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Abstract
The class ©% of languages polynomial time truth-table reducible to sets in NP has a wide range of different
characterizations. We survey some of them studing the classes obtained when the characterizations are used to
define functions instead of languages. We show that in this way the three function classes FPﬁ‘P, FPffg’ and FLEE
are obtained. We give an overview about the known relationships between these classes, including some original
results. (This report appears in present form in the proceedings of the 8th Annual Conference on Structure in
Complexity Theory, San Diego, 1993.)

1 Introduction

The study of nondeterministic computations is a central topic in structural complexity theory. The acceptance
mechanism of nondeterministic Turing machines captures important computational problems, and therefore such
machines are a good tool to define language classes. However, to define general, i.e., other than 0-1 functions,
nondeterministic machines as such are not adequate, and it is not clear how nondeterminism can be exploited to
compute functions. Mainly because of this reason, when studying the complexity of a computational problem it is
common to consider a decisional version of it, transforming the problem into a set or language, and then studying
the complexity of the set instead. Information about the complexity of the set then is used to derive information
about the complexity of the function. This is not entirely satisfying since many computational problems are
“functional” in nature, and they are not as interesting when considered as decisional problems, for example, in
general it seems more useful to find a Hamiltonian tour in a graph than to decide whether the graph has one such
tour.

There have been however some ideas on how to use nondeterminism as a resource in order to obtain a model to
compute functional problems. If we restrict ourselfs to the polynomial-time context, the following three approaches
can be destinguished:

o The nondeterministic machine computing the function is restricted to output only one value for a given
Input.

For polynomial time this generates the class of (partial) functions NPSV 49). However, this class does not seem
to use the full power of nondeterminism. NPSV does not contain the characteristic function of NP complete
problems, unless NP=coNP, and there are only a few examples of functions in NPSV that are not known to be

deterministically computable.
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o One can define an operator on the set of possible output values (or accepting paths) of a nondeterministic
machine.

Important complexity classes have been defined considering such operators, for example #P [44], optP [28], and

spanP [25] are defined in this way using the operators number of accepting paths, maximum output value and
number of different output values, respectively.

e A deterministic transducer with access to an oracle in NP can be considered.

Here, the function is computed by a particular reduction to a set in NP. This is for example the case of the

function class FPNF that is in some sense equivalent to optP [28] and contains search versions of all the natural
problems in NP.

The function classes defined following the last approach depend heavily on the type of oracle access that the
deterministic transducer has. In FPMP the deterministic machine can query the oracle in an adaptive way, and
this class can be therefore considered as the function analogon to the class A} of sets Turing reducible to NP.

In this article, we will be interested in a further classification of functions in FP™F by considering different
kinds of restricted access to the NP oracle. In particular, we investigate functions that are computable when
the query mechanism is nonadaptive, that is, when all the oracle queries are made in parallel so that they do
not depend on previous oracle answers. In the language case, this restriction gives rise to the class ©% [45], the
non-adaptive analogon to the adaptive class A, ©f is a very robust class that can be characterized in a wide
variety of ways [2], [9], (20], [45]. In Section 2 we survey the characterizations obtained for the language class ©}

and show that in the case of functions they give rise to at most three function classes FPﬁ‘P, FPﬁg, and FLEE.
We obtain a new characterization of FPﬁIP by single-valued transducers with restricted access to an oracle in NP,
that is used in some of the proofs of Section 4. Examples of functions in the three classes are given in Section 3.
We exhibit a complete problem for FPﬁIP that has a natural restriction that makes it complete for FPEI;.

In Section 4 we present evidence for the fact that the three function classes are all different. We show that any
of the equalities has unlikely consequences. We survey the known consequences of these hypothesis and prove
that FL{:g coincides with any of the other two classes if and only if L = P, and also that if FPﬂIP c FP{?; then
we 1\(I:;n obtain a polylogarithmic speed-up in the number of nondeterministic bits needed to compute a problem
in NP.

In Section 5 we consider classes of functions computed with a polylogarithmic number of queries to an NP
oracle, generalizing the characterizations given in Section 2.

We assume familiarity with basic concepts and notation of structural complexity theory as, e.g., presented in
[6]. Any other notion is defined just before it is referred to the first time, or relevant literature is cited. Because
of space reasons many of the proofs have been sketcher or ommited. For complete proofs we refer the reader to
the final version of the paper.

2 TFunction classes related to ©5

As mentioned in the introduction, the closure of NP under polynomial-time Turing reducibility defines the
language class PNP or AP (the second level of the Polynomial Hierarchy). Much attention has been devoted to
the study of various kinds of restrictions of polynomial-time Turing reducibility, like, e.g.,

o polynomial-time truth-table reducibility or, equivalently, non-adaptive (parallel) reducibility (denoted Pﬁ‘P
[31].

Here a list with all queries is constructed and queried to the oracle, i.e., the queries are made in parallel. The
oracle provides the answers to the queries as a 0-1 string denoting the characteristic sequence of the queries.

o polynomial-time reducibility with logarithmically many queries (denoted Pﬁg [28].
Here the number of queries for any input of length n is bounded by O(logn).

e Logarithmic-space Turing reducibility (denoted LNP) or, equivalently, logarithmic-space truth-table re-
ducibility or non-adaptive (parallel) reducibility (denoted Lﬁlp) (30].



