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1 IntroductionIt is a well known open problem in the theory of computation, whether the additive com-plexity of functions is computable. Note that both multiplicative and total complexities offunctions are computable. In this paper we prove, somewhat surprisingly, the computabilityof the generalized additive complexity for algebraic circuits with root extraction. Thesecircuits were considered in [J 81] where a lower bound on the number of root extractingoperations for computing on algebraic functions has been proven. This was recently gen-eralized in [GSY 93] for the algebraic circuits which contain in addition also exponentialand logarithmic functions. Our result is the �rst computability result of this sort on theadditive complexity of algebraic circuits.Let us give the de�nition of the generalized additive complexity. We say that a rationalfunction f 2 Q(X1; : : : ; Xn) has a generalized additive complexity at most t, if there existsa sequence of algebraic functions:ui+1 = "(i+1)X�(i+1)11 � � �X�(i+1)nn u�(i+1)11 � � �u�(i+1)ii + �(i+1)X
(i+1)11 � � �X
(i+1)nn u�(i+1)11 � � �u�(i+1)iifor 0 � i � t, where �(t+1) = 0, f = ut+1 and all the exponents �(i+1)1 ; : : : ; �(i+1)i 2 Q,0 � i � t are rationals, coe�cients "(i+1); �(i+1) 2 �Q are algebraic. The rationality ofthe exponents (rather than being integers) di�ers the generalized additive complexity fromthe usual additive complexity.In other words we consider the algebraic circuits in which inaddition to the usual arithmetic operations also extracting an arbitrary root is admitted.If t equals to the generalized additive complexity of f then we say that computationu1; : : : ; ut+1 of f is generalized additive-minimal.In the �rst section we consider the computations in which the exponents �(i+1)1 ; : : : ; �(i+1)i ,0 � i � t are admitted to be algebraic and the adjusted for this situation notion of thequasi-additive complexity. The computation of the quasi-additive complexity is reduced(see lemma below) to the problem of quanti�er elimination in the theory of di�erentiallyclosed �elds (solved in [Se 56], for its complexity see [G 89]).In the section 2 we prove (see proposition below) that any quasi-additive minimal com-putation of a rational function can be transformed into a generalized additive-minimalcomputation with the same number of additions which contains only rational exponents,thus quasi-additive and generalized additive complexities coincide. Moreover, corollary inthe section 2 gives a possiblitiy to construct the rational exponents of a generalized additive-minimal computation. In the section 3 we describe an algorithm for producing a generalizedadditive-minimal computation. In the case of one variable (n = 1) we give an (elementary)complexity bound of the designed algorithm (see theorem below) as it uses the quanti�erelimination algorithm from [G 89]. In the general case (n � 2) we do not give complexity2



