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Abstract 

In the last few years, the semantics of Petri nets has been investigated in several different 
ways. Apart from the classical “token game”, one can model the behaviour of Petri nets via 
nonsequential processes, via unfolding constructions, which provide formal relationships between 
nets and domains, and via algebraic models, which view Petri nets as essentially algebraic theories 
whose models are monoidal categories. 

In this paper we show that these three points of view can be reconciled. In our formal de- 
velopment a relevant role is played by DecOcc, a category of occurrence nets appropriately 
decorated to take into account the history of tokens. The structure of decorated occurrence nets 
at the same time provides natural unfoldings for Place/Transition (PT) nets and suggests a new 
notion of processes, the decorated processes, which induce on Petri nets the same semantics as 
that of unfolding. In addition, we prove that the decorated processes of a net can be axioma- 
tized as the arrows of a symmetric monoidal category which, therefore, provides the aforesaid 
unification. 

0. Introduction 

Petri nets, introduced by Petri in [22] (see also [23,25,26]), are a widely used model 
of concurrency. This model is attractive from a theoretical point of view because of its 
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simplicity and because of its intrinsically concurrent nature, and has often been used 
as a semantic basis on which to interpret concurrent languages (see e.g. [33,21,9,5]). 
Concerning Petri nets themselves, several different semantics have been proposed in 
the literature. Most of them can be coarsely classified as process-oriented semantics, 
unfolding semantics, or algebraic semantics, though the latter is not as clearly delimited 
and not as widely known as the former two classes. Of course, such classes are not 
at all disjoint, as this paper aims to support. We further discuss these approaches 
below. 

To account for computations involving many different transitions and for the causaZ 
connections between the “events” which constitute them, the basic notion of computa- 
tion of Petri nets has been formalized using various notions of process [24,10,2]. The 
main criticism raised against process models is that they do not provide a semantics 
for a net as a whole, but specify only the meaning of single, deterministic compu- 
tations, while the accurate description of the fine interplay between concurrency and 
nondeterminism is one of the most valuable features of nets. 

Other semantic investigations have capitalized on the algebraic structure of 
Place/Transition (PT) nets, first noticed by Reisig [25] and later exploited by Winskel 
[35]. The clear advantage of these approaches resides in the fact that they tend to 
clarify both the structure of the single PT net, so giving insights about their essential 
properties, and the global structure of the class of all nets; providing, for example, 
useful combinators able to describe operations such as parallel and nondeterministic 
composition of nets [34,35, 14,3,4, 13, 16, 181. 

The formal framework which has proved superior for this kind of investigations 
is category theory. The discovery of categories, occurred in the context of algebraic 
topology in the early forties, emphasized the by now well-established conviction that 
mathematical entities are to be studied in terms of their structure, i.e. in terms of 
the abstract properties that they enjoy, rather than in terms of their actual elements. 
Indeed, the theory of categories builds on such conceptual guidelines introducing a 
new idea: the entities we intend to investigate can be equipped with a notion of mor- 
phism by means of which all their relevant structural properties can be expressed. 
(Of course, the actual meanings of “morphism” and “structure” depend on the spe- 
cific nature of the subject one is considering.) This paradigm is clearly well suited 
for the study of models of computation, where the entities one considers, i.e. system 
or behaviour descriptions of some kind, come naturally with an associated notion of 
“morphism”, e.g. simulations, bisimulations, or similar behaviour-based relationships, 
which encapsulates their real essence. This is in fact also the case of Petri nets whose 
very structure suggests a notion of morphism which captures the intuitive idea of 
simulation and, therefore, the idea of behaviour itself. Then, with this understanding 
of the role of category theory, founding an algebraic theory of Petri nets on cate- 
gories simply means considering an abstract framework in which behaviour is a “first- 
class citizen”. One of the first direct benefits of the use of a categorical framework 
is that, as a generalization of universal algebra, it provides universal constructions 
which can give fully satisfactory justifications to otherwise ad hoc defined combina- 
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tors. For example, the parallel and nondeterministic compositions of nets discussed 
above can be understood, respectively, as products and coproducts in the category of 
nets. 

An original interpretation of the algebraic structure of PT nets has been proposed 
in [14], where the theory of monoidal categories is exploited to the purpose. Unlike the 
preceding approaches, [ 141 yields an algebraic theory of Petri nets in which notions such 
as firing sequence, case graph, relationships between net descriptions at different levels 
of abstraction, duality, and invariants find adequate algebraic/categorical (universal) 
formulations. Alternative interesting categorical approaches are [3,4]. 

In addition to that, since from the formal viewpoint categories are simply algebraic 
graphs, and in particular graphs whose arcs are closed under an operation of sequential 
composition, it is often the case that the computations of a single behavioural entity, 
say a Petri net, can be modelled themselves as a category, yielding in this way an 
axiomatization of its space of computations. One may call this use of categories “in 
the small”, as opposed to their use “in the large” to study the global properties of the 
entire class of nets as illustrated above. This idea has been exploited in [6], where it 
is shown that the commutative processes [2] of a net N are isomorphic to the arrows 
of a symmetric monoidal category Y[N]. Moreover, [6] introduced the concatenable 
processes of N - a slight variation of Goltz-Reisig processes [lo] - and structured them 
as the arrows of the symmetric monoidal category 9[N]. In particular, the distributivity 
of tensor product and arrow composition in monoidal categories is shown to capture 
the basic identifications of net computations, thus providing a model of computation 
for Petri nets. 

Roughly speaking, the unfolding semantics consists, as the name indicates, in “un- 
folding” a net to simple denotational structures such that the identity of every event 
in their computations is unambiguous. However, not every assignment of denotations 
yields an appropriate semantics for nets. In other words, when defining an unfold- 
ing semantics, an integral part of the work is to provide some justification of ad- 
equacy of the obtained semantics. Exploiting the categorical framework, it is pos- 
sible to achieve such a justification implicitly and more satisfactorily than appeal- 
ing to mere intuition. The idea is to ensure that the denotation assigned to each 
net enjoys a certain universal property whose role is exactly to guarantee that, for 
the given target category, the assignment is, informally speaking, “as good as pos- 
sible”. The theory of categories provides the right notion to express this: the no- 
tion of adjunction. Thus, one would like to identify an adjoint functor assigning 
a denotation to each PT net and preserving certain compositional properties in the 
assignment. This is exactly what the present authors - building on Winskel’s work 
on safe nets [34] - have done in [15, 161 for PT nets (see [8, 1 l] for related 
approaches). 

In Winskel’s work - which in turn builds on the previous work [ 191 - the denotation 
of a safe net is a coherent finitary prime algebraic Scott domain [32], or dI-domain [l]. 
Winskel shows that there exists a coreflection - a particularly nice form of adjunction 
_ between the category Dam of (coherent) jinitary prime algebraic domains and 
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the category Safe of safe Petri nets. This coreflection factorizes through the chain of 
coreflections 

where PES is the category of prime event structures (with binary conflict relation), 
which is equivalent to Dom, Occ is the category of occurrence nets [34] and e--’ is 
the inclusion functor. In [ 15,161, such a chain has been extended to a quite general 
category PTNets of PT nets by defining the unfoldings of PT nets and relating them 
by means of an adjunction to occurrence nets and therefore - exploiting the already 
existing adjunctions - to prime event structures and finitary prime algebraic domains. 
Namely, the adjunction between Dam and PTNets is the composition of the chain of 
adjunctions 

% L-1 
<A DecOcc PTNets 

(4’ 
9 I-l 

ti 
9 I-l 

8 I-l 
occ 

UI-1 , 

+xTr 4 
Dam 

Br 1-l 

where DecOcc is the “key” category of decorated occurrence nets. These are oc- 
currence nets in which places belonging to the post-set of the same transition are 
partitioned into families. In this way, since families are used to relate places cor- 
responding in the unfolding to multiple instances of the same place in the original 
net, they naturally represent the unfoldings of PT nets and can account for the mul- 
tiplicities of places in transitions. It is worth mentioning that, although the adjunction 
((9[-])+, F%[_]) : J& - PTNets is not a coreflection, a fact which would guaran- 
tee the ideal situation, it is a quite natural construction; moreover, it does restrict to 
Winskel’s coreflection from @ to Safe, and, therefore, all the right adjoints with 
source category PTNets in the chain above are proper “conservative” extensions of 
the corresponding timctors with source Safe in Winskel’s chain. 

We have already mentioned that these three views of net semantics are not mutually 
exclusive and, in fact, we have discussed how [6] provides a unification of the process- 
oriented and algebraic views via the categories F[N] and S[N] modelling, respectively, 
commutative and concatenable processes. Concerning the relationships between process 
and unfolding semantics, in the case of safe nets the question is easily answered by 
exploiting the existence of a coreflection of & into Safe, which directly implies 
the existence of an isomorphism between the processes of N and the deterministic 
finite subnets of @EN], i.e. the finite configurations of b%![N]. (More details about 
such correspondence will be given in Section 3.) Thus, in this case, the process and 
unfolding semantics coincide, although it should not be forgotten that the latter has the 
great merit of collecting together all the processes of N as a whole, thus accounting 
at the same time for concurrency and nondeterminism. 
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In this paper we study the relationships between the algebraic paradigm, the process 
semantics described above, and the unfolding semantics for PT nets given in [ 15, 161. 
We find that, in the context of general PT nets, the latter two notions do not coincide. 
In particular, the unfolding of a net N contains information strictly more concrete than 
the collection of the processes of N. However, we show that the difference between 
the two semantics can be axiomatized quite neatly and simply. In particular, we intro- 
duce a new notion of processes, whose definition is suggested by the idea of families 
in decorated occurrence nets, and which are therefore called decorated processes, and 
we show that they capture the unfolding semantics, in the precise sense that there is 
a one-to-one translation between decorated processes of N and finite configurations 
of bF%[N]. Then, following the approach proposed in [6] for the case of nonse- 
quential processes, we introduce the notion of decorated concatenable process and we 
axiomatize it in terms of monoidal categories. More precisely, we define an abstract 
symmetric monoidal category 99’[N] and we show that its arrows represent precisely 
the decorated concatenable processes of N. Clearly, decorated concatenable processes 
are structures strictly more concrete than concatenable processes; remarkably, such a 
difference can be captured in our algebraic/categorical setting by the weakening of a 
single axiom. 

The natural environment for the development of a theory of net processes based on 
monoidal categories is, as illustrated in [6], a category &&i of unmarked nets, i.e. 
nets without initial markings, whose transitions have finite pre- and post-sets. However, 
since the unfolding of a net is considered with respect to an initial marking, PTNets 
and all the categories of nets considered in [ 151 (and in related works) are categories of 
marked nets whose transitions, because of technical reasons, are forced to have possibly 
infinite pre- and post-sets and nonempty pre-sets. In order to solve this discrepancy, we 
simply restrict our attention to the subcategory of PTNets, say MPetri*, consisting of 
the nets whose transitions have finite pre- and post-sets, i.e. the nets with nonempty 
pre-sets in Petri equipped with an additional initial marking. Therefore, summing up, 
our result is that the following diagram commutes up to isomorphism 

MPetri’- %?‘I-1 MSMonCat 

s 

(-A-) 
\ 

Cat 

where ~1 is the inclusion of MPetri* in PTNets, MSMonCat is the category of 
the “marked” symmetric strict monoidal categories, i.e. symmetric strict monoidal cat- 
egories c with a distinguished object c E C, 99’*[_] maps the marked net (N,uN) 
to (uN,gg[N]), &t is the category of the categories, (-J_) is the comma category 
functor (c, Q H (clc) (see Definition 3.15), and 9~ returns the finite configurations 
of prime event structures ordered by inclusion. We remark that a similar approach has 
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been followed in [20] in the case of elementary net systems - a particular class of safe 
nets without self-looping transitions - for unfoldings and nonsequential processes. 