Note that for logspace oracle machines, the query tape is not included in the space bound. Due to the (implicit)
time bound of the machine, the length of any query is polynomially bounded. The handling of parallel queries in
a logspace computation needs some further explanation. A logspace machine writes a sequence of queries in the
oracle tape and receives the oracle answers as a sequence of 0-1 answers (on the same tape). The machine may
read these answers in a one-way mode (or, equivalently, two-way mode (see [4])).

o logarithmic-space reducibility with logarithmically many queries (denoted Lﬂf}; [45].

o reducibility with logspace-uniform circuits of constant depth (denoted ACO(NP)) [12], [47].

A language L is contained in ACP(NP), if there is a uniform family {C,} of unbounded fan-in circuits with
constant depth and size O(no(l)), where C, is allowed to have oracle nodes for a set A € NP, such that for all z
of length n, z € L if and only if Ca(z) = 1. We assume that there is a deterministic logarithmic-space bounded
transducer which on input of 1" computes an encoding of Cyn (logspace uniformity).

Surprisingly, all of these restrictions turned out to be equivalent in the case of NP and give rise to the class
0% coined by Wagner [45] as the non-adaptive analogon of A} in the Polynomial Hierarchy.

% is an extremely robust class that still can be characterized in many other ways (see [2], [91, [20], [45])-
In this section we study the mentioned characterizations of ©3 adapting them to compute functions instead of

languages. We show that these characterizations generate the three function classes FPﬁ’P, FPE: and FL}?;.

We have selected from the broad list of ways to define ©F the above ones since they are particularly interesting
in order to ilustrate the different concepts involved in the characterizations, like restricted oracle mechanisms,
logarithmic space or circuit complexity. It is not hard to see however that all the characterizations of ©?% given in
(2], [9], [20] and [45] than can be adapted in a natural way to define functions, generate one of the three mentioned
complexity classes.

The following theorem summarizes those characterizations of ©F that we use later to define function classes.

Theorem 2.1 [9] [10] [30] [45] The class ©F of languages truth-table reducible to NP can be characterized as
2

0 = PP = L\¥ = L' = AC°(NP) = PE = Liig

For the proof of Theorem 2.1, the “census technique” is of particular importance. This technique was developed

by Hemachandra [19] for the proof of PNP ¢ PNP [19]. For a set L in FPYP and an input z, the “census” refers
i log [

to the number of parallel queries posed by the base machine computing L that are answered positively by the
oracle. The idea to decide L with only logartithmically many queries to NP is to compute first the census k
for z (by binary search with logarithmically many queries to an oracle in NP?, and then make one more query
(2, k) to another suitable NP oracle. The last oracle guesses nondeterministica ly the k queries that are answered
positively, checks that the selected queries are the correct ones (by guessing accepting paths for each of these
queries in the nondeterministic machine computing them). With the information of the positively answered
queries (and therefore also knowing the negatively answered queries) the oracle can then simulate correctly the
complete computation of the base machine. The census technique was also used in [22], [39] and [45]. An iterated

version of it can also be used to obtain the inclusion ACP(NP) C FP{?; [10] or the equivalence of k rounds of
parallel queries with one round shown in [9]. We apply the technique in several theorems in this section.
| We show now that the characterizations of the class ©F stated in Theorem 2.1 give rise to three function
classes.
We obtain functions by considering deterministic Turing transducers instead of (accepting) machines, or, circuit
families with an ordered sequence of output nodes instead of just one output node. We denote the corresponding
function classes with the prefix “F”.

For general functions, the complexity of computing all bits of a function may exceed the complexity of com-

puting any particular bit. If the characterization allows to iterate bit computations, as in the case of the language
classes Pﬁ'P, LﬁIP, LNP and AC®(NP), the resulting function classes coincide.

Theorem 2.2 FLIE C FPYF ¢ FP® = FLjT = FL™" = FAC’(NP).

Proof. (from left to right) The inclusion FLE,E C FPE,E is trivial, because logarithmic space is a restriction
of polynomial time.



The second inclusion is proved in the same way as in the language case: all possible query answer sequences
of logarithmic length are checked for correctness using polynomially many non-adaptive queries.
We show now the equality of the remaining four classes. Define the different bits of a function f by the set

BIT; := {(=,i,b) | b€ {0,1}, fi(z) = b},
where f;(z) denotes the ith bit of f(=).

Claim. For C € {PﬁIP, Lﬁlp, LNP AC°(NP)} it holds: f € FC if and only if BITf €C.

By Theorem 2.1 and the Claim it follows that FP)¥ = FL|* = FLNP = FAC’(NP).

Proof of Claim. The implication from left to right is trivial. For the other implication, let f be such that
for any input z of length n, | f(z)| < p(|z|) for a polynomial p. Let T be a device of type C that computes BIT.
Let T’ be a device that checks foralli,1 <¢ < o(|z)), {z,%,0) and (.1, 1) for containment in BIT; by simulation
of T. With this information, T” can obtain the length of fgz) easily. It is I — 1 for the smallest I, 1 <1< p(j=]),
such that (z,1,0) =0 and (z,1, 1) = 0. The ith bit fi(z) of f(z) satisfies fi(z) = b if and only if (z,1,b) € BITy
for 1 < i < I. We have to show that T’ remains a device of the same type as device T'. This is clear for the case
LNP_ Here simply one bit fi(z) after the other is computed by simulating T on (z, 1, 0) and (z,%,1) until both
subroutines result negatively. For the cases Pﬁ‘P and LﬁIP the simulation of T proceeds in two phases. First, T
computes for all (z,¢,b) the sequence of parallel queries that T produces for (z,i,b). Then, one subroutine after
the other is terminated. To be able to resume the computation on the subroutine (z,1,b) for the second phase in
the case of logarithmic space, T” resimulates T' on (z,1,b) from the beginning to obtain the correct configuration.
Also, T" keeps a counter as to know where in the 0~1 answer string the relevant oracle information can be found.
For the case FAC’(NP), we combine ACC(NP) circuits for all (z,4,b), 1 <1 < p(n), 0<b<1lin parallel to a
circuit C, that computes f(z) for = of length n. Let the output nodes of the circuits for {z,,0) and (z,4,1)
become output nodes 2i — 1 and 2i of Ch, respectively. Then 1192 .. .Y2.p(n) yields a codification of f(z) in which
“10” codifies 0, “01” codifies 1, and “00” codifies a padding symbol. 0

