definition
of a concurrency relation on transitions outgoing from the same state, and then of
the real equivalence on diamond computations), here the equivalence is obtained
in one single step by (conditional) axioms since sequential composition is an operation
of the algebra.

228 R. Gorrieri. U. Montanari / Theoretical Computer Science 141 (1995) 195-252

Definition 7.6 (Concurrency relation). Let -then-X-then_ be a quaternary relation on
. .

transltlons of NRccs defined as the least 1,2 t, 3.4 commutative’* relation satisfying
the following axiom and inference rules, where ao(ti)=Ui, ai(Vi, i= 1, 4, and
8,(t) = U, 8,(t) = 0.

t1 JuZ then ulL t2 x u1 L t2 then tl Jv2

tl then t2 x t3 then t4 tl then t2 x t3 then t4

t,<wtheot2Xt3<+wthent, w+ >tl thent2xw+ >t,thent,

tl then t2 x t3 then t4 tl then t2 x t3 then t4

tl Jw then t2 Jw xt3 Jw then t4 Jw wLtlfhenwLt2XwLt3fhenwLt4

t 1 then t2 x t3 then t4 tl then t2 ,y t3 then t4

tlItthent2 Juxt3Jufhent,lt t(t1thenvLt2XuLt3fhentlt,

tl then t2 x t3 then t4 and t; then t; x tj then tl,

tl 1 t; then t2 I t; x t3 I t; then t4(tk

Proposition 7.7. Given four transitions tl, t2, t3 and t4 in NRccs such that

tl then t2 x t3 then t4, the fotfowing hofd:
(i) tl ; t2 and t3 ; t4 are defined;

(ii) Wt,)=W3) and 4(tA=&(t4);
(iii) tl and to (t2 and t3) have the same label.

Proof. Immediate by induction on the proof of tl then t2 x t3 then t4. Cl

The concurrency relation singles out a “diamond” in the transition system
NRccs which is due to the different order of execution of independent transitions. The
axiom algebraically singles out the basic diamonds, and the other rules reproduce the
diamonds in all the other possible contexts.

Theorem 7.8 (Completeness w.r.t. the truly concurrent semantics for RCCS). Gioen
four basic transitions of Cat(N,,), i.e. tl, t2, t3 and t4 in NRCCS, then we have

tl then t2 x t3 then t4 implies f (tl ; t2)=f(t3; t4)

The proof, long and boring, proceed by induction on the proof of
tl then t2 x t3 then t4. It is reported in [23, p. 222-2241. The proof is essentially the same
we will give in the next part (Theorem 10.3), where, even if full CCS is considered, the
proof is less heavy because we can exploit the simpler algebraic characterization of
concatenable processes in the case of l-safe nets.

“Namely, tl theot2Xt3 thent, iff t3 then t.,x tl theat2.

R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252 229

The reverse of the above theorem is false, in general, as the following example
shows. Let us consider the four NRccs transitions below:

tl=([a,nil))l[a,nil)) Ja tz = (nil 1 nil)L [a, nil)

t3 =([a,nil)]a) 1 [a-, nil) t4 = (nil L[a,nil))lnil

It is immediate to verify that f(tl ; tz)=f(t3 ; t4). Nonetheless, t1 then t2 x t3 then t4 is
false. Indeed, Proposition 7.7 ensures that &&,) = i&) and d,(t,) = d,(t,) whenever
the x relation holds, which is trivially false in this case. However, the reverse of
Theorem 7.8 holds if the constraint i&(t,)=~&) is imposed. Also this proof is not
reported, because it is essentially the same we provide for the next study (Theorem
10.4), where this constraint is satisfied as g is injective.

Theorem 7.9 (Consistency w.r.t the truly concurrent semantics for RCCS). Let

tl, t2, t3 and t4 be four difierent transitions in NRccs such that &,(t,)= &,(t,). Then

f(tl ; t2) =f(t3 ; t4) implies tl then t2 x t3 tben t4

Finally, let us examine what happens in case commutative processes are used in
place of the more concrete concatenable processes. First of all, we observed in
footnote 7 that causality is not well-represented and so we cannot specify what
a transaction (and its commit) is. Consequently, we should restrict to the RCCS
sublanguage without synchronization (called RCCS-), as its corresponding operation
[] cannot be defined in 2 [iVscoNE]. Hence, (h, g) : NRccs- +2 [NSCONE] is defined as
(f, g) of Definition 6.7, where the case of synchronization is omitted.

When using h, Theorem 7.8 obviously holds, because f(tl ; t2) =f(t3 ; t4) implies
h(t, ; t2) = h(t3 ; t4). Conversely, Theorem 7.9 does no longer hold.

Example 7.10. Consider the agent a.y 1 /I.y and the net in Fig. 2 (interpreting a = a.y,

b = fi.y, c = y, l(tl) = a, I(t2) = /3 and I&) = y, where I(t) is the labelling oft, and ignoring
place d = nil). Assume that transition [a,y > J /?.y is executed. Then, the reached state is
y1fi.y. The four RCCS transitions are:

tl= Cy,ni0 J B.Y ~2=nilL13,y>

h = Y L mr > t4 = Y I_ CY, nil)

It is clear that [a,y) @ 8.y; h(t, ; t2) corresponds to the concatenable process in
Fig. 2(b), whilst [a,~) @I /?.y ; h(t3 ; t4) to the concatenable process in Fig. 2(c).
Nonetheless, they are the same commutative process. Hence, h(t, ; t2) = h(t3 ; t4);

nonetheless, t1 then t2 x t3 then t4 cannot be proved (observe, e.g., that 8, (t2) #a,@,)).

This example shows that commutative processes are not appropriate when one
wants to use SCONE as a system model for executions of RCCS- agents: the intuitive
notion of causality is not respected and computations which should be intuitively

230 R. Gorrieri, U. Montanari / Theoretical Computer Science I41 (1995) 195-252

distinguished are identified instead. However, if one is interested only in detecting
diamonds due to the different order of execution of independent transitions in the
RCCS- transition system, then also the quotient induced by (h, g) is consistent and
complete. Indeed, the following proposition can be proved similarly to Theorem 10.4;
notice that the conditions &,(t,)=&,(t,) and a,(~,)= a,@,) are crucial for the only $
part, as Example 7.10 shows.

Proposition 7.11. Let tl, tz, t3 and t4 be four difSerent transitions in NRccs such that

Wt1)=4&) and &W=&(k):

h(t, ; tz) = h(t3 ; t4) if and only if tl then t2 x t3 then t4

8. SCONE+ : a calculus of nets

With this section we begin the presentation of our second case study. There are
some major differences when considering full CCS. First of all, we have to cope with
the complexity of other operations. Restriction and relabelling may be modelled by
means of a syntactic construction which leads, as a side effect, to a l-safe P/T net
representation of the reachable subnet implementing a CCS agent. However, the
resulting net associated to a CCS agent may be infinite.

On the other hand, we can exploit the simpler algebra of concatenable processes in
the case of l-safe nets. Indeed, the rather complex treatment of token exchanges can be
removed in favour of a more accessible semantics which assumes commutative the
operation of parallel composition of processes.

Now we introduce our enriched simple calculus of nets, we call SCONE+. Since the
definition of sensible SCONE+ operations depends on the possibility of mapping
correctly CCS on the SCONE+ net, we explain through an example why, in our
opinion, some auxiliary operators (w.r.t those included in SCONE) are needed. The
example concerns the troublesome interplay between parallelism and restriction. To
be more concrete, let us consider the CCS agent (ala-)\a which cannot perform
asynchronously the two actions o! and a-, but only the r-labelled communication step.
The mapping for the restriction operator should be defined by function g from CCS
states to SCONE+ markings as follows:

do\4 = s(u)\a-

Thus, the SCONE+ marking associated to the CCS agent (a 1 a-)\a might become

s((ala-)\a)=g(aIa-)\a=(a 0 O\a.

