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This paper presents complexity results about the satisfiability ofmodal Horn clauses for several modal 

propositional logics. Almost all these results are negative in the sense that restricting the input formula 

to modal Horn clauses does not decrease the inherent complexity of the satisfiability problem. We first 
show that, when restricted to modal Horn clauses, the satisfiability problem for any modal logic 

between K and S4 or between K and B is PSPACE-hard. As a result, the satisfiability of modal Horn 

clauses as well as the satisfiability of unrestricted formulas for any of K, T, B and S4 is PSPACE- 

complete. This result refutes the expectation (Fariiias de1 Cerro and Penttonen 1987) of getting 

a polynomial-time algorithm for the satisfiability of modal Horn clauses for these logics as long as 

P # PSPACE. Next, we consider S4.3 and extensions of K5 including K5, KD5, K45, KD45 and S5, 

the satisfiability problem for each of which in general is known to be NP-complete, and show that for 

each extension of K5, a polynomial-time algorithm for the satisfiability of modal Horn clauses can be 

obtained; but for S4.3, together with some linear tense logics closely related to S4.3 like CL, SL and PL, 

the satisfiability of modal Horn clauses still remains NP-complete. 

1. Introduction 

Since the invention of Prolog, a number of languages based on nonclassical logics 

have been developed as extensions of Prolog. Some of these adopted nonclassical 
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logics include modal logic [S], intuitionistic logic [ll, 171, temporal logic [l, 10,203, 

etc. The success of a programming language based on nonclassical logics usually lies 

in the definition of Horn clauses and the SLD-resolution-like inference rule. For 

modal logic these definitions are available and the programming language Molog has 

been developed based on the definition of modal Horn clauses and modal resolution 

[S, 2,7]. It is therefore theoretically interesting to investigate the inherent complexity 

of the satisfiability problem of modal Horn clauses for various modal logics. It is well 

known, however, that the satisfiability problem of first-order modal Horn clauses is 

undecidable for its nonmodal part alone is already undecidable. For this reason we 

focus our attention on modal propositional logics. 

For the classical propositional logic, we know that if we restrict the input formula 

to Horn clauses, the satisfiability problem can be solved in linear time [6], while the 

same problem in general is NP-complete [S]. We thus gain the benefit of saving much 

computation time for solving this problem by the restriction of the input formula to 

Horn clauses. But when considering modal logic, can we also obtain the same benefit 

by restricting the input formula to modal Horn clauses? For S5 the answer is yes: by 

the result of Ladner [15], the satisfiability problem for S.5 is NP-complete, while by 

the result of Fariiias de1 Cerro and Penttonen [9], the same problem restricted to 

modal Horn clauses can be solved in polynomial time. But is it also true for other 

modal logics like K, T and S4? In [9] Farifias de1 Cerro and Penttonen have given an 

algorithm for solving the satisfiability problem of modal Horn clauses for several 

normal logics based on the modal resolution principle, and an upper bound is induced 

accordingly. The upper bound, however, is exponential for modal logics like K, T and 

S4. Thus, the problem that whether the complexity of the satisfiability problem for 

modal logics like K, T, B, K5, K45, S4 and S4.3 can be reduced to polynomial time by 

restricting the input formula to modal Horn clauses still remains open. 

In this paper we solve this problem for several normal modal logics and give 

negative answers for nearly all these logics. We show that the satisfiability of modal 

Horn clauses for any modal logic between K and S4 is PSPACE-hard. In particular, 

since the modal logics K, T and S4 have been shown by Ladner [15] to be PSPACE- 

complete, the satisfiability problem of modal Horn clauses for each of K, T and S4 is 

PSPACE-complete. Similarly, we can show that the satisfiability of modal Horn 

clauses for any modal logic between K and B is PSPACE-hard. Since the logics KB 

and B are also known to be PSPACE-complete [4], the satisfiability of modal Horn 

clauses for KB and B is thus PSPACE-complete too. We next consider S4.3 and some 

extensions of K5 including K5, KD5, K45, KD45 and S5; the satisfiability problem for 

each of these logics is NP-complete [l&12,18,4]. We then show that for the exten- 

sions of K5, the satisfiability of modal Horn clauses can be decided in polynomial 

time, but for S4.3, together with some linear tense logics like CL, SL and PL that are 

closely related to S4.3, the satisfiability problem still remains NP-complete even if the 

input formula is restricted to modal Horn clauses. 

The rest of the paper is organized as follows. In Section 2 we review various normal 

modal logics briefly and introduce modal Horn clauses. In Section 3 we prove that the 
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satisfiability of modal Horn clauses for any modal logic between K and S4 or 

between K and B is PSPACE-hard. In Section 4 we show that the satisfiability 

of modal Horn clauses for S4.3 is NP-hard. In Section 5 we first introduce a simpler 

form of modal Horn clauses for all extensions of K5 and then show that the 

satisfiability of modal Horn clauses for each of K5, K45, KD5, KD45 and S5 is 

solvable in polynomial time by giving a polynomial-time algorithm. The final 

section concludes this paper. 

2. Modal logic 

2.1. Syntax 

All modal logics considered in this paper share a common language, whose 

alphabet C includes 

variable construction letters: $, 0, 1, 

logical connectives: i , A, 0, 

parentheses: ( , ). 

Each member of VAR = $ (0, l} ’ $ is called a propositional variable. The set of 

modal formulas MF is defined to be the least set of words over C including VAR such 

that if A and B are modal formulas, then so are (A A B),lA and 0.4. 

We regard other usual connectives such as v, 3 and 0 as defined operators so 

that (A v B), (A 3 B) and OA are treated as if they are abbreviations of 

l(-rA A lB),l (A A 1B) and 1 OlA, respectively. 

If S is a modal formula or a set of modal formulas, we use var(S) to denote the set of 

propositional variables appearing in S. To avoid unnecessary parentheses, we assume 

the following order of precedence for the operators: 1, 0, 0 > A > v > 3; any 

parentheses may be dropped from formulas if there is no worry of confusion. Finally, 

the modal degree of a modal formula is defined to be the maximum depth of nested 

occurrences of modal operators appearing in the formula; a classical propositional 

formula is a modal formula whose modal degree is 0. 

2.2. Axiomatics 

Modal logics are extensions of classical propositional logic; they thus should 

contain all axioms of classical propositional logic. Now let PC be some complete set of 

axiom schemas of classical propositional logic with modus ponens as the inference 

rule. We define a modal logic _Y as a set of axiom schemas. For each modal logic 9, 

the provability relation k9, is defined to be the least set of modal formulas closed 

under the following rules: 

l kY A if A is an instance of any axiom schema of 9; 

l k9 A if kY B and kY B 3 A (modus ponens); 

l kY 0 A if I- A (rule of necessitation). 
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If t-9 A, we say A is dp-provable (or say A is a theorem of 9). 

We are interested in modal logics consisting of combinations of the following axiom 

schemas: 

K=Cl(A3B)3(OA3 OR), 

D=tlA1VA, 

5=OA1>ClOA, 

H=(VAr\ OB)IO(AA 0B)v O(Ar\B)vV(Br\ OA). 

We use the word Kr, . . . r, to refer to the logic containing the set of axiom schemas 

PCu (K, rl,. . . , r,}. According to the above nomenclature, the modal logics conven- 

tionally named T, B, S4, S5 and S4.3 are equal to KT, KTB, KT4, KT45 and KTH4, 

respectively. In the sequel when referring to these logics, we prefer using their 

conventional names. 

For any modal logic L1 and Lz, we say L2 is an extension of L1 if every theorem of 

L1 is also a theorem of L2. If L3 is an extension of Lz and L, is an extension of L1, 

then we say L2 is a logic between L1 and L3. It is easy to see that D, T, B and S4 are all 

extensions of K, and T is between K and S4. 

2.3. Semantics 

The semantics of normal modal logics discussed here can be defined by using 

Kripke models [14]. A (Kripke) model M is a triple ( W, R, h) consisting of the 

following elements: 

l W is a nonempty set (of worlds), 

l R is a binary relation on W called the accessibility relation; if (w, W’)E R, we say w’ is 

accessible from w. The pair (W, R) is called the frame of M. 

l hE W-+2VAR is the meaning function, which assigns to each world w in W a subset 

h(w) of VAR with the intention that p is true at world w iff pEh(w). 

Given any Kripke model M = ( W, R, h ), a world WE W and a formula AE MF, the 

truth of A at w of M, denoted M, w I= A, is defined inductively as follows: 

l M, w + p where PE F’AR iff peh(w); 

l M,w+:Aiff M(w)f A; 

l M,w+ Ar\B iff M,wl= A and M,wl= B; 

l M, w + 0 A iff, for every W’E W accessible from w (i.e. wRw’), M, w’ I= A. 