It should be stressed that our concern here is at the level of a single net, which means 
that the diagram above is defined only at the object level, i.e. the correspondence we 
establish is not functorial; more precisely, gY[_] - as well as the closely related 9[_] 
- fails to be a functor. Observe, however, that since the lower edge of the diagram 
is clearly a hmctor, it would be immediately possible to extend also to a functor 
the upper edge and, therefore, to obtain a functorial correspondence. Nevertheless, we 
prefer to avoid this approach because on the one hand it would not give any further 
real insight into the subject, whilst, on the other hand, it would still leave unresolved 
the key issue of functoriality for gY[_] (and S[_]). (Further research is currently 
ongoing on these open questions, e.g. [27,29,30].) Although gY[-] is defined only at 
the object level, we think that the paper presents interesting results, providing a natural 
and unified account of the algebraic, the process-oriented, and the denotational views 
of net semantics. It is worth remarking once again that the notion underlying such a 
unification is that of decorated occurrence net which, therefore, appears to be of some 
interest on its own. 

Concluding this discussion, we would like to mention that the correspondence of 
semantics presented here can be lifted smoothly to injinite computations. In [31], the 
present authors show that the symmetric monoidal category BINlw obtained as the 
completion of g[N] by colimits of w-diagrams can be understood as the category 
of possibly infinite concatenable processes of N. Working analogously, one can see 
that the arrows of the symmetric strict monoidal category L&Y[N]w are possibly inji- 
nite decorated concatenable processes. Then, one can prove the commutativity (up to 
equivalence) of a diagram analogous to the one above involving all the configurations 
of 69”4[N] and the comma category (uN@~Y[N]~). However, we shall not say more 
about this extension here; the details of the construction can be found in [27]. 

Concerning the organization of the paper, in Section 1 we recall the basic facts about 
the algebraic approach to Petri nets as given in [14] and [6]. Then, in Section 2 we 
give a brief overview of the formal development concerning the unfolding semantics 
introduced in [ 151. In Section 3 we introduce the decorated processes and we illus- 
trate their relationships with the unfolding semantics. Finally, we study the decorated 
concatenable processes of N and their axiomatization as the arrows of the symmetric 
monoidal category G@Y[N]. 

The following exposition assumes that the reader is acquainted with a few very 
basic notions of category theory, namely, category, fimctor and adjunction; an excellent 
introductory textbook is [12]. Some of the results presented here appear also in [27]. 
A short version of the paper appears as [ 171. 

Notation: We denote indifferently by juxtaposition (from right to left) and by _ o- 
the composition of mnctors, while the composition of arrows is always written as 
_ o-, except in the categories - such as those of net processes - in which we want 
to emphasize the computational interpretation of composition as sequentialization. In 
these cases we write it as _ ; _ and we use the (left to right) diagrammatic order. 
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1. Petri nets and their computations 

In this section we briefly recall some of the basic definitions about Petri nets [22,25]. 
In particular, we recall their algebraic description as introduced in [14] and their pro- 
cesses [24,10,2,6,7]. 

Given a set S and a function ,U from S to the set of natural numbers o, we write [PI 
to indicate the support of p that is the subset of S consisting of those elements s such 
that p(s) > 0. Moreover, we denote by S@ the set ofJinite multisets of S, i.e. the set 
of all functions from S to o with finite support. Of course, any function g : SO -+ S1 
can be “freely” extended to a fimction g@ : Sp -+ Sp defined by 

g%)(s’) = c I*(s). 
sEg-‘(S’) 

Notation: We shall represent a finite multiset p E S@ as a formal sum esES p(s) . s. 
Moreover, we shall often denote ~1 E S@ by @i,l nisi where {Si 1 i E I} = up] and 
ni = p(si), i.e. as a sum whose summands are all nonzero. For instance, the multiset 
which contains the unique element s with multiplicity one is written as 1 ss, or simply s. 
Moreover, given S’ C S, we will write @S’ for esES, 1 . s = BsES, s. 

Definition 1.1 (Petri nets). A Place/Transition (PT) Petri net is a structure N = 
(ai, ah : TN ---f S,“), where TN is a set of transitions, S is a set of places, and 8; 
and $,, are functions such that at(t) # 0. 

This describes a Petri net precisely as a graph whose set of nodes is a free com- 
mutative monoid, i.e. the set of jnite multisets on a given set of places. The source 
and target of an arc, here called a transition, are meant to represent, respectively, the 
marking consumed by the transition, i.e. the minimum multiset of tokens which allows 
the transition to fire, and the marking produced by the firing of the transition. The 
restriction to nets in which a;(t) # 0 for each transition t is due to the fact that such 
transitions are highly degenerated. In particular, the firing of any number of parallel 
instances of them is enabled at any marking, and this represents a serious problem for 
the unfolding semantics. 

It is rather common to consider the nets we just defined as closer to system schemes 
than to systems, since they lack an initial state from which to start computing and, of 
course, different initial markings can give rise to very different behaviours for the same 
net. Although this distinction is clearly reasonable, we shall not put much emphasis on 
it, since in the categorical framework this is not always necessary. We shall for instance 
define processes and computations of unmarked nets, so obtaining the collection of the 
computations for any possible initial marking, the point being that it is always possible 
to recover all the relevant information about the behaviour for a given initial marking 
via canonical constructions such as comma categories [12] (see also Definition 3.15). 

Definition 1.2 (Marked Petri nets). A marked PT net is a pair (N,uN), where N is 
a PT net and UN E S$ is the initial marking. 
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The formalization of nets as graphs with additional algebraic structure on the set of 
nodes suggests considering graph morphisms which respect such a structure as mor- 
phisms of nets; alternative definitions have been investigated in e.g. [20,3,4, 181. 

Definition 1.3 (PT nets morphisms). A morphism of PT nets f from No to Ni con- 
sists of a pair of functions (ff, fp), where fi : T,p, + TN, and fp : S$ --t S$ is a 
monoid homomorphism, such that (ft, fp) respects source and target, i.e. it makes the 
two diagrams below commute: 

A morphism of marked PT nets from NO to Ni is a PT net morphism f : NO + Ni 
which preserves the initial marking, i.e. such that f (#NO) = UN,. 

Notation: To simplify notation we shall almost always omit the subscripts t and p 
which distinguish the components of a morphism f. In these cases, the type of the 
argument will identify which component we are referring to. Observe further that by the 
very definition of free algebras, an (_)@-homomorphism fp : S$ -+ SC is completely 
determined by its behaviour on &,, the generators of the free algebra SE. Therefore, 
we will often define morphisms between nets by giving their transition components fr 
and a map fp : SN~ --f S,, @ for their place components: it is implicit that they have to 
be thought of as lifted to the corresponding (_)@-homomorphisms. 

Transitions are the basic units of computation in a PT net. A transition t with 
d;(t) = u and a,!,(t) = u - usually written t : u + v - performs a computation con- 
suming the tokens in u and producing the tokens in v. A finite number of transitions 
can be composed in parallel to form a step, which, therefore, is a finite multiset of 
transitions. We write U[U.)U to denote a step u with source u and target v. The set 
Y[N] of steps of N is generated by the rules: 

t : u + v in N and w in S@ u[a)v and u’[j?)v’ in Y[N] 

(u @ w)[t)(v @ w) in Y[N] (u @ U’)[CL @ /?)(v CB 0’) in Y[N]’ 

A finite number of steps of N can be sequentially composed, thus yielding a step 
sequence. The set of step sequences, denoted by YY’[N], is given by the rules: 

u in S@ UO[MO) . . . [a,_l)u, in 9Y’[N] and un[rx,,)un+i in Y[N] 

u[B)u in LB’[N] UO[~O) . . . [~,-~)[GJ~,+I in 9Y[Nl ’ 

Given a PT net N and a marking u E S, , @ the set BJN] of markings of N reachable 
from u is the set of markings which are target of some step sequence leaving from u, 
i.e. B,,[N] = {u 1 3(u[ao) ... [a,)~) in YY[N]}. 
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A seriously restricted class of nets, which however plays a relevant role in the 
literature, is the class of safe nets. These are nets which, in their dynamic behaviour, 
never have multiple instances of tokens. 

Definition 1.4 (Safe nets). A marked PT net N is safe if and only if 
(i) for all v E W,,[N], the multiset u is actually a set; 

(ii) for all t E TN, the multisets ah(t), for i = O,l, are actually sets. 

Unlike step sequences, processes provide a causal explanation of net behaviours, 
which is achieved by decorating the step sequences with explicit information about 
the causal links which ruled the firing of the transitions in the sequence. Usually one 
assumes that such links can be expressed faithfully as a partial order of transitions, 
the ordering being considered a cause/effect relationship. Thus, roughly speaking, a 
process of a net N consists of a partial order built on a multiset of transitions of N. 
The formalization of this gives the following notion of deterministic occurrence net. 

Notation: In the following, we shall use the standard notation *a, for a E SN, to 
mean the pre-set of u, that is ??u = {t E TN 1 a E [ah(t)]}. Symmetrically, u* indicates 
{t E TN 1 a E [@t)J}, the post-set of a. These notations are extended in the obvious 
way to the case of sets of places. Recall that the terminology pre- and post-set is used 
also for transitions to indicate, respectively, ‘t = fl$,(t)] and t* = [ah(t)]. As usual, 
1-I indicates the cardinality of sets. 

Definition 1.5 (Occurrence and process nets). An occurrence net is a PT net 0 such 
that 

(i) for all t E Te, for all a E SS one has a:(t)(u)< 1 and ah(t)(u)< 1; 
(ii) for all a E SO, ]*a] < 1; 

(iii) -i is irreflexive, where 4 is the transitive closure of the relation 

4= {(u,t) 1 a E SQ, t E a.} u {(&a) 1 a E s,, t E ‘a}; 

moreover, Vt E Te, {t’ E TO 1 t’ < t} is finite; 
(iv) the binary “conflict” relation # on T, U Se is h-reflexive, where 

M,t2 E TQ, Q %, t2 + U&(tr )1 n lI%(t2)ll # 0 and tl # t2, 

where < is the reflexive closure of 4. 

Given x, y E Te U Se, we say that x and y are concurrent, in symbols x co y, if it 
is not the case that (x + y or y 4 x or x # y). A set X C T, U Se is concurrent, in 
symbolsCo(X),ifVx,yEX,ncoyand]{t~T~]ZlxEX, t<x}JEw.Wesaythat 
an occurrence net 0 is deterministic if for all a E Se, ]a*] < 1. Observe that, in this 
case, we have # = 8. We shall refer to deterministic occurrence nets also as process 
nets. 
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Thus, in an occurrence net each place belongs at most to one post-set and, if the 
net is a process net, at most to one pre-set. This makes the “flow” relation < be 
a preorder. Thus, requiring + to be irreflexive, which is equivalent to requiring that 
the net be acyclic, identifies a partial order on the transitions. The constraint about 
the cardinal&y of the set of predecessors of a transition is then the fairly intuitive 
requirement that each transition be finitely caused. (See [34] for a discussion in terms 
of event structures of this issue.) 

We stipulate that occurrence nets are to be considered also as marked nets whose 
minimal (w.r.t. 4) places constitute the initial marking. Observe that this matches 
exactly with the standard definition, according to which occurrence nets can be marked 
only by assigning a single token to each of its minimal places. In the following, 
therefore, we shall use occurrence nets both in contexts in which marked nets are 
expected and in contexts in which unmarked nets are. Observe that, by virtue of (i) 
and (ii) in Definition 1.5, (marked) occurrence nets are safe. 

Thanks to their nicely stratified structure, it is possible to define the notion of depth 
of an element of an occurrence net. 

Definition 1.6 (Depth). Let 0 be an occurrence net. The depth of x E TQ U Se is 
inductively defined by: 
?? depth(x) = 0 if x E SQ and ??x = 0; 
?? depth(x) = max{depth(b) 1 b 4 x} + 1 if x E Te; 
?? depth(x) = depth(t) if x E So and ‘x = {t}. 

Given an occurrence net 0 its subnet of depth n is the net @‘) consisting of the 
elements of 0 whose depth is not greater than n. 

Definition 1.7 (Nonsequential processes [lo]). Given a net N, a process of N is a PT 
net morphism rc : 0 + N which maps places to places (as opposed to morphisms which 
map places to markings), where 0 is a finite process net. 