On the other side, SCONE+ must have a distributive axiom for restriction of the form

(II Cl3 o’)\a = u\a @ u’\a

R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252 231

as, otherwise, (u 8 ~‘)\a would represent a single place, in constrast with the intuition
that actions executed by v and u’ are neither causally dependent, nor in conflict;
indeed, whenever a parallel operator is present, we should get a multiset union of
places from its components. However, the distributive axiom would induce false
equalities, e.g. (~[cI-)\~=cL\cLIcI-\cI where the latter agent is deadlocked, Thus, our
interpretation of 1 as multiset union is too simplistic now. Disjoint union is the answer
to our problem. We introduce two unary operators for both nodes and transitions,
idl_ and -Iid (called right and left context), with the intuition that vlid makes u the left
part of a larger system. The mapping is

g(vIv’)=g(t@d @idIs

and now distributivity of restriction w.r.t. multiset union preserves the intended
semantics. In our example, we get g((0: 1 a-)\a) =(crlid)\or $ (idlcx-)\a, which represents
two places, each one independently stuck but able to cooperate for synchronization.
The idea of using these auxiliary context operators for correctly dealing with the
interplay between restriction and parallel composition dates back to [1 l] and has
been used by other authors [36,41].

Definition 8.1 (The algebra of SCONE+ markings). The SCONE+ terms are gener-
ated by the following syntax:

M ::= 0 I ml I x 1 p.M I M+ M 1 M\a I MC@] I Mlid 1 idIM 1 M 0 M I

ret x. M

The algebra is quotiented by the following axioms:

M@M’=M’@M MQ3(M’@M”)=(M@M’)@M” M@O=M

(M@M’)\a=M\a@M’\a O\a=O

WG3M’)C@1=MC@l@M’C~l O[@]=O

(M @ M’)lid = Mlid @ M’lid

idl(M @ M’)=idllM Q idIM

Olid=O

idlO=O

ret x. M = M [ret x. M/x]

Only a subset of the terms, however, is relevant for the operational semantics: the
closed, guarded terms (ranged over by u, u, w, with abuse of notation) which are the
markings of the net.

The set of nodes Vs,,,+ is composed of all the closed, guarded terms, freely
generated by the syntax modulo the axioms. Let SScONE+ be the set of the terms in
VscoNE+ generated by the following syntax:

N ::= nil I p_M I M+ M I N\a 1 NC@] I Nlid I idIN

232 R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252

Thus, VSCONE + = &CONE +)‘P i.e. FscoNu+ is the free commutative monoid of nodes
over a set of places SwoNu + , having 0 as neutral element.rg FWoN,+ has, on nodes, the
algebraic structure of a net.

Intuitively, cl.0 and V+ V’ are places with the same intuition as before; u\a may
perform any transition of u, provided that it is not labelled a or a-; o[@] performs the
transitions of u, where the label has been relabelled by @ u)id can execute the same
transitions as u, and makes explicit that u is part of a larger system connected on its
own right, and symmetrically for idlu (see the synchronization operator on transition);
u Q3 u’ is the multiset union of the two markings u and u’.

Definition 8.2 (Algebra of SCONE+ transitions). Let T=_.Hu {E}, ranged over by y,
where E is a special unobservable and unrestricted action preserved by any relabelling
function @. The transitions in T SCONE+ are generated by the following constants
(determined by act, sum- <, sum- >) and operations (determined by res, rel,/id, id/,

sync), where t: ulL u2 and t’: u; 21; u; range over transitions and u over FscoNs+:

(act)
(sum- <)

(sum- >)

(res)

(rel)

0

(id/)

(sync)

[p.u) : p.u 4 u

u* +u’:u+u’ 5 u

u’+~u:u’+u~u

for any PLEA

,I
t\a : ul\a L u2\a

t[@]:ul[@]p%z[@]

tlid : u1 lid A u2 lid

idlt: idlul 3 idluz

with y”:= if y#{ a,a-} then y else *

tit’ : ul lid CD id)u; 2 u21id @ idlu; with y”+ if y’ = y- then r else *

where * is the error symbol. Again, we will consider only transitions which are not
*-labelled.

The generators of the algebra are of two kinds: action prefixing ([,u, u) : p.u -L: u) and

local choice transitions (u 4 + u’ : u + u’ f u and u’ + 9 u: u’ + u 5 u). The operations for

restriction, relabelling and left-, right-context are trivial. The intuition behind tl I tz is
that it is a new transition, whose source and target are the disjoint (because of tags
“idl” and “lid”) set union (because of @) of the two and whose label is the synchroniza-
tion of the two.

SCONE+ is a P/T net NscoNE+ =(V,scoNE+, TscoNE+,ao,al) because I’scoN,+ is
the free commutative monoid over the set of places SscoNu+.

Example 8.3. The reachable subnet for (a + jl)lid $ idI (a-+ 6) is depicted in Fig. 9(a).
Note the similarities with the net for the SCONE marking (a +/3) @ (a-+ 6) reported

‘9Notice that nil is not the neutral element in this case. To this aim, we have added a new element 0, which
will be the image of no CCS state.

R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252 233

a) b)

Fig. 9. The SCONE+ subnet for the marking (a+fi)lid @ idl(a- +6) in (a) and ((a+/?)lid @I idj(a- +S))\a
in (b).

((v IId)iid)\a ((av kd)kd)\a ((id law)lid)\a ((id 1 w)hd)\a

(@v Id)!4d)\U

Fig. 10. A finite SCONE+ subnet for a recursive behaviour.

in Fig. 4. Fig. 9(b) reports the net for the SCONE+ marking
idl(a-+ &)\a.

((a + BW CD

Example 8.4. Fig. 10 represents the finite subnet reachable from the marking corres-
ponding to the CCS term

E = (((ret x.ax +/3x) 1 ret x.ax + yx)l ret x.a-x)\a

The initial marking is composed of three places:

((vlid)lid\a where u = ret x.ax + /Ix

((idlw)(id\a where w = ret x.ax + yx

(idlu)\a where u = ret x.a-x

Example 8.5. The initial part of the infinite reachable subnet for the recursive term
v = ret x.y +(alid @ idlj?.x), which will correspond to the CCS agent ret x.7 + (al/Lx) (see
also Example 5.8), is drawn in Fig. 11.

234 R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252

Fig. 11. The initial part of the infinite SCONE+ subnet for v=recx.y+(alid ~3 id1b.x).

9. Distributed implementation of CCS

In analogy to what was done in Section 6, here we map CCS states and transitions
into SCONE+ markings and computations, thus providing CCS with a distributed
implementation.

9.1. Implementing states

Definition 9.1 (From CCS states to SCONE+ markings). Let g: VCCS+V~~ONE+ be
defined as follows:

g(ni1) = nil g(x) = x

g(rec x.u) = ret x.g(v)

Mapping g is injective and invertible; any place in g(u) occurs at most once, and
from the set of places composing g(u) we can recover the original CCS agents u by

R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (199.5) 195-252 235

means of a sort of unification procedure, where various occurrences of id should be
intended as different variables. Indeed, g is a decomposition function which keeps
track of the topological structure of subsystem interconnections via the auxiliary
operators -(id and idi-. A marking which is image of a CCS state is called complete
[13]. Complete markings enjoy a nice property: a marking reachable from a complete
marking is, in turn, complete. Therefore, since complete markings are l-safe, the
reachable subnet is l-safe.

Definition 9.2. A marking w is complete if there exists a CCS term u such that g(u) = w.

Property 9.3 (i) If a marking u is complete, then it is composed of a set of places (i.e. it
is l-safe).

(ii) Function g defines a bijection between CCS terms and complete markings of
SCONE + .

Theorem 9.4. Given a complete marking u and a computation e : u + u in FINsCoNE+],
u is a complete marking.