We say A is M-satisfiable if there is a world w in W such that M, w k A, and say A is 

M-valid, denoted M + A, if M, w + A for every world w in W. 
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We are particularly interested in Kripke models whose accessibility relations 

R satisfy any of the following conditions: 

serial(D): for any WE W, there is a w’ in W such that wRw’. 

reflexive(T): for any WE W, wRw. 

symmetric(B): for any w, W’E W, if wRw’ then w’Rw. 

transitive(4): for any w, w’, W”E W, if wRw’ and w’Rw” then wRw”. 

euclidean(5): for any w, w’, W”E W, if wRw’ and wRw” then w’RwIf. 

connected(H): for any w, w’, W”E W, if wRw’ and wRw” then w’Rw” or w’= w” or 

WI’ Rw’. 

The symbol enclosed in parentheses at the end of each head item listed above is 

a short-hand for the corresponding condition. To establish correspondence between 

axiom schema and class of models, we deliberately use the same symbol to stand for 

an axiom schema as well as the condition every member of its corresponding class of 

models satisfies; moreover, we also use the word Kr, . r, (n > 0) to denote the class of 

all Kripke models whose accessibility relations satisfy the condition denoted by each 

ri. So, for example, a K model is any Kripke model and a KT4 model is any Kripke 

model whose accessibility relation is reflexive and transitive. Finally, we regard 

T, B, S4, S5 and S4.3, respectively, as aliases of KT, KTB, KT4, KT45, and KTH4. So, 

when we say a model is an S4 model, we mean it is a KT4 model. 

Let 9 be any class of models. We say a formula A is Y-satisfiable if there exists an 

Y-model M and a world w among the set of worlds of M such that M, w I= A, and say 

A is P?-valid, denoted I=iy A, if, for every Z-model M, A is M-valid. 

By treating every (finite) set of formulas as an abbreviation of the conjunction of all 

its members, we extend the definitions of previously defined notions like satisfiability, 

validity, etc., to sets of formulas in the obvious way. So, for example, M, w I= S iff 

M, w I= A for every A ES. 

The following well-known proposition establishes the equivalence of the semantical 

validity relation and the syntactic provability relation for each logic given here. 

Proposition 2.1 (Chellasl [3]). Let dp= KrI . . r,, where n>O and each riE{D, T, B, 

4,5, H}, be any logic. Then any modal formula A is _CY-provable if it is Y-valid. 

For more details about modal logic, the readers are referred to [13,3]. 

2.4. Modal Horn clauses 

As the notion of clauses has been defined on the classical logic, it was also 

introduced to modal logic. We say a modal formula A is a modal clause if it is 

a formula of the form 

’ Chellas indeed did not discuss logics containing the axiom schema H in 131; it is very easy, however, to 

add it into the proof by following the approach he used for other axiom schemas. 
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where t, u, v>O, each Li is a propositional literal, each Dj is a modal clause and each 

Ei is a conjunction of modal clauses but is not a disjunctive modal formula. 

In the above clause, each Li, 0 Dj or OE, is called a modal literal; every formula of 

the form P (or lp), where PE I/AR, is called a positive (or negative) literal; p and 1P 

are complementary to each other. Furthermore, if a modal clause contains at most one 

occurrence of positive literals and each Di as well as each Ej is (inductively) a single 

modal Horn clause, we then say it is a modal Horn clause. It should be noted that we 

admit the use of the empty clause I, which is interpreted as “false”. 

Example 2.2. In 

(1) P ” 0 (P * q), 
(2) q (1P”lq)” o(lP”q)> 

(3) q (lP”lq)” o(PAlq), 
(4) q (P”lq) ” OO(lP” q 1q), 

(5) fl(lP”~q)” o~oP”~q), 
neither (1) nor (2) is a modal clause: (1) is not a modal clause because p A q is not 

a modal clause; (2) is not a modal clause because lp v q is a disjunctive formula. 

Formulas (3)-(5) are modal clauses and (4) and (5) are modal Horn clauses. Formula 

(3) is not a modal Horn clause because p A 1 q is not a single modal Horn clause. 

Instead of writing a modal Horn clause A in disjunctive form 

H v B1 v ... v B, (n20), 

where H is either empty in case A contains no positive literal or is the disjunct of 

A containing the only positive literal of A, we usually write it in the rule form 

B; A ... A B:,xH’, 

where H’ is either H in case H contains no negative literals or the rule form of H in 

case H contains negative literals, and each Bi is the normal form of 1 Bi by performing 

the following negation-in rewrite rules: 

(1) 10 A)-+A, 
(2) 1(/l A B)+lA vlB, 
(3) l(A v B)+-IA ATB, 

(4) 1OA+ OlA, 

(5) 1OA+O1‘4. 

Example 2.3. In 

(1) A=pv1qv q (1pv1q)v 0(1p), 

(2) B=1p v (O-lq) v 0 q (q v q 1q), 

A has only one positive modal literal p, and the negations of other modal literals are 

equivalent to q, 0 (p A q) and Up, respectively. Therefore, A has the rule form 

q~O(pr\q)r\UP~p.Similarly,Bhastheruleformpr\Oq~OU(0q~q). 
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It should be noted that in the literature there is no unified definition of modal or 

temporal Horn clauses [2,9, IO], and our definition of modal Horn clauses is taken 

from Farifias and Penttonen [9], which is syntactically the simplest among known 

definitions. 

3. The complexity of modal Horn clauses for logics between K and S4 

or between K and B 

This section is devoted to the proof of the PSPACE-hardness of the satisfiability of 

modal Horn clauses for any modal logic between K and S4 or between K and B. 

Theorem 3.1. (1) Let 9 be any modal logic between K and S4. Then the .P’-satisjiability 
problem of modal Horn clauses is PSPACE-hard with respect to log-space reducibility. 

(2) Let 9 be any modal logic between K and B. Then the 3’-satisfiability problem of 
modal Horn clauses is PSPACE-hard with respect to log-space reducibility. 

Since the satisfiability problems for K, T, S4, KB and B have been shown to be 

PSPACE-complete [15,4], we thus have the following result. 

Corollary 3.2. The satisfiability problem of modal Horn clauses for each of 
K, T, S4, KB and B is PSPACE-complete with respect to log-space reducibility. 

The method that we will use to prove Theorem 3.1 is to find a problem log- 

space-complete for PSPACE and then show that the problem is log-space-reducible 

to the satisfiability problem of modal Horn clauses for any modal logic between 

K and S4 and between K and B. The problem that we selected is the QBF problem 

[19], which is the canonical one among many problems log-space-complete for 

PSPACE. 

We say that a formula is a quantijed Boolean formula (QBF formula for short) if it 

has the form QIXl . ..Q.X,A(Xr ,..., X,), where (m > 0) each Qi (1 did m) is either 

V or 3, and A(X1,..., X,) is a propositional formula with all variables occurring in 

{X,, . . . , X,}. The set of all quantified Boolean formulas is denoted as QBF. Assume 

that all variables in a QBF formula range over the domain { 1 (true), O(false)} and the 

meaning of all connectives (including the quantifiers and two constants 1 and 0) is as 

usual. Then the QBF problem is to determine whether the truth value of a given QBF 

formula is equal to 1. We use B- 1 (0) to mean that the truth value of B is 1 (0). 

3.1. Reducing the QBF problem to the satisjability of modal Horn clauses for logics 
between K and S4 

We now show that the QBF problem can be reduced to the satisfiability problem of 

modal Horn clauses for any modal logic between K and S4. 
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Lemma 3.3. There exists a log-space transformation function MH from QBF formulas 
to sets of modal Horn clauses such that for any BEQBF, 

(1) if BE 1, then MH(B) is K-unsatisjable and 
(2) if B=O, then MH(B) is S4-satisfiable. 

As a consequence of Lemma 3.3, we have the following corollary. 

Corollary 3.4. Let 9 be any modal logic between K and S4 that has a sound and 
complete semantics. Then the QBF problem is log-space-reducible to the _Y-satishability 
problem of modal Horn clauses. 

Proof. For any given QBF formula B=Q,X, . ..QmX.A(X1,...,X,), let B be the 

complement of B, i.e. B= Q1 X1 . . . &,Xmi A (X i, . . . , X,) where Qi is V (resp. 3) if Qi is 

3 (resp. V) for 1~ i < m. It is clear that the truth value of B is 1 iff the truth value of B is 

0. It is also easy to see that if MH is log-space-computable, then so is the function 

f(B) = MH(I?). Now we show that for any logic $P between K and S4, BE 1 iff f (B) is 

Y-satisfiable, thus having proved the corollary. 