The three function classes FPﬁ'P, FPﬁg, and FLﬁg seem to be all different, since as we will show in Section 4,
any equality between them has unlikely consequences. This (possible) difference in behaviour between language
classes and function classes is basically due to a communication problem between the oracle and the base machine
that occurs when the bound on the length of the function exceeds the bound on the number of bits handed over
by the oracle.

Theorem 2.1 can be considered as a result for 0-1 functions. As shown in the following theorem, it remains
true for functions with values that are polynomially bounded, i.e., functions f for which exists a polynomial p
such that f(z) < p(|z|) or equivalently | f(z)] < O(log|2]). For a function class F, we denote by .’Fﬁog n] the
subclass of F formed by polynomially bounded functions.

Theorem 2.3 FPﬁIP [logn] = FLﬁ]P flogn] = FLNF[logn] = FAC’(NP)[logn] = FPF‘E‘> [logn] = FLﬁg[log n).

Proof. Because of Theorem 2.2, it suffices to show FPﬁ'P[log n] C FLEE [logn]. For this, let f be a function

in FPﬁIP [logn] computed by the transducer T, and apply the census technique mentioned above. First compute
the number of parallel queries that are answered positively by T on input z of length n (the census of z).
Therefore, use O(logn) adaptive queries to an oracle in NP, answering for (z,i) whether more than i queries of
T are answered positive on input z. Note that the census has size O(logn) and can be stored by T'. It is not
hard to see that there exists an NP machine that for the correct census correctly simulates T by guessing the
positive queries of T'. Thus, with O(logn) further queries to this oracle any bit of f(z) can be computed. The
total number of queries remains O(logn). D

The class FPﬁIP[Iog n)] can furthermore be characterized by optimization and counting functions. It holds
FPﬁIP[log n] = optP{logn] = spanP{logn] [25] [28]. (The logarithmic-space analogon of spanP, the function
class spanL [3), is hard for #P, however the corresponding restriction spanL[logn] is a surprisingly easy complexity
class that is included in NC? and therefore does not seem to be equivalent to FP}?P [logn]).

We show now that similar to Theorem 2.3, if the oracle is a multi-valued function in NP, again all the classes of
Theorem 2.1 coincide. Now the communication problem mentioned above is avoided because the oracle provides
sufficient bits.



Let us define first the class NPMV [42] of multi-valued functions in NP. A nondeterministic transducer T is a
standard nondeterministic Turing machine with additional output tape. We say that f (z) is a value of T, if there
is an accepting computation of T on & for which f(z) is the final content of T’s output tape. NPMV is the class
of all partial, multivalued functions computed by nondeterministic polynomial time-bounded transducers.

We define informally how the oracle function provides information about the multi-valued function for the base
machine. Following [16], on querying its oracle f € NPMV with the query 2, the machine will receive a value
f(z) if one exists, and will receive a special symbol L, otherwise. We refer the reader to [16] for a more formal
definition of the classes function that can be computed with the help of an oracle in NPMV.

Theorem 2.4 FPYPMY = FLIPMY = FLYMY = FAC*(NPMV) = FPREMY = FLEEMY.

Proof. The proof of FPﬁIPMV = FPEEMV was obtained in [16]. For the inclusion of the first three classes in

FLEEMV we can apply the census technique. The census of input z corresponds here to the number of queries that

are not answered L by T. The census can be computed with logarithmically many queries to NPMV. With the
correct census information an NP transducer can simulate the whole FPﬁIPMv (or FLﬁIPMv, FLNPMV) computation
by guessing any possible combination of non-.L values that T might have received. A particular selection of these
values are handed over as an answer, and can be produced as output. For the inclusion FAC*(NPMV) C FLEEMV,
the census computation is iterated to compute the census for each of the constant many levels of the circuit. The
remaining inclusions are straightforward. |

A refinement of NPMV to single-valued functions generates NPSV [42]. NPSV is the class of functions for
which there exists a single-valued NP transducer computing them. Note that this transducer may not produce
any output, but if it does, then the output must be the same on all paths.

Proposition 2.5 [46] NPSV C FP|".

For total functions in NPSV a complete characterization can be obtained by parallel queries or adaptive queries
to an oracle in NP N coNP.

Proposition 2.6 Let f be a total function. Then, it holds f € NPSV < f € FPﬁ‘Pﬁ‘:ONP <= f € FpNFNeoNP,

Proof. It suffices to show the two implications f € NPSV = f € F Pﬁan“NP and f € FPNPNeoNP 5
NPSV.

For the first implication, let f be a total function in NPSV computed by the transducer T'. Let BIT; be as in
the proof of Theorem 2.2. Clearly, BIT; € NP N coNP, since by simulating T on z, it can be decided whether
fi(#) equals 0 or 1 or whether |f(z)| <.

