The computational complexity of the satisfiability of modal Horn clauses for modal propositional logics

Cheng-Chia Chen and I-Peng Lin
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

Communicated by G. Mirkowska
Received July 1992
Revised January 1993

Abstract

Chen, C.-C. and I.-P. Lin, The computational complexity of the satisfiability of modal Horn clauses for modal propositional logics, Theoretical Computer Science 129 (1994) 95-121.

This paper presents complexity results about the satisfiability of modal Horn clauses for several modal propositional logics. Almost all these results are negative in the sense that restricting the input formula to modal Horn clauses does not decrease the inherent complexity of the satisfiability problem. We first show that, when restricted to modal Horn clauses, the satisfiability problem for any modal logic between K and S 4 or between K and B is PSPACE-hard. As a result, the satisfiability of modal Horn clauses as well as the satisfiability of unrestricted formulas for any of $\mathrm{K}, \mathrm{T}, \mathrm{B}$ and S 4 is PSPACEcomplete. This result refutes the expectation (Fariñas del Cerro and Penttonen 1987) of getting a polynomial-time algorithm for the satisfiability of modal Horn clauses for these logics as long as $\mathbf{P} \neq$ PSPACE. Next, we consider S4.3 and extensions of K5 including K5, KD5, K45, KD45 and S5, the satisfiability problem for each of which in general is known to be NP-complete, and show that for each extension of K 5 , a polynomial-time algorithm for the satisfiability of modal Horn clauses can be obtained; but for S 4.3 , together with some linear tense logics closely related to S 4.3 like CL, SL and PL, the satisfiability of modal Horn clauses still remains NP-complete.

1. Introduction

Since the invention of Prolog, a number of languages based on nonclassical logics have been developed as extensions of Prolog. Some of these adopted nonclassical

[^0]logics include modal logic [8], intuitionistic logic [11, 17], temporal logic [1, 10, 20], etc. The success of a programming language based on nonclassical logics usually lies in the definition of Horn clauses and the SLD-resolution-like inference rule. For modal logic these definitions are available and the programming language Molog has been developed based on the definition of modal Horn clauses and modal resolution [$8,2,7]$. It is therefore theoretically interesting to investigate the inherent complexity of the satisfiability problem of modal Horn clauses for various modal logics. It is well known, however, that the satisfiability problem of first-order modal Horn clauses is undecidable for its nonmodal part alone is already undecidable. For this reason we focus our attention on modal propositional logics.

For the classical propositional logic, we know that if we restrict the input formula to Horn clauses, the satisfiability problem can be solved in linear time [6], while the same problem in general is NP-complete [5]. We thus gain the benefit of saving much computation time for solving this problem by the restriction of the input formula to Horn clauses. But when considering modal logic, can we also obtain the same benefit by restricting the input formula to modal Horn clauses? For S5 the answer is yes: by the result of Ladner [15], the satisfiability problem for S5 is NP-complete, while by the result of Farinas del Cerro and Penttonen [9], the same problem restricted to modal Horn clauses can be solved in polynomial time. But is it also true for other modal logics like K, T and S4? In [9] Fariñas del Cerro and Penttonen have given an algorithm for solving the satisfiability problem of modal Horn clauses for several normal logics based on the modal resolution principle, and an upper bound is induced accordingly. The upper bound, however, is exponential for modal logics like K, T and S4. Thus, the problem that whether the complexity of the satisfiability problem for modal logics like K, T, B, K5, K45, S4 and S4.3 can be reduced to polynomial time by restricting the input formula to modal Horn clauses still remains open.
In this paper we solve this problem for several normal modal logics and give negative answers for nearly all these logics. We show that the satisfiability of modal Horn clauses for any modal logic between K and S4 is PSPACE-hard. In particular, since the modal logics K, T and S 4 have been shown by Ladner [15] to be PSPACEcomplete, the satisfiability problem of modal Horn clauses for each of K, T and S4 is PSPACE-complete. Similarly, we can show that the satisfiability of modal Horn clauses for any modal logic between K and B is PSPACE-hard. Since the logics KB and B are also known to be PSPACE-complete [4], the satisfiability of modal Horn clauses for KB and B is thus PSPACE-complete too. We next consider S4.3 and some extensions of K5 including K5, KD5, K45, KD45 and S5; the satisfiability problem for each of these logics is NP-complete [15, 12, 18, 4]. We then show that for the extensions of K5, the satisfiability of modal Horn clauses can be decided in polynomial time, but for S4.3, together with some linear tense logics like CL, SL and PL that are closely related to S4.3, the satisfiability problem still remains NP-complete even if the input formula is restricted to modal Horn clauses.
The rest of the paper is organized as follows. In Section 2 we review various normal modal logics briefly and introduce modal Horn clauses. In Section 3 we prove that the
satisfiability of modal Horn clauses for any modal logic between K and S 4 or between K and B is PSPACE-hard. In Section 4 we show that the satisfiability of modal Horn clauses for S4.3 is NP-hard. In Section 5 we first introduce a simpler form of modal Horn clauses for all extensions of K5 and then show that the satisfiability of modal Horn clauses for each of K5, K45, KD5, KD45 and S5 is solvable in polynomial time by giving a polynomial-time algorithm. The final section concludes this paper.

2. Modal logic

2.1. Syntax

All modal logics considered in this paper share a common language, whose alphabet Σ includes
variable construction letters: $\$, 0,1$,
logical connectives: \neg, \wedge, \square,
parentheses: (,).
Each member of $\operatorname{VAR}=\$\{0,1\}^{+} \$$ is called a propositional variable. The set of modal formulas $M F$ is defined to be the least set of words over Σ including VAR such that if A and B are modal formulas, then so are $(A \wedge B), \neg A$ and $\square A$.

We regard other usual connectives such as \vee, \sqsupset and \diamond as defined operators so that $(A \vee B),(A \supset B)$ and $\diamond A$ are treated as if they are abbreviations of $\neg(\neg A \wedge \neg B), \neg(A \wedge \neg B)$ and $\neg \square \neg A$, respectively.

If S is a modal formula or a set of modal formulas, we use $\operatorname{var}(S)$ to denote the set of propositional variables appearing in S. To avoid unnecessary parentheses, we assume the following order of precedence for the operators: $\neg, \square, \diamond>\wedge>\vee>\supset$; any parentheses may be dropped from formulas if there is no worry of confusion. Finally, the modal degree of a modal formula is defined to be the maximum depth of nested occurrences of modal operators appearing in the formula; a classical propositional formula is a modal formula whose modal degree is 0 .

2.2. Axiomatics

Modal logics are extensions of classical propositional logic; they thus should contain all axioms of classical propositional logic. Now let PC be some complete set of axiom schemas of classical propositional logic with modus ponens as the inference rule. We define a modal logic \mathscr{L} as a set of axiom schemas. For each modal logic \mathscr{L}, the provability relation $\vdash_{\mathscr{L}}$ is defined to be the least set of modal formulas closed under the following rules:

- $\vdash_{\mathscr{L}} A$ if A is an instance of any axiom schema of \mathscr{L};
- $\vdash_{\mathscr{L}} A$ if $\vdash_{\mathscr{Y}} B$ and $\vdash_{\mathscr{Y}} B \supset A$ (modus ponens);
- $\vdash_{\mathscr{L}} \square A$ if $\vdash A$ (rule of necessitation).

If $\vdash_{\mathscr{L}} A$, we say A is \mathscr{L}-provable (or say A is a theorem of \mathscr{L}).
We are interested in modal logics consisting of combinations of the following axiom schemas:

$$
\begin{aligned}
& \mathrm{K}=\square(A \supset B) \supset(\square A \neg \square B), \\
& \mathrm{D}=\square A \supset \diamond A, \\
& \mathrm{~T}=\square A \supset A, \\
& \mathrm{~B}=A \supset \sqcup \diamond A, \\
& 4=\square A \supset \square \square A, \\
& 5=\diamond A \supset \square \diamond A, \\
& \mathrm{H}=(\diamond A \wedge \diamond B) \supset \diamond(A \wedge \diamond B) \vee \diamond(A \wedge B) \vee \diamond(B \wedge \diamond A)
\end{aligned}
$$

We use the word $K r_{1} \ldots r_{n}$ to refer to the logic containing the set of axiom schemas $P C \cup\left\{K, r_{1}, \ldots, r_{n}\right\}$. According to the above nomenclature, the modal logics conventionally named T, B, S4, S5 and S4.3 are equal to KT, KTB, KT4, KT45 and KTH4, respectively. In the sequel when referring to these logics, we prefer using their conventional names.

For any modal $\operatorname{logic} L_{1}$ and L_{2}, we say L_{2} is an extension of L_{1} if every theorem of L_{1} is also a theorem of L_{2}. If L_{3} is an extension of L_{2} and L_{2} is an extension of L_{1}, then we say L_{2} is a logic between L_{1} and L_{3}. It is easy to see that $\mathrm{D}, \mathrm{T}, \mathrm{B}$ and S 4 are all extensions of K, and T is between K and $S 4$.

2.3. Semantics

The semantics of normal modal logics discussed here can be defined by using Kripke models [14]. A (Kripke) modcl M is a triple $\langle W, R, h\rangle$ consisting of the following elements:

- W is a nonempty set (of worlds),
- R is a binary relation on W called the accessibility relation; if $\left(w, w^{\prime}\right) \in R$, we say w^{\prime} is accessible from w. The pair (W, R) is called the frame of M.
- $h \in W \rightarrow 2^{V A R}$ is the meaning function, which assigns to each world w in W a subset $h(w)$ of VAR with the intention that p is true at world w iff $p \in h(w)$.
Given any Kripke model $M=\langle W, R, h\rangle$, a world $w \in W$ and a formula $A \in M F$, the truth of A at w of M, denoted $M, w \vDash A$, is defined inductively as follows:
- $M, w \vDash p$ where $p \in V A R$ iff $p \in h(w)$;
- $M, w \vDash \neg A$ iff $M(w) \neq A$;
- $M, w \models A \wedge B$ iff $M, w \vDash A$ and $M, w \models B$;
- $M, w \vDash \square A$ iff, for every $w^{\prime} \in W$ accessible from w (i.e. $\left.w R w^{\prime}\right), M, w^{\prime} \vDash A$.

We say A is M-satisfiable if there is a world w in W such that $M, w \models A$, and say A is M-valid, denoted $M \models A$, if $M, w \models A$ for every world w in W.

We are particularly interested in Kripke models whose accessibility relations R satisfy any of the following conditions:
$\operatorname{serial}(\mathrm{D})$: for any $w \in W$, there is a w^{\prime} in W such that $w R w^{\prime}$.
reflexive(T): for any $w \in W, w R w$.
symmetric (B): for any $w, w^{\prime} \in W$, if $w R w^{\prime}$ then $w^{\prime} R w$.
transitive (4): for any $w, w^{\prime}, w^{\prime \prime} \in W$, if $w R w^{\prime}$ and $w^{\prime} R w^{\prime \prime}$ then $w R w^{\prime \prime}$.
euclidean(5): for any $w, w^{\prime}, w^{\prime \prime} \in W$, if $w R w^{\prime}$ and $w R w^{\prime \prime}$ then $w^{\prime} R w^{\prime \prime}$.
connected (H) : for any $w, w^{\prime}, w^{\prime \prime} \in W$, if $w R w^{\prime}$ and $w R w^{\prime \prime}$ then $w^{\prime} R w^{\prime \prime}$ or $w^{\prime}=w^{\prime \prime}$ or $w^{\prime \prime} R w^{\prime}$.

The symbol enclosed in parentheses at the end of each head item listed above is a short-hand for the corresponding condition. To establish correspondence between axiom schema and class of models, we deliberately use the same symbol to stand for an axiom schema as well as the condition every member of its corresponding class of models satisfies; moreover, we also use the word $K r_{1} \ldots r_{n}(n \geqslant 0)$ to denote the class of all Kripke models whose accessibility relations satisfy the condition denoted by each r_{i}. So, for example, a K model is any Kripke model and a KT4 model is any Kripke model whose accessibility relation is reflexive and transitive. Finally, we regard T, B, S4, S5 and S4.3, respectively, as aliases of KT, KTB, KT4, KT45, and KTH4. So, when we say a model is an S4 model, we mean it is a KT4 model.