bounds as the quanti�er elimination method from [Se 56] is invoked which relies in its turnon the e�cient bounds in Hilbert's Idealbasissatz which are unknown to be elementary.Note that a lower bound on additive complexity of f in terms of the variety of real rootsof f was obtained in [G 83] (see also [Ri 85]) where one can �nd also a survey on other lowerbounds, in particular for additive complexity (see also [G 82] [SW 80]). The lower boundfrom [G 83] is used (see the end of section 3) to show that there are polynomials with thegeneralized additive complexity equal to 3 and arbitrary large additive complexity.2 Describing quasi-additive complexity in terms of the �rst-order theory of di�erentially closed �eldsWe start with designing an algorithm for testing, whether there exist (and if so, also to pro-duce) algebraic exponents �(i+1)1 ; : : : ; �(i+1)i 2 �Q in the computation u1; : : : ; ut+1 providingan identity ut+1 = f holds. In this case we say that f has the quasi-additive complexity atmost t. For this purpose we introduce the (di�erential) unknownsui+1; ~�(i+1)1 ; : : : ; ~�(i+1)i ; v(i+1)1 ; : : : ; v(i+1)n ; w(i+1)1 ; : : : ; w(i+1)i ; ~v(i+1)1 ; : : : ; ~v(i+1)n ; ~w(i+1)1 ; : : : ; ~w(i+1)ifor all 0 � i � t and the system of (partial) di�erential equations (denote Di = ddXi and byD any of the operators D1; : : : ; Dn, by �(l; j) denote the Kronecker symbol):D(~�(i+1)1 ) = � � �= D(~�(i+1)i ) = 0 (1a)i+1Dj(v(i+1)l ) = ~�(i+1)lXl v(i+1)l �(l; j); Dj(~v(i+1)l ) = ~
(i+1)lXl ~v(i+1)l �(l; j); 1 � l; j � n (1b)i+1D(w(i+1)l ) = ~�(i+1)l w(i+1)l Dulul ; D( ~w(i+1)l ) = ~�(i+1)l ~w(i+1)l Dulul ; 1 � l � i (1c)i+1ui+1 = v(i+1)1 � � �v(i+1)n w(i+1)1 � � �w(i+1)i + ~v(i+1)1 : : : ~v(i+1)n ~w(i+1)1 : : : ~w(i+1)i (1d)i+1for all 0 � i � t together with the equation ut+1 = f . The resulting system we denoteby (1).Note that the equations (1a)i+1 imply that ~�(i+1)1 ; : : : ; ~�(i+1)i 2 �Q are the constants;(1b)i+1 imply that v(i+1)l = �(i+1)l X ~�(i+1)ll ; ~v(i+1)l = ~�(i+1)l X~
(i+1)ll for the appropriate constants�(i+1)l ; ~�(i+1)l 2 �Q; (1c)(i+1) imply that w(i+1)l = �(i+1)l u~�(i+1)ll ; ~w(i+1)l = ~�(i+1)l u~�(i+1)ll for theappropriate constants �(i+1)l ; ~�(i+1)l 2 �Q.Thus, the following lemma is proved.Lemma. The solvability of system (1) (in all its di�erential unknowns) is equivalent tothe fact that the quasi-additive complexity of f is at most t.3



Now we consider the statement of solvability of the system (1) as an existentional formulaof the �rst-order theory of di�erentially closed �elds [Se 56]. Applying to it a quanti�erelimination algorithm [Se 56] one can eliminate unknownsui+1; v(i+1)1 ; : : : ; v(i+1)n ; w(i+1)1 ; : : : ; w(i+1)i ; ~v(i+1)1 ; : : : ; ~v(i+1)n ; ~w(i+1)1 ; : : : ; ~w(i+1)i for all 0 � i � t.As a result we get an (existentional) equivalent formula containing only the unknowns~�(i+1)1 ; : : : ; ~�(i+1)i ; 0 � i � t. Because of (1a) the latter formula can be considered as a formulain the language of polynomials (so, without derivatives), thus as a system of polynomialequations and inequalities with integer coe�cients.Thus, given a rational function f the algorithm tries t = 1; 2; : : : ; and for each t tests(using [CG 83]), whether the above constructed system of polynomial equations and in-equalities has a solution (over �Q). For a minimal such t we take any of these solutions�(i+1)1 ; : : : ; �(i+1)i 2 �Q; 0 � i � t. In the next section we show that in this case there existsas well a rational solution of this system and moreover we show how to construct it.To solve the system (1) of di�erential equations we applied the algorithm from [Se 56]for which elementary complexity bound is unknown since it relies on an e�cient bound inHilbert`s Idealbasissatz. But the complexity of quanti�er elimination is elementary in thecase of ordinary di�erential equations for the algorithm designed in [G 89], i. e. when n = 