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Abstract

We design an algorithm for computing the generalized (algebraic circuits
with root extracting, cf. [P 81], [J 81], [GSY 93]) additive complexity of any
rational function. It is the first computability result of this sort on the additive

complexity of algebraic circuits.
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1 Introduction

It is a well known open problem in the theory of computation, whether the additive com-
plexity of functions is computable. Note that both multiplicative and total complexities of
functions are computable. In this paper we prove, somewhat surprisingly, the computability
of the generalized additive complexity for algebraic circuits with root extraction. These
circuits were considered in [J 81] where a lower bound on the number of root extracting
operations for computing on algebraic functions has been proven. This was recently gen-
eralized in [GSY 93] for the algebraic circuits which contain in addition also exponential
and logarithmic functions. Our result is the first computability result of this sort on the
additive complexity of algebraic circuits.

Let us give the definition of the generalized additive complexity. We say that a rational
function f € Q(Xy,...,X,) has a generalized additive complexity at most ¢, if there exists
a sequence of algebraic functions:

. (i+1) (i41) (i+1) (i+1) . (i+1) (i41) G+ 5(l+1)
Uiy = eCTOXT el g T )
~ +1 +1
for 0 < i < ¢, where kK(1*1) = 0, f = wu,;; and all the exponents o{'t" ... /™Y € @,

0 < i < t are rationals, coefficients eit1) x(+Y) ¢ @ are algebraic. The rationality of
the exponents (rather than being integers) differs the generalized additive complexity from
the usual additive complexity.In other words we consider the algebraic circuits in which in
addition to the usual arithmetic operations also extracting an arbitrary root is admitted.

If ¢ equals to the generalized additive complexity of f then we say that computation
Up,..., Uy of fis generalized additive-minimal.

In the first section we consider the computations in which the exponents a(lH'l), ey 65“’1),
0 < ¢ <t are admitted to be algebraic and the adjusted for this situation notion of the
quasi-additive complexity. The computation of the quasi-additive complexity is reduced
(see lemma below) to the problem of quantifier elimination in the theory of differentially

closed fields (solved in [Se 56], for its complexity see [G 89]).

In the section 2 we prove (see proposition below) that any quasi-additive minimal com-
putation of a rational function can be transformed into a generalized additive-minimal
computation with the same number of additions which contains only rational exponents,
thus quasi-additive and generalized additive complexities coincide. Moreover, corollary in
the section 2 gives a possiblitiy to construct the rational exponents of a generalized additive-
minimal computation. In the section 3 we describe an algorithm for producing a generalized
additive-minimal computation. In the case of one variable (n = 1) we give an (elementary)
complexity bound of the designed algorithm (see theorem below) as it uses the quantifier
elimination algorithm from [G 89]. In the general case (n > 2) we do not give complexity



bounds as the quantifier elimination method from [Se 56] is invoked which relies in its turn
on the efficient bounds in Hilbert’s Idealbasissatz which are unknown to be elementary.

Note that a lower bound on additive complexity of f in terms of the variety of real roots
of f was obtained in [G 83] (see also [Ri 85]) where one can find also a survey on other lower
bounds, in particular for additive complexity (see also [G 82] [SW 80]). The lower bound
from [G 83] is used (see the end of section 3) to show that there are polynomials with the
generalized additive complexity equal to 3 and arbitrary large additive complexity.

2 Describing quasi-additive complexity in terms of the first-
order theory of differentially closed fields

We start with designing an algorithm for testing, whether there exist (and if so, also to pro-

(i+1) ...,6§i+1) € Q in the computation us, ..., u,4; providing

duce) algebraic exponents a3
an identity u;y; = f holds. In this case we say that f has the quasi-additive complexity at

most ¢. For this purpose we introduce the (differential) unknowns

~(i41) (1), (i4+1) i+1) , (i41) (i+1) ~(i4+1) ~(i41) ~(i4+1) ~(i41)
U1, O Ty, 0 , U3 ,...,v,(l ),w1 gy W, , 03 ,...,v,(l ),w1 gy W,

for all 0 <7 <t and the system of (partial) differential equations (denote D; = dLX, and by
D any of the operators Dy,..., D,, by 6({,7) denote the Kronecker symbol):