Similarly, a process of a marked net N is a morphism rc : 0 + N of marked PT 
nets which maps places to places, for a finite process net 0. 

For the purpose of defining processes at the right level of abstraction, we need to 
make some identifications among process nets. Of course, we shall consider as identical 
process nets which are isomorphic and, consequently, we shall make no distinction be- 
tween two processes n : 0 4 N and rc’ : 0’ + N for which there exists an isomorphism 
40 : 0 + 0’ such that n’o’p = n. Observe that the particular form of n is relevant, since 
we certainly want process morphisms to be total and to map a single component of the 
process net to a single component of N. Otherwise said, process morphisms are nothing 
but labellings of 0 with an appropriate element of N. Moreover, as usual, in the case 
of marked nets, we want to consider only processes whose source is the initial marking. 

Inspired by the current trends in the development of the theory of computation, 
one would certainly like to describe the processes of a net N as an algebra whose 



J. Meseguer et al. I Theoretical Computer Science 153 (1996) 171-210 181 

operations model a minimal set of combinators on processes which capture the essence 
of concurrency. Clearly, in the present case the core of such an algebra must consist 
of the operations of sequential and parallel composition of processes. The problem 
which arises immediately is that nonsequential processes cannot be concatenated when 
multiplicities are present: in order to support such an operation one must disambiguate 
the identity of all the tokens in the multisets source and target of processes. In other 
words, one must recognize that process concatenation has to do with tokens rather 
than with places. This is the approach followed in [6], which led to the introduction of 
the concatenable processes of N. These are, as already sketched above, nonsequential 
processes enriched by total orderings of the minimal and maximal places carrying the 
same label. Then, exploiting the additional information, it is easy to define an operation 
of concatenation of such processes, and thus to organize them as the arrows of a 
category %P[N]. In particular, since concatenable processes also admit an operation 
of parallel composition, %P[N] is a symmetric monoidal category. In addition, [6] 
shows that VP[N] can be axiomatized by means of an abstract symmetric monoidal 
category P[N]. Next, we briefly recall this construction. The axiomatization of P[N] 
presented here has been proved to be equivalent to the original formulation in [28]. 

Recall that a symmetric strict monoidal category (see [12] for a thorough elementary 
introduction) is a category C together with a functor @ : C x C -+ C, called the tensor 
product, and a selected object e E C, the unit object, such that 8, when viewed as a 
pair of operations respectively on objects and arrows of C, forms two monoids whose 
units are e and id,, and together with a family of arrows yX,Y :x @ y -+ y @ x, for x 
and y objects of CZ, such that, for each f :x + x' and g : y + y’ in C, 

(idY @ yX,=) 0 (Y*,~ @ id,) = ~~~~~~~ 

(9 @ f) O Yx,y = Yx',y' O (f @ 91, 
yxx 0 yx,y = id,,,. 

(1) 

Notice that the equations above mean, respectively, that y satisfies the relevant Kelly- 
MacLane [12] coherence axiom, that y = {yX,y}x,yEc is a natural transformation @ > 
@o A, where A is the endofunctor on C x C which “<waps” its arguments, and that yX,Y 
is an isomorphism with inverse Y~,~. A symmetry in a symmetric monoidal category is 
any arrow obtained as composition and tensor of components of y and identities. We 
shall write SymC to denote the subcategory of a symmetric monoidal category C whose 
objects are those of C and whose arrows are the symmetries of C. It is important to 
stress that, in our context, i.e. from the point of view of the semantics of concurrency, 
symmetries provide a precise and elegant way to account for causality streams in 
computations. This will be clear shortly. A symmetric strict monoidal functor from 
(C, @, e, y) to (Q @‘, e’, y’) is a functor F : C + D such that 

F(e) = e’, 

F(x @ Y) = F(x) @’ F(Y), 

F(~x,y) = Y& 

(2) 
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Given a symmetric monoidal category C and a set of equations 8 on parallel ar- 
rows, i.e. on arrows with the same domain and codomain, the monoidal quotient of C 
modulo 6 is the category CZ/b whose objects are those of C and whose arrows are 
the equivalence classes of the arrows of C modulo the least equivalence closed with 
respect to composition and tensor which contains B. In the language of categories, the 
quotient of C is characterized by a universal property which identifies it uniquely up 
to isomorphism. 

Proposition 1.8 (Quotient monoidal categories). Given the symmetric monoidal cate- 
gories C and D and a set of equations d on parallel arrows of C, suppose that there 
exists a symmetric strict monoidal functor 0 : C --+ Q such that 

(i) ifs&g then Q(f) = Q(g); 
(ii) for each symmetric strict monoidal functor H : C --+ C’ such that f bg implies 

H(f) = H(g) there exists a unique jiinctor K : 12 + c’, which is necessarily symmetric 
strict monoidal, such that the following diagram commutes: 

Then Q is isomorphic to c/B. On the contrary, if D is isomorphic to cl&, then 
there exists Q : c + D satisfying (i) and (ii) above. 

Proof. Let QI : C --) C/b be the “projection” ftmctor which is the identity on the 
objects and which maps each arrow to its equivalence class in C /&. The category C/d 
and the fnnctor Qg certainly satisfy the above conditions, as can be easily checked 
exploiting the definitions. Now consider IJ and Q as in the hypothesis. By the above 
consideration we conclude that there exists K : c/8 + D such that 0 = K o Qg. 
Moreover, since _rl and 0 satisfy (ii), there exists a functor K’ : D ---f C/& such that 
(18 = K’ o Q. Then, exploiting the uniqueness condition in (ii), one proves as usual 
that 1 = K’oK and 1 = KoK’, i.e. IJEc/ld. 

Suppose now that C/B and D are isomorphic via the symmetric strict monoidal 
functor F : C/d + Q and let 0 be F o 08. Clearly, Q satisfies (i). Moreover, for any 
H : C + C’, let K : CT/& + C’ be the unique functor such that K o Q& = H. Then, it is 
immediate to see that K o F-’ is the functor required by (ii). 0 

We can now give the definition of 9[N]. 

Definition 1.9 (The category B[N]). Let N = (a:,& : Tn + Sz) be a PT net. Then 
9[N] is the monoidal quotient of the free symmetric strict monoidal category on N 
modulo the axioms 

yab = idaeb if a, b E Sn and a # b, 

s; t;s’ = t if t E TN and s,s’ are symmetries. 
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The intended interpretation of the data above is as follows. As usual, a single tran- 
sition to : uo * u consumes the tokens in us and produces those in v. Of course, given 
t; : u + WO, in the composition to; tt, we say that t; causally depends on to. Consider now 
tl : UI -+ v and ti : u -+ WI. Then, in accordance with the fact that (to @ tl ); (th @ ti ) = 
(to; th) @(tl; ti), we may stipulate that in (to @ tl); (ti ~3 ti) : u. CB ul + w. c?d wl the tran- 
sition th depends on to and the transition ti depends on tl, while in (to @ tl ); (ti atA> it 
is to that causes ti and tl that causes th. Of course, both of those scenarios are possible 
since in P[N] we have that (th 63 ti) # (ti C$ th). Now, since 

(to 63 t1); yv,v; <t; 63 tl) = (to @ t1); 0; @ 05 

symmetries may be viewed as formal operations that “exchange causes”, by exchanging 
the tokens produced by parallel transitions. Observe that this interpretation is also well 
supported by the particular form that the symmetry takes on disjoint pairs u and u. 

Then, yU+ is the identity, corresponding to the fact that in this case no ambiguity 
is possible concerning what transition produced what token in u EE u and, therefore, 
(to @ tl ); (t; ~3 ti ) and (to ~3 tl ); (ti ~3 t;) have in this case to be considered as the same 
process. Now, the meaning of the “naturality” of y is apparent. The same applies to 
the axiom s; t; s’ = t, called axiom (Y) in [6], since exchanging two tokens consumed 
by or produced by a single t does not influence the causal behaviour. 

As mentioned earlier, this nice interpretation of the arrows of 9[N] may be pur- 
sued further by relating them to a slight refinement of the classical notion of process: 
the concatenable processes of N. In order to introduce them, we need the following 
definition. 

Definition 1.10 (f-indexed orderings). Given sets A and B together with a function 
f :A -+ B, an f-indexed ordering of A is a family {eb 1 b E B} of bijections 
eb: f-‘(b) --) {l,..., If-‘(b)lh f-‘(b) b . emg as usual the set {u E A 1 f(a) = b}. 

Therefore, an f-indexed ordering of A is a family of total orderings, one for each 
of the partitions of A induced by f. By abuse of language, we shall keep calling 
an f-indexed ordering of C C_A any ordering obtained by restricting f to C. In the 
following, given a process net 0, let min(O) and max(O) denote, respectively, its 
minimal and maximal elements, which must be places. 

Definition 1.11 (Concatenable processes). A concatenable process of N is a triple 
CP = (TT, 8,L) where 
?? rt : 0 -+ N is a process of N; 
?? 8 is a n-indexed ordering of min(O); 
??L is a z-indexed ordering of max(8). 
Two concatenable processes CP and CP’ are isomorphic if their underlying pro- 
cesses are isomorphic via an isomorphism q which respects the ordering, i.e. such 

that &+,,((~(a)) = en(a)(a) and L’ nl(qp(bjj(q$b)) = L,(b)(b) for all a E min(O) and 
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Fig. 1. A marked net and one of its concatenable processes 

s&J = $ $ 

6 6 6 6 
Fig. 2. The process of Fig. 1 as a tensor of two simpler processes. 

b E max(O). As in the case of processes, we identify isomorphic concatenable pro- 
cesses. 

Concatenable processes can be represented by drawing the underlying process nets 
and labelling their elements according to 71, e and L. When ]7c-‘(a)] = 1 for some 
place a, we omit the trivial labelling. Fig. 1 shows a simple example. We use the stan- 
dard graphical representation of nets in which circles are places, boxes are transitions, 
and sources and targets are directed arcs whose weights represent multiplicities, unitary 
weights being omitted. The initial marking is given by the number of “tokens” in the 
places. 

It is clearly possible to define an operation of concatenation of concatenable pro- 
cesses, whence their name. We can associate a source and a target in Sz to any con- 
catenable process CP, namely by taking the image through rr of, respectively, min(O) 
and max(O), where 0 is the underlying process net of CP. Then, the concatenation 
of (rcs,~o,Ls): u --f D and (rct,/l,Li): u -+ w is defined in the obvious way exploit- 
ing the information given by the labellings in order to merge the underlying process 
nets. Under this operation the concatenable processes of N form a category %‘P[N] 
with objects the finite multisets on SN and identities those processes consisting only of 
places, which therefore are both minimal and maximal, and such that / = L. 

Concatenable processes admit also a tensor operation @ which represents the parallel 
composition of processes. In particular, CPo @ CPI is the concatenable process which 
may be graphically represented by putting side by side, from left to right, the graphical 
representations of CPo and CP, and reorganizing the labellings appropriately as shown 
in Fig. 2. It is easy to see that the concatenable processes consisting only of places 
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are the symmetries which make %9[N] into a symmetric strict monoidal category. 
Then, since the transitions t of N are faithfully represented in the obvious way by 
concatenable processes with a unique transition which is in the post-set of any minimal 
place and in the pre-set of any maximal place, minimal and maximal places being in 
one-to-one correspondence, respectively, with a;(t) and i&(t), it is possible to show 
the following. 

Theorem 1.12 ([6, Theorem 20, p. 1841). %?9[N] and P[N] are isomorphic. 

2. Unfolding Place I Transition nets 

In this section we sketch the basic notions concerning the unfolding of PT Petri nets 
as defmed in [ 15,161. In order to keep the exposition of the background material as 
short as possible, we limit ourselves to the definitions of the object components of 
the functors %[_I, 9[_], a[_] and dR[_]. In particular, we shall not introduce explicitly 
the categories involved. The reader interested in the details is referred to [15,34]. A 
complete survey of the topic is also given in [27]. 

As a first step, we define decorated occurrence nets, a type of occurrence net in 
which places are grouped into families. They allow a convenient treatment of multiplic- 
ity issues in the unfolding of PT nets. We shall use [n] to denote the segment { 1,. . . , n} 
of 0. 