1,in another words when there is only one independent variable X . In this case the system(1) contains O(t2) unknows, the order of highest occurring derivatives in the equations is atmost 1, the degree of the equations is at most O(t) + deg f and the number of equations isat most O(t2), the bit-size of the coe�cients of the occuring equations is at most O(1)+M ,where M is the bit-size of the coe�cients of f . Therefore (see the bounds in [G 89]), onecan eliminate quanti�ers and produce a system of polynomial equations and inequalitieswith integer coe�cients (see above) in the unknowns ~�(i+1)1 ; : : : ; ~�(i+1)i ; 0 � i � t in timeN = MO(1)(degf)22O(t2) ; the degrees of the polynomials occurring in this system do notexceed N1 = (degf)22O(t2) the number of these polynomials is at most N1 and the bit-sizeof (integer) coe�cients occurring in this system can be bounded by N .Thereupon to solve this system of polynomial equations and inequalities we applythe algorithm from [CG 83] which requires time MO(1)(degf)22O(t2) . The algorithm from[CG 83] �nds (provided that the system is solvable) a solution �(i+1)1 ; : : : ; �(i+1)i 2 �Q; 0 �i � t in the following form. The algorithm produces an irreducible over Q polynomial'(Z) 2 Q[Z], also polynomials ��(i+1)1 (Z); : : : ; ��(i+1)i (Z) 2 Q[Z]; 0 � i � t such that�(i+1)1 = ��1(i+1)(�); : : : ; �(i+1)i = ��(i+1)i (�) where � 2 �Q is a root of '(�) = 0. From [CG 83]4



we obtain the following bounds:deg('); deg(��(i+1)1 ); : : : ; deg(��(i+1)i ) � (deg f)22O(t2)0 � i � tand the bit-size of every coe�cient occurring in the listed polynomialsdoes not exceedMO(1)(degf)22O(t2) .3 Rational exponents in the quasi-additive minimal compu-tationIn this section we prove (see the proposition below) the coincidence of the generalizedadditive and quasi-additive complexities for rational functions. Moreover, we show (seeCorollary below) how for given algebraic exponents of a quasi-additive minimal computationto produce the exponents of a certain generalized additive-minimal computation of the samerational function, thus containing only rational exponents. The similar statements wereproved also for the rationality of the exponents in the minimal sparse representations ofa rational function [GKS 92a] and of a real algebraic function [GKS 92a]. But the latterstatements have di�erent (from the one in the present paper) nature, also another di�erenceis that we prove here the existence of the rational exponents rather than the rationality asit was the case in [GKS 92a], [GKS 92a].So, letui+1 = "(i+1)X�(i+1)11 � � �X�(i+1)nn u�(i+1)11 � � �u�(i+1)ii + �(i+1)X
(i+1)11 � � �X
(i+1)nn u�(i+1)11 � � �u�(i+1)iiwhere 0 � i � t; �(t+1) = 0 and all the exponents and coe�cients�(i+1)1 ; : : : ; �(i+1)i ; "(i+1); �(i+1) 2 �Q :Proposition. Assume that f = u(i+1) 2 �Q(X1; : : : ; Xn) is a rational function and t is theminimal possible (so t equals to the quasi-additive complexity of f). Then there exist rationalexponents a(i+1)1 ; : : : ; d(i+1)i 2 Q; 0 � i � t, respectively, providing also a computation of f(thus, t equals also to the generalized additive complexity).Proof. For each 1 � j � n consider a Q-basis ��(1)j ; ��(2)j ; : : : 2 �Q of the Q-linear hullQf�(s)j ; 
(s)j g1�s�t+1. If 1 (thereby Q) is contained in the latter linear hull, then we set��(1)j = 1. Denote f�(1)j ; �(2)j ; : : :g = f��(1)j ; ��(2)j ; : : :g n f1g.5