Let \mathscr{L} be any class of models. We say a formula A is \mathscr{L}-satisfiable if there exists an \mathscr{L}-model M and a world w among the set of worlds of M such that $M, w=A$, and say A is \mathscr{L}-valid, denoted $=_{\mathscr{P}} A$, if, for every \mathscr{L}-model M, A is M-valid.

By treating every (finite) set of formulas as an abbreviation of the conjunction of all its members, we extend the definitions of previously defined notions like satisfiability, validity, etc., to sets of formulas in the obvious way. So, for example, $M, w=S$ iff $M, w \vDash A$ for every $A \in S$.

The following well-known proposition establishes the equivalence of the semantical validity relation and the syntactic provability relation for each logic given here.

Proposition 2.1 (Chellas ${ }^{1}$ [3]). Let $\mathscr{L}=K r_{1} \ldots r_{n}$, where $n \geqslant 0$ and each $r_{i} \in\{\mathrm{D}, \mathrm{T}, \mathrm{B}$, $4,5, \mathrm{H}\}$, be any logic. Then any modal formula A is \mathscr{L}-provable iff it is \mathscr{L}-valid.

For more details about modal logic, the readers are referred to [13, 3].

2.4. Modal Horn clauses

As the notion of clauses has been defined on the classical logic, it was also introduced to modal logic. We say a modal formula A is a modal clause if it is a formula of the form

$$
L_{1} \vee \cdots \vee L_{2} \vee \square D_{1} \vee \cdots \vee \square D_{u} \vee \diamond E_{1} \vee \cdots \vee \diamond E_{v}
$$

[^1]where $t, u, v \geqslant 0$, each L_{i} is a propositional literal, each D_{j} is a modal clause and each E_{i} is a conjunction of modal clauses but is not a disjunctive modal formula.
In the above clause, each $L_{i}, \square D_{j}$ or $\diamond E_{k}$ is called a modal literal; every formula of the form p (or $\neg p$), where $p \in V A R$, is called a positive (or negative) literal; p and $\neg p$ are complementary to each other. Furthermore, if a modal clause contains at most one occurrence of positive literals and each D_{i} as well as each E_{j} is (inductively) a single modal Horn clause, we then say it is a modal Horn clause. It should be noted that we admit the use of the empty clause \perp, which is interpreted as "false".

Example 2.2. In
(1) $p \vee \square(p \wedge q)$,
(2) $\square(\neg p \vee \neg q) \vee \diamond(\neg p \vee q)$,
(3) $\square(\neg p \vee \neg q) \vee \diamond(p \wedge \neg q)$,
(4) $\square(p \vee \neg q) \vee \diamond \square(\neg p \vee \square \neg q)$,
(5) $\square(\neg p \vee \neg q) \vee \diamond \square(\neg p \vee \neg q)$,
neither (1) nor (2) is a modal clause: (1) is not a modal clause because $p \wedge q$ is not a modal clause; (2) is not a modal clause because $\neg p \vee q$ is a disjunctive formula. Formulas (3)-(5) are modal clauses and (4) and (5) are modal Horn clauses. Formula (3) is not a modal Horn clause because $p \wedge \neg q$ is not a single modal Horn clause.

Instead of writing a modal Horn clause A in disjunctive form

$$
H \vee B_{1} \vee \cdots \vee B_{n} \quad(n \geqslant 0),
$$

where H is either empty in case A contains no positive literal or is the disjunct of A containing the only positive literal of A, we usually write it in the rule form

$$
B_{1}^{\prime} \wedge \cdots \wedge B_{n}^{\prime} \supset H^{\prime}
$$

where H^{\prime} is either H in case H contains no negative literals or the rule form of H in case H contains negative literals, and each B_{i}^{\prime} is the normal form of $\neg B_{i}$ by performing the following negation-in rewrite rules:
(1) $\neg(\neg A) \rightarrow A$,
(2) $\neg(A \wedge B) \rightarrow \neg A \vee \neg B$,
(3) $\neg(A \vee B) \rightarrow \neg A \wedge \neg B$,
(4) $\neg \square A \rightarrow \diamond \neg A$,
(5) $\neg \diamond A \rightarrow \square \neg A$.

Example 2.3. In

(1) $A=p \vee \neg q \vee \square(\neg p \vee \neg q) \vee \diamond(\neg p)$,
(2) $B=\neg p \vee(\square \neg q) \vee \diamond \square(q \vee \square \neg q)$,
A has only one positive modal literal p, and the negations of other modal literals are cquivalent to $q, \diamond(p \wedge q)$ and $\square p$, respectively. Therefore, A has the rule form $q \wedge \diamond(p \wedge q) \wedge \square p \supset p$. Similarly, B has the rule form $p \wedge \diamond q \supset \diamond \square(\diamond q \supset q)$.

It should be noted that in the literature there is no unified definition of modal or temporal Horn clauses $[2,9,10]$, and our definition of modal Horn clauses is taken from Fariñas and Penttonen [9], which is syntactically the simplest among known definitions.

3. The complexity of modal Horn clauses for logics between K and $S 4$ or between K and B

This section is devoted to the proof of the PSPACE-hardness of the satisfiability of modal Horn clauses for any modal logic between K and S4 or between K and B .

Theorem 3.1. (1) Let \mathscr{L} be any modal logic between K and S 4 . Then the \mathscr{L}-satisfiability problem of modal Horn clauses is PSPACE-hard with respect to log-space reducibility.
(2) Let \mathscr{L} be any modal logic between K and B . Then the \mathscr{L}-satisfiability problem of modal Horn clauses is PSPACE-hard with respect to log-space reducibility.

Since the satisfiability problems for K, T, S4, KB and B have been shown to be PSPACE-complete [15, 4], we thus have the following result.

Corollary 3.2. The satisfiability problem of modal Horn clauses for each of $\mathrm{K}, \mathrm{T}, \mathrm{S} 4, \mathrm{~KB}$ and B is PSPACE-complete with respect to log-space reducibility.

The method that we will use to prove Theorem 3.1 is to find a problem log-space-complete for PSPACE and then show that the problem is log-space-reducible to the satisfiability problem of modal Horn clauses for any modal logic between K and S 4 and between K and B. The problem that we selected is the QBF problem [19], which is the canonical one among many problems log-space-complete for PSPACE.

We say that a formula is a quantified Boolean formula ($Q B F$ formula for short) if it has the form $Q_{1} X_{1} \ldots Q_{m} X_{m} A\left(X_{1}, \ldots, X_{m}\right)$, wherc $(m>0)$ cach $Q_{i}(1 \leqslant i \leqslant m)$ is either \forall or \exists, and $A\left(X_{1}, \ldots, X_{m}\right)$ is a propositional formula with all variables occurring in $\left\{X_{1}, \ldots, X_{m}\right\}$. The set of all quantified Boolean formulas is denoted as QRF. Assume that all variables in a QBF formula range over the domain $\{1$ (true), 0 (false) $\}$ and the meaning of all connectives (including the quantifiers and two constants 1 and 0) is as usual. Then the QBF problem is to determine whether the truth value of a given QBF formula is equal to 1 . We use $B \equiv 1(0)$ to mean that the truth value of B is $1(0)$.

3.1. Reducing the QBF problem to the satisfiability of modal Horn clauses for logics between K and S 4

We now show that the QBF problem can be reduced to the satisfiability problem of modal Horn clauses for any modal logic between K and S4.

Lemma 3.3. There exists a log-space transformation function MH from QBF formulas to sets of modal Horn clauses such that for any $B \in Q B F$,
(1) if $B \equiv 1$, then $M H(B)$ is K-unsatisfiable and
(2) if $B \equiv 0$, then $M H(B)$ is S4-satisfiable.

As a consequence of Lemma 3.3, we have the following corollary.
Corollary 3.4. Let \mathscr{L} be any modal logic between K and S 4 that has a sound and complete semantics. Then the QBF problem is log-space-reducible to the \mathscr{L}-satisfiability problem of modal Horn clauses.

Proof. For any given QBF formula $B=Q_{1} X_{1} \ldots Q_{m} X_{m} A\left(X_{1}, \ldots, X_{m}\right)$, let \bar{B} be the complement of B, i.e. $\bar{B}=\bar{Q}_{1} X_{1} \ldots \bar{Q}_{m} X_{m} \neg A\left(X_{1}, \ldots, X_{m}\right)$ where \bar{Q}_{i} is \forall (resp. Э) if Q_{i} is $\exists($ resp. $\forall)$ for $1 \leqslant i \leqslant m$. It is clear that the truth value of B is 1 iff the truth value of \bar{B} is 0 . It is also easy to see that if $M H$ is log-space-computable, then so is the function $f(B)=M H(\bar{B})$. Now we show that for any logic \mathscr{L} between K and $\mathrm{S} 4, B \equiv 1$ iff $f(B)$ is \mathscr{L}-satisfiable, thus having proved the corollary.

If $B \equiv 1$, then $\bar{B} \equiv 0$, and by Lemma 3.3, $M H(\bar{B})$ is S4-satisfiable. Hence $\neg(\bigwedge M H(\bar{B}))$ is not S 4 -valid. So, by the soundness of S4, $\neg(\bigwedge M H(\bar{B}))$ is not S4-provable and thus is not \mathscr{L}-provable. However, since we assume \mathscr{L} has a complete semantics, $\neg(\bigwedge M H(\bar{B}))$ is not \mathscr{L}-provable implies $\neg(\bigwedge M H(\bar{B}))$ is not \mathscr{L}-valid and $M H(\bar{B})$ thus is \mathscr{L}-satisfiable.

On the other hand, if $B \equiv 0$, then $\bar{B} \equiv 1$, and by Lemma 3.3, $M H(\bar{B})$ is K-unsatisfiable. Hence $\neg(\bigwedge M H(\bar{B}))$ is K -valid. By the completeness of $\mathrm{K}, \neg(\bigwedge M H(\bar{B}))$ is K-provable and thus is \mathscr{L}-provable. However, we assume \mathscr{L} has a sound semantics, so $\neg(\bigwedge M H(\bar{B}))$ is \mathscr{L}-valid in the underlying semantics and hence $M H(\bar{B})$ is not \mathscr{L}-satisfiable.

The first part of Theorem 3.1 is a direct consequence of Corollary 3.4. We now begin to define the function $M H$ satisfying Lemma 3.3. Before proceeding, we need some more definitions.

Definition 3.5. For any given QBF formula $B=Q_{1} X_{1} \ldots Q_{m} X_{m} A\left(X_{1}, \ldots, X_{m}\right)(m>0)$, let $W_{B}=\left\{x \mid x \in\{1,0\}^{*}\right.$ and $\left.|x| \leqslant m\right\}, R_{B}=\left\{(x, x \cdot a) \in W_{B}^{2} \mid x \in W_{B}\right.$ and a is either 1 or 0$\}$. For any $x \in W_{B}$, we use $|x|$ to denote the length of x and use $x_{i}(i \leqslant|x|)$ to denote the i th bit of x.

We view the frame $T_{B}=\left(W_{B}, R_{B}\right)$ as a complete binary tree whose root is ε and every node x of length $<m$ has two children $x \cdot 1$ and $x \cdot 0$.

For any $x \in W_{B}$ of length i, we use $B(x)$ to stand for the QBF formula $Q_{i+1} X_{i+1} \ldots Q_{m} X_{m} A\left(x_{1}, \ldots, x_{i}, X_{i+1}, \ldots, X_{m}\right)$. It is thus easy to see that $B=B(\varepsilon)$ and the truth value of every $B(x)(|x|<m)$ is uniquely determined by the truth values of $B(x \cdot 1), B(x \cdot 0)$ and the quantifier $Q_{|x|+1}$.

The truth value of B can now be evaluated by the following procedure:
(1) Construct the tree T_{B} top-down.
(2) Determine the truth value of $B(x)(=A(x))$ for every leaf x.
(3) Determine the truth value of $B(x)$ for each internal node x bottom-up according to the quantifier $Q_{|x|+1}$ and the truth values of $B(x \cdot 1)$ and $B(x \cdot 0)$.

Finally $B \equiv 1$ iff the truth value of $B(\varepsilon)$ is 1 .

3.1.1. The transformation function $M H$

The function $M H$ is essentially a description of the above procedure by using modal formulas.