D@y == D) =0 (1a)i
i AN . (i ’+1) (i . .
Di(of ™) = S—ofV8(1 ) DY) = BTV G), 1< <n (1b)
D(w,(“rl)) ﬁ(“’l) (i+1) Du; . D( ~(z+1)) _ 6(z+1) ~(z+1)Dul 1<1<i (16)inr
(

Uigr = v§i+1) . ‘UT(Li+1)w§Z+1) . 'wl(z'+1) + @§i+1) N '@T(li+1)wgi+1) N -ﬁ%('“rl)

1d); 41
for all 0 < ¢ <t together with the equation w;y; = f. The resulting system we denote
by (1).

Note that the equations (la);y; imply that a(H'l) ...,35“1) € Q are the constants;
(1b);4, imply that i) = (Z'H)X Wt LB = N;“’”Xﬁ’ o for the appropriate constants
,ung), ~§Z+1) € Q; (1¢)gi41) imply that w(“’l) = ,(Hl)uf’(lJrl),w,(Hl) ~<Z+1) Y for the
appropriate constants l/l(l-"l), f/l(H'l) €Q.

Thus, the following lemma is proved.

Lemma.  The solvability of system (1) (in all its differential unknowns) is equivalent to

the fact that the quasi-additive complexity of f is at most t.



Now we consider the statement of solvability of the system (1) as an existentional formula
of the first-order theory of differentially closed fields [Se 56]. Applying to it a quantifier

elimination algorithm [Se 56] one can eliminate unknowns
Uiy, 0T U U D) R 0D gt i o all 0 < i < L.

As a result we get an (existentional) equivalent formula containing only the unknowns
d(li'l'l), .. .,55“’1), 0 <7 < t. Because of (1a) the latter formula can be considered as a formula
in the language of polynomials (so, without derivatives), thus as a system of polynomial

equations and inequalities with integer coefficients.

Thus, given a rational function f the algorithm tries ¢ = 1,2,..., and for each t tests
(using [CG 83]), whether the above constructed system of polynomial equations and in-
equalities has a solution (over Q). For a minimal such ¢ we take any of these solutions

a(f“), o gliv

.y 6; € Q,0 < i <t In the next section we show that in this case there exists

as well a rational solution of this system and moreover we show how to construct it.

To solve the system (1) of differential equations we applied the algorithm from [Se 56]
for which elementary complexity bound is unknown since it relies on an efficient bound in
Hilbert‘s Idealbasissatz. But the complexity of quantifier elimination is elementary in the
case of ordinary differential equations for the algorithm designed in [G 89],i. e. when n = 1,
in another words when there is only one independent variable X. In this case the system
(1) contains O(t?) unknows, the order of highest occurring derivatives in the equations is at
most 1, the degree of the equations is at most O(t) + deg f and the number of equations is
at most O(t?), the bit-size of the coefficients of the occuring equations is at most O(1)+ M,
where M is the bit-size of the coefficients of f. Therefore (see the bounds in [G 89]), one
can eliminate quantifiers and produce a system of polynomial equations and inequalities

with integer coefficients (see above) in the unknowns d(li'l'l), .. .,55“’1),0 <2 < tin time

N = MO(l)(degf)22O(t
exceed N} = (degf)

of (integer) coefficients occurring in this system can be bounded by A/.