Proof. By induction on the structure of the complete marking u. If u=nil, then 5 can
only be id(ni1) and the thesis holds trivially. If u=p.u’, then u’ is also a complete
marking by definition of g; thus, the thesis holds for u’ by inductive hypothesis; hence,
also for u because the unique initial transition [,u.u’) reaches u’. If u = u’ + u”, then u’ and
u” are also complete; thus, the thesis holds for both u’ and u” by inductive hypthesis;
hence, the thesis holds for u because the only two initial transitions from u’ + u” reach u’
and u”, respectively. If u = u’lid $ idlu”, then u’ and u” are complete and the thesis holds
by inductive hypothesis for u’ and u”, Note that whenever u’ and a” are complete, then
u’jid @ idlu” is complete; therefore, any transition enabled by u’lid reaches a marking
which is completed with idlu” (similarly for any transition enabled by idlu” and also for
synchronizations, needing tokens from both sides). Sequential composition and (dis-
joint, i.e. -lid @ idl-) parallel composition of enabled computations satisfying the
thesis produce enabled computations satisfying the thesis. Hence, the thesis holds for
u. The simple cases for restriction and relabelling are omitted. No case for recursion is
needed because of the recursion axiom.

Corollary 9.5. The SCONE+ subnet reachable from a complete marking is l-safe.

9.2. Implementing transitions

As the part of SCONE+ relevant to our aims is a l-safe net, the algebraic
construction of Definition 3.14, yielding the strictly symmetric strict monoidal cat-
egory YINscoNE+], can be exploited, as we know that for l-safe nets this simple
algebraic characterization is equivalent to the one for concatenable processes. Let us

236 R. Gorrieri, U. Montanari 1 Theoretical Computer Science 141 (1995) 195-252

try to define the mapping from CCS transitions to the arrows of YINscoNE+ 1. We
start with some examples, pointing out some technical problems. Formally, the
mapping is to be defined in a purely syntax-driven way. However, some CCS
transitions have no obvious counterpart in SCONE+. For example, consider (a 1 fi)\a;
its sole transition is (4 [/I,nil))\a; let us try to map it to a SCONE+ computation:

f(c?J [b,nil)) = alid @I idlf([j?,nil)) = alid @I idI [$nil)

which is not a transition, rather a computation (parallel composition of a net
transition with an identity), and thus restriction must be extended to computations:

f(d CB,nib\a)=(alid C3 idl CB,W)\a

Indeed, restriction is not defined in Y[N ScoNE+]. Similar arguments also hold for
relabelling and for the two unary context operators. Therefore, we should define an

algebra gN,,.+ obtained enriching the algebra of category YINscoNE+] with the
auxiliary idl_ and -lid, restriction and relabelling, and expressing which net computa-
tions the terms idlf(t),f(t)lid,f(t)\ a andf(t)[@] should represent. For these operators,
the solution is immediate: it is enough to add a distributive axiom, e.g.

(tl @ M\a=rl\a 8 t2\a,

stating that the restriction of a parallel execution of two transitions is the parallel
execution of the restricted transitions. Back to our example,

f(d [@il)\a) =(alid 03 idI [j?,nil))\a =(alid)\a @I (id1 [fi,nil))\a

which is the parallel composition of a net transition and of an identity.
The next problem is concerned with nondeterminism, and its solution is in perfect

analogy with the solution presented in Section 6. Any external choice is seen as
composed of two steps: the choice of a subcomponent and the execution of an action
from the selected component.

Further example presents the harder problem of synchronization. As expected, the
mapping of a CCS transition tl I t2 should be the net computation f(tl) tz)=

f(tl)lf(tz), but unfortunatelyf(tl)lf(tz) is not defined in YINscoNE+]. Therefore, the

algebra %v,,.+ should be further enriched with the synchronization operation. Also in
this case, a deterministic synchronization operation is defined through the transaction
concept. As in Section 6, a transaction is a concatenable process such that there is
a net transition, called the commit, which is larger than all the others in the partial
ordering.

Definition 9.6 (Net transactions and CCS transactions). A net transaction for a net N is
an equivalence class of terms in S[N] such that there are no terms in the class of the
form’? ; (u @ t @I t’), i:e. with two concurrent final transitions. A CCS transaction, also
called p-transaction, is a net transaction for the net of SCONE+ where all the
transitions are labelled by E, with the exception of the CL-labelled commit transition.

R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252 237

The shorthand ‘1; (u @?I t) for a transaction can be conveniently used, where q is
a computation, t is the commit and IA an identity (but also net computations which are
not transactions can have the same form). ” This is a standard form, as the decomposi-
tion rl ;(u @I r) is unique, up to equivalence of rl (provable similarly to what we did in
Section 6). With this notion in mind, a natural deterministic definition of synchroniz-
ation between two transactions consists of putting in parallel the two processes but
synchronizing the two commit transitions to become the commit for the resulting process.

In the following definition we introduce a new algebra by enriching F[iVscoNE+]

with some derived operations (i.e. by extending these operations to net computations).
Among them, the most important is the operator [] of synchronization, expressing
the intuitive fact that the synchronization of two transactions is again a transaction.
In this way, a generalized notion of computation is defined.

Definition 9.7 (from YINXoNE+] to gN,,+). YNYX)NB+=(~CoNE+,T,ao,a,) is the
same graph as FICNsCoNE+] with the extra four operations -\a, -[@],_lid, idl_ and the
partial operation _[]- on transactions. These operations are subject to the following
axioms, which reduce them to the fundamental operations inside the algebra of

2r- CNSCONE + I:

Let

(5 @ S’)\a=t\a@ tl’\a (5;5’)\a=5\a;t’\a

(~c3~r’)c@l=5c@16o~‘c@l (~;~‘)c@l=5c@l;~‘c@1

(t @I c)lid= <Iid @ r’lid (5 ; <‘)lid = (Iid ; t’lid

idl(< @ r’) = idI5 8 idI<’ idl(t;l’)=idl<;idl<’

id(u)\a = id(u\a) id(u)[@] =id(u[@])

id(u) = id(u(id) idlid = id(idlu)

< = tf ; (u @I t) and 5’ = rl’ ; (u’ @I t’) be two transactions, then

< [] <’ = (qlid @I idif) ; (ulid @ id/u @ t I t’)

Proposition 98 (Synchronizations of transactions are transactions). (i) Given two

transactions 5 and r, < [] 5’ is a transaction.

(ii) Given a I-transaction 5 and a A--transaction r’, 5 [] 5’ is a z-transaction.

Definition 9.9 (From CCS transitions to SCONE+ generalized computations). Let

f: Tees +T be defined as follows, where g is the mapping of Definition 9.1. and t : u-w:

f(Cw>)=cM?W

f(t-= +e=m+ +du);fW f(u+ >t)=d9+ %-cm;f@)

“Indeed, it is easy to see that any computation r can be always reduced to the format (ul 8 tl);...; (u, @ t.)
by applying functoriality of the commutative parallel operation 8.

238 R. Gorrieri. U. Montanari 1 Theoretical Computer Science 141 (1995) 195-252

f(uL t) = stu)lid 8 idl f(t) ftt Iv) =ftW C3 WgW

f(t\a) =fW\a f@C@l)=f(t)C@l

f~~~I~~~=f~~~~Clf~~~~=~rl~l~~~~~lrt~~;~~~l~~~~~l~~~~l~‘~

wheref(tI)=ql;h @ 0 andf(t2)=vz;(u2 63 t’)

It is an easy task to prove, by structural induction, that f is injective; this is
essentially due to the fact that g is injective (hence, no two CCS prefix transitions can
be confused). Nonetheless,f is not surjective; the instance reported in Example 6.8
applies also to CCS (adding the place for nil).

Proposition 9.10. For each CCS transition t, f (t) is always a CCS transaction.

Of course, also the reverse is true, i.e. any CCS transaction is the image of a CCS
transition. The following important proposition states that (f,g) is a graph mor-
phism.

Proposition 9.11. The pair (f,g): N,, + YNsoNB+ is a graph morphism, i.e. go ai_=

aiWnB+ of, ,i=O, 1.

Proof. By structural induction (only two cases are reported). For the sake of
simplicity, a,,,+ is shortened to ai,+ and ai, to ai,.