Let $B=Q_{1} X_{1} \ldots Q_{m} X_{m} A\left(X_{1}, \ldots, X_{m}\right)(m>0)$ be any QBF formula, n be the number of subformulas of A, and A_{1}, \ldots, A_{n} be any enumeration of all occurrences of subformulas of A with $A_{p}=A$ for some $1 \leqslant p \leqslant n$. We shall then define two sets of modal Horn clauses, $M H^{\prime}(B)$ and $M H(B)=M H^{\prime}(B) \cup\left\{\neg Y_{0}\right\} \cdot M H^{\prime}(B)$, basically, is a description of the procedure for evaluating B. Before defining $M H^{\prime}(B)$, we first state the intended usage of the variables appearing in $M H^{\prime}(B)$.

The set of variables $\operatorname{var}\left(M H^{\prime}(B)\right)$ includes the following elements.

- X_{1}, \ldots, X_{m} and $\bar{X}_{1}, \ldots, \bar{X}_{m}$: Each X_{i} plays the same role as it is in B and \bar{X}_{i} is intended to stand for the complement of X_{i}. The key property is that for every leaf x in the tree T_{B}, if $x_{t}=1(0)$, then $X_{i}\left(\bar{X}_{i}\right)$ should be true at x. As a result, each leaf x of T_{B} uniquely determines an interpretation I_{x} for $\left\{X_{1} \ldots X_{m}\right\}$ with the convention that $I_{x}\left(X_{i}\right)=1(0)$ if $X_{i}\left(\bar{X}_{i}\right) \in x$. On the other hand, every interpretation for variables appearing in B must belong to the set of all interpretations determined by leaves of T_{B}.
- $L_{0}, \ldots, L_{m}: L_{i}$ is intended to represent the level (or length) of each node x in the tree such that L_{i} is true at x if and only if x is at level i.
- U_{1}, \ldots, U_{m} and $\bar{U}_{1}, \ldots, \bar{U}_{m}$: Each $U_{i}\left(\bar{U}_{i}\right)$ is used as a shorthand for $X_{i} \wedge L_{i}$ $\left(\bar{X}_{i} \wedge L_{i}\right)$.
- C_{1}, \ldots, C_{n} and $\bar{C}_{1}, \ldots, \bar{C}_{n}: C_{i}\left(\bar{C}_{i}\right)$ is used to represent the truth value of the subformula A_{i} under the interpretations determined by leaves of T_{B}. The convention is that $C_{i}\left(\bar{C}_{i}\right) \in x$ iff $I_{s}\left(A_{i}\right)=1(0)$, where I_{x} is the interpretation determined by x. C_{i} and \bar{C}_{i} have no effects at internal nodes.
- Y_{0}, \ldots, Y_{m} and $\bar{Y}_{0}, \ldots, \bar{Y}_{m}: Y_{i}$ and \bar{Y}_{i} are used to represent the truth value of $B(x)$ for any node x at level i. It is possible that both Y_{i} and \bar{Y}_{i} are true at a node x if $|x|<i$. Now we define $M H^{\prime}(B)=\bigcup_{0 \leqslant i \leqslant 5} T_{i}$, where each T_{i} is given as follows.
(1) $T_{0}=\left\{L_{0}\right\} . T_{0}$ states that the root node is at level 0 .
(2) $T_{1}=\bigcup_{0 \leqslant i<m}\left\{\square^{i}\left(L_{i} \supset \diamond U_{i+1}\right), \square^{i}\left(L_{i} \supset \diamond \bar{U}_{i+1}\right)\right\}$.
(3) $T_{2}=\bigcup_{1 \leqslant i \leqslant m}\left\{\square^{i}\left(U_{i} \supset X_{i}\right), \square^{i}\left(U_{i} \supset L_{i}\right), \square^{i}\left(\bar{U}_{i} \supset \bar{X}_{i}\right), \square^{i}\left(\bar{U}_{i} \supset L_{i}\right)\right\} . T_{1}$ and T_{2} state that every node x in the tree at level $i<m$ should contain two children at level $i+1$ such that X_{i} is true at onc of them and \bar{X}_{i} is true at the other. T_{1} and T_{2} correspond to the top-down expansion of the tree T_{B}.
(4) $T_{3}=\bigcup_{1 \leqslant i<m, i \leqslant j<m}\left\{\square^{j}\left(X_{i} \supset \square X_{i}\right)\right.$, $\left.\square^{j}\left(\bar{X}_{i} \supset \square \bar{X}_{i}\right)\right\}$. T_{3} states that the truth of X_{i} (or \bar{X}_{i}) at ancestor nodes should be propagated to all descendant nodes.

Therefore, the set of X-type and \bar{X}-type variables true at each leaf x constitutes the interpretation I_{x} for A, and the truth value of every subformula of A at the leaf x can be evaluated. $T_{0}-T_{3}$ correspond to the first step of the procedure for evaluating B.
(5) $T_{4}=\bigcup_{0 \leqslant i<m}\left\{\square^{i} \varphi \mid \varphi \in \mathscr{E}_{i}\right\}$, where

$$
\mathscr{E}_{i}= \begin{cases}\left\{\left(\diamond\left(\bar{Y}_{i+1} \wedge U_{i+1}\right) \supset \bar{Y}_{i}\right),\left(\diamond\left(\bar{Y}_{i+1} \wedge \bar{U}_{i+1}\right) \supset \bar{Y}_{i}\right),\right. \\ \left.\left.\diamond\left(Y_{i+1} \wedge U_{i+1}\right) \wedge \diamond\left(Y_{i+1} \wedge \bar{U}_{i+1}\right) \supset \bar{Y}_{i}\right)\right\}, & \text { if } Q_{i+1}=\forall, \\ \left\{\left(\diamond\left(Y_{i+1} \wedge U_{i+1}\right) \supset Y_{i}\right),\left(\diamond\left(Y_{i+1} \wedge \bar{U}_{i+1}\right) \supset Y_{i}\right),\right. & \\ \left.\left(\diamond\left(\bar{Y}_{i+1} \wedge U_{i+1}\right) \wedge \diamond\left(\bar{Y}_{i+1} \wedge \bar{U}_{i+1}\right) \supset \bar{Y}_{i}\right)\right\} \quad \text { if } Q_{i+1}=\exists .\end{cases}
$$

T_{4} is used to describe how the truth values of Y_{i} and \bar{Y}_{i} at each internal node at level i are determined by its children, obeying the meaning of quantification. This corresponds to the third step of the evaluation of B.
(6) $T_{s}=\left\{\square^{m} \varphi \mid \varphi \in \mathscr{C}\right\}$, where $\mathscr{C}=\bigcup_{0 \leqslant i \leqslant n} \mathscr{C}_{i}$, and each \mathscr{C}_{i} is defined, depending on subformula A_{i} of A, as follows.

- For any $1 \leqslant i \leqslant n$,
(a) if $A_{i}=X_{j}$ is a propositional variable, then $\mathscr{C}_{i}=\left\{X_{j} \wedge L_{m} \supset C_{i}, \bar{X}_{j} \wedge L_{m} \supset \bar{C}_{i}\right\}$,
(b) if $A_{i}=\neg A_{j}$, then $\mathscr{C}_{i}=\left\{C_{j} \wedge L_{m} \supset \bar{C}_{i}, \bar{C}_{j} \wedge L_{m} \supset C_{i}\right\}$,
(c) if $A_{i}=A_{j} \wedge A_{k}$, then $\mathscr{C}_{i}=\left\{C_{j} \wedge C_{k} \wedge L_{m} \supset C_{i}, \bar{C}_{j} \wedge L_{m} \supset \bar{C}_{i}, \bar{C}_{k} \wedge L_{m} \supset \bar{C}_{i}\right\}$.
- $\mathscr{C}_{0}=\left\{C_{p} \wedge L_{m} \supset Y_{m}, \bar{C}_{p} \wedge L_{m} \supset \bar{Y}_{m}\right\}$.
T_{5} encodes the boolean evaluation rules which can be used to evaluate the truth value of $I_{x}\left(A_{i}\right)$ for each subformula A_{i} of A at each leaf x of T_{B}. After the truth value of every subformula of A has been determined, we use the truth of $Y_{m}\left(\right.$ or $\left.\bar{Y}_{m}\right)$ at x to represent the fact that A is true (false) at x. Note that the L_{m} 's used in each clause is to ensure that it has effect only at leaf nodes. T_{5} corresponds to the second step of the evaluation of B.
(7) For technical reasons, we assume $M H^{\prime}(B)_{k}=\left\{\varphi \mid \square^{k} \varphi \in M H^{\prime}(B)\right\}$ for $0 \leqslant k \leqslant m$.

In addition to what is implied by $T_{0}-T_{5}, \neg Y_{0} \in M H(B)$ means Y_{0} cannot be true at the root node. As a result, if B is false, the evaluation tree T_{B} for B gives us a model in which $M H(B)$ holds at the root node. On the other hand, if B is true, the root node must contain Y_{0} according to the rules specified by $M H^{\prime}(B)$. We thus reach a contradiction and $M H(B)$ is hence not satisfiable.

Before formally proving all assertions described among the definitions, we note that $M H(B)$ can indeed be computed from B in log-space and leave the details to the reader.

3.1.2. Correctness of the transformation function MH

We now show that the function $M H$ does satisfy Lemma 3.3.
Let x be any string in W_{B} of length i. Define $I(x)=\left\{Z_{1}, \ldots, Z_{i}\right\}$, where $Z_{j}(1 \leqslant j \leqslant i)$ is X_{j} if $x_{j}=1$ and Z_{j} is \bar{X}_{j} if $x_{j}=0$. In particular, define $I(\varepsilon)=\phi$. We also define
$U(x)=\left\{L_{i}, U_{i}\right\}$ if $x_{i}=1$ and $U(x)=\left\{L_{i}, \bar{U}_{i}\right\}$ if $x_{i}=0$. In particular, define $U(\varepsilon)=\left\{L_{0}\right\}$. The following lemma establishes the relation between W_{B} and any K-model satisfying $M H^{\prime}(B)$.

Lemma 3.6. Let $B=Q_{1} X_{1} \ldots Q_{m} X_{m} A\left(X_{1}, \ldots, X_{m}\right)$ be any $Q B F$ formula, $M=\langle W, R, h\rangle$ be any K-model and w_{0} any world in W such that $M, w_{0}=M H^{\prime}(B)$. Then there exists a mapping τ from W_{B} to W satisfying the following properties:
(1) $\tau(\varepsilon)=w_{0}$;
(2) for any $x \in W_{B}$ of length i, $M, \tau(x) \mid=I(x) \cup U(x)$;
(3) for any $x \in W_{B}$ of length $i, w_{0} R^{i} \tau(x)$;
(4) for any $x \in W_{B}$ of length m,

- if $B(x) \equiv 1$, then $M, \tau(x)=C_{p}$, and
- if $B(x) \equiv 0$, then $M, \tau(x) \vDash \bar{C}_{p}$;
(5) for any $x \in W_{B}$ of length i, if $B(x) \equiv 1, M, \tau(x) \vDash Y_{i}$, and if $B(x) \equiv 0, M$, $\tau(x) \models \bar{Y}_{i}$.

Proof. See the appendix.
The following lemma is a direct consequence of Lemma 3.6.

Lemma 3.7. If $B \equiv 1$, then $M H(B)$ is K -unsatisfiable.

Proof. Assume that there exists a K-model $M=\langle W, R, h\rangle$ and a world $w_{0} \in W$ such that $M, w_{0} \mid=M H(B)$. Because $M H^{\prime}(B) \subseteq M H(B)$, by property (5) of Lemma 3.6, if $B \equiv 1(=B(\varepsilon)), M, w_{0}=Y_{0}$. However, since $\neg Y_{0}$ is contained in $M H(B)$, we also have $M, w \notin Y_{0}$. So M does not exist and $M H(B)$ is K-unsatisfiable.

We now show the satisfiability of $M H(B)$ in case B is false.