For the second implication, let f € FPNPNeoNP Lo computed by a transducer T with oracle A € NP N coNP.
Let M, and M7 be NP machines that accept the set A and its complement, respectively. To compute f(z),
an NPSV transducer T’ on input z simulates T and for each oracle query ¢ of T', T guesses the answer Qorl
nondeterministically and accordingly starts a subroutine that consists in the simulation of M4 (guessed value 1
or M~ (guesses value 0) on ¢. If a subrouting halts in an accepting (rejecting) state, the computation of T will
be continued (aborted) by T'. It is obvious that T” is single-valued and outputs f(z). 0

We consider NPSV transducers with an oracle in NP to obtain a new characterization of FPﬁIP that will be
very useful in some of the proofs of Section 4. For this we have to restrict the way in which the transducer can
access the oracle set.

We say that an NPSV transducer T has restricted access to an oracle A, if all the oracle queries are performed by
T before it makes any nondeterministic move. We denote by rNPSVNP the class of functions that are computable
by an NPSV transducer with restricted access to an oracle in NP, and for a function f, rNPSV?P denotes the
class of functions defined in this way but making at most O(f) queries to the NP oracle. '

Note that any computation of an NPMV transducer T with restricted access to an oracle consists of two
phases. In the first phase, T works deterministically but has access to the oracle. In the second phase, T may
guess but is not allowed to pose further queries. Hence, the complexity of such a transducer in a sense is the
complexity of FPN? “plus” the complexity of NPSV. By Proposition 2.5, NPSV C FP}?P - FPNP. Hence, it

holds PNP = rNPSVNP. But we furthermore obtain the following characterization of FPﬁIP.



Theorem 2.7 FP|¥ = NPSV{,..

Proof. From left to right, again use the census technique. Let f be a function in FPﬁIP computed by
the transducer T. For input z, compute the number of parallel queries answered positively by O(logn) queries.

Knowing this number, with an NP computation the corresponding queries can be guessed and verified. For the
unique correct sequence of query answers, T is simulated and f(z) is produced as output.

For the other inclusion, let T’ be a NPSV transducer with restricted access to an oracle A € NP and query
bound O(log n) for input of length n. Divide the computation of 7" on input z in two parts, up to the configuration
¢z just before the first nondeterministic step, and the rest. Computing ¢z from z and T" is a function in FP}?;,

and by Theorem 2.2 it can be computed in AC%(NP). Given ¢y, the rest of T's computation is a function in NPSV
that by Proposition 2.5 can also be computed in FAC®(NP). The composition of two functions in FAC°(NP)
clearly remains in this class and FAC® (NP):FPH’P by Theorem 2.2. m)

3 Some examples of functions in FPﬁIP

There are important examples of functions in the class FP}?P and in the subclasses considered in the previous

section. In some cases we can show that these examples are complete.

To define completeness in a class of functions and to compare the relative complexity of two functions we use
the notion of metric reducibility introduced by Krentel in [28].

A function f is metric reducible to a function g if there is a pair of polynomial time computable functions hy
and hg such that for every string z, f(zl) = ha(z, g(h1(2))). A more intuitive way to to define this notion is to say
t'.ha,tl f fca,n be computed in polynomial time by a deterministic machine that queries at most once a functional
oracle for g.

We start by giving an example of a metric complete function for FPR‘P. For a boolean formula F on n variables

consider the set Assign(F) formed by the strings representing satisfying assignments for F' plus the string 0.
We define the function sup : {Boolean formulas} — {0,1}". supﬂF is the supremum of Assign(F’) under the
standard lattice partial order (a string = € {0,1}" is smaller or equal than a string y € {0, 1}" if for every position
i, if « has a “1” in this position then so does Y)-

Theorem 3.1 [24] The function sup is metric complete for the class FPﬁ'P.

Proof. Let f be a function in FPﬁIP. We will show that f is metric reducible to sup. The result follows

since clearly sup € FP}TP. We can suppose that the function f is computed by a polynomial time machine M
querying the oracle SAT in a non-adaptive way. For some polynomial g on input z, M produces a set of queries

Fi, ..., Fyepy to SAT, and from the oracle answers it computes the value of f(z). Let us suppose that each of
the formulas F; in the list of oracle queries has I(7) variables i, ..., wf(i), and that the variables for every pair of
formulas are disjoint. From the input z, the formula
a(l=l) . ' ) .
Fo= N (Filgh,...,2ln) V(= 0N Azig = 0))
=l

can be obtained in polynomial time. Then from sup(Fy) the supremum of each one of the formulas in the
sequence of queries can be found and therefore it can be decided which of these formulas are satisfiable. With
this information f(x) can be computed in polynomial time. a

One of the most interesting open questions concerning FPﬁIP is whether the search functions related to NP

decisional problems can be computed within this class. For an NP problem L characterized using a polynomial
time relation P and a polynomial p so that for every string z

zel <3y vyl <p(le])(z,y) €A

a searclh f;mction is a function f that for every intance z, if 2 € L then (x, f(z)) € A, (if z & L then f can take
any value).



For the known NP-complete problems like for example SAT, solutions to the search problem (a function that
for a boolean formula produces a satisfying assignment for it, in case one exists) can be computed quering an
oracle in NP using the self-reducibility properties of the problem. However, the oracle queries made in this process
are adaptive and 1t is not known whether they can be substituted by queries done in some nonadaptive or parallel
way. This question is addressed in [1].