Definition 2.1 (Decorated occurrence nets [15]). A decorated occurrence net is an 
occurrence net 0 such that: 

(i) Se is of the form lJaEAg {a} x [n,], for some set A@, where the set {a} x [n,] 
is called the family of a. We will use aF to denote the family of a regarded as a 
multiset; 

(ii) Va E As, Vx, y E {a} x [n,], ‘X = ??y. 

A family is thus a collection of finitely many places with the same pre-set, and a 
decorated occurrence net is an occurrence net where each place belongs to exactly one 
family. Families, and therefore decorated occurrence nets, are capable of describing 
relationships between places by grouping them together. We will use families to relate 
places which are instances of the same place obtained in a process of unfolding. 

Notation: Since decorated occurrence nets are in particular occurrence nets, in the 
following we shall use concepts such as causal dependence (4), conflict (#), depth, . . ., 
for decorated occurrence nets referring to the corresponding notions for the underlying 
occurrence nets. 

Next, we define an unfolding procedure which maps marked PT nets to decorated 
occurrence nets. 

Definition 2.2 (PT nets unfoldings: %![-I [15]). Let N = ($,,ah : TN -+ S,$,U,V) be a 
marked net. We define the decorated occurrence net %[N] to be (a’, a1 : T -+ Se), 
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where T, S and 8’ are generated inductively by the following inference rules: 

UN(~) = n 

{@tb)} x [n] G s 

B = {((~j,bj),ij) 1 j E J} CX Co(B), t E TN, a;(t) = @jcJ bj 

(B,t) E T and a’(B,t) = $B 

x = (B,f) E T, d;(t)(b) = n 

{({~I, b)) x InI c s 

and for x E T, d’(x) = @,J({x}, b), i). 

Informally speaking, the definition above can be explained as follows, where we use 
%![N](“), n E o, to denote the nth approximation of %[N], i.e. the subnet of ??/[N] 
consisting of the elements at depth not greater than n. The net @[N](O) is obtained by 
exploding in families the initial marking of N, and %[N](“+‘) is obtained, inductively, 
by generating a new transition for each possible subset of concurrent places of %![N](“) 
whose corresponding multiset of places of N constitutes the source of some transition t 
of N; the target of t is also exploded in families which are added to %[N]@+‘). As 
a consequence, the transitions of the nth approximant net are instances of transitions 
of N, in the precise sense that each of them corresponds to a unique occurrence of a 
transition of N in one of its step sequences of length at most n. 

There is an obvious forgetful functor from decorated occurrence nets to occurrence 
nets which forgets about the structure of families. It allows us to drop the additional 
structure of decorated occurrence nets and to bring the unfolding of PT nets into m. 
Moreover, exploiting Winskel’s coreflections in [34], we obtain an explanation of the 
causal behaviour of nets in PES and in Dam as already explained in the introduction. 

Definition 2.3 (R[_]: from DecOcc to m). Given a decorated occurrence net 0 
define 9[0] to be the occurrence net underlying 0. 

Fig. 3 shows a simple example of unfolding of PT nets. To make explicit the 
nature of the elements of %[N] and F%![N], in the picture we label them with the 
corresponding element a, b, . . ., t3 of N. In particular, the places of the unfolding 
labelled by a and b are respectively (0, a) and (8, b), the transitions labelled by to 
and t2 are ia = ({(&a)}, to) and 12 = (((0, b)}, tz), and thus the three instances of c 
are (({&,},c), I), (({?o},c),~) and (({t;},c), 1). A family is represented by enclosing 
its elements into an oval. The numbers which label the outgoing arcs from to take 
into account the ordering of the elements in the family ({ &}, c)F; since S[N] is an 
occurrence net, no confusion is possible with arc multiplicities. Families of cardinal&y 
one are not explicitly indicated. We call %[N] and F%![N] respectively the unfolding 
of N in DecOcc and in m. However, in the following we shall avoid explicit 
reference to DecOcc and &. 
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a 0 ?? b 

8P.F to t1 t2 

2 

Q c 

Fig. 3. A net N, its unfolding Q[N], and f%[N]. 

The correspondence between elements of the unfolding and elements of the original 
net should be clear from Definition 2.2, since elements of %[N] carry explicitly the 
“name” of the element of N they correspond to. Such a notion can be formalized via 
the following definition of folding morphism. 

Proposition 2.4 (Folding morphism). Consider the map &N = (E~,E~) : 99[N] ---) N 
dejined by 
?? &r&t) = t; 
?? Ep(@i(%,Yi)) = @i Yi. 
Then, EN is a morphism of marked nets, called the folding of Y%[N] into N. 

Prime event structures [19,34] are the simplest event based model of concurrency. 
They consist of a set of events, intended as indivisible quanta of computation, which 
are related to 
order relation 
relation #. 

each other by two binary relations: causality, modelled by a partial 
6, and conflict, modelled by an irreflexive, symmetric, and hereditary 

Definition 2.5 (Prime Event Structures). A prime event structure is a structure E = 
(E,#, < ) consisting of a set of events E partially ordered by <, and a symmetric, 
it-reflexive relation #C_ E x E, the conjlict relation, such that 

{e’ E E 1 e’ < e} is ‘finite for each e E E, 

e # e’ <e” implies e # e” for each e, e’, e” E E. 

The computational intuition behind event structures is really simple: an event e 
can occur when all its causes have occurred and no event that is in conflict with 
the given event has already occurred. This is formalized by the following notion of 
conjiguration. 
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Fig. 4. The event structure I9@[N] for the net in Fig. 3. 

Definition 2.6 (Configurations). Given a prime event structure (I?,#, < ), define its 
configurations to be those subsets x&E which are: 

Conflict free: Vet,ez E x, not(et # e2). 

Left closed: Ve Ex Ve’<e, e' Ex. 

Let Y(E) denote the set of configurations of the prime event structure E and P’t(E) 
the set of Jinite configurations of E. 

The following definition recalls how to translate occurrence nets into prime event 
structures. An example of this translation is shown in Fig. 4, where, using the standard 
graphical representation of event structures, ,< is indicated by (bottom-up) solid lines 
and # by a dotted line; we use superscripts to distinguish between the three instances 
of t3 in F%![N]. 

Definition 2.7 (&[_I: f rom @ to PES [34]). Let 0 be an occurrence net. Then, 6[0] 
is the event structure (TO, <, #), where < and # are the restrictions to the set of transi- 
tions of 0 of, respectively, the flow ordering and the conflict relation implicitly defined 
by 0. 

Finitary prime algebraic domains or dI-domains - introduced by Berry while studying 
sequentiality of functions [l] - are particular Scott’s domains which are distributive 
and in which each finite element is preceded only by a finite number of elements of 
the domain. Here we are interested in their “coherent” version, i.e. in the version in 
which the underlying partial order is pairwise complete. 

Definition 2.8 (Finitary (coherent) prime algebraic domains). Let (D, IZ) be a partial 
order. Recall that a set X CD is directed if all the pairs x, y E X have an upper bound 
in X, is compatible if there exists d E D such that x C d for all x E X and is pairwise 
compatible if {x, y} is compatible for all x, y E X. We say that D is a (coherent) 
domain if it is pairwise complete, i.e. if for all pairwise compatible X&D the least 
upper bound UX of X exists. 

A complete prime of D is an element p E D such that, for any compatible X c D, 
if p L UX, then there exists x E X such that p & x. We say that a domain D is 
prime algebraic if for all d E D we have d = u{p c d 1 p is a complete prime}. 

Moreover, an element e E D is jinite if for any directed S CD, if e C u S, then 
there exists s E S such that e L s. We say that D is jinitary if for all finite elements 
e ED, ({d ED ( d L e}j E cc). 
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Fig. 5. The Hasse diagram of the domain YIY%[N] for the net in Fig. 3. 

Finitary prime algebraic domains can be equipped with a notion of morphism in 
such a way that the category Dam so obtained is equivalent to PES (see [34]). We 
conclude this section by recalling the object component of the equivalence functor 
Z[_] : PES -+ m. An example is provided by Fig. 5. 

Proposition 2.9 (_!Z[_]: from PES to Dam [34]). Let E be a prime event structure. 
Then, Y(E) = (Z(E), C), i.e. the set of conjigurations of E ordered by inclusion is 
a jinitary (coherent) prime algebraic domain. 

3. F%xss vs. unfolding semantics for nets 

The semantics obtained via the unfolding yields an explanation of the behaviour 
of nets in terms of event structures, that is, in terms of domains. Domains can be 
unambiguously thought of as partial orderings of computations, where a computation is 
represented by a configuration, which, in our context, is a “downward” closed, conflict 
free set of occurrences of transitions. On the other hand, processes are by definition 
left closed and conflict free (multi)sets of transitions. Moreover, the processes from a 
given initial marking are naturally organized in a preorder-like fashion via a comma 
category construction which formalizes the usual notion of prefix ordering of processes. 
The question which therefore arises spontaneously concerns the relationships between 
these two notions; this is the question addressed in this section. 

It is worth noticing that in the case of safe nets the question is readily answered 
exploiting Winskel’s coreflection (-,‘%[_I) :m - Safe. In fact, by definition an 
adjunction (F, G) : C - D determines an isomorphism between arrows of the kind 
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F(c) + d in D and arrows of the kind c -+ G(d) in c. Then, in the case of safe nets, - 
we have a one-to-one correspondence 

rc:O+N e d : 0 -+ @[N] 

for each safe net N and each occurrence net 0. Therefore, since such correspondence 
is easily seen to map processes to processes, in this special case, the correspondence 
between process and unfolding semantics of N is very tidy: they are the same notion 
in the precise sense that there is an isomorphism between the processes of N and the 
processes of %[N], i.e. the deterministic finite subnets of the unfolding of N, i.e. the 
finite configurations of &#[N]. 

In our context, however, we have that the unfolding of N is strictly more con- 
crete than the processes of N. For example, consider again the net N and its unfold- 
ing F%![N] shown in Fig. 3. Clearly, there is a unique process of N in which to, 
t2 and a single instance of ts caused by to has occurred. Nevertheless, there are two 
deterministic subnets of 9@[N] which correspond to such a process, namely those 
obtained by choosing respectively the left and the right instance of 4 below to. It is 
worth noticing that such subnets are isomorphic and that this is not a fortunate case, 
since it is easy to show that two finite deterministic subnets of 9%[N] correspond to 
the same process of N if and only if they are isomorphic via an isomorphism which 
sends instances of an element of N to instances of the same element. More interest- 
ingly, the results of this section will prove that this is the exact relationship between 
the two semantics of N: the unfolding contains several copies of the same process 
which, as illustrated in [15, 161, are needed to provide a fully causal explanation of 
the behaviour of N, i.e. to obtain an occurrence net whose transitions represent exactly 
the instances of the transitions of N in all the possible causal contexts and which can 
therefore account for concurrent multiple instances of the same element of N, that is 
for autoconcurrency. More precisely, we shall see that the finite deterministic subnets 
of the unfolding of N can be characterized by appropriately decorating the processes 
of N, which directly shows that the difference between the process and the unfolding 
semantics of N is only due to the replication of data needed in the latter. Of course, 
as we have already mentioned, the appropriate decoration of processes is immediately 
suggested by the notion of family in decorated occurrence nets: a decorated process 
is simply a process whose underlying process net is a decorated occurrence net. 

Summing up the above discussion, this result is twofold: it yields both a process- 
oriented account of the unfolding construction (in terms of decorated processes) and 
an explanation of the lack of coincidence of such a construction with the standard 
notion of nonsequential process. 

In addition, we shall give an abstract representation of the decorated concatenable 
processes of N by providing, in the style of [6,28], an axiomatic construction of a 
symmetric strict monoidal category 99’[N] whose arrows are in one-to-one correspon- 
dence with such processes. Therefore, building on top of the previous argument, we 
can conclude that 99’[N] provides both the algebraic and the process-oriented account 
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of the unfolding construction. In particular, as already stated in the introduction, for 
each marked PT net (N,uN) we have 

(3) 

where the role of the comma category construction is to consider only the decorated 
concatenable processes from the initial marking UN. 