Lemma 3.8. If $B \equiv 0, M H(B)$ is S 4 -satisfiable.
Proof. By construction. Let $M=\left\langle W_{B}, R, h\right\rangle$, where

- $R=R_{B}^{*}$, i.e. the reflexive and transitive closure of R_{B}, and
- h is any function from W_{B} to $2^{\text {VAR }}$ satisfying the following conditions. Let x be any world in W_{B}. Then:
(1) For any $Z \in\left\{X_{1}, \ldots, X_{m}, \bar{X}_{1}, \ldots, \bar{X}_{m}, L_{0}, \ldots, L_{m}, U_{1}, \ldots, U_{m}, \bar{U}_{1}, \ldots, \bar{U}_{m}\right\}$, $Z \in h(x)$ iff $Z \in I(x) \cup U(x)$.
(2) For $1 \leqslant i \leqslant n$,
$C_{i} \in h(x)$ iff $|x|=m$ and $A_{i}(x) \equiv 1$,
$\bar{C}_{i} \in h(x)$ iff $|x|=m$ and $A_{i}(x) \equiv 0$.
(3) For $0 \leqslant i \leqslant m$,
$Y_{i} \in h(x)$ iff either $(|x|=i$ and $B(x) \equiv 1)$ or $i>|x|$, and
$\bar{Y}_{i} \in h(x)$ iff either $(|x|=i$ and $B(x) \equiv 0)$ or $i>|x|$.

To show that $M, \varepsilon \vDash M H(B)$, we note that clauses (1)-(5) given by
(1) $X_{i} \supset \square X_{i}, \bar{X}_{i} \supset \square \bar{X}_{i}$ for any $0<i \leqslant m$,
(2) $L_{i} \supset \diamond U_{i+1}$ and $L_{i} \supset \diamond \bar{U}_{i+1}$ for $0 \leqslant i<m$,
(3) $U_{i} \supset X_{i}, U_{i} \supset L_{i}$ and $\bar{U}_{i} \supset \bar{X}_{i}, \bar{U}_{i} \supset L_{i}$ for $0<i \leqslant m$,
(4) any clause in $\bigcup_{0 \leqslant i<m} \mathscr{E}_{i}$ and
(5) any clause in \mathscr{C}
are all valid in M because, for any world $w \in W_{B}$ and for each clause $l \supset r$ listed above, either $M, \mid \neq l$ or $M, w \models r$, as the reader can easily verify.

Therefore, for any world $w \in W_{B}$, for any clause A listed above and for any $i \geqslant 0$, we have $M, w \vDash \square^{i} A$. As a result, $M, \varepsilon \vDash \bigcup_{1 \leqslant i \leqslant s} T_{i}$. Furthermore, we have $M, \varepsilon \models \neg Y_{0} \wedge L_{0}$, so $M, \varepsilon \mid=M H(B)$.

Now we have proven Lemma 3.3, which is a direct consequence of Lemmas 3.7 and 3.8 and the fact that $M H(B)$ can be computed from B in log-space.

Remark. Since $\square A \equiv \square \square A$ is valid for S4, if we are merely concerned with S4satisfiability of modal Horn clauses, it is possible to get a set of Horn clauses simpler than $M H(B)$. We can replace the sequence of modal operators $\square^{i}(i \geqslant 1)$ appearing at the front of each clause of $M H(B)$ by a single \square. The simplified $M H(B)$ has modal degree 2 and can also be used to prove the PSPACF-hardness of the satisfiability of modal Horn clauses for S4. As a result, the satisfiability of modal Horn clauses for S4 is PSPACE-hard even if the modal degree of the input set of Horn clauses is restricted to not greater than 2 and thus is unlikely to be solvable in polynomial time. This suggests that the claim of Farinas del Cerro and Penttonen [9] that the satisfiability of modal Horn clauses can be solved in polynomial time if the modal degree of the Horn clauses is limited to a constant is incorrect for S4.

3.2. Reducing the QBF problem to the satisfiability of modal Horn clauses for any modal logic between K and B

We now begin to show the second part of Theorem 3.1. The proof strategy is analogous to the proof of the first part. We first show the analog of Lemma 3.3.

Lemma 3.9. There exists a log-space transformation function MB from QBF formulas to sets of modal Horn clauses such that for any $B \in Q B F$,
(1) if $B \equiv 1$, then $M B(B)$ is K -unsatisfiable,
(2) if $B \equiv 0$, then $M B(B)$ is B-satisfiable.

The proof of the following corollary is analogous to that of Corollary 3.4.
Corollary 3.10. Let \mathscr{L} be any modal logic between K and B which has a sound and complete semantics. Then the QBF problem is log-space-reducible to the \mathscr{L}-satisfiability problem of modal Horn clauses.

The second part of Theorem 3.1 is a direct consequence of Corollary 3.10.

3.2.1. The transformation function MB

By slightly modifying the set of modal Horn clauses $M H(B)$ used in Section 3.1, we can obtain the $M B(B)$ needed for Lemma 3.9. Formally, let

$$
M B(B)=\left\{L_{0}, \neg Y_{0}\right\} \cup T_{1} \cup T_{4} \cup T_{5} \cup S,
$$

where T_{1}, T_{4} and T_{5} are the same as those given in the definition of $M H(B)$ and

$$
S=\bigcup_{0<i \leqslant m}\left\{\square^{i}\left(U_{i} \supset \square^{m-i} X_{i}\right), \square^{i}\left(U_{i} \supset L_{i}\right), \square^{i}\left(\bar{U}_{i} \supset \square^{m-i} \bar{X}_{i}\right), \square^{i}\left(\bar{U}_{i} \supset L_{i}\right)\right\} .
$$

Before describing the informal meaning of S, we note that, due to the reflexive and symmetric nature of the accessibility relation for the modal logic B, we can no longer use T_{2} and T_{3} defined in Section 3.1 to propagate X_{i} (and \bar{X}_{i}) to descendant leaves without resulting in inconsistency. Consider the case that $m=3$. In order to propagate X_{1} and \bar{X}_{1} to leaves, we have in T_{3} the rules $\square\left(X_{1} \supset \square X_{1}\right), \square^{2}\left(X_{1} \supset \square X_{1}\right)$, $\square\left(\bar{X}_{1} \supset \square \bar{X}_{1}\right)$ and $\square^{2}\left(\bar{X}_{1} \supset \square \bar{X}_{1}\right)$. Let R be the reflexive and symmetric closure of R_{B}. Then since $1 R^{2} 0$ and $0 R^{2} 1$, the node 1 (resp. node 0) containing X_{1} (resp. \bar{X}_{1}) must enforce the node $0(1)$ to contain X_{1} (resp. \bar{X}_{1}) in order to obey the T_{3} rules. As a result, both node 0 and node 1 will contain X_{1} and \bar{X}_{1}, which again will enforce all leaves to contain X_{1} and \bar{X}_{i}. So we no longer will be able to use all X_{i} and \bar{X}_{i} at each leaf to determine a unique interpretation.
S is essentially another way of propagating X_{i} and \bar{X}_{i} to descendant leaves suitable for reflexive and symmetric accessibility relations. It says that if a node x contains $U_{i}\left(\bar{U}_{i}\right)$, which by T_{1} means that x is at level i and $x_{i}=1(0)$, then every node x^{\prime} with $x R^{m-i} x^{\prime}$ must contain $X_{i}\left(\bar{X}_{i}\right)$. As a result, all descendant leaves of x will contain $X_{i}\left(\bar{X}_{i}\right)$. Since every leaf has exactly one ancestor at each level i, which by T_{1} must contain U_{i} or \bar{U}_{i} but not both, all the X_{j} 's and \bar{X}_{j} 's that each leaf x contains thus constitute the interpretation I_{x} for the variables appearing in the formula B. It should be noted, however, that by S it is possible that some node contains both X_{i} and \bar{X}_{i}, but it may happen only when it is an internal node.

We claim that $M B(B)$ does satisfy Lemma 3.9; the proof resembles that used in the proof of Lemma 3.3. To avoid unnecessary duplication, however, we do not present the proof here. The interested readers can follow the same line as we did for Lemma 3.3 to obtain it.

4. The complexity of modal Horn clauses for S4.3

In this section we will show that the satisfiability problem for $\$ 4.3$ with the input restricted to modal Horn clauses is NP-complete. Since the satisfiability problem for S4.3 in general has been shown to be NP-complete [18], we thus only have to show its hardness part.

Theorem 4.1. The satisfiability problem for S 4.3 with the input restricted to modal Horn clauses is NP-hard.

Proof. We will show that the satisfiability problem for classical propositional clauses can be reduced to the S4.3-satisfiability of modal Horn clauses in polynomial time. The problem is thus NP-hard.

The polynomial-time transformation function $M T$ is defined as follows. Assume the input \mathscr{C} is a set of propositional clauses

$$
\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}
$$

where $m \geqslant 1$ and each $C_{i}(1 \leqslant i \leqslant m)=\left\{L_{i 1}, \ldots, L_{i p_{i}}\right\}$ is a set of literals that does not contain complementary literals.

Let $\operatorname{var}(\mathscr{C})=\left\{X_{1}, \ldots, X_{n}\right\}$ be the set of propositional variables appearing in \mathscr{C}. The set of propositional variables used in $M T \mathscr{C})$ includes not only $\operatorname{var}(\mathscr{C})$ but also the set $\{\bar{X} \mid X \in \operatorname{var}(\mathscr{C})\}$, each element \bar{X}_{i} of which is a new variable not occurring in \mathscr{C} and is intended to represent the complement of X_{i}.

Define $M T(\mathscr{C})=\bigcup_{0 \leqslant i \leqslant 3} S_{i}$, where each S_{i} is given as follows:
(1) $S_{0}=\bigcup_{1 \leqslant i \leqslant n}\left\{\square\left(\neg X_{i} \vee \neg \bar{X}_{i}\right)\right\}$;
(2) $S_{1}=\bigcup_{1 \leqslant i \leqslant n}\left\{\diamond X_{i}, \diamond \bar{X}_{i}\right\}$;
(3) for $1 \leqslant i \leqslant n$, let $g_{i}=\square\left(\neg \bar{X}_{i} \vee \square \neg X_{i}\right), \quad \bar{g}_{i}=\square\left(\neg X_{i} \vee \square \neg \bar{X}_{i}\right)$, and let $S_{2}=\bigcup_{1 \leqslant i \leqslant n}\left\{g_{i} \vee \bar{g}_{i}\right\} ;$
(4) for each $1 \leqslant i \leqslant m, 1 \leqslant j \leqslant p_{i}$, let

$$
l_{i j}= \begin{cases}\bar{g}_{k} & \text { if } L_{i j}=\neg X_{k}, \\ g_{k} & \text { if } L_{i j}=X_{k},\end{cases}
$$

and let

$$
S_{3}=\bigcup_{1 \leqslant i \leqslant m}\left\{l_{i 1} \vee \cdots \vee l_{i p_{i}}\right\}
$$

The formula set $M T(\mathscr{C})$ defined above is clearly a set of modal Horn clauses; it is also easy to see that $M T(\mathscr{C})$ can be constructed from \mathscr{C} in time polynomial in the size of \mathscr{C}. Moreover, Lemma 4.3 states that $M T$ is satisfiability-preserving, and so we have proved the theorem.

The intuition behind the construction of $S_{0}-S_{2}$ can be best explained by the proof of the following key lemma.

Lemma 4.2. Let $M=\langle W, R, h\rangle$ be any $S 4.3$-model and w any world in W such that $M, w \models S_{0} \cup S_{1} \cup S_{2}$. Then for any $1 \leqslant i \leqslant n, M, w \vDash g_{i}$ iff $M, w \neq \bar{g}_{i}$.

Proof. By $S_{1}, M, w \mid=\diamond X_{i} \wedge \diamond \bar{X}_{i}$. So there must exist $w^{\prime}, w^{\prime \prime} \in W$ accessible from w such that $M, w^{\prime} \models X_{i}$ and $M, w^{\prime \prime} \mid=\bar{X}_{i}$.

Since R is connected, we have $w^{\prime} R w^{\prime \prime}$ or $w^{\prime \prime} R w^{\prime}$ or $w^{\prime}=w^{\prime \prime}$. But the last case is impossible, for if $w^{\prime}=w^{\prime \prime}$ we would have $M, w \vDash \diamond\left(X_{i} \wedge \bar{X}_{i}\right)$, which is contradictory to S_{0}.