To our knowledge, the only problems in NP that are not known to be in P but have search functions in FPhVP
are the Primality and Graph Automorphism problems. The first one is known to be in FewP [15] and it can be
easily seen that all the problems in this class have search functions in FPﬁ’P. Another interesting function related

to this problem is factors, the function that for a number n € N produces the list of its prime factors. factors
is even in the class NPSV; this is not hard to see considering that the Primality problem belongs to NPN co-NP
[38] (in fact the function factors can be considered as a search function for Primality). For the case of Graph

Automorphism the method to obtain solutions in }?Pﬁ‘TP uses some group theoretic arguments particular to this

problem [26], [27]. It has even been shown that solutions to the search problem for Graph Automorphism can be
computed making parallel queries to Graph Automorphism itself gél]

Observe that the two mentioned problems are not believed to be NP-complete, and it remains open whether
solutions for the search version of NP-complete problems can be found in FPWP. This question has a positive

answer relative to a random oracle as shown in [46].
Theorem 3.2 [46] Relative to a random oracle the search problem for SAT has a solution in FPﬁIP.

This contrasts with the following relativized result, obtained in [36].

Theorem 3.3 [36] There is an oracle under which the search problem for SAT has mo solution that can be
computed in FPﬁIP.

Another example of a function in FPﬁIP is the one computing the number of isomorphism in two given graphs

[35] [27]. This fact is considered as evidence that the Graph Isomorphism problem is not NP-complete since the
coillnting)versions of the known NP-complete problems are not even in the polynomial time hierarchy (unless it
collapses).

All the given examples are functions in FP}fP that are not known to be in its subclass FPfg. Krentel [28]

showed that many optimization problems whose solution is polynomially bounded are metric complete for FPEE.

Examples of these problems are the function that computes the maximum size of a clique in a graph, or the one
obtaining the maximum number of simultaneously satisfiable clauses in a boolean formula written in conjunctive
normal form. A function of this kind related to the function sup presented above, is the function sup’ that for a
boolean formula F, computes the number of “1’s” in sup(F).

Theorem 3.4 The function sup’ is metric complete for the class FPF;E.

All these examples of complete functions in FPﬁg belong also to the class FLﬂg. It does not make sense to talk
about metric completeness for this last class since the closure of FLfil; under polynormial time metric reducibility
coincides with FP{:‘,E. However, as we will see in the next section FLﬁg seems to be a much weaker class than
'FPfig. In particular “hard” functions in FP (like the Circuit Value function [29]) probably do not belong to
Fligg.-

The question of whether search functions for NP-complete problems belong to FP}?; (or FLﬁg) is equivalent
to the P versus NP question. This follows from a result by Krentel [28] that shows (stated in a slightly different
way) that if the search version for a problem A in NP has a solution in FP}:I,E then A € P.



4 Consequences of the equality of the function classes

In this section we present evidence of the fact that the three function classes FPﬁIP, FP{?; and FLfig are all

different. We compare first the two classes that seem to be weaker.

Theorem 4.1 FP{:,‘;> = FL%?; if and only if P =L.

Proof. From left to right, let cceval denote a complete circuit evaluation function that, for a boolean circuit
C and z, computes the value of each gate of C(z). Clearly, cceval € FP, and hence cceval € Fng. Now, suppose
that cceval € FLfig, and let T be a log space transducer that computes cceval with O(logn) many queries to
SAT, for an input circuit C and z of size n. We will show that then the circuit value problem (which is P-complete
[29]) can be computed in log space as follows. On input of C and z, a log space transducer T’ cycles through
all possible answer sequences y of length O(logn) and simulates T following the answer sequence y. For each y,
T’ checks that the output produced by T is a correct sequence of gates of C and that all values attached to the
gates are correct. To achieve this, for any gate g T' repeats the simulation of T to find the values of the (at most
two) inputs of g. When an answer sequence y is tested, for which all the values of the circuit are correct, again
by resimulation on y, 7" looks up the value of the output gate of C and rejects or accepts accordingly.

From right to left, note that P = L if and only if FP = FL. Suppose that FP C FL, and let T be a transducer
with oracle A € NP that computes a function f € FP{:‘,‘;. Let ¢ -logn be the bound on the number of queries for
an input z of length n. First, note that only logarithmic space and maximally 2 - ¢ - logn queries to the following
oracle A" € NP are neccessary to obtain the correct query answer sequence of T on input z.

A" :={{(z,p) | pe{0,1}", the p+ 1st query
in the computation of T on z,
with p taken as prefix
of the query answer sequence,
is answered positively}.

Now, define the function f” with

f"((z,y) = output that T produces on input z,
if y € {0,1}°°8" is taken as
the sequence of query answers

Clearly, f € FP, and by assumption f” € FL. Hence, f can be computed with logarithmic space and O(log n)
queries to A”, ie., f€ FL}gg. a

From the proof of the above theorem follows also that even the hypothesis FP C FL}XE would imply L = P.

Also as a consequence of Theorem 4.1, it seems unlikely that parallel queries to NP can be reduced to logarithmic
adaptive queries with logarithmic space.

Corollary 4.2 If FLI¥ C FLif, then L=P.

The equality of the classes FPHIP and FPE‘; would also imply strong consequences. We show first that the

question of whether the classes are equal can be characterized using Generalized Kolmogorov Complexity and the
concept of polynomial enumerators. We define these notions.

Generalized Kolmogorov complexity measures how far a string can be compressed and how fast a string can
be recomputed from its compression (cf [32]). A function f has low Kolmogorov Complexity relative to the input
(f € K[log, poly | z]) [18] if there is a constant ¢ such that for every z in the domain of f there is a string y (the
compli'es‘iion of f(z)) of size at most clog(|z|) such that the Universal Machine on input (z,y) prints f(z) in at
most |z|° steps.