)
; the degrees of the polynomials occurring in this system do not
2007 S s

2 the number of these polynomials is at most A} and the bit-size

Thereupon to solve this system of polynomial equations and inequalities we apply
202

the algorithm from [CG 83] which requires time MM (deg f)?
[CG 83] finds (provided that the system is solvable) a solution a(lH'l), .. .,6§i+1) €Q,0<

The algorithm from

¢ < t in the following form. The algorithm produces an irreducible over @ polynomial
p(Z) € Q[Z], also polynomials d(li'i'l)(Z),...,gl(iH)(Z) € Q[7],0 < i < t such that
altt) = @, UtD(9), .. 80T = 55“’1)(0) where § € @ is a root of ©(6) = 0. From [CG 83]



we obtain the following bounds:

220(t2)

deg(cp),deg(d(li'l'l)), .. .,deg((i(i"'l)) < (deg f) 0<i1<t

and the bit-size of every coefficient occurring in the listed polynomialsdoes not exceed
5200%)

MOV (degf) )

3 Rational exponents in the quasi-additive minimal compu-
tation

In this section we prove (see the proposition below) the coincidence of the generalized
additive and quasi-additive complexities for rational functions. Moreover, we show (see
Corollary below) how for given algebraic exponents of a quasi-additive minimal computation
to produce the exponents of a certain generalized additive-minimal computation of the same
rational function, thus containing only rational exponents. The similar statements were
proved also for the rationality of the exponents in the minimal sparse representations of
a rational function [GKS 92a] and of a real algebraic function [GKS 92a]. But the latter
statements have different (from the one in the present paper) nature, also another difference
is that we prove here the existence of the rational exponents rather than the rationality as

it was the case in [GKS 92a], [GKS 92a].

So, let

. (i+1) (i+1) (i+1) (i+1) . (i41) (i+1) §
(a3
U; 1—€(Z 1)%11 Xan ufl ulﬁ’ _I_H(Z 1)%?1 X’Vn U

(i+1)
1 .
n n 1

5(l+1)

..uZ

where 0 < i < t, kD = 0 and all the exponents and coefficients

a(1i+1)7 N ‘76§i+1)7€(i+1)7 H(i+1) € Q .

Proposition.  Assume that f = «+Y) € Q(X4,..., X,)) is a rational function and t is the

minimal possible (sot equals to the quasi-additive complexity of f). Then there exist rational

(i+1) o d(»H—l)

exponents a; € Q.0 <1 < t, respectively, providing also a computation of f

(thus, t equals also to the generalized additive complexity).

Proof. For each 1 < 5 < n consider a Q-basis 9;1),952),... € Q of the Q-linear hull

Q{ag»s),'y](s)}lssst_l_l. If 1 (thereby @) is contained in the latter linear hull, then we set
6" = 1. Denote {8,607, ..} = {8V, 67, .. 3\ {1}.



Consider a differential field F;,0 < j < n generated over Q(X,,..., X,,) by the elements
log Xl,Xfﬁl),Xff), .. .,long,Xf;l),Xff), .... Then in the terminology of [RC 79] each
F;,0 < j < nis a log-explicit extension of its field of constants @ (one can represent
X? = exp(Blog X)).

(1) (2)

. oM 6@ . .
We claim that the elements X;3%", X1, ... € Fj;1 are algebraically independent over

the field Fj(log X;;1). Assume the contrary. Then the corollary 3. 2 [RC 79] (see also

[Ro 76]) implies the existence of a constant x € @, rational numbers
(0) ;(1) (0) 4(1) (0) (1)
L0, G G L G, e

such that not all l](»}l_)l, l]('i)u ... are zeroes and

o k) ok o k) gk o k) gk
RS S IEES DY SIAL
E>1 E>1 E>1
Xy 7 =rX, = e X =
but this leads to a contradiction since the derivative dde+1 of the left side is nonzero, but

of the right side equals to zero.