In case $w^{\prime} R w^{\prime \prime}, M, w^{\prime}=X_{i} \wedge \diamond \bar{X}_{i}$. So $M, w \models \diamond\left(X_{i} \wedge \diamond \bar{X}_{i}\right)\left(=\neg \bar{g}_{i}\right)$ and hence $M, w \nLeftarrow \bar{g}_{i}$. Similarly, if $w^{\prime \prime} R w^{\prime}$, we have $M, w \notin g_{i}$. Therefore, either $M, w \neq g_{i}$ or $M, w \neq \bar{g}_{i}$.

But, by S_{2}, at least one of g_{i} and \bar{g}_{i} must be true at w; therefore, $M, w=g_{i}$ iff $M, w \notin \bar{g}_{i}$.

Now by Lemma 4.2 every model-world pair (M, w) satisfying $S_{0}-S_{2}$ uniquely determines an interpretation for \mathscr{C} which interprets X_{i} as true (resp. false) if $g_{i}\left(\bar{g}_{i}\right)$ holds at w. Moreover, every interpretation for \mathscr{C} must be identical to some interpretation determined in this way. Hence we can use g_{i} and \bar{g}_{i}, respectively, to simulate X_{i} and $\neg X_{i} ; S_{3}$ then is just a substitution of g_{i} and \bar{g}_{i}, respectively, for each X_{i} and $\neg X_{i}$ occurring in \mathscr{C}. Now we show that $M T$ is satisfiability-preserving.

Lemma 4.3. \mathscr{C} is satisfiable iff $M T(\mathscr{C})$ is S4.3-satisfiable.
Proof. \Rightarrow : Since \mathscr{C} is satisfiable, there exists a literal set $E=\left\{L_{1}, \ldots, L_{n}\right\}$, where L_{i} is either X_{i} or $\neg X_{i}$ such that, for each $C_{i} \in \mathscr{C}, E \cap C_{i} \neq \phi$.

Now let $M=\langle W, R, h\rangle$, where

- W is the set of rational numbers Q,
- R is the "less than or equal to" relation \leqslant on Q,
- $h(1)=\left\{X_{i} \mid X_{i} \in E\right\} \cup\left\{\bar{X}_{i} \mid \neg X_{i} \in E\right\}$,
- $h(2)=\left\{\bar{X}_{i} \mid X_{i} \in E\right\} \cup\left\{X_{i} \mid \neg X_{i} \in E\right\}$ and
- $h(n)=\phi$ for any $n \in Q \backslash\{1,2\}$.

Note that M is indeed an S4.3-model. It is easy to verify that $M, 0=A$ for every $A \in S_{0} \cup S_{1} \cup S_{2}$; it is also easy to verify that if $X_{i}\left(\neg X_{i}\right) \in E$ then $M, 0 \mid=g_{i}\left(\bar{g}_{i}\right)$. Since for each $1 \leqslant i \leqslant m$, there exists a literal $L_{i r_{i}} \in E \cap C_{i}$, we thus have $M, 0 \vDash l_{i r_{i}}$ and hence $M, 0 \vDash l_{i 1} \vee \cdots \vee l_{i p_{i}}$. As a result, $M, 0=S_{3}$ as well.
\leftarrow : Let $M-\langle W, R, h\rangle$ be any S4.3-model such that $M, w_{0} \models M T(\mathscr{C})$ for some $w_{0} \in W$. From M and w_{0}, we construct a literal set $E=\left\{L_{1}, \ldots, L_{n}\right\}$, where

$$
L_{i}=\left\{\begin{aligned}
X_{i} & \text { if } M, w_{0} \mid=g_{i}, \\
\neg X_{i} & \text { if } M, w_{0} \neq \bar{g}_{i} .
\end{aligned}\right.
$$

By Lemma 4.2, for $1 \leqslant i \leqslant n$, exactly one of X_{i} and $\neg X_{i}$ belongs to E. Now we show that $E \cap C \neq \phi$ for each clause $C \in \mathscr{C}$, so \mathscr{C} is satisfiable. Let $C=\left\{X_{u_{1}}, \ldots, X_{u_{2}}\right.$, $\left.\neg X_{v_{1}}, \ldots, \neg X_{v_{\beta}}\right\}$ be any clause in \mathscr{C} where $\alpha \geqslant 0, \beta \geqslant 0$. By S_{3}, we have

$$
M, w_{0} \vDash\left(\bigvee_{1 \leqslant i \leqslant \alpha} g_{u_{i}} \vee \bigwedge_{1 \leqslant j \leqslant \beta} \bar{g}_{v_{j}}\right) .
$$

So either $M, w_{0} \mid=g_{u_{i}}$ for some $1 \leqslant i \leqslant \alpha$, or $M, w_{0} \vDash \bar{g}_{v_{j}}$ for some $1 \leqslant j \leqslant \beta$. Accordingly, either $X_{u_{i}} \in E$ or $\neg X_{v_{j}} \in E$, and $E \cap C \neq \phi$.

Remark. It should be noticed that our proof about the complexity of modal Horn clauses for S 4.3 can also be used without change to show that the satisfiability of modal Horn clauses for some linear tense logics like CL, SL and PL (see [16] for an introduction to these logics) is NP-complete. Like S4.3, the general satisfiability problem for all these logics is known to be NP-complete [18].

5. The complexity of modal Horn clauses for extensions of K5

5.1. K5 Horn clause

The modal clause and modal Horn clause defined in Section 2 are general for all normal logics; for specific modal logics more specialized definitions are possible. For example, since for $S 5$ every set of modal clauses can be translated into an equivalent set of modal clauses of modal degree at most 1 , the S 5 modal clause is defined in [7] to be of the form

$$
C \vee \square D_{1} \vee \cdots \vee \square D_{m} \vee \diamond E_{1} \vee \cdots \vee \diamond E_{n},
$$

where C, D_{1}, \ldots, D_{m} are classical clauses and E_{1}, \ldots, E_{n} are sets of classical clauses.
Indeed, we can show for all extensions, not only of S5 but also of K5, that every set of modal clauses can be translated into an equivalent set of modal clauses of modal degree at most 2 . We can thus obtain a simpler form of the modal Horn clause for all extensions of K5. The possibility of such a translation is based on the following proposition.

Proposition 5.1 (Chen and Lin [4]). Let \odot, \odot_{1} and \odot_{2} be any modal operators. Then the formulas
(1) $\square(A \vee \odot B) \equiv \square A \vee \square \odot B$,
(2) $\diamond(A \wedge \odot B) \equiv \diamond A \wedge \diamond \odot B$,
(3) $\odot_{1} \odot \odot_{2} A \equiv \odot_{1} \odot_{2} A$
are valid for K5 (and hence valid for KD5, KD45, K45 and S5 as well).
According to Proposition 5.1, every set of modal Horn clauses can be rewritten to an equivalent set of modal Horn clauses of modal degree 2 or less in polynomial time by the following rewrite rules:
(1) $\square\left(D_{1} \vee \square D_{2}\right) \rightarrow \square D_{1} \vee \square \square D_{2}$;
(2) $\square\left(D_{1} \vee \diamond D_{2}\right) \rightarrow \square D_{1} \vee \square \diamond D_{2}$;
(3) $\diamond\left(D_{1} \vee D_{2}\right) \rightarrow \diamond D_{1} \vee \diamond D_{2}$;
(4) $\odot_{1} \odot \odot_{2} D_{1} \equiv \bigodot_{1} \odot_{1} D_{1}$.

In the above rules D_{1} and D_{2} are any modal Horn clauses, \odot, \odot_{1} and \odot_{2} are any modal operators, i.e. \square or \diamond.

The first three rules are used to distribute the principal modal operator of any modal clause to each disjunct of the clause; the last rule is used to eliminate intermediate modality. Note that both sides of the third rule are equivalent for K.

Now we may assume without loss of generality that each clause of the set of modal Horn clauses under consideration has the form

$$
M_{1} C_{1} \vee M_{2} C_{2} \vee \cdots \vee M_{n} C_{n},
$$

where $n \geqslant 0$, and each $M_{i} C_{i}$ is of the form $L, \odot \diamond L$ or $\odot \square C$, where L is any propositional literal, C is any propositional Horn clause and \odot is \square, \diamond or empty.

We shall call any modal Horn clause of the above form a K5 Horn clause and each $M_{i} C_{i}$ is called a $K 5$-literal; in particular, the K 5 -literal which contains a positive propositional literal is called a positive K 5 -literal and other K 5 -literals containing no positive propositional literals are called negative K5-literals. Moreover, if a positive K 5 -literal contains no negative literals, it is called a $K 5$-atom. Finally, any occurrence of a modal operator in a K5 Horn clause is called a level-1 (occurrence of) modal operator if it is not in the scope of any modal operators; otherwise it is in the scope of another modal operator and we shall call it a level- 2 modal operator.

Example 5.2. Let $S=\{A, B\}$ be a set of modal Horn clauses where
(1) $A=\square(\diamond p \vee \diamond \square(\diamond \neg q \vee \neg r) \vee \diamond \neg p)$ and
(2) $B=\square \diamond \square(\neg p \vee q)$.

By applying the rewrite rules, we get

```
\(A \xrightarrow{*} \sqcup \diamond p \vee \sqcup \diamond \square(\diamond \neg q \vee \neg r) \vee \sqcup \diamond \neg p\),
    \(\xrightarrow{*} \square \diamond p \vee \square \diamond \square \diamond \neg q \vee \square \diamond \square \neg r \vee \square \diamond \neg p\),
        \(\xrightarrow{*} \square \diamond p \vee \square \diamond \neg q \vee \square \square \neg r \vee \square \diamond \neg p\left(=A^{\prime}\right)\),
    \(B \rightarrow \square \square(\neg p \vee q)\left(=B^{\prime}\right)\).
```

In A^{\prime}, there is one K 5 -atom $\square \diamond p$ in which the \diamond is a level- 2 occurrence, and all the other K5-literals are negative; in B^{\prime} there is one positive K 5 -literal $\square \square(\neg p \vee q)$.

5.2. A modal Herbrand theorem for KD5

Before demonstrating our algorithm, we need to establish a modal version of the Herbrand theorem for KD5. The classical Herbrand theorem says that to determine satisfiability of a given set of classical clauses, you only have to consider all structures whose domain is the Herbrand universe. Likewise, our modal Herbrand theorem tells us that, to test the KD5-satisfiability of a given set S of K5 Horn clauses, we only have to consider all KD5-models with a common fixed frame determined by the skolemization of S.
The first step of the theorem is to skolemize the given set of K5 Horn clauses, by which we simply associate each occurrence of \diamond with a unique number. The goal of the skolemization is to determine the frame common to all KD5-models that need to be considered.

Definition 5.3. Let S be a set of K 5 Horn clauses and N the set of nonzero natural numbers. A skolemization of S is a 1-1 mapping $s k$ from the set of all occurrences of
\diamond in S to N. If $s k$ is a skolemization of S, we use $I_{1}^{\prime}(s k)\left(\right.$ resp. $\left.I_{2}(s k)\right)$ to denote the image of all level-1 (resp. level-2) occurrences of \diamond in S. We define $I_{1}(s k)=I_{1}^{\prime}(s k)$ if $I_{1}^{\prime}(s k) \neq \phi$; otherwise define $I_{1}(s k)=\{0\}$. Note that 0 never occurs in $I_{2}(s k)$. Finally, define $I(s k)=I_{1}(s k) \cup I_{2}(s k) . I(s k)$ is called the index set of $s k$ and $I_{1}\left(I_{2}\right)$ is called the level-1 (level-2) index set of $s k$. Since all occurrences of \diamond in S are typed the same, to help distinguish among different occurrences of \diamond, we use \diamond subscripted with an index i to refer to the occurrence skolemized by i, i.e. $\operatorname{sk}\left(\diamond_{i}\right)=i$.

Definition 5.4. Let S be any set of K 5 Horn clauses and sk any skolemization of S. Then we call any KD5-model $M_{s k}=\left\langle W_{s k}, R_{s k}, h\right\rangle$ a Herbrand KD5-model based on S and $s k$, where

- $W_{\mathrm{sk}}=\{\varepsilon\} \cup I(\mathrm{sk})$,
- $R_{s k}=\left\{(\varepsilon, i) \mid i \in I_{1}(s k)\right\} \cup\{(i, j) \mid i, j \in I(s k)\}$ and
- h is any function from $W_{s k}$ to $2^{\text {VAR }}$.