If BE 1, then B=O, and by Lemma 3.3, MH(B) is SCsatisfiable. Hence 

1 (/jMH(B)) is not S4-valid. So, by the soundness of S4, l(/\MH(B)) is not 

SCprovable and thus is not dP-provable. However, since we assume 2 has a complete 

semantics, 1 (A MH (B)) is not Y-provable implies 1 (A MH (B)) is not Y-valid and 

MH(B) thus is Y-satisfiable. 

On the other hand, if B=O, then BE 1, and by Lemma 3.3, MH(L?) is K-unsatisfi- 

able. Hence 1 (//MH(l?)) is K-valid. By the completeness of K, 1 (AMH(B)) is 

K-provable and thus is _Y-provable. However, we assume 2 has a sound semantics, 

so l(AMH(l?)) is T-valid in the underlying semantics and hence MH(B) is not 

Y-satisfiable. 0 

The first part of Theorem 3.1 is a direct consequence of Corollary 3.4. We now begin 

to define the function MH satisfying Lemma 3.3. Before proceeding, we need some 

more definitions. 

Definition 3.5. For any given QBF formula B = Q 1 X1 . . . Q,X,A (Xi,. . . , X,) (m > 0), 
let W,=(xJx~(l,O}*andIxldm),R,=(( x, x. a)E Wi 1 XE W, and a is either 1 or O}. 

For any XE W,, we use 1x1 to denote the length of x and use xi (i< 1x1) to denote the ith 

bit of x. 

We view the frame TB =( W,, RB) as a complete binary tree whose root is E and 

every node x of length <m has two children x. 1 and x. 0. 

For any XE W, of length i, we use B(x) to stand for the QBF formula 

Qi+lxi+l . ..QrnXrnA(X1....,Xi,Xi+1,..., X,). It is thus easy to see that B = B(E) and 

the truth value of every B(x) (Ix/ cm) is uniquely determined by the truth values of 

B(x. l), B(x .O) and the quantifier Q,,,+i. 
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The truth value of B can now be evaluated by the following procedure: 

(1) Construct the tree T, top-down. 

(2) Determine the truth value of B(x) (= A (x)) for every leaf x. 

(3) Determine the truth value of B(x) for each internal node x bottom-up according 

to the quantifier Q,x,+, and the truth values of B(x . 1) and B(x . 0). 

Finally B- 1 iff the truth value of B(E) is 1. 

3.1.1. The transformation function MH 

The function MH is essentially a description of the above procedure by using modal 

formulas. 

LetB=Q,X,...Q,X,A(X,,...,X,)(m>O)beanyQBFformula,nbethenumber 

of subformulas of A, and A 1,. . . , A, be any enumeration of all occurrences of subfor- 

mulas of A with A,= A for some 1 <p d n. We shall then define two sets of modal Horn 

clauses, MH’(B) and MH(B)= MH’(B)u{l YO}. MH’(B), basically, is a description 

of the procedure for evaluating B. Before defining MH’(B), we first state the intended 

usage of the variables appearing in MH’(B). 

The set of variables vau(MH’(B)) includes the following elements. 

l X1,...,Xm and X1,.,.,X,,,: Each Xi plays the same role as it is in B and Xi is 

intended to stand for the complement of Xi. The key property is that for every leaf 

x in the tree Ts, if Xi= 1 (0), then Xi (Xi) should be true at x. As a result, each leaf 

x of Ts uniquely determines an interpretation I, for (X1 . X,} with the conven- 

tion that 1,(X,)= 1 (0) if Xi (xi)EX. On the other hand, every interpretation for 

variables appearing in B must belong to the set of all interpretations determined by 

leaves of TB. 

l L O,. . . , L,: Li is intended to represent the level (or length) of each node x in the tree 

such that Li is true at x if and only if x is at level i. 

l u 1,. . . , U, and 0,). . , 0,: Each Ui (oi) is used as a shorthand for Xi A Li 

(Xi A Li). 

l C 1, . . . , C, and Ci, , C, : Ci (Ci) is used to represent the truth value of the 

subformula Ai under the interpretations determined by leaves of T,. The conven- 

tion is that Ci (Ci)EX iff I, (A,)= 1 (0), where I, is the interpretation determined by 

x. Ci and Ci have no effects at internal nodes. 

0 Y,,..., Y,,, and Y,,..., Y,: & and z are used to represent the truth value of B(x) for 

any node x at level i. It is possible that both Yi and ri are true at a node x if 1 x I< i. 

Now we define MH’(B)= UOQisS z, where each Ti is given as follows. 

(1) TO = {LO}. TO states that the root node is at level 0. 

(2) Tr=Uo<;<,{ni(Lix Oui+l),n’(Li~ Oui+l)}. 
(3) T2=Ul~i~m{Oi(Ui~Xi)r q ‘(Uiz Li), q ‘(Ui~Xi),O’(Lii~Li)}. T1 and T2 

state that every node x in the tree at level i<m should contain two children at level 

i+ 1 such that Xi is true at one of them and Xi is true at the other. T1 and 

T2 correspond to the top-down expansion of the tree TB. 

(4) Tj=Ul<i<m,i<j<m { q ‘(Xi 3 q Xi), q j(xi 3 Oxi)}. T3 states that the truth 

of Xi (or Xi) at ancestor nodes should be propagated to all descendant nodes. 
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Therefore, the set of X-type and X-type variables true at each leaf x constitutes the 

interpretation I, for A, and the truth value of every subformula of A at the leaf x can 

be evaluated. TO-T3 correspond to the first step of the procedure for evaluating B. 

(5) Tb=Uo<i<m{ q ‘rP I cPE&i}, where 

6.= (O(K+I A ui+,)A o(Yi+~ A ui+1)3 Z)>t if Qi+i=V, 

’ 

r 

{ (O(Z+l A ui+l)3 E),(“(Y,+l A ui+lj3 ri), 

((0(x+1 A ui+l)x Y,L(O(Y,+, A U,+I)~ YiL 

CO(Yi+, A ui+l)A O(Yi+l A ui+1)3 Z)} if Qi+l=3. 

T4 is used to describe how the truth values of K and x at each internal node at level 

i are determined by its children, obeying the meaning of quantification. This corres- 

ponds to the third step of the evaluation of B. 

(6) Tg={Om(pICOE~},where~=uU,,i,. pi, and each Vi is defined, depending on 

subformula Ai of A, as follows. 

l For any ldidn, 

(a) if Ai = Xj is a propositional variable, then 

~i={Xj A L, 3 Ci, Xj A L, 3 Ci}, 

(b) if Ai=lAj, then 

~i={CjA L,ICi, CjA L,xCi}, 

(c) if Ai=Aj A Ak, then 

pi = { Cj A Ck A L, 3Ci, ~jA L,ZCi,Ck A L,ZCi}. 

l ~~={c,AL,~Y,,c,AL,~~,}. 

T5 encodes the boolean evaluation rules which can be used to evaluate the truth value 

of I, (Ai) for each subformula Ai of A at each leaf x of Ts. After the truth value of every 

subformula of A has been determined, we use the truth of Y, (or Y,) at x to represent 

the fact that A is true (false) at x. Note that the L,‘s used in each clause is to ensure 

that it has effect only at leaf nodes. T5 corresponds to the second step of the evaluation 

of B. 

(7) For technical reasons, we assume MH’(Bh = (cp 1 0 kq EMH’(B)} for 0 < k ,< m. 

In addition to what is implied by TO-T,, 1 Y, EMH(B) means Y, cannot be true at 

the root node. As a result, if B is false, the evaluation tree T, for B gives us a model in 

which MH(B) holds at the root node. On the other hand, if B is true, the root node 
must contain Y, according to the rules specified by MH’(B). We thus reach a contra- 

diction and MH(B) is hence not satisfiable. 

Before formally proving all assertions described among the definitions, we note that 

MH(B) can indeed be computed from B in log-space and leave the details to the 

reader. 

3.1.2. Correctness of the transformation function MH 

We now show that the function MH does satisfy Lemma 3.3. 

Let x be any string in W, of length i. Define Z(x) = (Z,, . . . , Zi}, where Zj (1 < j d i) 

is Xj if xj= 1 and Zj is Xj if xj= 0. In particular, define I(E) = 4. We also define 
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U(X)={,!_+, Vi} ifxi=l and U(x)={Li, Ui} ifxi=O. In particular, define U(E)={&}. 

The following lemma establishes the relation between W, and any K-model satisfying 

MH’(B). 