Consider a di�erential �eld Fj ; 0 � j � n generated over �Q(X1; : : : ; Xn) by the elementslogX1; X�(1)11 ; X�(2)11 ; : : : ; logXj; X�(1)jj ; X�(2)jj ; : : :. Then in the terminology of [RC 79] eachFj ; 0 � j � n is a log-explicit extension of its �eld of constants �Q (one can representX� = exp(� logX)).We claim that the elements X�(1)j+1j+1 ; X�(2)j+1j+1 ; : : : 2 Fj+1 are algebraically independent overthe �eld Fj(logXj+1). Assume the contrary. Then the corollary 3. 2 [RC 79] (see also[Ro 76]) implies the existence of a constant � 2 �Q, rational numbersl(0)1 ; l(1)1 ; : : : ; l(0)j ; l(1)j ; : : : ; l(0)j+1; l(1)j+1; : : : 2 Qsuch that not all l(1)j+1; l(2)j+1; : : : are zeroes andX l(0)j+1+Xk�1 l(k)j+1�(k)j+1j+1 = �X l(0)1 +Xk�1 l(k)1 �(k)11 � � �X l(0)j +Xk�1 l(k)j �(k)jjbut this leads to a contradiction since the derivative ddXj+1 of the left side is nonzero, butof the right side equals to zero.For each 1 � i � t consider a Q-basis ��(1)i ; ��(2)i ; : : : 2 �Q of the Q-linear hullQf�(s)i ; �(s)i gi+1�s�t+1. If 1 (thereby Q) is contained in the latter linear hull, then we set��(1)i = 1. Denote f�(1)i ; �(2)i ; : : :g = f��(1)i ; ��(2)i ; : : :g n f1g.Denote by Ei, 0 � i � t a �eld generated over Fn by the elementslog u1; u�(1)11 ; u�(2)11 ; : : : ; log ui; u�(1)ii ; u�(2)ii ; : : : :It is a log-explicit extension of its �eld of constants �Q.We claim that for 0 � i � t � 1 the elements u�(1)i+1i+1 ; u�(2)i+1i+1 ; : : : 2 Ei+1 are algebraicallyindependent over the �eld Ei(log ui+1). Assume the contrary. Then again using corollary3.2 [RC 79] we conclude that there exist a constant " 2 �Q, rational numbersp1; p(1)1 ; p(2)1 ; : : : ; pn; p(1)n ; p(2)n ; : : : ; z1; z(1)1 ; z(2)1 ; : : : ; zi+1; z(1)i+1; z(2)i+1; : : : 2 Qsuch that not all z(1)i+1; z(2)i+1; : : : are zeroes anduzi+1+Pj�1z(j)i+1�(j)i+1i+1 = "Xp1+Pj�1p(j)1 �(j)11 � � �Xpn+Pj�1p(j)n �(j)nn uz1+Pj�1z(j)1 �(j)11 � � �uzi+Pj�1z(j)i �(j)ii :This provides an expression of ui+1 as a product of powers of X1; : : : ; Xn; u1; : : :ui andthereby we can diminish t by one in the computation of f , this contradiction with theminimality of t proves the algebraic independency of u�(1)i+1i+1 ; u�(2)i+2i+1 ; : : : over Ei(logui+1).6



Consider the expansions�(s)j = a(s)j +Xk�1a(s)j;k�(k)j ; 
(s)j = c(s)j +Xk�1 c(s)j;k�(k)j ; 1 � j � n; 1 � s � t+ 1�(s)i = b(s)i +Xk�1b(s)i;k�(k)i ; �(s)i = d(s)i +Xk�1d(s)i;k�(k)i ; 1 � i � t+ 1; i < s � t+ 1 (2)where a(s)j ; : : : ; d(s)i;k 2 Q are suitable rationals. Remark that if 1 62 f��(1)j ; ��(2)j ; : : :g thena(s)j = c(s)j = 0, also if 1 62 f��(1)i ; ��(2)i ; : : :g then b(s)i = d(s)i = 0. Then the initial computationu1; u2; : : : we can rewrite as follows:ui+1 = "(i+1)Xa(i+1)11 (X�(1)11 )a(i+1)1;1 (X�(2)11 )a(i+1)1;2 � � �Xa(i+1)nn (X�(1)nn )a(i+1)n;1 � � �ub(i+1)11 (u�(1)11 )b(i+1)1;1 (u�(2)11 )b(i+1)1;2 � � �ub(i+1)ii (u�(1)ii )b(i+1)i;1 (u�(2)ii )b(i+1)i;2 � � �+�(i+1)Xc(i+1)11 (X�(1)11 )c(i+1)1;1 (X�(2)11 )c(i+1)1;2 � � �Xc(i+1)nn (X�(1)nn )c(i+1)n;1 � � �ud(i+1)11 (u�(1)11 )d(i+1)1;1 (u�(2)11 )d(i+1)1;2 � � �ud(i+1)ii (u�(1)ii )d(i+1)i;1 (u�(2)ii )d(i+1)i;2 � � � (3)From the latter expression one can show by induction on i that ui+1 (and therebyeach of the previous elements u1; : : : ; ui) is algebraic over the �eld E0i � Ei generated over�Q(X1; : : : ; Xn) by the elementsX�(1)11 ; X�(2)11 ; : : : ; X�(1)nn ; X�(2)nn ; : : : ; u�(1)11 ; u�(2)11 ; : : : ; u�(1)ii ; u�(2)ii ; : : :Above we have proved that the latter elements