Finally, the axiomatization of the decorated concatenable processes of N in ab- 
stract terms via the category %Y[N] will also “axiomatize” the essential difference 
between occurrence nets and decorated occurrence nets, and therefore between (con- 
catenable) processes and decorated (concatenable) processes. In fact, it will show that 
the latter is captured by a single axiom, namely the part t;s = t of axiom (Y) of 
Definition 1.9. This completes our study of the relationships between the various se- 
mantics characterizing formally the relative concreteness of decorated (concatenable) 
processes, and thus of the unfolding semantics, with respect to standard (concatenable) 
processes. 

It is worth observing that decorated (deterministic) occurrence nets which at first 
seem to be just a convenient technical solution to establish the adjunction from PT 
nets to occurrence nets, provide useful insights, being the notion underlying both the 
process and the algebraic counterpart of the unfolding semantics. It is also easy to 
realize that they are the minimal refinement of Goltz-Reisig processes which guarantees 
the identity of all tokens in processes. In fact, in order to achieve this, it is necessary 
to disambiguate both the tokens in the same place of the initial marking and the tokens 
which are multiple instances of the same place, and, therefore, to introduce the notion 
of famiZies. All this seems to indicate that decorated process nets and their algebraic 
formalization gY[-] may be structures of interest on their own. 

Getting to the task, we start by showing an easy fact that we already mentioned, 
namely that the processes of an occurrence net 0 coincide with the finite configurations 
of a[@]. Clearly, since F%[N] is an occurrence net, we also obtain that the processes 
of F%![N] coincide with the finite configurations of d9%[N]. We shall need the 
following lemmas which state three easy properties of morphisms between occurrence 
nets, namely that they preserve the depth of elements (Lemma 3.1), that they reflect 
causal links (Lemma 3.2) and that they preserve concurrency, i.e. that they reflect the 
relation (# U =) C(Te U Se) x (Ts U 22,) (Lemma 3.3). 

Lemma 3.1. Let 00 and 0, be occurrence nets and let f : 00 + 01 be a morphism 
of marked PT nets which maps places to places. Then, for all x E TeO U Se, we have 
depth( f (n)) = depth(x). 
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Proof. By induction on the depth of x. Since marked PT net morphisms map initial 
markings to initial markings, the thesis holds in the base case, i.e. if depth(x) = 0. 

Inductive step: Let n be the depth of x and suppose that x is a transition. Then, by 
definition of depth, we have that depth(y) <n - 1 for all y E ??x and that there exists 
z E ??x such that depth(z) = n - 1. Then, since f(‘x) = ‘f(x), the thesis follows 
immediately by induction. If, instead, x is a place we have that depth(t) = n, where t 
is the unique element in ??X. Then, as we just proved, depth(f(t)) = n and since 
f(x) E f(t)’ the proof is concluded. 0 

Lemma 3.2. Let 00 and 01 be occurrence nets and let f : 00 -+ 01 be a morphism 
of marked PT nets which maps places to places. Consider x E To, US%, and suppose 
that y < f(x) for some y E Ts, USO,. Then, there exists j $ x such that f(j) = y. 

Proof. In order to show the thesis, it is enough to consider the following two cases. 
(i) Suppose that a E t* and f(G) = a. Since a does not belong to the initial marking 

of Oi, then a cannot belong to the initial marking of 00. Therefore, there exists a 
unique i E ??a and, necessarily, f(i) = t. 

(ii) Suppose that a E ‘t and that f(t) = t. Then, since f (‘t) = ‘t and since f 
maps places to places, there exists ti E SG, such that f(a) = a. 0 

Lemma 3.3. Let 00 and 01 be occurrence nets, let f : 00 -+ 01 be a morphism 
of marked PT nets which maps places to places, and consider elements x and y in 
To, U Sso. Then, if f(x) = f(y) or f(x) # f(y), we have x = y or x # y. 

Proof. We proceed by induction on the least of the depths of x and y. 
Base case: If depth(x) = depth(y) = 0, then f(x) = f(y). In fact, in this case x 

and y belong to the initial marking of 00 and thus, by definition of marked morphism, 
f(x) and f(y) are in the initial marking of 0 1. It follows that they cannot be in 
conflict, since #II [ue] x [UQ] = 0. Now, if x # y, we have f (uo, ) = f (x $ y @ u) = 
f(x) @ f(y) @ f(u) = 2f (x) @ f(u). But this is impossible, since f (uo,) = uo, and 
each token in uo, has multiplicity one. 

Inductive step: Let n B 1 be the least of the depths of x and y. Without loss of 
generality, assume depth(x) = n. First suppose that f(x) = f(y). Then, there exist 
z E ‘X and z’ E ??y such that f(z) = f(z’). Th en, if x is a transition, depth(z) < n 
and therefore, by induction, f(z) = f(z’) or f(z) # f (z’), whence it follows that 
f(x) = f(y) or f(x) # f(y). If, instead, x is a place, then z is a transition at 
depth n and the induction is maintained exploiting the proof given above for such a 
case. 

Suppose instead that f(x) # f(y). By definition, this means that there exist to and tl 
in To, such that to #, ti, to $ f(x) and ti < f(y). Then, by Lemma 3.2, there 
exist 61 < x and fi < y in Te, such that f (&) = to and f (?I ) = tl. This concludes 
the proof since it follows easily that ?a # ii, which implies x # y. 0 
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It is easy to observe that the restriction to morphisms which map places to places is 
not necessary to show that morphisms of occurrence nets preserve the depth of elements 
and reflect <-chains and the conflict relation. However, the formulations above suffices 
for application in what follows. 

Proposition 3.4. Let 00 be ar. occurrence net. There is an isomorphism between the 
set of jinite configurations of &[@,I and the set of processes of 00. 

Proof. Let 4 be the function which maps a process ?t : 0 + 00 to the set of transitions 
rc(Te). Recall that rc is a marked net morphism between occurrence nets which maps 
places to places. Then, by Lemma 3.3, we have that rc maps concurrent transitions 
to concurrent transitions. Since 0 is a process net, and thus deterministic, rr(To) is 
conflict free. Consider now t E x(Te) and let t’ E TsO be such that t’ 5 t. Then, by 
Lemma 3.2, there exists x E T@ such that rc(x) = t’, i.e. n(Ts) is downwards closed 
and, thus, a finite configuration of b[Os]. 

On the contrary, let X be a finite configuration of &‘[Os]. By depth of an element x 
of X we mean the length of the shortest chain in X whose maximal element is x; the 
depth of X is the greatest of the depths of its elements. We show by induction on the 
depth of X that there exists a unique (up to isomorphism) process rc : 0 + 00 such 
that 7c(Te) = X. 

Base case: If X = 0, let 0 be the subnet of depth zero of @a, i.e. the net consisting 
of the minimal places of @a, and let rc be the inclusion 0 c-) 0s. Clearly, rr is the 
unique (marked) process of 00 such that +(rc) = 0. 

Inductive step: Suppose that the depth of X is n + 1. Let Z be the set of ele- 
ments of X at depth n + 1. Since the elements of Z are necessarily maximal in X, 
the set Y = X \ Z is a configuration of B[Oo]. Moreover, the depth of Z is n. 
Then, by induction, there exists a unique rc : 0 --) 00 such that rc( Te) = Y. Let 
t E Z and consider a E $&(t). We show that there exists a unique place x, E SQ, 
which in addition is maximal, such that X(X,) = a. The following two cases are 
possible. 

(i) ‘a = 0. Then, a belongs to the initial marking of 00 and thus, by definition of 
marked net morphism, there exists a unique x0 E U@ such that rc(xa) = a. Moreover, 
since by Lemma 3.1 rc preserves the depth of elements, there is no other x E Se such 
that X(X) = a. 

(ii) ‘a = {t’}. Then, t’ 5 t and thus, since X is downwards closed, there exists 
x E TO such that rc(x) = t’. It follows that we can find a unique x, E x* such that 
rc(x*) = a. Now, since by Lemma 3.3 n maps concurrent transitions to concurrent 
transitions, x is the unique transition of 0 mapped to t’. Therefore, x, is the unique 
place of 0 mapped to a. 

Observe that x, must be maximal in 0. In fact, if there were x E xz, there would 
be z(x) E X with n(x) # t, which is impossible since X is a configuration. 

Now, it is easy to see that n can be extended to a process rc’ such that 4(x’) = X 
in essentially a unique way. To this purpose, consider the net 0’ obtained by adding 
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to 0, for each t E 2, a new transition X~ and a new place a for each a E &,(t) with 

a&(x,) = ${&? I a E 8&$>) and a;,(~,) = ${a 1 a E a&(t)}. 

Since 00 is an occurrence net, we have that a&(tc) fl I?& = 0, for to # ti in Z, 
and therefore, by definition, 0’ is an occurrence net. Moreover, since Z is a set of 
concurrent transitions, we also have a~O(to) n $&,(ti ) = 0. Then, considering also that 
each x, is maximal in 0, we conclude that 0’ is deterministic. Therefore, I? defined 
as 

( 

4x) ifxETelJ& 

71’(x) = t if x = xt for t E Z 

a if x = a for a E a&(t) and t E Z 

is a process of 00 such that $(rc’) = n’(Z’e/) =X. Observe that, given the uniqueness 
of x,, the only possible variation in the construction of K’ is in the choice of “names” 
for the transitions and the places added to 0. Then, since rr is by inductive hypothesis 
the unique process such that rc(To) = Y, we conclude that 7~’ is (up to isomorphism) 
the unique process such that rr’(T~l) = X. 

Therefore, C$ is an isomorphism. 0 

In particular, we have that there exists an isomorphism between the processes of 
5%[N] and the finite configurations of bF%[N]. Our next task will be to characterize 
the processes of 9!&[N] in terms of processes of N. We shall do it by means of the 
following notion of decorated process. 

Definition 3.5 (Decorated processes). A decorated process of a marked net N is a 
triple DP = (n, e, z) where 
?? K : 0 -+ N is a (marked) process of N; 
?? e is a n-indexed ordering of min(8); 
?? r is a family {r(t)} indexed by the transitions t of 0, where each z(t) is a rc-indexed 

ordering of the post-set of t in 0. 
The decorated processes (rr : 0 --+ N, e, z) and (rr’ : 0’ + N, P, r’) are isomorphic, and 
then identified, if their underlying processes are isomorphic via an isomorphism cp 
which respects all the orderings, i.e. L” nlCcp(aj$~(a)) = /+,)(a) for all CI E min(O), and 
z’(cP(t))n’((p(=))(c(u)) = r(t),(,)(a) for all t E To and a E t*. 

Fig. 6 shows the two decorated processes of the net N in Fig. 3 corresponding 
to the (unique) process of N in which to, tz and an instance of t3 caused by to have 
occurred. In the pictures, we represent a process rc : 0 ---$ N by drawing 0 and labelling 
its element x by rc(x). Observe that Fig. 6 also gives a hint about the announced 
correspondence between processes of F%![N] and decorated processes of N. 

We say that (n : 0 + N, e, r) < (rc’ : 0’ -+ N, 8, r’) if there exists cp : 0 --+ 0’ which 
preserves all the orderings and such that R = I? o CP. The set of decorated processes 
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0 d 0 
d 

Fig. 6. Two decorated processes of the net in Fig. 3. 

of N is clearly preordered by <. Let us write DP[N] to indicate such preordering. 
The next proposition shows that actually < is a partial order. 

Proposition 3.6. DP[N] is a partial order. 

Proof. Consider DP = (7~: 0 + N,e,z) and DP’ = (n’ : 0’ + N,L”,z’), and sup- 
pose that DP < DP’ and DP’ d DP. Then, by definition, there exist q : 0 + 0’ and 
(p’ : 0’ + 0 which respect all the orderings and such that rt = n’ o q and n’ = rt o (p’. 
Since we identify isomorphic decorated processes, to conclude the proof it is enough 
to show that q is an isomorphism. Observe however that, since n and n’ map places 
to places and since rc = rt’ o cp, it follows that cp has to map places to places. The 
same of course holds for cp’. Then, we show the thesis by showing the following more 
general fact: whenever the process nets 0 and 0’ are linked by marked PT net mor- 
phisms cp : 0 + 0’ and cp’ : 0’ -+ 0 which map places to places, then rp (cp’) is an 
isomorphism. Observe that, because of the aforesaid property of its place component, 
in order to show that q (cp’) is an isomorphism it is enough to show that it is injective 
and surjective on both places and transitions. 