Polynomial enumerators for functions have been introduced in [11] as a model of function approximation. A
function f has a polynomial enumerator if there is a polynomial time machine that for an input z outputs a list
of (polynomially many) values, one of which is the correct value f(z).

The next result relates both concepts.



Proposition 4.3 Let f be a function, the following statements are equivalent:
1. f € K{log, poly | z].
2. f has a polynomial enumerator.

3. For some oracle A, f € FP{;E.

The equivalence on 1 and 2 has been shown in [17]. And the equivalence of 2 and 3 is from [5]. Lozano [33]
has observed that for the particular case of the functions in the class FPﬁIP it sufficies that the set A is statement

3 belongs to NP, and therefore the question FPﬁ‘P = FP}?,{; is equivalent to whether every function in FPﬁIP has
low Kolmogorov Complexity or every function in the class has a polynomial enumerator.

We first show that if the classes FP}?P and FP}gg coincide then there is a polynomial time algorithm that

decides corectly the satisfiability of a formula with at most one satisfying assignment. (If the formula has more
than one assignment the algorithm can incorectly decide that the formula is not satisfiable). This result is stated
formally using the concept of promise problems (see [14]). A promise problem is a pair of sets (Q, R). A set L is
called a solution to the promise problem (Q, R) if

Ve(z € Q= (z € L & z € R)).

1SAT denotes the set of boolean formulas with at most one satisfying assignment.
Theorem 4.4 If FPﬁIP c FPEE, then the promise problem (1SAT, SAT) has a solution in P.

Proof. (Sketch) Consider the function sup that computes the supremum of the set of satisfying assignments
of a boolean formula (see 3.1). sup € FPﬁIP and if the hypothesis holds by proposition 4.3 there is a polynomial

enumerator that for a formula F produces a list of polynomially many possible values for sup(F'). We can construct
an algorithm that on input F runs the enumerator and accepts if and only if at least one of the produced values
is a satisfying assignment for F. It is clear that the algorithm decides correctly unsatisfiable formulas and also
those formulas that can be satisfied by their own supremum, which include the formulas with just one satisfiable
assignment. ]

If the promise problem (1SAT, SAT) has a solution in P then the next unexpected equalities would follow. The
complexity classes FewP and R mentioned in the result are well known and we refer to the standard literature
for definitions. US [8] is the class of languages computed by a polynomial time nondeterministic Turing machine
that accepts an input if it produces exactly one accepting path.

Theorem 4.5 If the promise problem (1SAT,SAT) has a solution in P then FewP=P, NP=R and coNP=US.

The first two equalities have been obtained in [43]. The theorems above can be summarized as in the next

corollary. The result written in this form is from [40] although some of the ideas behind it are already considered
in another context in [7].

Corollary 4.6 If FP|¥ C FPj;;, then FewP=P, NP=R and coNP=US.

A polynomial time algorithm for the promise problem for (1SAT, SAT) would imply also consequences of a
different flavour, namely that the Graph Automorphism and the Primality problems could be solved in polynomial
time. The result for Graph Automorphism was obtained in [26], (see also F27] ; for the second problem the result
follows from theorem 4.4 and the fact that the Primality problem is contained in UP and therefore in FewP [15].

Corollary 4.7 If FPh\‘P C FPEE, then the Graph Automorphism and the Primality problems are ¢n P.



We present now a different consequence of the equality of the function classes that contrary to the previous
results, does not seem to be related with the promise problem (1SAT, SAT). We show that if FPﬁIP = FPEE then
a polylogarithmic amount of nondeterminism can be simulated in polynomial time and also SAT can be decided
(for any k) in polynomial time with the help of only O(ﬁ,‘—;) nondeterministic bits. This still does not imply
P=NP but in some sense makes “smaller” the gap between the classes

Subclasses of NP with bounded nondeterminism have been considered in [23], [13], (see also [371 in these
proceedings). For a function f we denote by NP( f) the subclass of NP formed by the languages L € 10, 1}* for
which there is a set A € P and a constant ¢ € N such that for every string z

el <3y lyl < cf(l=l), (z,y) € A

To prove our result we need the following theorem:

Theorem 4.8 IfFPﬁIP c FPg}; then there is a funciion f € rNPSVl[\l‘fg log] that for a sequence of boolean formula

Fi,...,Fn outputs one satisfiable formulas from the list in case one exists. (If all the formulas are unsatisfiable
then the value of f is some special symbol).

Proof. (Sketch) Consider the function g that for a sequence of boolean formulas Fy, ..., F, outputs its
characteristic vector, that is the string v = a1a2...an with a; = 1if F; € SAT and a; = 0 otherwise. Clearly
g € FPﬂIP and using the hypothesis and proposition 4.3 there is a polynomial enumerator for g. Running the
enumerator on Fy,..., Fy, one can obtain a list L of polynomially many potential values for g, L = (v1, ..., Vp(n))
one of which is the correct one. We can asume that at least one of the formulas is satisfiable (this can be checked
with just one query to NP), and therefore if the string 0" appears in this list, it can be deleted.

We explain how to identify the values of the list with the nodes of a directed acyclic graph (DAG) in such a
way that a correct “1” in the characteristic vector of Fy,..., F, can be identified with just O(loglogn) queries
to NP. For this we construct a DAG G = (V, E) where V = {v1,...,vp(n)} and E = {(v;,v;) | v; < vi} (vj < i
means that v; is smaller than v; in the lattice order, that is, for every position I, if v; has a “1” in position [ then
so does v;).