Lemma 3.6. Let B=QIX1 . ..Q.X,A(X1 ,..., X,) be any QBF formula, 
M = ( W, R, h) be any K-model and w0 any world in W such that M, wg I= MH’(B). 
Then there exists a mapping 7 from W, to W satisfying the following properties: 

(1) $s)=wo; 
(2) for any XE W, of length i, M, T(X) I= I(x)u U(x); 
(3) for any XE W, of length i, woRiz(x); 
(4) for any XE W, of length m, 

l if B(x)= 1, then M, t(x) + C,, and 
l if B(x)=O, then M, r(x) + C,; 

(5) for any XE W, of length i, tf B(x)- 1, M, t(x)+ x, and tf B(x)=O, M, 
T(X) I= z. 

Proof. See the appendix. 

The following lemma is a direct consequence of Lemma 3.6. 

Lemma 3.7. Zf B= 1, then MH(B) is K-unsatisfiuble. 

Proof. Assume that there exists a K-model M = ( W, R, h) and a world WOE W such 

that M, w. I= MH(B). Because MH’(B) G MH(B), by property (5) of Lemma 3.6, if 

B = 1 (= B(E)), M, w. I= Y,. However, since 1 Y. is contained in MH(B), we also have 

M, w kYo. So M does not exist and MH(B) is K-unsatisfiable. 0 

We now show the satisfiability of MH(B) in case B is false. 

Lemma 3.8. If B=O, MH(B) is S4-satisfiable. 

Proof. By construction. Let M = ( W,, R, h), where 

l R=R,*, i.e. the reflexive and transitive closure of R,, and 

l h is any function from W, to 2VAR satisfying the following conditions. Let x be any 

world in W,. Then: 

(1) For any ZE{X, ,..., X,,,,Xi ,..., X,, Lo ,..., L,, U1 ,..., U,, u, ,..., a,,,}, 
ZEh(x) iff Zulu U(x). 

(2) For l<i<n, 
CiEh(x) iff Ixl=m and Ai(x)=l, 

CiEh(x) iff Ixl=m and Ai(0. 

(3) For O<i<m, 
xeh(x) iff either (Jxl=i and B(x)=l) or i>lxl, and 

EEh(x) iff either (Jx(=i and B(x)-0) or i>lxj. 
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To show that M, E I= MH(B), we note that clauses (l))(5) given by 

(1) Xi2 OXi, Xi ~ OXi for any O<i<m, 

(2) Lip OUi+r and &I 0 Ui+, for O<i<m, 

(3) Ui~Xi, UiI&and Ui~Xi, UiILiforO<i<m, 

(4) any clause in u 0 6 i < m &i and 

(5) any clause in %? 

are all valid in M because, for any world WE W, and for each clause 13 Y listed above, 

either M, I# 1 or M, w I= r, as the reader can easily verify. 

Therefore, for any world WE W,, for any clause A listed above and for any i30, we 

have M, w I= q ‘A. As a result, M,E I= u 1 ~i,cg K. Furthermore, we have 

M, E + 1 Y, A Lo, so M, E I= MH(B). 0 

Now we have proven Lemma 3.3, which is a direct consequence of Lemmas 3.7 and 

3.8 and the fact that MH(B) can be computed from B in log-space. 

Remark. Since q A = 0 0 A is valid for S4, if we are merely concerned with S4- 

satisfiability of modal Horn clauses, it is possible to get a set of Horn clauses simpler 

than MH(B). We can replace the sequence of modal operators 0 i (i > 1) appearing at 

the front of each clause of MH(B) by a single 0. The simplified MH(B) has modal 

degree 2 and can also be used to prove the PSPACE-hardness of the satisfiability of 

modal Horn clauses for S4. As a result, the satisfiability of modal Horn clauses for S4 

is PSPACE-hard even if the modal degree of the input set of Horn clauses is restricted 

to not greater than 2 and thus is unlikely to be solvable in polynomial time. This 

suggests that the claim of Farinas de1 Cerro and Penttonen [9] that the satisfiability of 

modal Horn clauses can be solved in polynomial time if the modal degree of the Horn 

clauses is limited to a constant is incorrect for S4. 

3.2. Reducing the QBF problem to the satisjiability of modal Horn clausesfor any modal 

logic between K and B 

We now begin to show the second part of Theorem 3.1. The proof strategy is 

analogous to the proof of the first part. We first show the analog of Lemma 3.3. 

Lemma 3.9. There exists a log-space transformation function MB from QBF formulas 

to sets of modal Horn clauses such that for any BEQBF, 

(1) if BE 1, then MB(B) is K-unsatisjable, 

(2) if B-O, then MB(B) is B-satisjable. 

The proof of the following corollary is analogous to that of Corollary 3.4. 

Corollary 3.10. Let _fZ be any modal logic between K and B which has a sound and 

complete semantics. Then the QBF problem is log-space-reducible to the 9-satisfiability 

problem of modal Horn clauses. 
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The second part of Theorem 3.1 is a direct consequence of Corollary 3.10. 

3.2.1. The transformation function MB 

By slightly modifying the set of modal Horn clauses MH(B) used in Section 3.1, we 

can obtain the MB(B) needed for Lemma 3.9. Formally, let 

where T1, T4 and T5 are the same as those given in the definition of MH(B) and 

S= u (O’(Ui~U “~iXi),Oi(Ui~Li),Oi(Ui~Om-iXi),Oi(Ui~Li)}. 
O<i<m 

Before describing the informal meaning of S, we note that, due to the reflexive and 

symmetric nature of the accessibility relation for the modal logic B, we can no longer 

use T2 and T3 defined in Section 3.1 to propagate Xi (and Xi) to descendant leaves 

without resulting in inconsistency. Consider the case that m = 3. In order to propagate 

X1 and 2, to leaves, we have in T, the rules 0(X1x q X1), q 2(X13 OX,), 

0(x, 3 Ox,) and q 2(x, 1 •1 x1 ). Let R be the reflexive and symmetric closure of 

Rg. Then since 1 R* 0 and 0 R* 1, the node 1 (resp. node 0) containing X, (resp. 2,) 

must enforce the node 0 (1) to contain X, (resp. 2,) in order to obey the T, rules. As 

a result, both node 0 and node 1 will contain X1 and x1, which again will enforce all 

leaves to contain X1 and r7i. So we no longer will be able to use all Xi and Xi at each 

leaf to determine a unique interpretation. 

S is essentially another way of propagating Xi and Xi to descendant leaves suitable 

for reflexive and symmetric accessibility relations. It says that if a node x contains 

Ui (Vi), which by T1 means that x is at level i and xi= 1 (0), then every node x’ with 

xRmpix’ must contain Xi (xi). As a result, all descendant leaves of x will contain 

Xi (Xi). Since every leaf has exactly one ancestor at each level i, which by T, must 

contain Ui or Ui but not both, all the Xj’s and xj’s that each leaf x contains thus 

constitute the interpretation I, for the variables appearing in the formula B. It should 

be noted, however, that by S it is possible that some node contains both Xi and Xi, but 

it may happen only when it is an internal node. 

We claim that MB(B) does satisfy Lemma 3.9; the proof resembles that used in the 

proof of Lemma 3.3. To avoid unnecessary duplication, however, we do not present 

the proof here. The interested readers can follow the same line as we did for Lemma 

3.3 to obtain it. 

4. The complexity of modal Horn clauses for S4.3 

In this section we will show that the satisfiability problem for S4.3 with the input 

restricted to modal Horn clauses is NP-complete. Since the satisfiability problem for 

S4.3 in general has been shown to be NP-complete [ 181, we thus only have to show its 

hardness part. 
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Theorem 4.1. The satisfiability problem for S4.3 with the input restricted to modal Horn 

clauses is NP-hard. 

Proof. We will show that the satisfiability problem for classical propositional clauses 

can be reduced to the S4.3-satisfiability of modal Horn clauses in polynomial time. 

The problem is thus NP-hard. 

The polynomial-time transformation function MT is defined as follows. Assume the 

input %? is a set of propositional clauses 

{C,, CZ,..., C,>> 

where m31 and each Ci (l<idm)={Li1,..., Lip,} is a set of literals that does not 

contain complementary literals. 

Let oar(%) = {X,, . . , X,} be the set of propositional variables appearing in %‘. The 

set of propositional variables used in MT(w) includes not only oar(%) but also the set 

{X 1 X~var(V)}, each element Xi of which is a new variable not occurring in +Z and is 

intended to represent the complement of Xi. 