Znjectiuity: Since 0 is deterministic, it follows immediately by virtue of Lemmas 3.1 
and 3.3 that cp is injective. Of course, for the same reason, also (p’ is injective. 

Surjectioity: By Lemma 3.1, we know that, for each n 2 1 (n >O), q and cp’ restrict 
to functions between the sets of transitions (places) at depth n of 0 and 0’. Moreover, 
by definition of process nets, we have that such sets are finite. Then, the surjectivity 
of cp follows immediately from the injectivity of cp and q’ and from the following 
general fact which is readily shown by cardinality arguments: if f :A -+ B is an 
injective function between the jinite sets A and B, and if there exists an injective 
function g : B + A, then f (g) is surjective. 0 

We are now ready to prove the correspondence between the decorated processes and 
the unfolding of N. To this purpose, recall that the folding morphism &N : F+Z[N] ---t N 
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given in Proposition 2.4 is the marked net morphism such that 

((x, a), i) H a and (B, t) H t. 

The folding &N provides an obvious way to map a process rc : 0 -+ %@[N] to a 
process of N, namely &N o ?r : 0 -+ N. Moreover, we also have the following natural 
way of finding / and r which decorate this process and make it be a decorated process 
P(7C) = (&N 0 7C, e, r) Of N. 
?? Let b be in min(O) and suppose that x(b) = ((&a),i). Then, defining e,(b) = i 

clearly gives a (&N o rc)-indexed ordering of min(@). 
?? Let t be a transition of 0, and consider b E t’. Since 7t is a process morphism, its 

image through rc must be a place in the post-set of rc(t), i.e. a component of some 
family in x(t)‘, say x(b) = ((x(t),a),j). Then, taking z(t)a(b) = j clearly gives 
a (EN o rc)-indexed ordering of t*. 
In the opposite direction, we define a mapping F as follows. Let (x, /,z) be a 

decorated process of N with n: 0 -+ N. Then, F(n,l, z) is f : 0 -+ %e[N] defined 
inductively as follows: 

depth 0: For b E min(O), consider &(b) = ((&a),i) with a = n(b) and i = e,(b), 
while, of course, for t E Te, ff(t) is ([&(‘t)&n(t)). 

depth n+l: If t is a transition of 0 of depth n + 1, then once again fi(t) is 
([fp(‘l)J,rr(t)), whilst if b E t* we take fp(b) = (({h(t)}, n(b)),i) for i = z(t)a(b). 

Informally, the behaviour of P and F may be explained by saying that P and F 
just move the information about families, respectively, in 8 and r from rc and back 
in x from 8 and r. Of course, we have that FP(z) = it and it shows clearly in 
the construction of F(z,l,z) that PF(x,~,z) is (up to isomorphism) again (rr,e, r). 
Therefore, we have shown the following proposition. 

Proposition 3.7. The set of decorated processes of N is isomorphic to the set of 
(marked) processes of %4![N] via the maps F and P given above, 

We complete the study of the relationship between process and unfolding semantics 
by showing that the correspondence we established above is easily lifted to a corre- 
spondence between the partial order of the decorated processes of N and the partial 
order of the finite configurations of B%@[N]. 

Proposition 3.8. DP[N] is isomorphic to 2’,&%49[N]. 

Proof. To prove the claim we only need to show that, given the decorated processes 
DP=(x:O-+N,e,z)andDP’=(n’:O’ + N,d’,z’), we have DP< DP’ if and only 
if I#JF(DP) C rJF(DP’), where c$F gives the configuration corresponding to a marked 
decorated process as described by Propositions 3.4 and 3.7. 

If DP d DP’, then there exists cp : 0 + 0’ which preserves the labellings and such 
that rc = 7~’ o q. It follows immediately that q is a morphism between the pro- 
cess nets underlying F(DP) and F(DP’), and therefore q5F(DP) C 4F(DP’). The 



J. Meseguer et al. I Theoretical Computer Science 153 (1996) 171-210 197 

other implication comes along the same lines: if 4F(DP) G @‘(DP’), then there 
is a morphism cp from the process net underlying F(DP), i.e. 0, to the process 
net underlying F(DP’), i.e., Of, such that F(DP) = F(DP’) o cp. Clearly, cp is 
the marked net morphism which maps the element x of 0 to the unique element 
of 0’ in F(DP’)-*(F(DP)(x)). Then, cp is a morphism from 0 to 0’ which pre- 
serves the labellings t! and r and such that rt = rc’ o cp, i.e. cp shows that DPGDP’. 

As already mentioned, the results established above on the one hand show that the 
unfolding construction can be reconciled with a process-oriented view, whilst, on the 
other hand, they illustrate precisely the differences between it and the standard notion 
of process. The question which then arises is whether decorated processes can be 
understood in more abstract terms. In the following we shall prove that this is the 
case by developing a theory which parallels that of concatenable processes. This will 
provide an algebraic account of the unfolding which will characterize it yet more 
neatly. 

The same conceptual step which led from nonsequential processes to concatenable 
processes now suggests the following definition. 

Definition 3.9 (Decorated concatenable processes). A decorated concatenable process 
of the (unmarked) net N, is a quadruple (n, e, r,L) where (rt, e,L) is a concatenable 
process of N and r is a family {T(t)} indexed by the transitions t of 0, where each 
z(t) is a n-indexed ordering of the post-set of t in 0. 

An isomorphism of decorated concatenable processes is an isomorphism of the un- 
derlying concatenable processes which, in addition, preserves all the orderings given 
by r, i.e. z’(q(t))nyqpca,,(q(a)) = z(t),(,)(a) for all t E TO and a E t*. 

So, a decorated concatenable process is a concatenable process where the post-sets 
of the transitions are n-indexed ordered. Such a definition makes the difference between 
concatenable and decorated concatenable processes immediate to grasp. The difference 
between decorated and decorated concatenable processes is also clear, being analogous 
to that between nonsequential and concatenable processes. 

Since decorated concatenable processes are concatenable processes, they can be 
given a source and a target, namely those of the underlying concatenable process. 
Moreover, the concatenation of concatenable processes can be lifted to an operation 
on decorated concatenable processes. The concatenation of (710, LO, rs,Lo) : u -+ u and 
(~1, C”I,ZI, Lt ) : u + w is the decorated concatenable process (n, 8, r,L) : u --) w defined 
as follows (see also Fig. 7, where z(t) is depicted by decorating the arcs outgoing 
from t). In order to simplify notation, we assume that the process nets corresponding 
to 7~0 and rri, say 00 and 01, are disjoint. 
?? Let A be the set of pairs (y,x) such that x E max(Oo), y E min(Oi), no(x) = n,(y) 

and (/i),,(,)(y) = (Lo)~,,(~)(x). By the definitions of decorated concatenable pro- 
cesses and of their sources and targets, A determines an isomorphism A : min( 01) -+ 
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Fig. 7. An example of the algebra of decorated concatenable processes. 

max( &,). Consider S1 = Se, \ min( 01) and let in : Se, -+ So0 U Sl be the function 
which is the identity on ,!?I and maps y E min( Or) to A(y). Then, 

@=(aO,,a:,:To,uT,, + (SOa lJ Sl P )Y 

where 
- at(t) = a&(t) if t E TO,, 
- ak(t) = a;,(t) if t E Te,. 

and a:(t) = in’(a& (t)) if t E To, ; 

Then, rt : 0 --) N coincides with ~0 on Se0 U TQ, and with ~1 on & U TQ,. 
?? e=efJ. 
?? z(t) = ri(t) if t E Te,. 
0 L,(y) = (LI)~(Y) if y E Sl, L,(x) = (LIMA-r(x)) ifx E max(O0). 

Therefore, we can consider the category S%?P[N] whose objects are the finite mul- 
tisets on S, and whose arrows are the decorated concatenable processes. 

Proposition 3.10. Under the above-de$ned operation of sequential composition, 
9%9[N] is a category with identities those decorated concatenable processes con- 
sisting only of places, which therefore are both minimal and maximal, and such that 
e = L. 

Decorated concatenable processes admit also a tensor operation 8 such that, given 
DCPo = (no,eo,zo,Lo):u -+ v and DCP, = (x~,LI,z~,LI):u’ + v’, DCPo@DCPl is 
the decorated concatenable process (II, /, r, L) : u CD u’ + v CB v’ given below (see also 
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Fig. 8. A transition t : n . a -+ m b and the symmetry ~,,.+.a in ~‘@VJl. 

Figure 7), where again we suppose that 00 and Oi, the underlying process nets, are 
disjoint. 
. 0 = (a”,, ah : Too U T,, -+ (SQ, U SQ, )@), 

where 
-a;(t) = a;l(t) if t E T,,; 
-ah(t) = ak8(t) if t E Ts,. 
Then, II : 0 --) N is obviously given by n(x) = nj(x) for x E Te8 U SO,. 

?? t,(x) = (f,),(x) if x E SeO, and e,(x) = br;‘(a) n min(Oc)] + (di),(x) otherwise. 
?? z(t) = q(t) if t E Te,. 
?? L,(x) = (LcJ)~(x) if x E SoO, and L,(x) = 171;‘(a) rl max(Oi)( + (L]),(x) otherwise. 

It is easy to see that @ is a functor from 9%?9’[N] x B?89[N] + 9ZB[N]. More- 
over, as in the case of concatenable processes, we have that the decorated concatenable 
processes consisting only of places play the role of the symmetries of monoidal cat- 
egories. In particular, for any 24 = nisi CE . . . cI3 nkak and 0 = mibi CT3 . . . @ mhbh, the 
concatenable process having as many places as elements in the multiset u @ u mapped 
by n to the corresponding places of N and such that L,(x) = u(ai) + d,(x) and 
e,(x) = Lb,(x) - u(bi) (see also Fig. 8) is the symmetry coherence isomorphism yU,” 
with respect to which LWP[N] is a symmetric monoidal category, i.e. Eqs (1) hold 
in 2WP[N] for the given family of y,,,“. Therefore, we have the following. 

Proposition 3.11. %‘B[N] is a symmetric strict monoidal category with the symmetry 
isomorphism {yU,v},,,ES; given above. 

Observe that, since the decorated concatenable processes consisting only of places 
are just concatenable processes, in fact the subcategory Sym,,,CNI of symmetries 
of B?P[N] coincides with the corresponding one of %?P[N]. Such observation will 
be useful later on. Observe also that the transitions t of N are represented by dec- 
orated concatenable processes with a unique transition and two layers of places: the 
minimal, in one-to-one correspondence with a;(t), and the maximal, in one-to-one cor- 
respondence with a&(t) (see also Fig. 8). The decoration, of course, consists in taking 
z(t) = L. 

Recalling that the concatenable processes of N correspond to the arrows of B[N], 
and observing that the rc-indexed orderings of the post-sets of the transitions of 
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decorated concatenable processes are manifestly linked to the t;s = 1 part of ax- 
ioms (Y) in Definition 1.9, we are led to the following definition of the symmetric 
monoidal category gY[N] which captures the algebraic essence of decorated (con- 
catenable) processes, and thus of the unfolding construction, simply by dropping that 
axiom in the definition of S[N]. 