We con{ract G to obtain a simpler graph G using the next three rules.

o If v is a node without descendants (a leaf) and v has more than one “1” then turn to “0” all the “1’s” in
v except the first one.

e Denote every node v by the supremum of the leafs that can be reached from v

e Contract all the nodes that have the same value into a single node.

We define the level of a node as the number of “1’s” it has. Also we will say that a node v is consistent with
the characteristic vector of Fy, ..., F, (or just that v is consistent) if v is smaller than or equal (in the lattice
order) than this value. In a consistent node all the “1’s” from its value correspond to satisfiable formulas in the
sequence Fy, ..., F,. G satisfies the following properties:

i. If v is node of level k in G then v reaches exactly k leafs.

4. If k is the maximum level in which there is a node of level k consistent with the characteristic vector of

Fi,. .j, F, then there is exactly one such node at level k¥ (this node is the supremum of the consistent leafs
in Gl .
#i. In G, there is at least one node consistent with the characteristic vector of F,..., Fy.

Because of properties #i and éiZ, it suffices to obtain the maximum level with a consistent node in G1. Once
the level is known, the unique consistent node in this level can be obtained nondeterministically by guessing a
node with k& “1’s” and checking that for any of the “1’s” the corresponding formulas in the sequence Fi,..., Fy
have some satisfying assignment. ‘

We intend to obtain the maximum level of a consistent node with binary search querying an oracle in NP.
Observe however that the graph Gi can have as many as n levels and therefore O(logn) queries to NP seem to
be needed. In order to make fewer queries we make use of the following claim.

Claim: Let p be a polynomial and A, be the set of pairs (G, n) where n € N and G is a (contracted) DAG
formed from a set of strings in {0,1}" as explained above, with at most p(n) nodes. There is a polynomial time



algorithm that (for sufficiently large n), on input a pair (n,G) € Ap with m leafs, selects a set S of at most Z
leafs of G in such a way that every node in G with at least log® n leaf descendants can reach some leaf in S.

The algorithm of the claim can be applied to (n,G1) (observe that since the size of the list of values is
polynomially bounded by p, G has at most p(n) nodes), obtaining a set S of at most 2 leafs. We construct a
new graph G, by turning to “0” the positions of the nodes in G; corresponding to the leafs that are not in S, and
then applying the contraction rules to this graph. Intuitively if we turn some positions to “0” we are throwing
aside the formulas in the input sequence that correspond to these positions and consider only those formulas
corresponding to “1” positions.

If in Gy there is a node at level k > log* n consistent with the correct value, then G satisfies all three properties
of Gy, (property iii is satisfied since by the claim the node at level k has some leaf descendant in S, and this leaf
is a consistent node in G3). Additionally G has at most % leafs and therefore at most % levels.

The algorithm of the claim is applied successively to G to obtain G3 and so on, until a graph G; (i < logn)
with no node at a level k > log® n, is obtained.

Given the collection of graphs Gy, ...,Gj, in one of the graphs a node consistent with the correct value of
g(Fi,...,Fa) can be found with only O(loglogn) queries to NP in the following way: First with O(loglogn)
queries to an NP set obtain the largest j for which there is a graph G; with a node consistent with the correct
value of the characteristic vector of Fy, ..., F at alevel [ > log* n. Then obtain the largest level k in graph Gj41
with a node consistent with the correct vector. This can be done again using binary search with only O(loglog n)
queries to an NP set since k < log* n. In level k of graph Gj41 there is just one consistent node, and therefore
once j and k are known, this node can be obtained nondeterministically. Each “1” in the node corresponds to a
satisfiable formula in the input sequence. One can select for example the formula corresponding to the first “1”

in the node. It follows that the claimed function f is in 1'NPSVI[\1'§'g logn)

Proof of the Claim. (Sketch) Let p be a polynomial and G be a graph with m leafs and (G, n) € Ap. We show
first that (for sufficiently large n) there is a set S’ of E?Z';'E leaves with the property that every node from level
k > log*n can reach at least one leaf in S'. Suppose that this were not true. Then for everycombination C of
m— To—;%—; leafs there must be a node v at a level k > log* n such that all the leaves that can be reached from v
belong to C. We say in this case that v is a bad node for C. Each node v can be bad for at most

m —log*n
m—l—L";——log4n

og?n

combinations of m - E’g’-‘rn Jeafs. This is because v has at least log*(n) leaf descendants and all these leafs must

be in the combination. There are (’"':;" n) combinations of m — chrn' leafs. If b is the number of nodes in levels

( m—log*n )xb>< m )
m-E-;%;-log‘ln = m—-l—o—?,—n-

and from this follows b > 908 n which is a contradiction (for sufficiently large n) since b < p(n).

The problem to obtain a set of leafs of minimum size that “covers” each node at level k > log* n is an instance of
the Set Cover problem which is NP-hard. However, it has been shown by Johnson [21] that the greedy algorithm
obtains an approximated solution for this problem of size within a logarithmic factor of the optimum. Since we
have just shown that there must be a a set of at most 1‘0?57;' leafs covering all the nodes at levels higher than or

higher than log* n we have

equal to log* n, the greedy algorithim obtains in polynomial time a cover of size 1o'gn > 2 (for sufficiently large
n). O

An interesting observation is that the satisfiable formula in the list Fy,..., F, selected by the function f €
1'NPSVB‘§g logn] in the proof is not necessarily the first one in the sequence, the selection depends on the enumerator
for the function g.