(a,,+(f(t\a)), a,,+ (f(r\a))

= (aos+ (f(r)\,4 aIs+ (f(t)\4) =a,,+(f(t))\4 a,,+(f(t))\a)

=(s(aoc(t))\a,s(a,.(t))\a>=(g(aoc(t)\a),g(alc(t)\a))

= <g(ao,(r\4), g(al, (W)>,

(ao,+f(tlitz)),a,,+cf(t,lt2)))

= (ao,+tf(tl) c if(t2)), alo,*(f(tl) c if(tz)))

= @o,+UItIW @ Wo,+W2)), a,,+WdMd @ iWI,+UW)>

= <dao,(h)W ~3 W(ao,@2)), d&,(hNlid @id IdaI,@2)D

=(g(ao,(t,It2)),g(a,.(t,lt2))>. 0

10. Distributed semantics of CCS

CCS semantics is investigated through the implementation mapping (f, g) :

Nccs -, ‘%smm+, in order to study the effects on the source Nccs of the identifications
induced by (f, g). Since g andfare both injective, no different CCS agents are mapped

R. Gorrieri, U. Montanari 1 Theoretical Computer Science 141 (1995) 195-252 239

to the same marking nor CCS transitions are identified. Thus, in this case the quotient

of Nccs through (f, g) is Nccs itself. Nonetheless, the mapping will equate (all and
only) those computations obtained by permuting transitions generating independent
events. To prove this fact, we can homomorphically extend the implementation
morphism (f, g) also to CCS computations, and then observe what kind of identifica-
tions are made on them.

Similarly to what was done in Definition 7.3, let Cat(N& denote the category of
CCS computations, obtained by adding an identity arc to each node of Nccs and
closing freely w.r.t. the operation _;_ of composition (modulo the usual categorical
axioms). Observe that the algebraic structure of CCS has not been extended to
computations, i.e. the arrows of Cat(N& are only computations composed of
Nccs transitions. The mapping (S, g) : Nccs + YN,_+ can be extended homomorphi-
tally to become a mapping from Cat(Nccs) to ‘2rNaa+ by further adding the equation
f(tr ; tz)=f(tl);f(t2), which is defined as (f,g) is a graph morphism. Category
Conccs is the resulting quotient graph.

Example 10.1. An interesting test to measure the reliability of a true concurrent
semantics is represented by the CCS agent E = y +(a l/I), where an interweaving of
nondeterministic and parallel operators may cause the possible loss of causal indepen-
dency between the concurrent actions a and j? (see [13,14] for more details). The place
y +(alid 8 idI/?) is the image of E, and the two CCS transitions

Y+ =+(Ca,nil> JB):r+(aI8)~*W,

y+ >([d [j%nil)):y+(alB) Aalnil

are mapped to the following two net computations, respectively:

(y + %(alid @ idW));([a,nil)lid 63 idIp),

(y + %(alid $ idl/3));(alid @I idl [B,nil>).

The image of the CCS computation (y + > ([anil) J /?)) ; (nil L [j&nil)) is the net compu-
tation

(y + %(alid 8 idI/?)) ; ([a,nil) lid @I idly?) ; (nillid @I idI [B, nil)),

where actions a and /I are in fact causally independent. This net computation is
equivalent to

(Y + Wid G3 idIS)) ; (alid 63 idl [B,nil)) ; ([a,nil)lid @I idlnil),

which is the image of the computation (y + >(aL [j?, nil))) ; ([anil) J nil) of CCS.
Therefore, the two CCS computations are identified by the mappingf, i.e. they denote
the same arrow in Con,-cs.

240 R. Gorrieri, U. Uontanari / Theoretical Computer Science 141 (1995) 195-252

Fig. 12. The transition system and the net for the agent y +aljI. Notice that both tI ; t2 and r3;t4 are
mapped to the same process, enclosed in the box.

Now we want to prove that the identifications on CCS computations due to the
implementation mapping are the same obtained via a set of axioms proposed in
[18,17]. The concurrency relation x introduced in Definition 7.6. must be extended to
the further operators of restriction and relabelling.

Definition 10.2 (Concurrency relation). Let _ then-x- then- be the quaternary rela-
tion on transition of Nccs defined as the least 1,2~3,4 commutative relation
satisfying the following inference rules, in addition to those in Definition 7.6:

tI then tz x t3 then t4 tI then tz x tJ then t4

t,\uthentz\uXtg\afhent4\a tl [@I then tz [@I x t3 [@I then t4[@]

Similarly to Proposition 7.7, we can prove that, if we are given four transitions
t,,t2,t3andt,inNccs such that tl then t2 x t3 then t4, then tI ; t2 and t3 ; t4 are defined,
&(tl)=&,(t3) and a,(t,)=a,(t,), as well as that tl and t4 (t2 and t3) have the same
label.

Theorem 10.3 (Completeness w.r.t. the truly concurrent semantics of CCS). Given

four basic transitions of Cat(Nccs), i.e. tl, t2, t3 and t4 in Nccs, then we have

tl then t2 x t3 then t4 implies f(tl ; t2)=f(t3 ; t4)

Proof. The proof is by induction on the proof of tl then t2 x t3 then t4. Actually, in
order to be able to prove the theorem in a completely syntactical manner, we prove
a stronger result:

tl then t2 x t3 then t4 implies f(tl)=(c; (T’ @ u”)) @ w,f(t2)

=(o’ @ T”) @ w,f(t3)=(r;(u’ 8 T”)) @ w andf(t4)=(T’ @ u”) @w

R. Gorrieri. U. Montanari / Theoretical Computer Science 141 (1995) 195-252 241

where w and 5 are optional (but if, e.g., w is present in one of the f(ti), then it is
present in all the others), and T’ : u’ + u’, T” : u” + u” are transactions. Sequentially
composing the two processes, we obtain f(tl ; tz) = (< ; (T’ @ u”) ; (u’ @I T”) @w =

(5 ; (T’ @I T”)) @I w = (5 ; (u’ @I T”) ; (T’ @I u”)) @ w =f(t3 ; t4). This means that, apart
from a possible initial common segment (represented by the optional l) and some idle
tokens (represented by the optional w), t1 ;tz generates two independent (non-s-
labelled) events which are generated in reverse order by t3 ; t4. The order exchange is
expressed by functoriality. The “commutativity” condition on x holds because
equality is a commutative relation.

The base case is the axiom; we have to prove thatf(ti Juz ; ulL tz)=f(ulL t2 ; tl Ju2).

In this case, w and 5 are not present. Indeed, as f(ti Ju2)=f(t1)lid@id(g(u2),
T’=f(t,)lid and u”=idlg(u2); moreover, asf(ulLt2)=g(ul)~id @ idIf(u’=g(ul)lid
and T” =idlf(t,). Finally, it is easy to observe that f(uiL t2)=u’ @ T” and
f(ti Ju2) = T’ @ u”. The thesis can be proved directly as follows:

=(du~W;f(tdlid) ~3 @W(h) ;idldG

=(shW @ i4f@~));Cf(~dli~ @ idlg W)=fhLt~;t~ Jd.