Definition 3.12 (The category 23P[N]). Let N be a PT net. Then gY[N] is the mon- 
oidal quotient of the free symmetric strict monoidal category on N modulo the axioms 

you = idaBb if a, b E 27,~ and a # b, 

s;t =t if t E TN and s is a symmetry. (4) 

Explicitly, CW[N] is the category whose objects are the elements of S,$ and whose 
arrows are generated by the inference rules 

u E SN” u, v in S: t : u + v in TN 
id,, : u + u in CW[N] c,,” :u$v-+u$uinC3W[N] t:u+vinLW[N] 

~:u+vandp:u’+~‘ingY[N] a:u+vand/?:u+win~~[N] 

c169/3:u$u’+v@v’ in gp[N] cr;a:ud w in %?[N] 

modulo the axioms expressing that C@g[N] is a strict monoidal category, namely, 

a; id, = CI = id,; c1 and (a; p); 6 = cr; (/?; S), 

(a@/3)@6=a@(/?@@and ido@u=m==@ido, 

id, @ id, = id,@, and (CI @ CI’); (p c% /?‘) = (GI; /?) 18 (cI’; /?‘), 

(5) 

the latter whenever the right-hand term is defined, the following axioms corresponding 
to axioms (1) expressing that CW[N] is symmetric with symmetry isomorphism c 

~WIW = (cqv @ id,); (id, 8 G,,,,,), 

c4; (B 63 a) = (c1@ /?); CQ for 01: 24 + v, /I : 24’ -+ v’, 

C,G cv+ = id,@,, 

(6) 

and the following axioms corresponding to axioms (4) 

ca,b = ida@b if a, b E SN and a # b, 

(id, @ G,~ @id,);t =t iftET. (7) 

It is worthwhile to remark that in the definition above, axioms (5) and (6) define 
s(N), the free symmetric strict monoidal category on N [27,28]. Observe that, ex- 
ploiting the coherence axiom, i.e. the f&t of (6), a symmetry in 9(N) can always be 
written as a composition of symmetries of the kind (id, @ c,b @ id,) for a, b E SN. 
Then, since we have c@ = ido@b if a # b, the second of (4) takes the particular form 
stated in (7). 
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Our next task is to show that 9P[N] and 9%‘9[N] are isomorphic categories. We 
need the following fundamental lemma about symmetries in monoidal categories. In the 
following, c” denotes the nth power of C, i.e. the Cartesian product of n copies of C. 
Moreover, for n 22, we use 8” : cn -+ C to indicate @ o (1~ x ~3) o . . . o (lp x ~3). 

Lemma 3.13. Let C be a symmetric strict monoidal category. For each permutation cr 
of n elements, n 22, let F, : c -_) c” be the functor which “swaps” its arguments 
according to o, i.e. 

c” F0 b C 

(x,3 . . . ,x,> 7 kT(,)? . . . 3 %(,)) 

(.f,, ,f”) 
1 1 

C&I,3 ‘. &“j(.,, 

(Yl7 . . . 7 Y”) - (Ye(l)* . . 3 Y0(*)) 

Then, there exists a natural isomorphism ya : @’ 1, @’ o F,. We shall call ya the 
“a-interchange” symmetry. 

Proof. Recall that a permutation of n elements is an isomorphism of the segment 
{l,..., n} of the first n positive natural numbers with itself. It is well known that each 
permutation of n elements can be written as a composition of transpositions, where, 
for i = l,... , n - 1, the transposition ri is the permutation which leaves fixed all 
the elements but i and i + 1, which are (of course) exchanged. This formalizes the 
intuitive fact that a permutation can always be achieved by performing a sequence of 
“swappings” of adjacent integers. Then, assume that a is tik o . . . o Ti,. We show the 
thesis by induction on k. 

Base case: If k = 0 then a = id, and thus lBn is the isomorphism looked for. 
Inductive step: Let 0’ be rik_, 0 .*. o Ti,. Then, by inductive hypothesis, we have 

a al-interchange symmetry ya/ : @T’ -+ @’ o F,!. Now, let ik be a’(i) and consider the 
natural isomorphism 

from 8’ o F,I to 8’ o F,t,,, . Of course, since rik o a’ = a, we have that y0 is the 
(vertical) composition Z= yal : 8”; @” OF,. 

Observe that, since a admits several factorizations in terms of transpositions, in 
principle many different ya may exist. However, it is worth noticing that this is not 
the case. In particular, there exists a unique a-interchange symmetry, as follows from 
the Kelly-MacLane coherence theorem (see [ 121) which, informally speaking, states 
that, given any pair of functors built up from identity functors and 8, there is at most 
one natural transformation built up from identities and components of the symmetry y 
between them. 0 

The following announced result matches Theorem 1.12 in the context of decorated 
concatenable processes. Although some of the ideas of the proof of Theorem 1.12 have 
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parallels in this case, our result cannot follow from it. It requires a separate proof that 
we give below. 

Proposition 3.14. 9W9[N] and 9Y[N] are isomorphic. 

Proof. Let 9(N) be the free symmetric strict monoidal category on N (see the remark 
following Definition 3.12). Corresponding to the inclusion morphism N c-) 9%9’[N], 
i.e. to the PT net morphism whose place component is the identity and whose transi- 
tion component sends t E TN to the corresponding decorated concatenable process (see 
Fig. 8), there is a symmetric strict monoidal functor H : B(N) -+ 5WL1B[N]. Observe 
that 9WY[N] satisfies axioms (4), the symmetries and the transitions being as explained 
before (see Fig. 8). In fact, if a, b E &j and a # b, by definition of f-indexed ordering, 
we have ya,b = idaeb. Moreover, for S a symmetry and T a transition in $B?Y[N], it 
follows easily from the definition of -; _ that S; T is (isomorphic to) T. Therefore, we 
have H(Q,) = ya,b = idaBb when a # b E &, and since any symmetric monoidal fimc- 
tor sends symmetries to symmetries, we have H(s; t) = H(s); H(t) = S; H(t) = H(t), 
i.e., taking (4) as our set 6 of equations, H satisfies condition (ii) of Proposition 1.8. 
Therefore, denoting by Q the quotient functor from 9(N) to 9?a9[N] induced by 
Eqs. (4), by Proposition 1.8, there exists a (unique) symmetric strict monoidal functor 
K : BY[N] + %?.Y[N] such that the diagram below commutes: 

In the following we shall prove that K is an isomorphism. Observe that, by definition, 
for any u E Sf, we have K(u) = K@(u)) = H(u) = U, i.e. K is the identity on the 
objects. Moreover, we can easily conclude that it is an isomorphism on the symmetries. 
In fact, as already remarked, the decorated concatenable processes of depth zero, i.e. 
the symmetries of %?Y[N], are exactly the concatenable processes of depth zero, i.e. 
the symmetries of %ZY[N]. Therefore, we have Sym,,,lNl = @mV9[N]. Now observe 
that, by definition, 9[N] is the monoidal quotient of 99[N] modulo the axiom t;s = t. 
Since none of the axioms of 9Y[N] can discharge transitions from terms, axiom t; s = t 
can never be used in a proof of equality of symmetries, i.e. it does not induce any 
equality on the symmetries. Therefore, we have that sym,[N] = sym99[N]. Moreover, 
Proposition 1.12 shows that Sym,[,] and Sym,,,,, are isomorphic via a functor whose 
object component is the identity (see also [7,28]). Now observe that, once the object 
component is fixed, there can be at most one symmetric strict monoidal functor F 
between two categories of symmetries. In fact, on the one hand we have that, by 
definition, the symmetries of a symmetric strict monoidal category are generated by 
the identities and the components of the isomorphism y, while, on the other hand, it 
must necessarily be F(id,) = idFcuj and F(y,,) = JJF(~),F(~) (see axioms (2)). Then, 
since K is a symmetric strict monoidal functor whose object component is the identity, 
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its restriction to Sym,,lNl is an isomorphism SJVQ,I,~ = SJJ~,I,~ 2 Sym~,lNl = 
Sym,,,l,l. We proceed now to show that K is full and faithful. 

Fullness: It is completely obvious that any decorated concatenable process DCP 
may be obtained as a concatenation DCPo; . . . ; DCP, of decorated concatenable pro- 
cesses DCPi of depth one. Now, each of these DCPi may be split into the concatena- 
tion of a symmetry S/,, the tensor of the (processes representing the) transitions which 
appear in DCPi plus some identities, say id,, 8 @j K($), and finally another symme- 
try 5:. The intuition about this factorization is as follows. We take the tensor of the 
transitions which appear in DCPi in any order and multiply the result by an identity 
concatenable process in order to get the correct source and target. Then, in general, 
we need a pre- and a post-concatenation with a symmetry in order to get the right 
indexing of minimal and maximal places and of the post-sets of each K(tj). Thus, we 

finally have 

which shows that every decorated concatenable process is in the image of K. 
Faithfulness: The arrows of &Y[N] are equivalence classes modulo the axioms 

stated in Definition 3.12 of terms built by applying tensor and sequentialization to the 
identities id,, the symmetries c,,~, and the transitions t. We have to show that, given 
two such terms c( and /I, whenever K(m) = K(b) we have a =d p, where =B is the 
equivalence induced by (5), (6) and (7). 

First of all, observe that if K(a) is a decorated process DCP of depth n, then cx can 
be proved equal to a term 

where, for 1 <i < n, the transitions tj, for 1 <j < ni, are exactly the transitions of DCP 
at depth i and where SO,. . . , s, are symmetries. Moreover, we can assume that in the ith 
tensor product Bj tj the transitions are indexed according to a global ordering < of TN 
assumed for the purpose of this proof, i.e. tf f . . + < ti,, for 1 <i <n. Let us prove our 
claim. It is easily shown by induction on the structure of terms that using axioms (5) a 
can be rewritten as ~11; . . . ; @h, where Cli = Blk $ and $ is either a transition or a 
symmetry. Now, observe that by fimctoriality of @, for any a’ : u’ -+ u’, a!’ : u” --+ v” 
and s : u + u, we have CI’@S&’ = (id,~@s@id,~~); (cc’@id,@u”), and thus, by repeated 
apphCatiOnS of (5), we can prove that CI is equivalent to &io; Et; sr . . . ;&_I; ah, where 

SO,. . . ,fh_l are symmetries and each cli is a tensor gk zi of transitions and identities. 
The fact that the transitions at depth i can be brought to the ith tensor product follows 
intuitively from the fact that they are “disjointly enabled”, i.e. concurrent to each other, 
and that they depend causally on some transition at depth i- 1. In particular, the sources 
of the transitions of depth 1 can be target only of symmetries. Therefore, reasoning 
formally as above, they can be pushed up to cl] exploiting axioms (5). Then, the same 
happens for the transitions of depth 2, which can be brought to El. Proceeding in this 
way, eventually we show that a is equivalent to the composition &; Er; $ . . . ; .&- 1; &,,; ;n 
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of the symmetries &, . . . , f,, and the products & = Bk $ of transitions at depth i and 
??i 

identities. Finally, exploiting Lemma 3.13, the order of the & can be permuted in the 
way required by <. This is achieved by pre- and post-composing each product by 
appropriate a-interchange symmetries. More precisely, let o be a permutation such that 

=i ??i 
@k hk) coincides with id, @Bi tj, suppose that & : ui -+ vi, for 1 <k ,< ki, and let ya 
be the o-interchange symmetry guaranteed by Lemma 3.13 in C&Y[N]. Then, since y0 
is a natural transformation, we have that 

and then, since y,, is an isomorphism, we have that 

(id,,, 8 Bj tj) = y-l ou; ,_,,, u; ; @k ck); Yb”; ,..., “;, . 
????

Now, applying the same argument to B, one proves that it is equivalent to a term 
B’= po;Po;p1;*.. pn-l;Bn; P,,, where PO,..., pn are symmetries and pi is the product 
of the transitions at depth i in K(j3) and of identities. Then, since K(a) = K(b), and 
since the transitions occurring in pi are indexed in a predetermined way, we conclude 
that j?i = (id,, @ aj tj), i.e. 