are algebraically independent over�Q(X1; : : : ; Xn). As ut+1 = f 2 �Q(X1; : : : ; Xn) we can substitute in the expression (3)instead of the elementsX�(1)11 ; X�(2)11 ; : : : ; X�(1)nn ; X�(2)nn ; : : : ; u�(1)11 ; u�(2)11 ; : : : ; u�(1)tt ; u�(2)tt ; : : :almost (in the sense of Zariski topology) arbitrary constantsy(1)1 ; y(2)1 ; : : : ; y(1)n ; y(2)n ; : : : ; z(1)1 ; z(2)1 ; : : : ; z(1)t ; z(2)t ; : : : 2 �Q ;respectively, with the mere requirement that in the intermediate computations ofu1; u2; : : : ; ut+1 = f there is no taking nonpositive powers of zero (each time we choosesome branch of a rational power).As a result we get a computation of ~u1; ~u2; : : : ; ~ut+1 = f in which only rational exponentsoccur, namely~ui+1 = ~"(i+1)Xa(i+1)11 � � �Xa(i+1)nn ~ub(i+1)11 � � � ~ub(i+1)ii +~�(i+1)Xc(i+1)11 � � �Xc(i+1)nn ~ud(i+1)11 � � � ~ud(i+1)ii (4)for some ~"(i+1) ; ~�(i+1) 2 �Q. The proposition is proved.7



From the proof of the proposition we extract theCorollary. For every 1 � i � t; 1 2 Qf�(s)i ; �(s)i gi+1�s�t+1. For any Q-basis ��(1)j ; ��(2)j ; : : :of Qf�(s)j ; 
(s)j g1�s�t+1 and any Q-basis ��(1)i ; ��(2)i ; : : : of Qf�(s)i ; �(s)i gi+1�s�t+1 we get the ra-tional exponents of the resulting computation of ~u1; : : : ; ~ut+1 (see (4)) from the expansions(2).In order to show that 1 2 Qf�(s)i ; �(s)i gs observe that otherwise b(s)i = d(s)i = 0 for alli+ 1 � s � t+ 1 and we could diminish t by deleting ~ui from the computation ~u1; : : : ; ~ut+1and get a contradiction with a minimality of t.Remark that the corollary together with lemma 12 [GKS 92a] entail that for any i theconstructible set of all the possible exponent vectors (�(i+1)i ; : : : ; �(t+1)i ; �(i+1)i ; : : : ; �(t)i ) 2�Q2t�2i+1 is contained in a �nite union of the hyperplanes of the kindXi+1�j�t+1̂b(j)i �(j)i + Xi+1�j�td̂(j)i �(j)i = d̂where b̂(j)i ; d̂(j)i ; d̂ 2 Z. The similar holds also for the vectors (�(1)i ; : : : ; �(t+1)i ; 
(1)i ; : : : ; 
(t)i ) 2�Q2t+1. But we will not use this remark.Note also that in the resulting computation (4) the rational exponents depend on thechoice of the Q-basis (see the corollary). The following simple example demonstrates thatthe dependency really can happen:u1 = X�(X + 1); u2 = X�a�ua1 +X�b�ub1 = (X + 1)a + (X + 1)bwhere � 2 �Q nQ; a; b 2 Q. Choosing a basis �+ z; 1 2 Qf1; �g, for arbitraryz 2 Q, we get u1 = (X�+z)X1�z + (X�+z)X�zu2 = (X�+z)�aXzaua1 + (X�+z)�bXzbub1and by the corollary u1 = wX1�z + wX�zu2 = w�aXzaua1 + w�bXzbub1for arbitrary w 2 �Q n f0g. 8



4 Constructing a generalized additive-minimal computationThe �rst two sections (see lemma and corollary) give us a possibility to compute a gener-alized additive complexity t of a rational function f . Now we complete an algorithm which�nds some generalized additive-minimal circuit computing f . Using the corollary from thesection 2 the algorithm �nds rational exponents �(i+1)1 ; : : : ; �(i+1)i 2 Q; 0 � i � t, it remainsto �nd the coe�cients "(i+1); �(i+1) 2 �Q; 0 � i � t.Denote by M a bound on the bit-sizes of the rational exponents �(i+1)1 ; : : : ; �(i+1)i 2Q; 0 � i � t. Then by induction on i one can easily show that eachui+1; v(i+1)1 ; : : : ; ~w(i+1)i ; 0 � i � t is an algebraic function of the degree (i.e. the degreeof a minimal polynomial to which satis�es the function) at most N = (exp(M))tO(t). Hencethe coe�cients "(i+1); �(i+1); 0 � i � t �t if and only if for every 1 � x1; : : : ; xn � N2for which