In other words, every Herbrand KD5-model based on S and $s k$ has the indexed set together with a distinguished initial world " ε " as the set of worlds, and has an accessibility relation in which every index is accessible from every index and cevery level- 1 index is accessible from the initial world.

Moreover, we also want every skolemized \diamond_{i} to be interpreted as the world i instead of as an existentially quantified world variable. Therefore, besides the standard satisfaction relation \models common to all Kripke models, we also need another satisfaction relation $\models_{s k}$ for Herbrand KD5-models, whose definition is basically the same as that of the standard satisfaction relation except that if a formula of the form $\diamond_{i} A$ is to be interpreted as true, it means that A is true at the world i and i is accessible from the current world. In other words, we have

$$
M_{s k}, w=_{s k} \diamond_{i} A \text { iff } w R_{s k} i \text { and } M_{s k}, i \models_{s k} A \text { for any } i \in I(s k)
$$

in the definition of $\models_{s k}$; the definitions for other connectives such as \neg, \vee and \square are all the same as those defined for the standard \vDash.

It should be noticed that it is with respect to the relation $=_{s k}$ instead of the standard satisfaction relation that our algorithm determines KD5-satisfiability of modal Horn clauses. Our modal Herbrand theorem states, however, that these two relations determine the same satisfiable sets of modal Horn clauses.

Lemma 5.5. Let S be any set of K5 Horn clauses and sk any skolemization of S. Then
(1) for any Herbrand KD5-model $M_{s k}=\left\langle W_{s k}, R_{s k}, h\right\rangle$ based on S and $s k, M_{s k}, w \mid={ }_{s k}$ A implies $M_{s k}, w \models A$, where w is any world in $W_{s k}$ and A is any occurrence of a subformula of S;
(2) (modal Herbrand theorem for KD45) S is KD5-satisfiable if and only if there is a Herbrand KD5-model $M_{s k}=\left\langle W_{s k}, R_{s k}, h\right\rangle$ based on S and sk such that $M_{s k}, \varepsilon \models_{s k} S$.

Proof. See the appendix.

5.3. An algorithm for testing KD5-satisfiability of K5 Horn clauses

According to Lemma 5.5, we can now present a polynomial-time algorithm for testing the KD5-satisfiability of a set of K5 Horn clauses. The algorithm is given as follows.

Algorithm KD5-SAT(S);; The input S is a set of K5 Horn clauses.
(1) Skolemize S by labelling each occurrence of \diamond in S with a unique number. Let $s k$ he the resulting skolemization and I (resp. I_{1} and I_{2}) the index set (resp. level-1 and level-2 index sets) of $s k$.
(2) Atom $=$ the set of all K5-atoms of S.
(3) $C m p=S \backslash$ Atom.
(4) Repeat
for each K5 Horn clause C in Cmp do
(4.1) Do one of the following depending on the format of C (if no case matches, do nothing):
Case 1: $C=D \vee M C^{\prime}$, where C^{\prime} is a negative classical clause (i.e. no modality). Then if inconsistent-with-Atom ($M C^{\prime}$) then replace C in $C m p$ by D.
Case 2: $C=M p$ is a K5-atom. Then
remove C from $C m p$ and add it to Atom.
Case 3: $C=M\left(p \vee \neg p_{1} \vee \cdots \vee \neg p_{n}\right)(n \geqslant 1)$ is a positive K 5 -literal. Then $C m p=C m p \backslash\{C\} \cup\left\{\square \diamond_{i} p \vee \square \diamond_{i} \neg p_{1} \vee \cdots \vee \square \diamond_{i} \neg p_{n} \mid i \in \operatorname{val}\left(M_{1}\right)\right.$ $\left.\cap I_{2}\right\} \cup\left\{\diamond_{i} p \vee \diamond_{i} \neg p_{1} \vee \cdots \vee \diamond_{i} \neg p_{n} \mid i \in \operatorname{val}\left(M_{1}\right) \cap I_{1}\right\}$.
end for
until either the empty clause $\perp \in C m p$ or $C m p$ is not changed in the last for-loop.
(5) If $L \in C m p$ return ("unsatisfiable") else return ("satisfiable").
(6) end.

In algorithm KD5-SAT, some terms require an explanation.
(1) The set variable Atom is used to collect the set of K 5 -atoms that must be true at the initial world ε, and $C m p$ contains the remaining K 5 Horn clauses.
(2) The function $\operatorname{val}(M)$ is used to return the set of worlds that the modality M denotes in $W_{\text {sk }}$ and hence is defined as follows:

- if M is empty then $\operatorname{val}(M)=\{\varepsilon\}$;
- if $M=\diamond_{i}$ or $\square \diamond_{i}$ or $\diamond_{j} \diamond_{i}$ then $\operatorname{val}(M)=\{i\}$;
- if $M=\square$ then $\operatorname{val}(M)=I_{1}$;
- if $M=\diamond_{i} \square$ or $\square \square$ then $\operatorname{val}(M)=I$.
(3) The predicate inconsistent-with-Atom $(M C)$, where $C=\left(\neg p_{1} \vee \cdots \vee \neg p_{n}\right)$ is a negative clause, is used to check if $M C$ is inconsistent with Atom. In other words, if there is a world $i \in \operatorname{val}(M)$ such that, according to Atom, all p_{k}^{\prime} 's $(1 \leqslant k \leqslant n)$ are true at world i, then inconsistent-with-Atom(MC) returns true; otherwise it returns false. To implement this predicate, we can maintain for each propositional variable p a set variable $t w d(p)$ recording all worlds in which p must be true according to the current
value of Atom. So, for example, if Atom contains $\square p, \square \diamond_{i} p$ and p about p, then $\operatorname{twd}(p)=I_{1} \cup\{i, \varepsilon\}$. With such a data structure available, it is easy to implement a quadratic-time algorithm for this predicate.

We now analyse the time complexity of this algorithm. That all steps in the algorithm but the repeat loop can be completed in polynomial time is easy to see; the critical part of the algorithm is the repeat loop, which requires time $\mathrm{O}(k \cdot \alpha)$, where k is the number of times step 4.1 is executed and α is the maximum number of steps required to execute any one of the three cases inside step 4.1.

For case 1 of step 4.1, the most expensive operation is the test inconsistent-with-atom $(M C)$, which requires time $\mathrm{O}\left(|S|^{2}\right)$. For case $2, \mathrm{O}(|S|)$ time is sufficient, while for case 3 , the split of C results in the generation of at most $\left|W_{s k}\right|$ instances of C to be added to $C m p$, thus requiring time $\mathrm{O}\left(|S|^{2}\right)$ at most. To sum up, $\alpha=\mathrm{O}\left(|S|^{2}\right)$.

Now we see at most how many times step 4.1 would be executed before termination. The strategy is to define a well-founded ordering on sets of K5 Horn clauses and show that the order of Cmp decreases for every execution of the for-loop at step 4.

The ordering is defined inductively as follows:
(1) For each clause $C=D \vee M C^{\prime}$ where C^{\prime} is a negative Horn clause, define $C \#=D \#+1$. This corresponds to case 1 of step 4.1.
(2) For each clause $C=M p$ being a $K 5$-atom, define $C \#=1$. This corresponds to case 2 of step 4.1.
(3) For each positive clause $C=M\left(p \vee p_{1} \vee \cdots \vee p_{n}\right) \quad(n>0) \quad$ define $C \#=1+\left|W_{s k}\right| \times(1+n)$. This corresponds to case 3 of step 4.1.

Finally, for a set of K5-clauses S, define $S \#=\Sigma_{C \in S} C \#$.
It is now easy to see that the value of Cmp\# decreases at least by 1 after each execution of any case of step 4.1. But the until condition of the repeat statement requires that at least one case be executed for any but the last iteration of the repeat loop; the number k is thus bounded by the initial value of Cmp\#, which has order $\mathrm{O}\left(\left|W_{s k}\right| \times|S|\right)=\mathbf{O}\left(|S|^{2}\right)$, times the maximum possible cardinality of $C m p$, which has order $\mathrm{O}\left(|S|^{2}\right)$ as well. To sum up, $k=\mathrm{O}\left(|S|^{4}\right)$. As a result, KD5-SAT takes time $\mathrm{O}\left(|S|^{6}\right)$ totally; we thus have the following lemma.

Lemma 5.6. KD5-SAT(S) always terminates in time polynomial in the size of S.
Before proving the correctness of KD5-SAT, we first give an example to show how KD5-SAT works.

Example 5.7. Let the set of K 5 Horn clauses $S=\{\diamond p \vee \square \square(\neg q \vee \neg r), \square \diamond q$, $\diamond \diamond \neg q \vee \diamond q, \square \square r, \square \neg p\}$.
After skolemization, we might get

$$
S=\left\{\diamond_{1} p \vee \square \square(\neg q \vee \neg r), \square \diamond_{2} q, \diamond_{3} \diamond_{4} \neg q \vee \diamond_{5} q, \square \square r, \square \neg p\right\},
$$

with

$$
I_{1}=\{1,3,5\}, \quad I_{2}=\{2,4\} \quad \text { and } \quad W_{s k}=\{\varepsilon, 1,2,3,4,5\} .
$$

After step 3, we get

$$
\begin{aligned}
& \text { Atom }=\left\{\square \square r, \square \diamond_{2} q\right\}, \\
& \operatorname{twd}(r)=\{1,2,3,4,5\}, \quad \operatorname{twd}(q)=\{2\}
\end{aligned}
$$

and

$$
C m p=\left\{\diamond_{1} p \vee \square \square(\neg q \vee \neg r), \diamond_{3} \diamond_{4} \neg q \vee \diamond_{5} q, \square \neg p\right\} .
$$

The first iteration of the repeat loop will remove the K 5 -literal $\square \square(\neg q \vee \neg r)$ from the clause $\diamond_{1} p \vee \square \square(\neg q \vee \neg r)$ because $\square \square(\neg p \vee \neg q)$ is inconsistent with Atom: $\square \square(\neg q \vee \neg r)$ implies one of q and r must be false at each world, but by Atom, both q and r must be true at the world " 2 ".

After the second iteration of the repeat loop, $\diamond_{1} p$ will be moved from Cmp to Atom and " 1 " will be added to $\operatorname{twd}(p)$. And after the third iteration, the program will terminate with "unsatisfiable" returned for the empty clause will be generated at this iteration by virtue of the inconsistence of $\square \neg p$ and $\diamond_{1} p$.

5.4. Correctness of KD5-SAT

We now prove the correctness of KD5-SAT.
Lemma 5.8. Assume KD5-SAT(S) terminates after the kth execution of step 4.1. Let Atom ${ }^{\circ}$ and $C_{m p}{ }^{\circ}$ be the values of Atom and Cmp, respectively, immediately before the first execution of step 4.1, and Atom ${ }^{i}$ and Cmp ${ }^{i}$ be the values of Atom and Cmp, respectively, immediately after the ith execution of step 4.1 for $1 \leqslant i \leqslant k$. Then for any Herbrand KD5-models $M_{s k}$ based on S and sk determined at step 1, we have

$$
\begin{aligned}
& M_{s k}, \varepsilon \models_{s k} \text { Atom }^{i} \cup C m p^{i} \text { iff } M_{s k}, \varepsilon \models_{s k} \text { Atom }^{i+1} \cup C m p^{i+1}(S) \\
& \quad \text { for any } 0 \leqslant i<k .
\end{aligned}
$$

Proof. Let C be the K 5 Horn clause selected from $C m p^{i}$ for the $(i+1)$ th execution of step 4.1. Then there are 4 conditions to be considered depending on which case of step 4.1 is executed.
(1) Case 1 is executed. Then $C=D \vee M C^{\prime}, M C^{\prime}$ is a negative K 5 -literal and is inconsistent with Atom ${ }^{i}$. So $C m p^{i+1}(S)=C m p^{i} \backslash\{C\} \cup\{D\}$, and Atom ${ }^{i}=$ Atom $^{i+1}$. Since D subsumes $C, M_{s k}, \varepsilon \models_{s k} D$ implies $M_{s k}, \varepsilon=_{s k} C$. On the other hand, since Atom ${ }^{i}$ and $M C^{\prime}$ are inconsistent with each other, $M_{s k}, \varepsilon \models_{s k}$ Atom $^{i} \cup\left\{D \vee M C^{\prime}\right\}$ implies $M_{s k}, \varepsilon \models_{s k}$ Atom $^{i} \cup\{D\}$. Thercfore, $\quad M_{s k}, \varepsilon \models_{s k}$ Cmp $^{i} \cup$ Atom $^{i} \quad$ implies $\quad M_{s k}, \varepsilon \models_{s k}$ $C m p^{i+1} \cup$ Atom $^{i+1}$.
(2) Case 2 is executed. Then Cmp $^{i+1} \cup$ Atom $^{i+1}=$ Cmp $^{i} \cup$ Atom ${ }^{i}$; the lemma obviously holds.
(3) Case 3 is executed. Then the C at $C m p$ is replaced by the set T of all instances of C with respect to $W_{s k}$. The lemma thus holds because $M_{s k}, \varepsilon \neq{ }_{s k} C$ iff $M_{s k}, \varepsilon=_{s k} T$.
(4) No cases match. Since Atom and Cmp are not changed, the lemma obviously holds.