LX’ =sg;(id,, ~~itil);s’;...;s”-,;(id,~ @@~~t~);s,,, 

P’ = PO; (id,, 8 @j tj>; PI;. . . ; I&I-I; (id, 8 @j tjn); Pn. (8) 

In other words, the only possible differences between a’ and /?’ are the symmetries. 
Observe now that the steps which led from o! to U’ and from p to 8’ have been 
performed by using the axioms which define 9P[N], and since such axioms hold 
in %?89[N] as well and K preserves them, we have that K(a’) = K(a) = K(j?) = 
K(/?‘). Thus, we conclude the proof by showing that, if a and p are terms of the form 
given in (8) which differ only by the intermediate symmetries and if K(E) = K(p), 
then a and j? are equal in 9.9[N]. 
We proceed by induction on n. Observe that if n is zero then there is nothing to show: 
since we know that K is an isomorphism on the symmetries, SO and PO, and thus M 
and /?, must coincide. To provide a correct basis for the induction, we need to prove 
the thesis also for n = 1. 

depth 1: In this case, we have 

a =so;(idu@@jtj);sl, 

B = PO; (id,, @ @j tj); PI * 

Without loss of generality, we may assume that po and p1 are identities. In fact, we 
can multiply both terms by pi’ on the left and by p;’ on the right and obtain a 
pair of terms whose images through K still coincide and whose equality implies the 
equality in 9P[N] of the original a and B. 
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Let (rt : 0 --) N, 4, z,L) be the decorated concatenable process K(idu ~3 mj ti). Of 
course, we can assume that K(so) and K(q) are respectively (rce : 00 + N, e’, 0,8) 
and (nl : 01 -+ N,L, 0,L’), where 00 is min( O), 01 is max(O), rro and xi are the 
corresponding restrictions of rc, and 8 and L’ are n-indexed orderings respectively of 
the minimal and the maximal places of 0. 

Then, we have that K(so; (id, 63 Bi tj); $1) is (rc : 0 + N, e’, r,L’), and by hypothesis 
there is an isomorphism cp : 0 + 0 such that 7c o cp = n and which respects all the 
orderings, i.e. Q,pc,l,,(~(a)) = L,(,)(a) and L’ Ilc(pcb,,(~(b)) = &b)(b), for all a E 00 

and b E 01, and r(cp(t)),,(O,(cp(a)) = r(t),(,)(a) for all t E 0 and a E t*. Let us 
write id, @ Bj tj as Blk &, where & is either a transition tj or the identity of a place 
in u. Moreover, let tk : uk --+ ok, for 1 <k < ki. Clearly, cp induces a permutation of the 
symbols [k, namely the permutation c such that &(k) = (P(tk). Then, in order to be a 
morphism of nets, cp must map the (places corresponding to the) pre-set, respectively 
post-set, of tj to the (the places corresponding to the) pre-set, respectively post-set, 
of t,G). Observe now that this identifies cp uniquely on the maximal places of 0, 
which implies that K(si) is completely determined. In fact, if a maximal place x is 
also minimal, then the corresponding & is the identity id, and thus x must be mapped 
to the object for which la(k) is the identity. If, instead, x is in the post-set of tj then x 
must be mapped to the post-set of t,G) in the unique way compatible with the family 
of n-indexed orderings z. In other words, K(si ) is the component at (~1,. . . , ok,) of 
the a-interchange symmetry. Then, since K is an isomorphism between SJJ~,,I,~ and 
Sym,,,,,,, SI must necessarily be the corresponding component of the a-interchange 
symmetry in 9P[N]. 

Concerning K(Q), we cannot be so precise. However, since we know that the pre- 
sets of transitions are mapped by cp according to 6, reasoning as above we can conclude 
that (q,t,0,P), which is K(Q)-‘, must be a symmetry obtained by concatenating the 
component at (ui , . . . , Uk, ) of the a-interchange symmetry and some product Bj Sj of 
symmetries, one for each t occurring in u, whose role is to reorganize the tokens in 
the pre-sets of each transitions. It follows that SO is y;:,,,,,,,,; (id, @ Bjsj), where Sj 
is a symmetry on the source of tj. 

Then, by distributing the tensor of symmetries on the transitions and using the second 
of (7) we show that a = 7;: ,,,,,, us ; (id,, @ Bj tj); you ,,._., Vkr, which, by definition of (T- 
interchange symmetry, is (id, @ dj tj). Thus, we have a =g /I as required. 

Inductive step: Suppose that n > 1 and let a = a’; a” and /I = /3’; /-I”, where 

u’ = sg;(id,, 8 @jtj);sl;...;s,,_l and a” 
8’ = po;(id,, @@jt;);pl;... 

= (id,, 8 ~j tj);sn, 
; pn-1 and p” = (idun @ Bj ty); p,,. 

We show that there exists a symmetry s in 9P[N] such that K(cc’;s) = K(/3’) and 
K(s-‘; ~1”) = K(/?“). Then, by the induction hypothesis, we have (a’;~) =J /Y and 
(s-l; a”) =d /Y’. Therefore, we conclude that (~4;s;~~‘; a”) =dp (p’; p”), i.e. that 
u = fl in 99B[N]. 

Let (x : 0 --+ N, /, t, L) be the decorated concatenable process K(a) = K(b). Without 
loss of generality we may assume that the decorated occurrence nets K(a’) and K(fl’) 
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are, respectively, (n’ : 0’ -+ N, 8, z’, La’) and (n’ : 0’ ---t N, 8, T’, LB’), where @ is the 
subnet of depth n - 1 of 0, 8 and r’ are the appropriate restrictions of e and z and 
finally La’ and LB’ are n-indexed orderings of the places at depth n - 1 of 0. Consider 
the symmetry S = (77, ?,0, i) in %?Y[N], where 
?? 0 is the process net consisting of the maximal places of 0’; 
?? n : 6 + N is the restriction of n to 6; 
. e = La’; 
a J?=LB’. 

Then, by definition, we have K(cr’); S = K(p). Let us consider now ~1” and /I”. 
Clearly, we can assume that K(a”) and K(@“) are (rr” : 0” --t N, P”, T”, L”) and 
(71” : 0” + N, @” , z”, L”), where 0” is the process net obtained by removing from 0 
the subnet @‘, z” and L” are respectively the restrictions of r and L to O”, and &’ and 
@” are x-indexed orderings of the places at depth n - 1 of 0. Now, in our hypothesis, 
it must be La’ = P” and LB’ = @“, which shows directly that S-‘; K(or”) = K(jl”). 
Then, s = K-‘(S) is the required symmetry of 99[N]. 

Then, since K is full and faithful and is an isomorphism on the objects, it is an 
isomorphism and the proof is concluded. 0 

We conclude the paper by proving the commutativity (up to equivalence) of dia- 
gram (3). We first recall the following simple notion from category theory. 

Definition 3.15 (Comma categories). Let C be a category and c an object of C. Then, 
the comma category (cJ_C), also called the category of elements under c, is the cate- 
gory whose objects are the arrows f : c -+ c’ of C and whose arrows h : (f : c -+ c’) --+ 
(g : c + c”) are commutative diagrams of the form 

Identities and arrows composition are inherited in the obvious way from C. 

The first step to achieve the result is the following easy observation about the struc- 
ture of the comma category (u&M’[N]), which shows that the edge (_ J _) o 99*[_] 
of the diagram discussed in the introduction actually maps MPetri* to PreOrd, the 
category of preordered sets. 

Proposition 3.16. The category (ul~@29[N]) is a preorder. 

Proof. We have to show that in (u~J99[N]) there is at most one arrow between any 
pair of objects CI : UN + u and ~1’ : UN + w. Exploiting the characterization of arrows of 
99[N] in terms of decorated concatenable processes established by Proposition 3.14, 
the thesis can be reformulated as follows: for each pair of concatenable decorated 
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processes DCPo : UN -+ v and DCPl : UN -+ w there exists at most one decorated 
concatenable process DCP : v --t w such that DCPo; DCP = DCPl. 

In order to show the claim, suppose that there exist DCP and DCP’ from u to w 
such that DCPo; DCP = DCPl = DCPo; DCP’. Let e: 0 + N and r? : 0’ -+ N be 
the (plain) processes underlying, respectively, DCP,; DCP and DCPl; DCP’. Without 
loss of generality, we can assume that 0, respectively G’, is formed by joining 00, 
the process net underlying DCPo, with 0, the process net underlying DCP, respec- 
tively O’, the process net underlying DCP’. Then, since DCP,; DCP = DCPo; DCP’, 
there exists an isomorphism cp : 6 --) 6’ which respects all the orderings and such that 
il = is’ o cp. Since we can assume that cp restricts to the identity of 0s (as a subnet 
of 6 and o’), it follows that it restricts to an isomorphism cp’ : 0 + 0’ which shows 
DCP = DCP’. 0 

The next proposition establishes the commutativity of diagram (3) essentially 
by showing that the canonical partial order associated to the preorder (uN~N) is 
DP[(N,uN)], and concludes our exposition. As for the previous proposition, the proof 
follows easily from Proposition 3.14, and the intuition behind it can be grasped from 
Fig. 9, where the self-looping arrows represent the nonidentity symmetries. We warn 
the reader that not all the symmetries are shown in the picture; this is the meaning of 
the double arrows which stand for several of them. 

Proposition 3.17. For any marked PT net (N,uN), 

(uN@W’[N]) E+ DP[(N, UN)] g 2,&?9%[(N, UN)]. 

Proof. Consider the mapping from the objects of (uNJG~~‘[N]) to the elements of 
DP[(N, UN)] given by (n, e, z, J!,) H (n, /, r). Now, observe that there is a morphism 
from DCP = (K : 0 --) N,&‘, r,L) to DCP’ = (i : 0’ + N, e’, r’,L’) in (u&C&Y[N]) if 
and only if there exists a decorated concatenable process DCP” such that DCP; DCP” 
= DCP’ if and only if there exists rp : 0 -+ 0’ such that 71 = n’orp and which preserves 
all orderings, i.e. if and only if (z,e,r)<(n’,e’,r’) in DP[(N,uN)]. Thus, since from 
Proposition 3.16 we know that (uN@Y[N]) is a preorder, the mapping above is clearly 
a full and faithful fimctor. Moreover, since such a mapping is surjective on the objects, 
it is an equivalence of categories. 

Observe that the second equivalence is actually an isomorphism, as shown by Propo- 
sition 3.8. 0 

4. Conclusions 

In this paper we have shown how the unfolding semantics given in [15,16] can 
be reconciled with a process-oriented semantics based on the new notion of decorated 
process. Moreover, we have seen that the algebraic structure of the decorated processes 
of a net can be faithfully expressed by a symmetric monoidal category. The key of this 
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ts@2d-‘.., - - - 

Fig. 9. Some of the arrows with source a @ b in 98[N] for the net of Fig. 3. 

formal achievement is the notion of decorated occurrence nets. Although the category 
DecOcc arose from the need of factorizing the involved adjunction from PTNets 
to m, and, thus, decorated occurrence nets were at first just a convenient technical 
solution, we have shown that there are in fact some insights on the semantics of nets 
given by the unfolding construction and the associated notion of decorated occurrence 
nets. In fact, decorated deterministic occurrence nets, suitably axiomatized as arrows 
of the symmetric monoidal category CW[N], provide both the process-oriented and the 
algebraic counterpart of the unfolding semantics. Moreover, they can be characterized 
as the minimal refinement of Goltz-Reisig processes which guarantees the identity 
of all tokens, i.e. as the minimal refinement of occurrence nets which guarantees the 
existence of an unfolding for PT nets. 

A possible objection to decorated concatenable processes is that they are based on 
an undesired “colouring” of tokens. The categorical characterization of decorated con- 
catenable processes given in Proposition 3.14 helps in clarifying this matter. First of 
all, since the source and target of a decorated concatenable process are plain markings, 
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and not coloured entities, it is certainly not possible to classify the present approach as 
“coloured”. It is nevertheless true that the identities of the tokens are somehow taken 
into account as “first-class” components of the internal structure of processes. What 
actually goes on becomes immediately clear looking at the axiomatization provided 
by 99’[N], where a certain notion of identity of tokens is “built” into the categor- 
ical notion of symmetries. Then, it is important to stress that this is accomplished 
without manoeuvering tokens: it is the structure of the process itself that takes tokens 
into account. Moreover, it should be generally accepted that distinguishing tokens by 
structural means is the primary purpose of processes. Of course, this purpose can be 
dealt with by considering morphisms 71: 0 -+ N and also, as this paper indicates, by 
algebraic means. Summing up, we want to stress the idea that decorated concatenable 
processes are a reasonable (and intentionally concrete) version of the standard notion 
of process. The same argument, of course, applies to concatenable processes and the 
results in [6]. 
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