For restriction, we have to prove that f(t1\a;t2\tl)=f(t3\cc;t4\~), knowing that
f(ti ; t2)=f(t3 ; t4) by inductive hypothesis. Hence, the thesis holds because of the
distributive axioms of restriction:

f(h\a)=.f(h)\a=((5 0 63 ~“1) 63 w)\a=(t\a;(T’\a C3 ~“\a)) @ w\a
f(t2\a)=f(t2)\a=((u’ 63 T”) @ w)\a=(u’\a @ T”\a) @I w\a

f(t3\4=f(h)\a=((< ;(u’ 8 T”)) 69 w)\a=(t\a;(u’\a C3 T”\a)) 63 w\a

f(t4\a)=f(t4)\a=((T’ @ u”) 63 w)\a=(T’\a ~$3 #\a) @I w\a

which are all of the required form. The thesis can be also proved directly as follows:

=_f(b ; t2)\a=f(t3 ;t4)\a=(f(h) ; f(t4)\a=fO3) \5f@4)\a

242 R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252

The similar case of relabelling is omitted. In the case of the rule for nondeterminism,

we have to prove thatf(w + > t1 ; tz)=f(w + > t3 ; td), knowing that_/& ; t~)=f(h ; td

by inductive hypothesis:

f(w+ =-t1)=((g(w)+ Bg(Ul));f(rl))=(g(w)+ %-g(u1);(S;(T’@u”))@ w

=((g(w)+ %g(u,);5 G0 w);(T’@ UN 63 4)

f(tz) = u’ @ T" @I w

f(w+ =-M=((g(w)+ ~g(u3));f(t3))=(g(w)+~g(U3);(5;(#'~ T")@w

=((g(w)+ %&);t@.w);(u'C3 T"C34)

f(L$)=T'@lY @w

which are all of the required form (the new < is (g(w)+ %g(q); < @ w), the new T' is
T’ @w, the new T" is T" and the new w is 0). The thesis holds also because
ul=&,(t1)=&,(t3)=u3. Directly,

f(w+ >r1;rz)=((g(w)+ %g(ul));f(rl));f(rz)=(g(w)+ ~dul));(f(~l);f(~2)

=(dw)+ %-dul));f(b ;t2)=(dw)+ %-du3));f(t3;Ld

=(dw)+ %d~l));(_m3);_f-(Ld)=((dw)+ ~dU3)m3))dW

=“f(w + > t3 ; t‘+).

The proof for the symmetric nondete*rministic rule is omitted.
In the case of synchrony, we have to prove that f(w Ltr ; w Lt2)=f(w Lt3 ; w Lt4). In

this case, we simply add extra idle tokens g(w)lid. For the sake of brevity, we provide
only the direct proof.

f(wLt1 vLt2)

=(s(w)lid @ idlf(tl));(g(w)lid~idlf(t2))=(g(w);g(w))lid 63 Wf(h);f@d)

=g(w)lid 8 W(~I;~2)=dwW C3 W(t3;M)

=(dw);dw))lid CO idl (f(h); f@d)

-(gWIid;gWlW ~3 04f@d;WM)

=kWlid @ Wf(t3));(sWlid 63 W@d)

=“f(w Lt3 ; w Lb).

The proof of the symmetric rule is omitted. In the subsequent case, we have to prove
that f(tllt;t2Ju)=f(t3Ju;t41 t). Assume f(t)=?;@ @ z) and &(f(t))=g(&(t))=u,

~,(f(t))=g(~,(tI))=u. Finally, let a,(()=~ 0 u” and a,(~)=~,,. Let us firstly show an
intermediate result:

f(t1)C lf(O=((5;(t’ c3 u”)) @ 4 c lh;(t c3 4)

=((5 69 WIG@ @ u” @ w))C I(1 ;(t 63 4)

=(W~5);(W~U”~t’)Cl(lf;(t~zZ))

R. Gorrieri, U. Monianari / Theoretical Computer Science 141 (1995) 195-252 243

=[((w@ ~);(w@u’@u”))~id@id~~];[(w@u”)lid@ t’lt@idlz]

= [(w @ 5) lid @I idly] ; [(w @I u”)lid @ t’ I t 63 idlz].

Thus, we have that

f(tl It ; bl4 =(fh) C If(O) ;f@dlid 8 i44

= [(w @ <)lid @ idly] ; [(w @ u”)lid @ t’lt @ idlz] ;

[(w @I t” @ u’)lid @ idlu]

= [(w @ r)lid 6 idly] ; [wlid @I u”)id 0 t’l t @ idlz] ;

[wlid @ t”lid @I u’lid @I idlu]

= [(w 63 Qlid @ idly] ; [wlid @ t”)id 8 t’lt @I id(z]

= [(w @ 5)lid 631 idly] ; [wlid @I t”lid @I u’lid 631 idlu,] ;

[wlid 8 u”lid @ t’lt @ idlz]

= [(w ~$3 5)lid 63 idly] ; [(w @ t” @ u’)lid 63 id(u,] ;

[(w @I u”)Jid @ t’lt @I idlz]

= [((w @ r);(w GO u’ 8 t”))jid @I idly]; [(w @ u”)lid @ t’lt @ idlz]

= [(({ ; (u’ @I t”)) 6 w)lid @I idlu] ; [(w @ u” 63 u’)lid @I idly] ;

[(w @I u”)lid 8 t’lt @ idlz]

=(f(t3)lid @I idlu); [(w @ u” 8 u’)lid @ idly] ;

[(w @ u”)lid 8 t’l t @ idlz]

=Wdlid ~3 i44; CM 63 u” @ 0 C 1 v;@ C3 4

= .f% M; uw c If@))

The proof of the symmetric rule is omitted.
Finally, in the case of synchronization, we have to prove that f(tl It; ; t2 I t;) =

f(blG;~~lCd. Assume that f(~d=(t;(~~@d)@wW, f(b)=h@U@w, f(b)=
(5;h ~~tz))~ww,f(t4)=(tl~u2)~wW,f(t;)=(r);(t; c34))@“,S(~;)=vl @&I63
w’, f&)=(5’ ;(u; @ ti)) @ w’ and f(tk)=(t; @I u;) @ w’. Some intermediate results
first.

f@l)C l_tw=((5;(~1@ %)I 63 w)C l((5’;vl 63 4)) @w’)

=((5 63 4 ; (Cl c3 k2 c3 4) c I(@ 63 w’); (6 c3 4 c3 w’))

= C(5’ @ 4W 63 Wr’ C3 ~71; C(uz @ w)lid 63 tl It; 0 idl(u; @I w’)]

244 R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252

f(h) c If@;) = (@I @ a 63 w c I((4 63 c2) 8 w’)

= Ch 60 w)lid 6 hlti 60 idl(ui @ w’)].

Let us abbreviate 9= [(< @ w)lid @ idl(t’ @ w’)]. Hence

f@llfl ;~zl~;)=u-(h) c Ifvl));u-(~2) c 1.m))

= 3; C(u2 C3 Wd 69 tl I G 63 W4 C3 ~‘11; Ch C3 w)lid @ tz I

t; @ id@; @ w’)]

= 9; [u&d @ w/id @ tI 1 t; @ idlu; 8 idlw’] ;

[qlid @I wlid @ t2 It; @I idlo; @ idlw’]

= 9; [wlid @I tl I t; @ t2 I t; @ idlw’]

f(b)ClfW =((tf;(w 63 b))O w)CI((S’;wl c3 c2))@w’)

=((5~~W);(~10~2~W))Cl((r’~~‘);(~;~~t;OW’))

= CC5 60 w)lid 0 idl(5’ @ 41; Ch 63 did 63 cz I ti @ idl(4 @ 41

=~;C(Q C341id@~21t~@W4 @w’)l

f@4)CIfW=((h 63 uz)@ w)Cl(vl s4 8 w’)

= C(u2 03 did 0 t, I ti C3 idl(4 C3 w’)]

f(~3I~~;~4I~k)=Cf(~3)ClS(t;));(f(~4)Clf(tk))

= 8; Ch 63 Wd 0 h Iti ~3 W4 @ w’)l ;

Cb 69 did C3 cl Iti 63 W4 63 ~‘11

=J;[u,lid 0 wlid @ t21t; @I idlu; @ idlw’];

[u,lid @ wlid @I cl It; @ idIt& @ idlw’]

= 9; [wlid 0 t2 I t; ~$3 tl It; @ idlw’]

=.mlG ;tzlM. 0

Theorem 10.4 (Consistency w.r.t the truly concurrent semantics for CCS). Given four
dlzerent basic transitions tl, t2, t3 and t4 in Nccs, then we haue

f (tl ; t2) =f (t3 ; t4) implies tl then t2 x t3 then t4.