all the intermediate computations of the circuit are de�nable, the equalityut+1(x1; : : : ; xn) = f(x1; : : : ; xn) holds. So, for every �xed 1 � x1; : : : ; xn � N2 we in-troduce the variablesut+1(x1; : : : ; xn); v(i+1)1 (x1; : : : ; xn); : : : ; ~w(i+1)i (x1; : : : ; xn); 0 � i � tand write down a system of polynomial equations and inequalities expressing all theoperations of the circuit (provided that they are all de�nable) and �nally the relationut+1(x1; : : : ; xn) = f(x1; : : : ; xn). Then the algorithm invoking [CG 83] solves this systemin N2n+2t+1 variables and �nds in particular "(i+1); �(i+1) 2 �Q; 0 � i � t. More precisely,for each subset J � f1; : : : ; N2gn we consider a system as above including in it just thepoints (x1; : : : ; xn) 2 J (so, J plays the role of the set of points in which the computationis de�ned). The algorithm solves this system and takes J with the maximal cardinalityfor which the system is solvable. In a more sophisticated way we can partition the cubef1; : : : ; N2gn into Nn subcubes with sides equal to N and as J take each of these subcubes,but this improvement does not change the complexity bounds below.In the ordinary case (n = 1) we can bound the complexity of the described algo-rithm. First, observe that in this case M � MO(1)(degf)22O(t2) (see the end of the sec-tion 1). Therefore, the system of polynomial equations and inequalities constructed abovecontains exp(MO(1)(degf)22O(t2) ) polynomials of degrees at most exp(MO(1)(degf)22O(t2) )inexp(MO(1)(degf)22O(t2) ) variables. Hence one can solve it using the algorithm from [CG 83]in time exp(exp(MO(1)(degf)22O(t2) )) and �nd "(i+1); �(i+1) 2 �Q; 0 � i � t representing themas algebraic numbers as at the end of section 1 with the size bounded also by the lattervalue. 9



Summarizing, we formulateTheorem.a) There is an algorithm calculating the generalized additive complexity of a rationalfunction f 2 Q(x1; : : : ; xn) and constructing a generalized additive-minimal circuitcomputing f ;b) In the case of one-variable rational functions f the running time of the algorithmfrom a) can be bounded by exp(exp(MO(1)(degf)22O(t2) )), where M bounds the bit-size of each (rational) coe�cient of f . The absolute values of the numerators anddenominators of the found rational exponents in a generalized additive-minimal circuitcomputing f do not exceed exp(MO(1)(degf)22O(t2) ) .At the end we demonstrate that there could be a big gap between the the additivecomplexity and generalized additive complexity. Consider a polynomialfn = (1 +X 12 )n + (1�X 12 )n 2 Z[X ]with the generalized additive complexity at most 3. As all its bn2c roots are negative reals,the additive complexity of fn is at least 
((logn) 12 ) because of the result [G 83] (see also[Ri 85]) based on the method from [Kh 91].5 Further ResearchIt remains an interesting open problem on improving the complexity bounds of our algo-rithm. It will be also very interesting to shed some more light on the status of the problemof computing standard additive complexity of rational functions. At this point we do notknow much about this problem.AcknowledgmentsWe are thankful to Richard Cleve for starting us up to think about the additive com-plexity of polynomials, and to Allan Borodin, Joachim von zur Gathen, Thomas Lickteig,Michael Singer, Volker Strassen, and Andy Yao for many interesting discussions.10
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