Lemma 5.9. (1) If KD5-SAT(S) returns "unsatisfiable", S is not KD5-satisfiable.
(2) If KD5-SAT(S) returns "satisfiable", S is KD5-satisfiable.

Proof. Assume KD5-SAT (S) terminates after the k th execution of step 4.1.
(1) Since KD5-SAT(S) returns "unsatisfiable", the empty clause $L \in C m p^{k}$. Atom ${ }^{k} \cup C m p^{k}$, which by Lemma 5.8 is equivalent to S, thus is unsatisfiable (with respect to $=_{s k}$). So, by the modal Herbrand theorem, S is not KD5-satisfiable.
(2) Let $\quad M_{s k}=\left\langle W_{s k}, R_{s k}, h\right\rangle \quad$ where $\quad h(i)=\left\{p \mid M p \in\right.$ Atom $^{k} \quad$ and $\left.i \in v a l(M)\right\}$. Namely, $h(i)$ contains only those propositional variables that must be true at i for each $i \in W_{s k}$.

It is obvious that $M_{s k}, \varepsilon \models_{s k}$ Atom ${ }^{k}$. To see that $M_{s k}, \varepsilon \models_{s k} C m p^{k}$ as well, we note that since $C m p$ was not changed in the last repeat loop, $C m p^{k}$ must be either an empty set, which is vacuumly true, or a set of K 5 Horn clauses of the form $C=D \vee M C^{\prime}$, where $C^{\prime}=\neg p_{1} \vee \cdots \vee \neg p_{\alpha}$ is a negative propositional clause, such that $M C$ is consistent with Atom k, i.e. for each i in $\operatorname{val}(M)$, there exists a $p_{j}(1 \leqslant j \leqslant \alpha)$ such that $i \notin t w d\left(p_{j}\right)$. Accordingly, $M_{s k}, \varepsilon=_{s k} M C^{\prime}$ and hence $M_{s k}, \varepsilon=_{s k} C$ for each C in $C m p^{k}$. Finally, by Lemmas 5.5 and $5.8, S$ is KD5-satisfiable.

5.5. Complexity results

Now we have shown the first result of this section.

Theorem 5.10. The satisfiability problem for KD5, KD45 and S5 with the input restricted to modal Horn clauses can be solved in polynomial time.

Proof. The case for KD5 is a direct consequence of Lemmas 5.6 and 5.9. To avoid unnecessary duplication, we do not provide algorithms for KD45 and S5 here. But in fact they are almost the same as KD5-SAT except that the definition of $t w d$, val and inconsistent-with-Atom should be slightly modified to reflect the differences among the corresponding models, and are indeed simpler than KD5-SAT.

After we have shown that the KD5/KD45-satisfiability of modal Horn clauses can be solved in polynomial time, it is easy to obtain the same result for K5 and K45 as well since, according to the following proposition, to test the K $5 / \mathrm{K} 45$-satisfiability of any formula it suffices to test whether it is KD5/KD45-satisfiable or satisfiable in a model with one world only.

Proposition 5.11. Let A be any modal formula. Then A is K 5 -satisfiable (resp. $\mathrm{K} 45-$ satisfiable) iff either A is KD5-satisfiable (resp. KD45-satisfiable) or A is satisfiable in a model with one world only.

Proof. The if part is trivial since every single-world model and every KD5-model (resp. KD45) are K5-models (resp. K45-models).

For the proof of the only-if part, let $M=\langle W, R, h\rangle$ be any K5-model such that $M, w_{0}=A$ for some $w_{0} \in W$.
If there is no world in W accessible from w_{0}, then let $M^{\prime}=\left\langle\left\{w_{0}\right\}, \phi, h^{\prime}\right\rangle$ and $h^{\prime}\left(w_{0}\right)=h\left(w_{0}\right)$. It is easy to verify that $M^{\prime}, w_{0} \mid=A$.

On the other hand, if w_{0} is not an ending world, i.e. there is a world accessible from w_{0}, then let $M^{\prime}=\left\langle W^{\prime}, R^{\prime}, h^{\prime}\right\rangle$, where $W^{\prime}=\left\{w^{\prime} \in W \mid w_{0} R^{*} w^{\prime}, R^{*}\right.$ is the reflexive and transitive closure of $R\}$ and R^{\prime} and h^{\prime} are R and h restricted to W^{\prime}, respectively.

It is easy to verify that $M^{\prime}, w_{0}=A$ and M^{\prime} is a KD5-model. As a result, A is KD5-satisfiable. The K45-KD45 case is similar.

But to test the satisfiability of a given set S of modal Horn clauses in single-world models is very easy: we simply replace every subformula of the form $\square A$ in S with true and replace every subformula of the form $\diamond A$ in S with false. It is easy to show that S is satisfiable in a single-world model if and only if the resulting set of classical Horn clauses is satisfiable for classical propositional logic, which is well known to be solvable in linear time [6]. We thus have the following theorem.

Theorem 5.12. The satisfiability problem for K 5 and K 45 with the input restricted to modal Horn clauses can be solved in polynomial time.

6. Conclusion

We have shown in this paper that the satisfiability problem for any modal propositional logic between K and S4 still remains PSPACE-hard even if we restrict the input formula to modal Horn clauses. This result refutes the expectation of getting a poly-nomial-time algorithm for these logics as long as $\mathrm{P} \neq$ PSPACE. Likewise, we have shown that the same problem for any modal logic between K and B is PSPACE-hard as well. Accordingly, the satisfiability problem for $\mathrm{K}, \mathrm{T}, \mathrm{KB}, \mathrm{B}$ and S4 is PSPACEcomplete whether the formula is restricted to modal Horn clauses or not. We also showed that the satisfiability of modal Horn clauses for S 4.3 and for some linear tense logics like CL, SL and PL is NP-complete. Again, each have the same complexity as the unrestricted case. All the above results are negative in the sense that restricting the formula to modal Horn clauses does not decrease the inherent difficulty of the satisfiability problem. Fortunately, we did find some extensions of K5 including K5, KD5, K45, KD45 and S5, for which the satisfiability problem in general is NPcomplete, but when restricted to modal Horn clauses, the problem can be solved in polynomial time.

Appendix

A.1. Proof of Lemma 3.6

In order to prove Lemma 3.6, we need some facts about $M H^{\prime}(B)$ and any K-model satisfying it.

Proposition A.1. Let $M=\langle W, R, h\rangle$ be any K-model such that $M, w_{0}=M H^{\prime}(B)$ for some $w_{0} \in W$. Then, for any world $w \in W$ with $w_{0} R^{k} w$ where $0 \leqslant k \leqslant m$,

$$
M, w \neq M H^{\prime}(B)_{k} .
$$

In particular, for $0 \leqslant k<m$, the formulas
(1) $L_{k} \supset \diamond U_{k+1}, L_{k} \supset \diamond \bar{U}_{k+1}$, and
(2) any clause in \mathscr{E}_{k} are satisfied at w; for $0<k \leqslant m$, the formulas
(3) $U_{k} \supset X_{k}, U_{k} \supset L_{k}, \bar{U}_{k} \supset \bar{X}_{k}, \bar{U}_{k} \supset L_{k}$,
(4) $X_{i} \supset \square X_{i}, \bar{X}_{i} \supset \square \bar{X}_{i}$, where $1 \leqslant i \leqslant k$, are satisfied at w; for $k=m$,
(5) any clause in \mathscr{C} is satisfied at w.

Proof. Simple inductive proof.

The proof of Lemma 3.6 is now shown below.

Proof of Lemma 3.6. (1), (2), (3): The mapping τ is defined by induction on the ordering (W_{B}, R_{B}); in the meantime, the first three properties are proved simultaneously.

Basic case: $x=\varepsilon$. Let $\tau(x)=w_{0}$. Obviously, the τ so constructed satisfies properties (1), (2) and (3) as far as x is concerned.

Induction case: Assume that the value of τ for every element of W_{B} of length $\leqslant k$ has been defined. Now consider any $x \in W_{B}$ of length $k+1 \leqslant m$.
Case 1: $x=z \cdot 1$. Since $M, w_{0} \vDash M H^{\prime}(B)$ and, by induction hypothesis of (3), $w_{0} R^{k} \tau(z)$, according to Proposition $\Lambda .1$, we have $M, \tau(z) \models M H^{\prime}(B)_{k}$. In particular, $M, \tau(z) \models L_{k} \supset \diamond U_{k+1}$. But, by induction hypothesis of (2), $M, \tau(z) \models L_{k}(\in U(z))$, therefore $M, \tau(z)=\diamond U_{k+1}$, and there must exist a $w \in W$ accessible from $\tau(z)$ such that $M, w=U_{k+1}$. So let $\tau(x)=w$. Now we verify that w satisfies properties (2) and (3).

Since $M, \tau(z) \mid=I(z) \cup M H^{\prime}(B)_{k}$ and, for any $Z \in I(z), Z \supset \square Z \in M H^{\prime}(B)_{k}$, we have $M, \tau(z) \models \square Z$ for any $Z \in I(z)$. Hence $M, w=I(z)$. Moreover, $M, w \models\left\{U_{k+1} \supset L_{k+1}\right.$, $\left.U_{k+1} \supset X_{k+1}\right\}\left(\subset M H^{\prime}(B)_{k+1}\right)$ and $M, w \vDash U_{k+1}$, so $M, w \models L_{k+1} \wedge U_{k+1} \wedge X_{k+1}$. Hence $M, w=I(x) \cup U(x)$ and property (2) was verified.

That w satisfies property (3) is easy to see since, by $\tau(z) R \tau(x)$ and by the hypothesis $w_{0} R^{k} \tau(z)$, we have $w_{0} R^{k+1} \tau(x)$.
Case 2: $x=z \cdot 0$. Similar to case 1. Omitted here.
(4) To prove property (4) by induction on the structure of (subformulas of) A, we need a stronger version of property (4), namely,
(4') For any $x=x_{1} \ldots x_{m} \in W_{B}$ of length m and for any subformula A_{i} of A,

- if $A_{i}\left(x_{1}, \ldots, x_{m}\right) \equiv 1$, then $M, \tau(x) \models C_{i}$, and
- if $A_{i}\left(x_{1}, \ldots, x_{m}\right) \equiv 0$, then $M, \tau(x) \models \bar{C}_{i}$.

The proof of (4') is as follows. Assume $\tau(x)=w$. By properties (2) and (3) of Lemma 3.6, and by property (5) of Proposition A.1, we have $M, w \models I(x) \cup\left\{L_{m}\right\} \cup \mathscr{C}$.

Now consider any subformula A_{i} of A.
Basic case: $A_{i}=X_{j}$ for some propositional variable X_{j}.
If $x_{j}=1$ (hence $A_{i}(x) \equiv 1$), then $X_{j} \in I(x)$. Since $X_{j} \wedge L_{m} \supset C_{i} \in \mathscr{C}, M, w \models C_{i}$;
If $x_{j}=0$ (hence $A_{i}(x) \equiv 0$), then $\bar{X}_{j} \in I(x)$. However, $\bar{X}_{j} \wedge L_{m} \supset \bar{C}_{i}$ is also contained in \mathscr{C}, so $M, w \models \bar{C}_{i}$.