Proof. We know that tl ; t2 = t3 ; t4 in Con- if and only if the two computations are
mapped to the same concatenable process. Moreover, since we are assuming that the
four transitions are different, we can prove that the process comprises only two

R. Gorrieri. V. Montanari / Theoretical Computer Science 141 (1995) 195-252 245

(non-.s-labelled) events, and these two events are causally independent. The proof of
this fact is by induction on the structure of t1 (and thus t3).
l tl = [p.u): In this case there is no transition t3, different from ti, starting from p.u,

and thus the premise of the thesis is not satisfied.

l tl=tl<+& where t:ul 4~: In this case there can be several candidate

transitions t3.

(a) t3 = u1 + > t’, where t’ : u; 1: 0;. Impossible, because t1 and t3 generate different

concatenable processes (alternative choices).

(b) t3 = t” c + t&, where t”: u’; ? 0’;. The problem is then reduced to the simpler

case t ; t2 = t” ; t4 implies t then t2 x t” then t2 x t” then t4

which holds by inductive hypothesis.

l ti = u; + > t, where t : u1 3 u2 : symmetrically.

l tl = t’\a: In this case, all the other involved transitions must have a similar format,
ti = t’\a, and thus the problem is reduced to the inductive case
t’ ; tZ = t3 ; t4 implies t’ then tZ x t3 then t4.

l tl = t’ [CD]: Analogously to the previous case.

l tl=tJul, where t:ull:u,:

In this case there can be several candidate transitions t3.

(a) t3=ulLt’, where t’:ul 1:~~. In order to have tl ;tz= t3; t4, it is necessary that t2

produces the same event generated by t3, and t4 the same by tl. This univocally
forces the following assignments:

tz = u2L t’ t4=t Ju2.

It is patent that this case corresponds to the axiom in Definition 7.6.

(b) t3 = t” jul, where t” : ul 1: u’;. In order to be able to generate the same process,

both tz and t4 have 1 as principal operator. Therefore, the problem is reduced to
the simpler check on the left (sub) transitions.

(c) t3 = t”J t’. Again, the same concatenable process can be generated only if t2

produces the same event generated by t3, and t4 the same by tl. This forces the
definition of the two transitions; moreover, this means that we need an inductive
check on the left subtransitions.

l tl=ulLt, where t:u, 4u 2: Symmetrically, to the previous case.

l tl = tJ t’: There are three cases. Two of them (when t3 is an asynchronous move)
are already covered by the previous two cases. The last is when t3 = t”l t*. Again,
by generating the same concatenable process, t2 and t4 have a fixed defini-
tion; moreover, we need two checks on both the right and the left sub-
transitions.

Hence, we have exhaustively checked all the possible cases (recursion is ignored
because of the recursion axiom), and it is easy to recognize in the proof the same
axiom and rules of Definition 7.6. 0

246 R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252

11. Comparisons and related works

In this section we will discuss the relationship with previous proposals in the area,
in order to emphasize the analogies and the differences.

11.1. Algebras vs. calculi of nets

There is a relevant line of research in net theory which sets as its goal the definition
of algebras of nets, yielding compositionality as its main achievement. Some of these
algebras have been shown to be useful as semantic domain in a denotational net
semantics for CCS-like languages. In this line, we mention only a few early proposals
[28,20,43,19,9], where a Petri net can be specified by a formula of the proposed
algebra.

On the contrary, here we follow the line of defining a calculus of nets, i.e. a deductive
system made of axioms and inference rules, similarly to what Milner [34] did with
CCS, which, in our perspective, can be considered as a calculus of transition systems.
CCS is defined as a single whole transition system by means of an SOS specification;
analogously, our net calculus defines a single whole net. Moreover, if one is interested
in the behaviour of a particular CCS agent, the relevant piece of transition system is
the part reachable from the state corresponding to the agent; similarly, we can single
out a subnet corresponding to a SCONE (or SCONE+) marking. This is a fairly new
result in the context of nets. Indeed, the “algebra of nets” approach lacks the pleasant
feature of having a single net comprising all the agent subnets. Recent ideas proposed
by Degano et al. [ll, 12,14,15] go in the direction of transforming concurrent calculi,
like CCS, TCSP and ACP, into net calculi. In a sense, here we try to algebraically
formalize some of the ideas developed there and in other related works [36,41].

There are at least two main advantages in considering a calculus instead of an
algebra. First, infinite nets are never produced as a whole, but only on a by-need basis;
indeed, SOS specifications provide finite intensional descriptions for possibly infinite
semantic objects. Second, an SOS specification is a natural guide for building an
abstract interpreter of the language.

11.2. Distributed implementations of CCS

At first sight, one could think that the distributed implementation of a CCS agent
E is determined by g; i.e. the implementation of E is the subnet reachable from the
marking g(E). This is wrong, as shown in Example 6.8, where certain transitions in the
reachable subnet are not to be included. Nonetheless, one could think that the
implementation of E is the net underlying (Jg)(Nccs(E)), i.e. the support net of the
image of the transition system through the mapping. Again, this is wrong, as certain
computations in the net do not have a corresponding computation in the transition
system. Consider the net in Fig. 9(b), which is the net underlying (f; g) (Nccs(E)) for
E = ((a + /_I)1 (a-+ @)\a. It is clear that the net may deadlock (when, e.g., the left token

R. Gorrieri. U. Montanari / Theoretical Computer Science I41 (1995) 195-252 241

chooses to enable /? and the right one to enable the synchronization), but no
similar phenomenon happens in Nccs(E). As a matter of fact, the implementation
of E is not simply the net underlying (f,g) (N&E)), rather such a net plus
the morphism f; which specifies which net computations are to be considered.
Indeed, in our approach CCS is given two operational semantics describing the
evolution of its agents at two different levels of detail. On the one hand, the
CCS transition system specifies the control level, in the sense that it defines the
atomic actions of the systems, and thus also the states which can be tested by
an observer. On the other hand, its net implementation determines the descrip-
tion level, i.e. it defines the actual steps the machine has to perform, although the states
the machine passes through may not be observable. In this perspective, the mapp-
ingfis the natural means of imposing an atomicity constraint on the executions of
the net, resulting in what we have called net transactions (see Section 11.3 for more
details).

This is a natural consequence of our algebraic approach, where the algebra of
CCS transitions is mapped to an algebraic theory of SCONE+ computations.
Indeed, this is what happens in most denotational semantic definitions, where
basic operators of the language are mapped to derived operators of the semantic
domain. Often, some basic operators of the semantic domain are not in the image
of the mapping. To be more explicit, consider the following simple example on
the algebra d of natural numbers (0 is the constant and ’ is the successor function).
We define an implementation mapping f: d+d defined as follows:

f(0) = 0 f(d) =f(x)l

Hence,fmaps each number x to its double 2x. The algebraic theoryf(s8) contains all
(and only) even numbers; hence,f(d) does not contain the successor operation, but
only the +2 operator, defined as derived in terms of the successor one. Similarly,
SCONE internal choice is not an operation of the algebraic theory on YNsCoH. but it is
used to express its derived operators, i.e. its transactions.

The problem of giving a distributed implementation of concurrent calculi has
been studied by assuming that the abstraction level of the net is the same as the one
of the transition system (i.e. each action is always represented by a single transi-
tion). Some proposals by Degano, De Nicola, Montanari and Olderog [12,36]
respect such a requirement, but the price they pay is to obtain an involved net
semantics because of the distribution of choice. In our view, the present solution
is simpler: it rejects the assumption that the control and the description level
coincide and makes an extensive ‘use of the atomicity constraint, formalized
through the implementation mapping.

As a final comment, we want to stress that our distributed implementation of CCS
has the interesting effect - on the source transition system - of reducing the true
concurrency of the language, defined through relation x, to the true concurrency of
a model, expressed in algebraic terms by the functoriality axioms.