Define MT(‘)=u,<i<, Si, where each Si is given as follows: 

(I) SO=Ur<iQn {O(lxi v_lxi)}; 

(2) S1=()l<i<n { Oxi, Oxi}; 

(3) for l<i<n, let si=O(lXi v 01X,), Bi=O(lXi v OTTi), and let 

S*=Ul<i<n(Si v Si>; 

(4) for each l<i<m, l,<j<pi, let 

lij = 

i 

gk if Lij=lXk, 

gk if Lij=Xk, 

and let 

s3= u {lil v “. v liPi}. 
l<i<m 

The formula set MT(%) defined above is clearly a set of modal Horn clauses; it is 

also easy to see that MT(g) can be constructed from 97 in time polynomial in the size 

of V. Moreover, Lemma 4.3 states that MT is satisfiability-preserving, and so we have 

proved the theorem. 0 

The intuition behind the construction of SO-S2 can be best explained by the proof of 

the following key lemma. 

Lemma 4.2. Let M = ( W, R, h) be any S4.3-model and w any world in W such that 

M,wI=S0vSIuS2.Then foranylQiQn,M,~~g~i~M,w~gi. 

Proof. By Sr, M, w I= OXi A Oxi. So there must exist w’, W”E W accessible from 

w such that M, W’ + Xi and M, W” I= Xi. 
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Since R is connected, we have w’Rw” or w”Rw’ or w’= w”. But the last case is 

impossible, for if w’ = w” we would have M, w I= 0 (Xi A Xi), which is contradictory 

to so. 

In case w’Rw”, M, W’ I= Xi A 0 Xi. SO M, w + 0 (Xi A 0 Xi) (=lSi) and hence 

M, w + ai. Similarly, if w”Rw’, we have M, w k gi. Therefore, either M, w + gi or 

M, W k Si. 
But, by Sz, at least one of gi and Si must be true at w; therefore, M, w /= gi iff 

M, w k Si. 0 

Now by Lemma 4.2 every model-world pair (M, w) satisfying So-S2 uniquely 

determines an interpretation for g which interprets Xi as true (resp. false) if gi (Si) 

holds at w. Moreover, every interpretation for %? must be identical to some interpreta- 

tion determined in this way. Hence we can use gi and gi, respectively, to simulate 

Xi and 1X;; S3 then is just a substitution of gi and gi, respectively, for each Xi and 

lXi occurring in W. Now we show that MT is satisfiability-preserving. 

Lemma 4.3. +.Z is satisjiable iff MT(V) is S4.3-satisjable. 

Proof. * : Since %Z is satisfiable, there exists a literal set E = IL,,. . , L,}, where Li is 

either Xi or 1Xi such that, for each CiG%‘> EnCi # 4. 

Now let M = ( W, R, h), where 

l W is the set of rational numbers Q, 

l R is the “less than or equal to” relation 6 on Q, 

l h(l)=(XilXi~E}U{XillXi~E}, 

l h(2)={Xi(XiEE)U{Xi(lXi~E) and 

l h(n)=+ for any n~Q\{l,2}. 

Note that M is indeed an S4.3-model. It is easy to verify that M, 0 I= A for every 

AES~US~ US,; it is also easy to verify that if Xi (lXi)EE then M, 0 I= gi(Si). Since 

for each 1~ i < m, there exists a literal Li,, EE n Ci, we thus have M, 0 \= liri and hence 

M, 0 )= Ii, v ... v Ii,. AS a result, M, 0 I= S3 as well. 

-z: Let M = ( W, R, h) be any S4.3-model such that M, w0 + MT(g) for some 

w0 E W. From M and wO, we construct a literal set E = { L1,. . . , L, }, where 

Li= 
i 

Xi if M, ~0 I= gi, 

1Xi if M,woj=gi. 

By Lemma 4.2, for 1 < i < n, exactly one of Xi and 1 Xi belongs to E. NOW we show 

that EnC # 4 for each clause CE%‘, so V is satisfiable. Let C= {XUl, . . . , X,, 

1x u,,...,~Xcp} be any clause in GZ where ~30, 830. By S3, we have 

M, wo I= 
( 

v SU, v A SGj 
l<i<a l<jQ/J 1 

So either M, w. I= gu, for some 1 < i < a, or M, w0 + cjL’, for some 1 d j < fi. Accordingly, 

either Xuz~E or lXufEE, and EnC # 4. 0 
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Remark. It should be noticed that our proof about the complexity of modal Horn 

clauses for S4.3 can also be used without change to show that the satisfiability of 

modal Horn clauses for some linear tense logics like CL, SL and PL (see [16] for an 

introduction to these logics) is NP-complete. Like S4.3, the general satisfiability 

problem for all these logics is known to be NP-complete [18]. 

5. The complexity of modal Horn clauses for extensions of K5 

5.1. K5 Horn clause 

The modal clause and modal Horn clause defined in Section 2 are general for all 

normal logics; for specific modal logics more specialized definitions are possible. For 

example, since for S5 every set of modal clauses can be translated into an equivalent 

set of modal clauses of modal degree at most 1, the S5 modal clause is defined in [7] to 

be of the form 

c v q D1 v .‘. v q D, v OEl v ... v OE,, 

where C, Dl,..., D, are classical clauses and El,. . . , E, are sets of classical clauses. 

Indeed, we can show for all extensions, not only of S5 but also of K5, that every set 

of modal clauses can be translated into an equivalent set of modal clauses of modal 

degree at most 2. We can thus obtain a simpler form of the modal Horn clause for all 

extensions of K5. The possibility of such a translation is based on the following 

proposition. 

Proposition 5.1 (Chen and Lin [4]). Let o,o 1 and o2 be any modal operators. Then 
the formulas 

(1) q (A v OB)rOA v 008, 

(2) O(Ar\OB)=OAr\ OOB, 

(3) 01002A-0102A 
are valid for K5 (and hence valid for KD5, KD45, K45 and S5 as well). 

According to Proposition 5.1, every set of modal Horn clauses can be rewritten to 

an equivalent set of modal Horn clauses of modal degree 2 or less in polynomial time 

by the following rewrite rules: 

(1) U(D1 v tlD+OD1 v q UDz; 
(2) q (D1 v ODz)-+UDI v 0 0D2; 
(3) O(D1 v D2)-+ 0 D, v 0 D2; 

(4) O~OO~D~--OIO~DI. 
In the above rules D1 and Dz are any modal Horn clauses, 0, O1 and O2 are any 

modal operators, i.e. I7 or 0. 

The first three rules are used to distribute the principal modal operator of any 

modal clause to each disjunct of the clause; the last rule is used to eliminate 

intermediate modality. Note that both sides of the third rule are equivalent for K. 
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Now we may assume without loss of generality that each clause of the set of modal 

Horn clauses under consideration has the form 

MICl v M2Cz v ... v M,C,, 

where n 20, and each MiCi is of the form L, 0 0 L or 0 q C, where L is any 

propositional literal, C is any propositional Horn clause and 0 is 0, 0 or empty. 

We shall call any modal Horn clause of the above form a KS Horn clause and each 

MiCi is called a IGliteral; in particular, the KS-literal which contains a positive 

propositional literal is called a positive KS-literal and other KS-literals containing no 

positive propositional literals are called negative KS-literals. Moreover, if a positive 

KS-literal contains no negative literals, it is called a KS-atom. Finally, any occurrence 

of a modal operator in a K5 Horn clause is called a level-l (occurrence of) modal 

operator if it is not in the scope of any modal operators; otherwise it is in the scope of 

another modal operator and we shall call it a level-2 modal operator. 

Example 5.2. Let S = {A, B) be a set of modal Horn clauses where 

(1) A= q (Op v 0 q (Olq v lr) v 01~) and 

(2) B=OOO(1pvq). 

By applying the rewrite rules, we get 

A ~I,OpvOOCl(Oiqvir)vOOip, 

~~OpvOOOOiqv00OirvOOip, 

~-*+OpvOO~qvC!O~rvOO~p(=A’), 

B--t q O(1p v q) (=B’). 

In A’, there is one KS-atom 0 Op in which the 0 is a level-2 occurrence, and all the 

other KS-literals are negative; in B’ there is one positive KS-literal Cl q (lp v q). 

5.2. A modal Herbrand theorem for KD5 

Before demonstrating our algorithm, we need to establish a modal version of the 

Herbrand theorem for KD5. The classical Herbrand theorem says that to determine 

satisfiability of a given set of classical clauses, you only have to consider all structures 

whose domain is the Herbrand universe. Likewise, our modal Herbrand theorem tells 

us that, to test the KDS-satisfiability of a given set S of K5 Horn clauses, we only have 

to consider all KDS-models with a common fixed frame determined by the skolem- 

ization of S. 