Induction case

Case 1: $A_{i}=\neg A_{j}$. If $A_{i}(x) \equiv 1$, then $A_{j}(x) \equiv 0$. Thus, by induction hypothesis, $M, w \mid=\bar{C}_{j}$. Moreover, $M, w=\bar{C}_{j} \wedge L_{m} \supset C_{i} \in \mathscr{C}$, so $M, w \mid=C_{i}$.
The case that $A_{i}(x) \equiv 0$ is similar to the above; we omit it here.
Case 2: $A_{i}=A_{j} \wedge A_{k}$. If $A_{i}(x) \equiv 1$, then $A_{j}(x) \equiv 1$ and $A_{k}(x) \equiv 1$. Hence, from $C_{j} \wedge C_{k} \wedge L_{m} \supset C_{i} \in \mathscr{C}$ and $M, w \mid=C_{j} \wedge C_{k}$ obtained by induction hypothesis, we have $M, w \vDash C_{i}$. On the other hand, if $A_{i}(x) \equiv 0$, then either $A_{j}(x) \equiv 0$ or $A_{k}(x) \equiv 0$. So, by induction hypothesis, either $M, w=\bar{C}_{j}$ or $M, w=\bar{C}_{k}$. However, since $M, w \mid=$ $\left\{\bar{C}_{j} \wedge L_{m} \supset \bar{C}_{i}, \bar{C}_{k} \wedge L_{m} \supset \bar{C}_{i}\right\} \subseteq \mathscr{C}$, both cases imply $M, w=\bar{C}_{i}$.
(5) Property (5) is proved by induction on the ordering (W_{B}, R_{B}^{-1}), where R_{B}^{-1} is the reverse of R_{B}.

Basic case: $|x|=m . \quad$ Since $\quad B(x)=A(x) \quad\left(=A_{p}(x)\right), \quad M, \tau(x) \models L_{m}, \quad$ and $M, \tau(x) \models\left\{C_{p} \wedge L_{m} \supset Y_{m}, \bar{C}_{p} \wedge L_{m} \supset \bar{Y}_{m}\right\} \subseteq \mathscr{C}$, according to property (4), if $B(x) \equiv 1$, then $M, \tau(x) \mid=C_{p}$ and, consequently, $M, \tau(x) \vDash Y_{m}$; on the other hand, if $B(x) \equiv 0$, then $M, \tau(x) \mid=\bar{C}_{p}$ and, consequently, $M, \tau(x) \mid=\bar{Y}_{m}$.

Induction case: $0 \leqslant|x|=i<m$.
Case 1: $Q_{i+1}=\forall$. If $B(x) \equiv 1$, then $B(x \cdot 1) \equiv 1$ and $B(x \cdot 0) \equiv 0$. By induction hypothesis and property (2), $M, \tau(x \cdot 1) \models U_{i+1} \wedge Y_{i+1}$ and $M, \tau(x \cdot 0) \mid=\bar{U}_{i+1} \wedge Y_{i+1}$. Moreover, we have $M, \tau(x) \models \diamond\left(U_{i+1} \wedge Y_{i+1}\right) \wedge \diamond\left(\bar{U}_{i+1} \wedge Y_{i+1}\right) \supset Y_{i} \quad\left(\in M H^{\prime}(B)_{i}\right)$, $\tau(x) R \tau(x \cdot 1)$, and $\tau(x) R \tau(x \cdot 0)$. Hence $M, \tau(x) \vDash Y_{i}$. For the converse, if $B(x) \equiv 0$, then either $B(x \cdot 1) \equiv 0$ or $B(x \cdot 0) \equiv 0$. By induction hypothesis and property (2), we have either $M, \tau(x \cdot T) \models U_{i+1} \wedge \bar{Y}_{i+1}$ or $M, \tau(x \cdot F) \vDash \bar{U}_{i+1} \wedge \bar{Y}_{i+1}$. Moreover, we also have $M, \tau(x) \vDash\left\{\diamond\left(U_{i+1} \wedge \bar{Y}_{k+1}\right) \supset \bar{Y}_{i}, \diamond\left(\bar{U}_{i+1} \wedge \bar{Y}_{k+1}\right) \supset \bar{Y}_{i}\right\} \quad\left(\subseteq M H^{\prime}(B)_{i}\right)$, $\tau(x) R \tau(x \cdot 1)$ and $\tau(x) R \tau(x \cdot 0)$. Hence $M, \tau(x) \models \bar{Y}_{i}$.

Case 2: $Q_{i+1}=\exists$. Dual to case 1. Omitted here.

A.2. Proof of Lemma 5.5

Proof. The proof is by induction on subformulas of S.
The cases that $A=p, A=\neg p, A=B \vee C, A=B \wedge C$ or $A=\square p$ are obvious since then $\models_{\text {sk }}$ and \models have the same definitions. So we only have to consider the case that A has the form $\diamond_{1} C$. By definition, $M_{s k}, w \models_{s k} \diamond_{i} C$ iff $w R_{s k} i$ and $M_{s k}, i \models_{s k} C$, which, by induction hypothesis, implies $M_{s k}, i=C$. Hence $M_{s k}, w \models \diamond C$.
(2) The if part is a direct consequence of (1), since $M_{s k}, \varepsilon=S$ implies S is KD5satisfiable.

For the proof of the only-if part, let $M=\langle W, R, h\rangle$ be any KD5-model such that $M, w_{0}=S$ for some $w_{0} \in W$. Our goal is to construct a Herbrand KD5-model $M_{s k}=\left\langle W_{s k}, R_{s k}, h^{\prime}\right\rangle$ from M, w_{0} and $s k$ such that $M_{s k}, \varepsilon \models_{s k} S$. The contents of $W_{s k}$ and $R_{s k}$ depend on $s k$ only and have been defined in Definition 5.4. To determine h^{\prime}, we first define a mapping τ from $W_{s k}$ to W as follows.
(1) $\tau(\varepsilon)=w_{0}$.
(2) For each $i \in I_{1}^{\prime}(s k)$, let $\diamond_{i} C$ be the K 5 -literal in S with \diamond_{i} as principal operator. If $M, w_{0} \models \diamond C$, then arbitrarily choose any world w^{\prime} accessible from w_{0} with $M, w^{\prime} \models C$ and let $\tau(i)=w^{\prime}$; otherwise, arbitrarily choose any world w^{\prime} accessible from w_{0} and let $\tau(i)=w^{\prime}$. In case $I_{1}^{\prime}(s k)=\phi$, let $\tau(0)$ be any world accessible from w_{0}.
(3) For each $i \in I_{2}(s k)$, let $\odot \diamond_{i} C$ be the K5-literal in S in which \diamond_{i} occurs. If $M, w_{0}=\odot \diamond C$, then arbitrarily choose any $w^{\prime \prime} \in W$ such that $w_{0} R^{2} w^{\prime \prime}$ and $M, w^{\prime \prime} \vDash C$ and let $\tau(i)=w^{\prime \prime}$; otherwise, choose any $w^{\prime \prime} \in W$ such that $w_{0} R^{2} w^{\prime \prime}$ and let $\tau(i)=w^{\prime \prime}$.

For any $i \in W_{s k}$, define $h^{\prime}(i)=h(\tau(i))$.
We now prove that $M_{s k}, \varepsilon \models_{s k} C\left(=M_{1} C_{1} \vee \cdots \vee M_{n} C_{n}\right)$ for each K 5 Horn clause C in S. Hence $M_{s k}, \varepsilon \models_{s k} S$.

By definition, $M, w_{0} \vDash M_{1} C_{1} \vee \cdots \vee M_{n} C_{n}$ iff $M, w_{0} \vDash M_{i} C_{i}$ for some $1 \leqslant i \leqslant n$.
There are five cases we have to consider depending on M_{i}.
Case 1: M_{i} is empty. Since the truth of C_{i} at w_{0} depends on $h\left(w_{0}\right)=h^{\prime}(\varepsilon)$ only, we thus have $M_{s k}, \varepsilon \models_{s k} M_{i} C_{i}\left(=C_{i}\right)$.

Case 2: $M_{i}=\diamond_{j}$ (and $j \in I_{1}(s k)$). Since $M, w_{0}=\diamond C_{i}$, by definition of τ, $M, \tau(j) \models C_{i}$. But C_{i} contains no modality; we thus have $M_{s k}, j \models_{s k} C_{i}$. Hence $M_{s k}, \varepsilon=_{s k} \diamond_{j} C_{i}$.

Case 3: $M_{i}=\square$, since $M, w_{0}=M_{i} C_{i}$, for every world w^{\prime} accessible from w_{0}, $M, w^{\prime} \models C_{i}$. In particular, $M, \tau(j)=C_{i}$ for every $j \in I_{1}(s k)$, which implies $M_{s k}, j \models_{s k} C_{i}$ for every $j \in I_{1}(s k)$. Hence $M_{\text {sk }}, \varepsilon \vDash=M_{i} C_{i}$.

Case 4: $M_{i}=\odot \diamond_{j}$, where \odot is either \square or \diamond (and $j \in I_{2}(s k)$). Similar to case 2.
Case 5: $M_{i}=\odot \square$, where \odot is either \square or \diamond. Similar to case 3 .

References

[1] M. Abadi and Z. Manna, Temporal logic programming, in: Proc. 4th IEEE Symp. on Logic Programming (1987) 4-16.
[2] Y. Auffray, P. Enjalbert and J. Herbrand, Strategies for modal resolution: results and programs, J. Automat. Reason. 6 (1990) 1-38.
[3] B.F. Chellas, Modal Logic: An Introduction (Cambridge Univ. Press, Cambridge, 1980).
[4] C.C. Chen and I.P. Lin, Some results about the computational complexity of some modal propositional logics, manuscript, 1992.
[5] S.A. Cook, The complexity of theorem proving procedures, in: Proc. 3rd Ann. ACM Symp. on Theory of Computing (1971) 151-158.
[6] W.F. Dowling and J.H. Gallier, Linear time algorithms for testing the satisfiability of Ilorn formulac, J. Logic Programming 4 (1984) 267-284.
[7] P. Enjalbert and L. Fariñas del Cerro, Modal resolution in clausal form, Theoret. Comput. Sci. 65 (1989) 1-33.
[8] L. Fariñas del Cerro, MOLOG: a system that extends PROLOG with modal logic, New Generation Computing 4 (1986) 35-50.
[9] L. Fariñas del Cerro and M. Penttonen, A note on the complexity of the satisfiability of modal Horn clauses, J. Logic Programming 4 (1987) 1-10.
[10] D.M. Gabbay, Modal and temporal logic programming, in: A. Galton, ed., Temporal Logics and Their Applications (Academic Press, New York, 1987).
[11] D.M. Gabbay and U. Reyle, N-Prolog: an extension of Prolog with hypothetical implication, part 1, J. Logic Programming 4 (1984) 319-355.
[12] J.Y. Halpern and Y.O. Moses, A guide to the modal logic of knowledge and belief, in: IJCAI-85 (1985) 480-490.
[13] G.E. Hughes and M.J. Cresswell, An Introduction to Modal Logic (Methuen, London, 1968).
[14] S.A. Kripke, Semantical analysis of modal logic, I. Normal modal propositional calculus, Z. Math. Logik Grundlag. Math. 9 (1963) 67-96.
[15] R.E. Ladner, The computational complexity of provability in systems of modal propositional logic, SIAM .I. Comput. 6(1977) 467-480.
[16] R.P. McArthur, Tense Logic (Reidel, Dordrecht, 1976).
[17] L.T. McCarty, Clausal intuitionistic logic I. Fixed-point semantics, J. Logic Programming 5 (1988) 1-31.
[18] H. Ono and A. Nakarura, On the size of refutation Kripke models for some linear modal and tense logics, Studia Logica 39 (1980) 325-333.
[19] L.J. Stockmeyer and A.R. Meyer, Word problems requiring exponential timc: preliminary report, in: Proc. 5th Ann. ACM Symp. on Theory of Computing (1973) 1-9.
[20] T.G. Tang, Temporal logic CTL + Prolog, J. Automat. Reason. 5 (1989) 49-65.

[^0]: Correspondence to: C.C. Chen, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.

[^1]: ${ }^{1}$ Chellas indeed did not discuss logics containing the axiom schema H in [3]; it is very easy, however, to add it into the proof by following the approach he used for other axiom schemas.