248 R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (1995) 195-252

11.3. Atomicity and transactions

The idea of representing the sophisticated nondeterministic operator CCS in terms
of local choice has been already proposed in the literature. The problem was attacked
in [24], which described a new interleaving semantics for CCS where the inference
rules for nondeterminism and recursion have been replaced by the corresponding
axioms of internal choice (like in SCONE) and recursion unwinding. Of course,
a calculus more generous than CCS is obtained, where certain derivable transitions
are forbidden in Milner’s transition system. To prevent such “erroneous” transitions,
a subagent performing an internal choice should have priority w.r.t. the other
concurrent subagents willing to perform nonchoice actions. In this way, a sort of
atomicity constraint is imposed on the calculus, which hence becomes equivalent to
CCS. In fact, it represents a lower level description of CCS where each internal choice
and recursion unwinding is seen as a separate move. The interesting point is that this
atomicity constraint is ingrained in the syntax-driven deductive” system.

In [133, a distributed semantics for CCS is proposed, which looks like our present
proposal. Indeed, the modelled language has internal choice only. In order to recover
the correct CCS semantics, a mechanism of atomicity has to be put on the net. The
authors suggested a notion of p-transaction, essentially coincident to the one pro-
posed in Definition 9.6, to denote the atomic steps on the net, with the intuition that
these are the sole feasible moves on the net. In this way, a direct consistency with
Mimer’s interleaving semantics is easily preserved and also the correct causal depend-
encies between concurrent actions are faithfully reproduced. The main difference
between [13] and our proposal relies on the fact that restricting the behaviour of the
net to CL-transactions is more naturally expressed by the morphism f: Tccs+T. Of
course, the definition of such a morphism is possible only in the completely algebraic
framework we are working in. The atomicity constraint is guaranteed by the defini-
tion of the basic CCS operations as derived operators of the SCONE+ theory.

A first attempt in giving a morphism from the CCS transition system to a Petri net
with internal nondeterminism only is reported in [4].

11.4. Finite net implementation of RCCS agents

The construction we have presented in this paper for giving a finite (nonsafe)
representation to RCCS agents has analogies with similar proposals in the literature.
In particular, Goltz [19] was the first who generalized to the case of nets the
construction for the recursive combinator given by Milner in [33) for transition
systems. Our proposal differs from this mainly w.r.t. the nondeterministic operation,
which is centralized in our approach and distributed there. Unfortunately, her

*I Note that we have not addressed the problem of defining a “prioritized” token game on the
SCONE+ net, to ensure that only CCS transactions are executable. This problem is outside the scope of the
paper.

R. Gorrieri. U. Montanari / Theoretical Computer Science 141 (1995) 195-252 249

r
--

P
s 4 .

a

r?

Y P

t

Fig. 13. The net for recx.(y+(a $8.~) as proposed in [19].

construction is sometimes inadequate, as the following counterexample (proposed by
the author herself) shows. Consider the RCCS agent ret x.(y + (a 18.x)) and its SCONE
implementation depicted in Fig. 6(a). The net depicted in Fig. 13 is the one Goltz
associates to this recursive term. Unfortunately, it is incorrect, because action y may
be enabled by tokens which remain in place r. To be more precise, let
o=recx.y+(a~/I.x), which corresponds in the net to the marking r @ s. According
to the operational semantics in Section 4, transition y-i- >(aL [b,u)) is labelled
by /I and reaches state alu, corresponding to 2r @ s. Then, transition
(aL (y + >([a,nil) J#I.o)) is labelled by a and reaches alni1lfi.u from which actions
a and /I only can be performed. The simulation of these two steps on the net leads
erroneously to marking r @ r’ @ s where y is enabled, too. Instead, our solution,
depicted in Fig. 6(b), correctly represents the intuitive causality and the possible
conflicts among the three actions.

An interesting recent report by Goltz and Rensink [22] shows that, by assuming
that each action is implemented exactly as one net transition (i.e. that the abstraction
levels of the transition system and of the net are the same), no finite net representation
for RCCS agents is possible when a causal semantics is to be respected. Hence, it gives
evidence that the assumptions of our solution are strictly necessary.

RCCS implementation mapping enjoys an interesting property. The theory (f, g)
(iVccs@)) and its underlying net have “essentially” the same semantics: each com-
putation on the underlying net can always be extended to become the image of
a RCCS computation viaf: In other words, the atomicity constraint imposed byfis
somehow superfluous, as no deadlock, due to conflicting internal choices, can be
reached. To help intuition, compare the differences between the nets in Figs. 4 and
9(b), where the presence of the restriction operator in the latter example produces
possible deadlocks.

Is it possible to find out a finite P/T net representation for any CCS agent? It has
been recognized [20,41] that finite representations for full CCS do not exist since full
CCS is “Turing-powerful” whilst finite P/r nets are not. Nonetheless, since non l-safe
representations are usually smaller, it would be interesting to discover if it is possible
to deal with restriction without introducing l-safe nets. A recent proposal [44] shows
that this can be done with the help of inhibitor arcs.

250 R. Gorrieri, U. Montanari 1 Theoretical Computer Science 141 (1995) 195-252

I1 S. Programming by multiset transformation

There has been a recent deep interest in finding inherently “truly concurrent”
abstract machines which resulted in a series of proposals [l, 8,7] ending with the
chemical abstract machine by Berry and Boudol [a]. The basic paradigm of all
these proposals can be called “programming by multiset transformation”, where
the sequential components of a system are organized in a multiset, each of which
can autonomously proceed or interact. Anyway, Petri nets are abstract machines
which do work by multiset transformation: indeed, the reaction law of the chemical
abstract machine just corresponds to the definition of net transitions and the
chemical law is simply another way of saying that the token game can be played
in parallel. More abstractly, as Meseguer pointed out in [31], all these models
are rewriting systems where the application of rewriting rules may be done in
parallel.

If we consider SCONE and its net semantics, we can observe that it can be seen
as an algebraic (hence structural) representation of the basic features of the
chemical abstract machine, namely concurrency and communication. Indeed, the
parallel rule is multiset union, reaction corresponds to the operation of com-
munication, and inaction cleanup accounts for nil as neutral element in multiset
union.

When considering SCONE+, a relevant difference arises concerning the treat-
ment of restriction. The chemical abstract machine introduces to this aim two new
concepts, namely membranes and airlocks, which allow to give an environment-
like structure to the system. These two concepts do not have any correspond-
ing concept in the classical net theory. Indeed, Degano, De Nicola and Montanari
proposed an alternative solution, which we have followed here: parallel composi-
tion is modelled as disjoint union via the auxiliary unary operators of context
-lid and idI_. It is not clear to us which of the two solutions is more amenable.
On the one hand, the notion of membrane and airlock is appealing because it
more faithfully describes the structure of restriction at the machine level. On
the other hand, the mechanism is rather heavy (a lot of rewritings are needed in
order to create an ion in a solution ready to reaction) if compared with the
direct definition of communication transitions we give also in the presence of
restriction.

Acknowledgement

We would like to thank the anonymous referees for their comments and sugges-
tions which were very helpful in the preparation of the revised version of this
paper. In particular, one referee suggested that we investigate the conditions
under which the reverse of Theorem 7.8 (reported as Theorem 7.9 and Proposition
7.11) holds.

R. Gorrieri, U. Montanari / Theoretical Computer Science 141 (199.5) 195-252 251

References

[l] J.P. Banltre and D.Le Matayer, Programming by multiset transformation, Comm. ACM 36 (1993)
98-l 11.

[Z] G. Berry and G. Boudol, The chemical abstract machine, Theoret. Comput. Sci. % (1992) 217-248.
[3] E. Best and R. Devillers, Sequential and concurrent behaviour in Petri net theory, Theoret. Comput.

Sci. 55 (1987) 87-136.
[4] C. Blanco, Hater Explicita la Elecci6n At6mica de CCS Facilita la Construcci6n de Ordenes

Parciales, Master’s Thesis, ESLAI, Buenos Aires, 1988.
[S] G. Boudol and I. Catellani, Permutation of transitions: an event structure semantics for CCS and

SCCS, in: Proc. REX School/ Workshop on Linear Time, Branching Time and Partial Order in Logics
and Modelsfir Concurrency, Noordwijkerhout, Lecture Notes in Computer Science Vol. 354 (Spring-
er, Berlin, 1989) 411437.