The first step of the theorem is to skolemize the given set of K5 Horn clauses, by 

which we simply associate each occurrence of 0 with a unique number. The goal of 

the skolemization is to determine the frame common to all KDS-models that need to 

be considered. 

Definition 5.3. Let S be a set of K5 Horn clauses and N the set of nonzero natural 

numbers. A skolemization of S is a 1-l mapping sk from the set of all occurrences of 



112 C.C. Chen, I.P. Lin 

0 in S to N. If sk is a skolemization of S, we use Z; (sk) (resp. Z,(sk)) to denote the 

image of all level-l (resp. level-2) occurrences of 0 in S. We define Ii (sk) = 1; (sk) if 

Z;(sk) # 4; otherwise define Z,(sk)= {O}. Note that 0 never occurs in Z,(sk). Finally, 

define Z(sk)=Z,(sk)uZz(sk). Z(sk) is called the index set of sk and Z1(Zz) is called the 

level-l (level-2) index set of sk. Since all occurrences of 0 in S are typed the same, to 

help distinguish among different occurrences of 0, we use 0 subscripted with an 

index i to refer to the occurrence skolemized by i, i.e. sk( 0 i) = i. 

Definition 5.4. Let S be any set of K5 Horn clauses and sk any skolemization of S. 

Then we call any KDS-model Msk = ( Wsk, Rsk, h) a Herbrand KDS-model based on 

S and sk, where 

l W,, = {E} uZ(sk), 

l Rsk={(~,i)Ii~Zl(sk)}u{(i,j)Ii,j~Z(sk)} and 

l h is any function from W,, to 2VAR. 

In other words, every Herbrand KDS-model based on S and sk has the indexed set 

together with a distinguished initial world “6” as the set of worlds, and has an 

accessibility relation in which every index is accessible from every index and every 

level-l index is accessible from the initial world. 

Moreover, we also want every skolemized Oi to be interpreted as the world 

i instead of as an existentially quantified world variable. Therefore, besides the 

standard satisfaction relation + common to all Kripke models, we also need another 

satisfaction relation l=.sk for Herbrand KDS-models, whose definition is basically the 

same as that of the standard satisfaction relation except that if a formula of the form 

OiA is to be interpreted as true, it means that A is true at the world i and i is accessible 

from the current world. In other words, we have 

Msk,w I=sk OiA iff wR,,i and Msk,i I=sk A for any iEZ(sk) 

in the definition of J=sk; the definitions for other connectives such as 1, v and 0 are 

all the same as those defined for the standard I=. 

It should be noticed that it is with respect to the relation bsk instead of the standard 

satisfaction relation that our algorithm determines KDS-satisfiability of modal Horn 

clauses. Our modal Herbrand theorem states, however, that these two relations 

determine the same satisfiable sets of modal Horn clauses. 

Lemma 5.5. Let S be any set of K5 Horn clauses and sk any skolemization of S. Then 

(1) for any Herbrand KDS-model Msk = ( Wskr Rsk, h) based on S and sk, Msk, w I=sk 

A implies Msk, w I= A, where w is any world in W,, and A is any occurrence of 

a subformula of S; 

(2) (modal Herbrand theorem for KD45) S is KDS-satisfiable if and only if’ there is 

a Herbrand KDS-model Msk = ( Wsk, Rsk, h) based on S and sk such that Msk, E ksk S. 

Proof. See the appendix. 
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5.3. An algorithm for testing KDS-satisjiability of K5 Horn clauses 

According to Lemma 5.5, we can now present a polynomial-time algorithm for 

testing the KDS-satisfiability of a set of K5 Horn clauses. The algorithm is given as 

follows. 

Algorithm KDS-SAT(S);; The input S is a set of K5 Horn clauses. 

(1) Skolemize S by labelling each occurrence of 0 in S with a unique number. Let sk 

be the resulting skolemization and I (resp. I1 and 12) the index set (resp. level-l 

and level-2 index sets) of sk. 

(2) Atom = the set of all KS-atoms of S. 

(3) Cmp = S\Atom. 

(4) Repeat 

for each K5 Horn clause C in Cmp do 

(4.1) Do one of the following depending on the format of C (if no case matches, 

do nothing): 

Case I: C = D v MC’, where C’ is a negative classical clause (i.e. no modality). 

Then if inconsistent-with-Atom(MC’) then replace C in Cmp by D. 

Case 2: C= Mp is a KS-atom. Then 

remove C from Cmp and add it to Atom. 

Case 3: C=M(p vlp, v ... v lp,) (n2 1) is a positive KS-literal. Then 

Cmp=Cmp\{C}ujUOOipv q Oilpl v ... v q OilpJiEuul(M,) 

nIz}~(Oip V Oilpl V ... V Oilp,I iEvul(M,)nZ1}. 

end for 

until either the empty clause _L E Cmp or Cmp is not changed in the last for-loop. 

(5) If I E Cmp return (“unsatisfiable”) else return (“satisfiable”). 

(6) end. 

In algorithm KDS-SAT, some terms require an explanation. 

(1) The set variable Atom is used to collect the set of KS-atoms that must be true at 

the initial world E, and Cmp contains the remaining K5 Horn clauses. 

(2) The function ual(M) is used to return the set of worlds that the modality 

M denotes in W,, and hence is defined as follows: 

l if M is empty then vul(M)={e}; 

l if M= Oi or 0 Oi or Oj Oi then uul(M)=ji}; 

l if M= 0 then vul(M)=lI; 

l if M= OiO or 00 then uul(M)=Z. 

(3) The predicate inconsistent-with-Atom( where C=(-I~, v ... vlp,) is 

a negative clause, is used to check if MC is inconsistent with Atom. In other words, if 

there is a world iEuul(M) such that, according to Atom, all p;‘s (1 <k,<n) are true at 

world i, then inconsistent-with-Atom returns true; otherwise it returns false. To 

implement this predicate, we can maintain for each propositional variable p a set 

variable twd( p) recording all worlds in which p must be true according to the current 
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value of Atom. So, for example, if Atom contains Up, Cl Oip and p about p, then 

twd(p)=l, u{i, E}. With such a data structure available, it is easy to implement 

a quadratic-time algorithm for this predicate. 

We now analyse the time complexity of this algorithm. That all steps in the 

algorithm but the repeat loop can be completed in polynomial time is easy to see; the 

critical part of the algorithm is the repeat loop, which requires time O(k a), where k is 

the number of times step 4.1 is executed and a is the maximum number of steps 

required to execute any one of the three cases inside step 4.1. 

For case 1 of step 4.1, the most expensive operation is the test inconsistent- 
with-atom( which requires time O(lS I’). For case 2, 0( ISI) time is 

sufficient, while for case 3, the split of C results in the generation of at most I W,, I 

instances of C to be added to Cmp, thus requiring time O(lSl*) at most. To sum up, 

cc=o(lSl*). 

Now we see at most how many times step 4.1 would be executed before termin- 

ation. The strategy is to define a well-founded ordering on sets of K5 Horn clauses 

and show that the order of Cmp decreases for every execution of the for-loop at 

step 4. 

The ordering is defined inductively as follows: 

(1) For each clause C = D v MC’ where C’ is a negative Horn clause, define 

C # = D # + 1. This corresponds to case 1 of step 4.1. 

(2) For each clause C=Mp being a KS-atom, define C# = 1. This corresponds to 

case 2 of step 4.1. 

(3) For each positive clause C=M(p v p1 v .‘. vpn) (n>O) define 

C # = 1+ I W,, I x (1 + n). This corresponds to case 3 of step 4.1. 

Finally, for a set of KS-clauses S, define S # = CCES C # . 

It is now easy to see that the value of Cmp# decreases at least by 1 after each 

execution of any case of step 4.1. But the until condition of the repeat statement 

requires that at least one case be executed for any but the last iteration of the repeat 

loop; the number k is thus bounded by the initial value of Cmp#, which has order 

O(1 W,, I x ISl)=O(lS I’), times the maximum possible cardinality of Cmp, which has 

order 0( ISI*) as well. To sum up, k=O( IS 14). As a result, KDS-SAT takes time 

O((S16) totally; we thus have the following lemma. 

Lemma 5.6. KDS-SAT(S) always terminates in time polynomial in the size of S. 

Before proving the correctness of KDS-SAT, we first give an example to show how 

KDS-SAT works. 

Example 5.7. Let the set of K5 Horn clauses S= { Op v 0 0 (lq v lr), 0 0 q, 
0 Oiq v Oq, Our, q lp}. 

After skolemization, we might get 

S={Olpv q l[7(1qvlr),UO2q, 03041qv 05q,00r,01p}, 
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with 

II= {1,3,5>, Zz = (2,4} and fG={s, 1,2,3,4,5). 