Lemma 4.9 If FPﬁIP - FPE}; then for any k > 1 there is a function fr € F‘PﬁlP that for a satisfiable boolean

formula F on n variables produces an assignment for the first (—lo—gl—l%%%—,‘—’;:; variables that can be extended to a
satisfying assignment of F.



Proof. (Sketch) We use the characterization FPHIP = rNPSVﬁIfgn]. The proof is by induction on k. For

k = 1 the result is straightforward. For the induction step, let us suppose that an assignment for the first
mg—’f’i%’;—r_—,- variables of a satisfiable formula F' can be obtained by a function in FPﬁIP, and that this function
has a polynomial enumerator. Running the enumerator on F we obtain a list of possible values for such a partial
assignment. Substituting these values in F and reducing the formulas, a list of boolean formulas Fi,..., Fyn)

is obtained. By the same argument as in Theorem 4.8, a satisfiable one F; (corresponding to a correct partial
assignment of the first variables) can be uniquely selected in a nondeterministic way with the help of O(loglog ng
many queries to an NP oracle. The nondeterministic part of the computation in the algorithm is just neede

to output the formula. However, once Fj is determined, the process can be repeated to this formula without
having to output it, by making a second round of O(loglogn) queries to an NP oracle. The queries in the second
round have encoded the information obtained in the first round so that the oracle can nondeterministically obtain

k
the formula F; from this information. With the second round of queries an assignment for the next (Eng?:%‘Tf;FZT
variables of the initial formula is obtained. The process can be repeated 1—;55)%; times until logn oracle geries

. 13 k . - . . .
are made. Since in each round 7 oglf;g D=t variables are assigned, the total number of assigned variables is

a‘;‘g——:gl:;z. After all the queries are made, a singled valued nondeterministic computation outputs the obtained

partial assignment. |
Based on these results we obtain:

Corollary 4.10 IfFPﬁ‘P = FPﬁg then for any function f: N — N and any k €N, NP(f) € NP(E%;).
Corollary 4.11 IfFPF = FPj;; then for any k € N the class NP(log¥) is included in P.

Corollary 4.12 IfFP)¥ = FPy then for any k € N SAT € DTIME(2"/%3""), and SAT € NP(5;5)-

1t is an open question whether these results can be improved to show that FP}TP - FPﬁg implies P=NP.

5 Polylogarithmic Bounds

In this section we state some observations about function classes with polylogarithmic query bounds to an NP
oracle. These classes are generalizations of the function classes FP}\;E and FAC® (NP):FPFP(Theorem 2.2).
Denote AC¥(N P) the class of languages computable by logspace-uniform families {Cp} of unbounded fan-in

circuits with constant depth and size O(n®()) that contain oracle nodes for a set in NP.
Recently, the following generalization of Theorem 2.1 has been obtained by Castro and Seara.

Theorem 5.1 [10] For any k >0, AC*(NP) = PiY

logF+t-

Note that there is also a characterization in terms logarithmic space possible, if so-called “adaptive” logspace
reductions are used (see [4]).
NP

As one might suspect, the corresponding function classes FACF(NP) and FP) gr+1 do not seem to be equal
for any k& > 0. But we can obtain a characterization of FAC¥(NP) that shows that a possible “difference” in

complexity between FAC¥(NP) and FP{?S’H; hinges on the “difference” of complexity between FPE,‘S' and FPﬁIP,
only.

NP
Proposition 5.2 For any k >0, FAC¥(NP) = FP:?;!! .

Proof. From left to right, let f be a function in FAC¥(NP) that is computed by the circuit family Cp with

oracle nodes for a set A € NP. C, has size p(n) for a polynomial p and depth ¢ - log® for a constant c. Let
g({z,v1, .. Upn))) = (v1,- ..,v;,(n)) be a function that computes, for input = and value v; for each gate gi, new

values v} (obtained using the input values v for g:) for all gates of C,. Clearly, g € FPﬁ‘P. With g as oracle C,,



can be evaluated by setting initially vive...vn = 2122...2p = T and the rest of the gates to 0, and querying
g c-log® times, each time using the new value vector for the next query. For the vector obtained with the i-th
query all gates up to depth i carry their correct values. f(z) can be obtained in this way after the last query.
From right to left, by iteration of the census technique. Let f be a function computed by the transducer
Ty with O(log’c n) queries to an oracle g € FPﬂ'p. Let T, be a transducer that with parallel queries to oracle
A € NP that computes g. Let census4(y) be the number of parallel queries answered positively by T, on input
y, and let y1,¥2, .. -, Yedogh n be the queries of Ty on input z of length n. It is not hard to show that given z and
census 4(y1), - - -, census 4(y:) with O(logn) queries to an oracle in NP census 4(yi+1) can be computed, and by
Theorem 2.2 this can be done in AC°(NP). Thus, to compute f(z), simply combine ¢ - logf n AC(NP) circuits

(above each other) to obtain the census for all the queries of T on input z, and provide one further layer of oracle
nodes to compute each bit of f(z). O

The proof shows that, in fact, we can characterize the classes ACF(NP) in terms of NPSV transducers making
O(log n) (restricted) queries to an oracle in NP, i.e., it holds AC*(NP) = rNPSVE‘:;,, n forall k2 0.

A similar characterization as Proposition 5.2 can be shown for the FP{?;.‘ hierarchy.

FPRE

Proposition 5.3 For any k > 0, FPf;gk.,.; = FPlog,‘

As a direct consequence of the above decomposition properties of the two hierarchies we obtain the following
statement.

Corollary 5.4 IfFP)T C FP; then for every k 20, FAC¥(NP) = FPjigus:-
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