[6] G. Boudol and I. Castellani, Three equivalent semantics for CCS, in: Proc. 18th Ecole de Printemps sur
la Semantique de Parallelism, La Roche-Posay, Lecture Notes in Computer Science, Vol. 469
(Springer, Berlin, 1990) 96-141.

[7] N. Carrier0 and D. Gelerntner, Linda in context, Comm. ACM 32 (1989) 444-458.
[8] M. Chandy and J. Misra, Parallel Program Design (Addison-Wesley, Reading, MA, 1988).
[9] L. Cherkasova, Posets with non-actions: a model for concurrent nondeterministic processes, Arbeit-

spapiere der GMD no. 403, 1989.
[lo] A. Corradini, G.L. Ferrari and U. Montanari, Transition systems with algebraic structure as models

of computation, in: Proc. 18th Ecole de Primtemps sur la Semantique de Parallelism, La Roche-Posay,
Lecture Notes in Computer Science, Vol 469 (Springer, Berlin, 1990) 185-222.

[l l] P. Degano, R.De Nicola and U. Montanari, Partial ordering derivations for CCS, in: Proc. FCT ‘85,
Lecture Notes in Computer Science, Vol. 199 (Springer, Berlin, 1985) 52&533.

[12] P. Degano, R.De Nicola and U. Montanari, A distributed operational semantics for CCS based on
condition/event systems, Acta Inform. 26 (1988) 59-91.

[13] P. Degano, R.De Nicola and U. Montanari, Partial ordering description of nondeterministic concur-
rent systems, in: Proc. REX School/ Workshop on Linear Time, Branching Time and Partial Order in
Logics and Modelsfor Concurrency, Noordwijkerhout, Lecture Notes in Computer Science, Vol. 354
(Springer, Berlin, 1989) 438-466.

[14] P. Degano, R. Nicola and U. Montanari, Partial ordering semantics for CCS, Theoret. Comput. Sci. 75
(1990) 223-262.

[15] P. Degano, R. Gorrieri and S. Marchetti, An exercise in concurrency: a CSP process as a condi-
tion/event system, in: Adoances in Petri Nets 1988, Lecture Notes in Computer Science, Vol. 340
(Springer, Berlin, 1988) 85-105.

[16] P. Degano, J. Meseguer and U. Montanari, Axiomatizing net computations and processes, in: Proc.
Logic in Computer Science (LICS ‘89), Asilomar (1989) 175-185.

[17] G. Ferrari, Unifying models for concurrency, Ph.D. Thesis, TD 4/90, Dip. di Informatica, Pisa, 1990.
[18] G. Ferrari and U. Montanari, Towards the unification of models for concurrency, in: Proc. Coll. on

Algebra and Trees in Prog. (CAAP ‘90), Copenhagen, Lecture Notes in Computer Science, Vol. 431
(Springer, Berlin, 1990) 162-176.

[19] U. Goltz, On representing CCS programs by finite Petri nets, in: Proc. Mathematical Foundations of
Computer Science (MCFS ‘88), Lecture Notes in Computer Science, Vol. 324 (Springer, Berlin, 1988)
339-350. Full version in ijber die Darstellung von CCS-Programmen durch Petrinetze, Ph.D. Thesis,
RWTH Aachen, 1988.

[20] U. Goltz and A. Mycroft, On the relationships of CCS and Petri nets in: Proc. 11th Int. ConJ: on
Automata, Languages and Programming (ICALP ‘84), Lecture Notes in Computer Science, Vol. 172
(Springer, Berlin, 1984) 196-208.

[21] U. Goltz and W. Reisig, The non-sequential behaviour of Petri nets, Inform. and Control 57 (1983)
125-147.

[22] U. Goltz and A. Rensink, Finite Petri nets as models for recursive causal behaviour, Arbeitspapiere
der GMD no. 604, Theoret. Comput. Sci. 124 (1994) 169-179.

[23] R. Gorrieri, Refinement, atomicity and transactions for process description languages, Ph.D. Thesis,
TD-2/91, Dipartimento di Informatica, Universit$ di Pisa, 1991.

252 R. Gorrieri, U. Montanari / Theorerical Computer Science 141 (1995) 195-252

[24] R. Gorrieri, S. Marchetti and U. Montanari, AfCCS: atomic actions for CCS, Theoret. Comput. Sci. 72
(1990) 203-223.

[ZS] R. Gorrieri and U. Montanari, SCONE: a simple calculus of nets, in: Proc. CONCUR ‘90, Amster-
dam, Lecture Notes in Computer Science, Vol. 458 (Springer, Berlin, 1990) 2-30.

[26] R. Gorrieri and U. Montanari, Distributed implementation of CCS, in: Advances in Petri Nets 1993,
Lecture Notes in Computer Science, Vol. 674 (Springer, Berlin, 1993) 26266.

[27] R. Keller, Formal verification of parallel programs, Comm. ACM 19 (1976) 561-572.
[28] V. Kotov, An algebra for parallelism based on Petri nets, Lecture Notes in Computer Science, Vol. 64

(Springer, Berlin, 1978) 39-55.
[29] S. Mac Lane, Categoriesfor the Working Mathematicians (Springer, Berlin, 1971).
[30] V. Manca, A. Salibra and G. Scollo, Equational type logic, Theoret. Comput. Sci. 77 (1990) l-29.
[31] J. Meseguer, Rewriting as a unified model of concurrency, in: Proc. CONCUR ‘90, Amsterdam,

Lecture Notes in Computer Science, Vol. 453 (Springer, Berlin, 1990) 384400.
[32] J. Meseguer and U. Montanari, Petri nets are monoids, Znform. and Comput. 88 (1990) 105-155.
[33] R. Milner, A complete inference system for a class of regular behaviours, J. Comput. System Sci. 28

(1984) 439466.
[34] R. Milner, Communication and Concurrency (Prentice-Hall, Englewood Cliffs, NJ, 1989).
[35] U. Montanari and D. Yankelevich, An algebraic view of interleaving and distributed operational

semantics for CCS, in: Proc. 3rd Con& on Category Theory in Computer Science, Manchester, Lecture
Notes in Computer Science, Vol. 389 (Springer, Berlin, 1989) 5-20.

[36] E.-R. Olderog, Nets, Terms and Formulas (Cambridge Univ. Press, Cambridge, Vol. 1.991).
[37] D. Park, Concurrency and automata on infinite sequence, in: Proc. GZ, Lecture Notes in Computer

Science, Vol. 104 (Springer, Berlin 1981) 167-183.
[38] C.A. Petri, Kommunication mit Automaten, Schriften des Institutes fur Instrumentelle Mathematik,

Bonn, 1962.
[39] G. Plotkin, A structural approach to oprational semantics, Tech. Report DAIMI FN-19, Department

of Computer Science, Aarhus University, Aarhus, 1981.
[40] W. Reisig, Petri Nets: An Introduction, EACTS Monographs on Theoretical Computer Science

(Springer, Berlin, 1985).
[41] D. Taubner, Finite Representation of CCS and TCSP Programs by Automata and Petri Nets, Lecture

Notes in Computer Science, Vol. 369 (Springer, Berlin, 1989).
[42] G. Winskel, Event structure for CCS and related languages, in: Proc. 9th Znf: Conf on Automata,

Languages and Programming (ZCALP ‘82), Lecture Notes in Computer Science, Vol. 140 (Springer,
Berlin, 1982) 561-576.

[43] G. Winskel, Petri nets, algebras, morphisms and compositionality, Zform. and Comput. 72 (1987)

197-238.
[44] N. Busi, R. Gorrieri and G. Siliprandi, Distributed conflicts in communicating systems, TR-94-8,

Universitd di Bologna, 1994.