After step 3, we get 

Atom={OUr, q O,q), 

twd(r) = { 1,2,3,4,5}, rwd(q) = 12) 

and 

Cmp=(O,p v q O(iq v ir), O3 041q v O,q, q ip). 

The first iteration of the repeat loop will remove the KS-literal 0 0 (-14 v lr) 
from the clause 0 1p v 0 0 (I q v 1 r) because 0 0 (1~ v 1 q) is inconsistent with 

Atom: 0 I7 (1 q v 1 r) implies one of q and r must be false at each world, but by Atom, 

both q and r must be true at the world “2”. 

After the second iteration of the repeat loop, 0, p will be moved from Cmp to Atom 

and “1” will be added to twd(p). And after the third iteration, the program will 

terminate with “unsatisfiable” returned for the empty clause will be generated at this 

iteration by virtue of the inconsistence of q lp and Or p. 

5.4. Correctness of KDS-SAT 

We now prove the correctness of KDS-SAT. 

Lemma 5.8. Assume KDS-SAT(S) terminates after the kth execution of step 4.1. Let 
Atom’ and Cmp’ be the values of Atom and Cmp, respectively, immediately before the 
first execution of step 4.1, and Atom’ and Cmp’ be the values of Atom and Cmp, 
respectively, immediately after the ith execution of step 4.1 for 1 <i< k. Then for any 
Herbrand KDS-models Msk based on S and sk determined at step 1, we have 

M,,,E/=skAtomiuCmpi iff Msk,~+=sk Atom’+‘uCmp”‘(S) 

for any O<i<k. 

Proof. Let C be the K5 Horn clause selected from Cmp’ for the (i+ 1)th execution of 

step 4.1. Then there are 4 conditions to be considered depending on which case of step 

4.1 is executed. 

(1) Case 1 is executed. Then C= D v MC’, MC’ is a negative KS-literal and is 

inconsistent with Atom’. So Cmpif’(S)=Cmpi\{C}u{D}, and Atom’= Atom’+‘. 
Since D subsumes C, Msk, E I=sk D implies Msk, E I=sk C. On the other hand, since Atom’ 
and MC’ are inconsistent with each other, Mskrs bsk Atom’u{D v MC’} implies 

Msk, E ksk Atom’u (D >. Therefore, Msk, E bsk Cmp’u Atom’ implies Msk, E J=sk 

Cmp 
i+lvAtomi+l. 

(2) Case 2 is executed. Then Cmpi+luAtomi+‘=CmpiuAtomi; the lemma 

obviously holds. 
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(3) Case 3 is executed. Then the C at Cmp is replaced by the set T of all 

instances of C with respect to W,,. The lemma thus holds because IV&, E (=sk C iff 

Msk > E l=sk T. 
(4) No cases match. Since Atom and Cmp are not changed, the lemma obviously 

holds. 0 

Lemma 5.9. (1) If KDS-SAT(S) returns “unsatisjable”, S is not KDS-satisjiable. 
(2) If KDS-SAT(S) returns “satisfiable”, S is KDS-satisjiable. 

Proof. Assume KDS-SAT(S) terminates after the kth execution of step 4.1. 

(1) Since KDS-SAT(S) returns “unsatisfiable”, the empty clause _L~Crnp~. 

AtomkuCmpk, which by Lemma 5.8 is equivalent to S, thus is unsatisfiable (with 

respect to I=&). So, by the modal Herbrand theorem, S is not KDS-satisfiable. 

(2) Let Msk=( Wsk,Rsk,h) where h(i)={p[ MpEAtomk and iEual(M)}. 
Namely, h(i) contains only those propositional variables that must be true at i for 

each iE W,,. 
It is obvious that Msk, & I=& Atomk. To see that Msk, & ksk Cmpk as well, we note that 

since Cmp was not changed in the last repeat loop, Cmpk must be either an empty set, 

which is vacuumly true, or a set of K5 Horn clauses of the form C=D v MC’, where 

C’=1p, v ..’ v 1 pa is a negative propositional clause, such that MC is consistent 

with Atomk, i.e. for each i in ual(M), there exists a pj (1 <j <.a) such that i$twd(pj). 
Accordingly, Msk, E I=sk MC’ and hence Msk, E Icsk C for each C in Cmpk. Finally, by 

Lemmas 5.5 and 5.8, S is KDS-satisfiable. 0 

5.5. Complexity results 

Now we have shown the first result of this section. 

Theorem 5.10. The satisfiability problem for KD5, KD45 and S5 with the input 
restricted to modal Horn clauses can be solved in polynomial time. 

Proof. The case for KD5 is a direct consequence of Lemmas 5.6 and 5.9, To avoid 

unnecessary duplication, we do not provide algorithms for KD45 and S5 here. But in 

fact they are almost the same as KDS-SAT except that the definition of twd, ual and 

inconsistent-with-Atom should be slightly modified to reflect the differences among the 

corresponding models, and are indeed simpler than KDS-SAT. 0 

After we have shown that the KDS/KD45_satisfiability of modal Horn clauses can 

be solved in polynomial time, it is easy to obtain the same result for K5 and K45 as 

well since, according to the following proposition, to test the KS/K45_satisfiability of 

any formula it suffices to test whether it is KDS/KD45_satisfiable or satisfiable in 

a model with one world only. 
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Proposition 5.11. Let A be any modal formula. Then A is KS-satisfiable (resp. K45- 
satisjiable) iff either A is KDS-satisjable (resp. KD45-satisfiable) or A is satisjiable in 
a model with one world only. 

Proof. The if part is trivial since every single-world model and every KDS-model 

(resp. KD45) are KS-models (resp. K45-models). 

For the proof of the only-if part, let M = ( W, R, h) be any KS-model such that 

M, wO I= A for some WOE W. 
If there is no world in W accessible from wO, then let M’= ({ w,,>, 4, h’) and 

h’(w,)=h(w,). It is easy to verify that M’, wO I= A. 
On the other hand, if w0 is not an ending world, i.e. there is a world accessible from 

wO, then let M’= ( W’, R’, h’), where W’= {W’E WI wOR*w’, R* is the reflexive and 

transitive closure of R} and R’ and h’ are R and h restricted to W’, respectively. 

It is easy to verify that M’, w0 /= A and M’ is a KDS-model. As a result, A is 

KDS-satisfiable. The K45-KD45 case is similar. 0 

But to test the satisfiability of a given set S of modal Horn clauses in single-world 

models is very easy: we simply replace every subformula of the form q A in S with true 
and replace every subformula of the form 0 A in S with false. It is easy to show that 

S is satisfiable in a single-world model if and only if the resulting set of classical Horn 

clauses is satisfiable for classical propositional logic, which is well known to be 

solvable in linear time [6]. We thus have the following theorem. 

Theorem 5.12. The satisjiability problem for K5 and K45 with the input restricted to 
modal Horn clauses can be solved in polynomial time. 

6. Conclusion 

We have shown in this paper that the satisfiability problem for any modal proposi- 

tional logic between K and S4 still remains PSPACE-hard even if we restrict the input 

formula to modal Horn clauses. This result refutes the expectation of getting a poly- 

nomial-time algorithm for these logics as long as Pf PSPACE. Likewise, we have 

shown that the same problem for any modal logic between K and B is PSPACE-hard 

as well. Accordingly, the satisfiability problem for K, T, KB, B and S4 is PSPACE- 

complete whether the formula is restricted to modal Horn clauses or not. We also 

showed that the satisfiability of modal Horn clauses for S4.3 and for some linear tense 

logics like CL, SL and PL is NP-complete. Again, each have the same complexity as 

the unrestricted case. All the above results are negative in the sense that restricting the 

formula to modal Horn clauses does not decrease the inherent difficulty of the 

satisfiability problem. Fortunately, we did find some extensions of K5 including 

K5, KD5, K45, KD45 and S5, for which the satisfiability problem in general is NP- 

complete, but when restricted to modal Horn clauses, the problem can be solved in 

polynomial time. 
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Appendix 

A.1. Proof of Lemma 3.6 

In order to prove Lemma 3.6, we need some facts about MH’(B) and any K-model 

satisfying it. 

Proposition A.l. Let M = ( W, R, h) be any K-model such that M, w. I= MH’(B) for 
some WOE W. Then, for any world WE W with w. Rkw where 06 k<m, 

M, w I= MH’(Bh 

In particular, for 0 $ k < m, the formulas 

(1) Lk3 0Uk+l,Lk3 ook+l, and 

(2) any clause in &k are satisfied at w; for 0 < k < m, the formulas 

(3) Uk~Xk,Uk~Lk,Uk~Xk,Uk~Lk, 

(4) Xi I 0 Xi, Xi I> OXi, where 16 i < k, are satisfied at W; for k = m, 
(5) any clause in %? is satisfied at w. 

Proof. Simple inductive proof. 0 

The proof of Lemma 3.6 is now shown below. 

Proof of Lemma 3.6. (l), (2), (3): The mapping z is defined by induction on the 

ordering (W,, Rs); in the meantime, the first three properties are proved simultan- 

eously. 

Basic case: x = E. Let r(x) = wo. Obviously, the T so constructed satisfies properties 

(l), (2) and (3) as far as x is concerned. 

Induction case: Assume that the value oft for every element of W, of length <k has 

been defined. Now consider any XE W, of length k+ 1 <m. 
Case 1: x=z. 1. Since M, w. + MH’(B) and, by induction hypothesis of (3), 

w. Rk~(z), according to Proposition A.l, we have M, T(Z) k MH’(B)k. In particular, 

M,r(z)k Lk XJ O&+1. But, by induction hypothesis of (2), M, z(z) + Lk (E U(z)), 
therefore M, T(Z) I= 0 Uk + i, and there must exist a w E W accessible from T(Z) such that 

M,wl= uk+,, So let T(X) = w. Now we verify that w satisfies properties (2) and (3). 

Since M, T(Z) /= Z(z)uMH’(B), and, for any ZEN, Z 1 q ZEMH’(B),, we have 

M,T(z)+ OZforanyZEl(z).HenceM,wI=I(~).Moreover,M,w~{U~+~~ Lk+l, 
U k+l 3xk+l} (cMH’(B)k+d and Mwl= uk+l, SO Mwi= Lk+l A uk+, AXk+l. 

Hence M, w I= Z(x)u U(x) and property (2) was verified. 

That w satisfies property (3) is easy to see since, by T(Z) RT(x) and by the hypothesis 

woRkz(z), we have woRk+‘~(x). 

Case 2: x=z. 0. Similar to case 1. Omitted here. 

(4) To prove property (4) by induction on the structure of (subformulas of) A, we 

need a stronger version of property (4) namely, 
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(4’) For any x=x1 . . . X,E W, of length m and for any subformula Ai of A, 

l if Ai(xl, . . . , X,)E 1, then M,T(x) I= Ci, and 

l if Ai(xl) X,)~O, then M,T(x) I= Ci. 

The proof of (4’) is as follows. Assume z(x) = w. By properties (2) and (3) of Lemma 3.6, 

and by property (5) of Proposition A.l, we have M, w + Z(x)u {L,,,} u%?. 

Now consider any subformula Ai of A. 

Basic case: A,=X, for some propositional variable Xj. 

If xj= 1 (hence Ai( l), then Xj~Z(x). Since Xj A L, 1 CiF%‘, M, w I= Ci; 

If xj= 0 (hence Ai _ O), then Xj~I (x). However, Xj A L, 3 Ci is also contained in 

~, SO M,w~ Ci. 

Induction case 

Case 1: Ai =l Aj. If A,(x)= 1, then Aj(X)rO. Thus, by induction hypothesis, 

M, w /= Cj. Moreover, M, w I= Cj A L, 1 CiE%‘g SO M, w k CL. 

The case that Ai( is similar to the above; we omit it here. 

Case 2: A,=A, A Ak. If Ai(x)zl, then Aj(X)~l and A,(x)=l. Hence, from 

Cj A Ck A L, 3 C,E%.? and M, w )= Cj A Ck obtained by induction hypothesis, we have 

M, w I= Ci. On the other hand, if A,(x) ~0, then either Aj(X)-0 or Ak(x) ~0. SO, by 

induction hypothesis, either M,w I= Cj or M, w + ck. However, since M, w I= 

{cj A L,=,ci, c, A L,,,I~~]c_%?, bothcases imply M,w/= Ci. 

(5) Property (5) is proved by induction on the ordering (W,, R, ‘), where Ri ’ is the 

reverse of R,. 

Basic case: 1x1 =m. Since B(x)= A(x) (= A,(x)), M, z(x) + L,, and 

M, r(x) I= {C, A L, I Y,, c, A L, 3 y,} c %‘, according to property (4), if B(x)= 1, 

then M, T(X) I= C, and, consequently, M, T(X) + Y,; on the other hand, if B(x) = 0, 

then M, z(x) I= cp and, consequently, M, T(X) I= r,. 

Induction case: 0 d )x ) = i < m. 

CaseI: Qi+~=V.IfB(x)~1,thenB(x~1)~1andB(x~0)~0.Byinductionhypoth- 

esis and property (2) M, z(x . 1) I= I/i+ 1 A v+ 1 and M, T(X . 0) (= Ui+ I A x+ 1. More- 

over, we have M,T(x& O(Ui+l A x+l)A O(fli+l A yi+l)x yi (EMIT’(B),), 

T(X) Rz(x . l), and z(x)R~(x . 0). Hence M, s(x) + Yi. For the converse, if B(x) z 0, then 

either B(x . l)=O or B(x . O)=O. By induction hypothesis and property (2), we 

have either M,T(x.T)(= Ui+l A z+, or M,z(x.F)+ Vi+, A z,,. Moreover, we 

also have M,T(x))= {O(Ui+, A Fk+l)~ g,O(Ui+l A Yk+l)~ FL} (GMH’(B)i), 

z(x)Rr(x. 1) and ~(x)Rz(x.O). Hence M,T(x)+ z. 

Case 2: Qi+ 1 = 3. Dual to case 1. Omitted here. 0 

A.2. Proqf of Lemma 5.5 

Proof. The proof is by induction on subformulas of S. 

The cases that A=p, A=ip, A=B v C, A=B A C or A= Up are obvious since 

then bsk and I= have the same definitions. So we only have to consider the case that 

A has the form OiC. By definition, Msk, w bsk OiC iff wRski and Msk, i I=sk C, which, 

by induction hypothesis, implies Msk, i b C. Hence Msk, w + 0 C. 
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(2) The if part is a direct consequence of (l), since Msk, E I= S implies S is KD5- 

satisfiable. 

For the proof of the only-if part, let M = ( W, R, h) be any KDS-model such that 

M, w. I= S for some woe W. Our goal is to construct a Herbrand KDS-model 

Msk = ( Wsk, Rsk, h’) from M, w. and sk such that Msk, E bsk S. The contents of W,, and 

Rsk depend on sk only and have been defined in Definition 5.4. To determine h’, we 

first define a mapping z from W,, to W as follows. 

(1) @)=wg. 

(2) For each i~Z;(sk), let OiC be the KS-literal in S with Oi as principal operator. 

If M, w. + OC, then arbitrarily choose any world w’ accessible from w. with 

M, w’ + C and let r(i) = w’; otherwise, arbitrarily choose any world w’ accessible from 

w. and let r(i) = w’. In case 1; (sk) = 4, let ~(0) be any world accessible from wo. 

(3) For each iEZ,(sk), let 0 OiC be the KS-literal in S in which Oi occurs. If 

M, w. I= 0 0 C, then arbitrarily choose any W”E W such that w. R’w” and M, w” + C 

and let z(i)= w”; otherwise, choose any W“E W such that wORZw” and let z(i)= w”. 

For any in Wsk, define h’(i)= h(z(i)). 

We now prove that Msk,& I=sk C (=MICl v ... v M,,C,) for each K5 Horn clause 

C in S. Hence Msk, E I=sk S. 

By definition, M, w. I= Ml Cl v ... v M,C, iff M, w. + MiCi for some 1 didn. 

There are five cases we have to consider depending on Mi. 

Case 1: Mi is empty. Since the truth of Ci at w. depends on h(w,)=h’(c) only, we 

thus have Msk,& Izsk MiCi (=Ci). 

Case 2: Mi= Oj (and j~Z,(sk)). Since M, w. I= 0 Ci, by definition of z, 

M, z( j ) (= Ci. But Ci contains no modality; we thus have Msk, j ksk Cf. Hence 

MA>& Iksk OjCi. 
Case 3: Mi= 0, since M, w. + MiCi, for every world w’ accessible from wo, 

M, w’ + Ci. In particular, M, z( j ) I= Ci for every j EZ~ (Sk), which implies Msk, j I=sk Ci 

for every jEZl(sk). Hence Msk,& I= MiCi. 

Case 4: Mi = 0 Oj, where 0 is either 0 or 0 (and j EZZ(sk)). Similar to case 2. 

Case 5: Mi= 0 0, where 0 is either 0 or 0. Similar to case 3. 0 
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