For each 1 < ¢ < ¢ consider a Q-basis 772(1),772(2),... € Q of the Q-linear hull
Q{ﬁ}slé;s)}iHSSStH. If 1 (thereby Q) is contained in the latter linear hull, then we set
n" = 1. Denote {n", 0.} = {ai", 7", . 3\ {1}

Denote by F;, 0 <1 <t a field generated over F,, by the elements

@ @
loguy,ul® ,ul' ... logu;,u)* ,u; ,....
It is a log-explicit extension of its field of constants Q.
@
We claim that for 0 < ¢ < ¢t — 1 the elements u?_’l_ﬁl,uj_ﬁl, ... € F;, are algebraically
independent over the field E;(logu;y1). Assume the contrary. Then again using corollary

3.2 [RC 79] we conclude that there exist a constant ¢ € @, rational numbers

plvp(ll)vp(12)7 s 7pn7p£zl)7p512)7 AT 251)7 252)7 <oy Zid, Zz(-ll-)lv Zz(-zl-)lv ... € Q

such that not all zﬁﬁl, zﬁ_)l, ... are zeroes and

Z’+1+Zj21251)1n£i)1 _ Xp1+zj21p§j)€§j) X”""’Zg‘zlpg)eg) 21+2j212§j)”§j) Z’+Zj2125j)”5j)
Uip1 =& corAn Uy S }

This provides an expression of u;,; as a product of powers of Xy,..., X, uy,...u; and

thereby we can diminish ¢ by one in the computation of f, this contradiction with the

@
T . n
minimality of ¢ proves the algebraic independency of u, 4", u; {17, ... over E;(logu;41).



Consider the expansions

ol =l 3T de A = ST 1< <, 1<s<t+1
k>1 k>1 (2)
B =0 ST 6 = a3, 1 <i<i+1, i<s<t+1
k>1 k>1
where a( d(k) € Q are suitable rationals. Remark that if 1 ¢ {0(1) 0](»2), ...} then

al®) = ()_ (1 (2) () _ 4(s) _ :
a; 0,alsoif 1 ¢ {5, ', 7;7,...} then b;"" = d;’ = 0. Then the initial computation

Uy, Us, ... We can rewrite as follows:

(i+1) &) @

; a 0 (i+1) 9 (i+1) (i+1) (1) gU+D)

Uipy = e+ x (X0 )™ (X0 )%e e X (Xfln LR
b(""l) e pU+D) () b(""l) p(it+1) (1) pU+D) p(® pU+D)

(u ) cee (uj’ )%1 (ui’ )1,2

ut o (ugt )

(D [CSIe @ @ ; ;
REHLXOT (XD )(IT”(Xfl )c(l,;r”, X (el G+
(i+1) 1) (2) (i+1) 1) 6 (2) G
apt (A ) ) )

From the latter expression one can show by induction on ¢ that u,y, (and thereby
each of the previous elements wy,...,u;) is algebraic over the field £/ C F; generated over

Q(Xy,...,X,) by the elements

PO NG ET RS ORI IO c)
XXX XSl

Above we have proved that the latter elements are algebraically independent over
Q(X1,. ., X)) As wy = f € Q(Xy,...,X,) we can substitute in the expression (3)

instead of the elements

60 p® b e a1 @ COp )
XXX XSl ] )

almost (in the sense of Zariski topology) arbitrary constants

y§1)7y§2)7"'7y7(7,1)7y7(7,2)7'"7251)7252)7 t(l) 52)7"'6 Q?

respectively, with the mere requirement that in the intermediate computations of
Uy, Uy ..., U1 = f there is no taking nonpositive powers of zero (each time we choose

some branch of a rational power).

As aresult we get a computation of @y, s, ..., U;y1 = fin which only rational exponents
occur, namely
(D) (i41) plitD) plit1) Cli+1) (i41) gt g+

Gigy = EFUXTT X g +ROPDX e X! u;' (4)

for some 0D g+ ¢ Q. The proposition is proved.



From the proof of the proposition we extract the

Corollary. Fforevery1<i<t, 1€ Q{@”,éE”}iHSSStH. For any Q-basis 9](»1),9](»2), .
of Q{ag»s), ](s)}1gsgt+1 and any Q-basis 772(1),772(2), ... of Q{@”,&”}HKWH we get the ra-
tional exponents of the resulting computation of Uy, ..., 441 (see (4)) from the expansions
(2).

In order to show that 1 € Q{B', 8"}, observe that otherwise b\*) = d'*) = 0 for all
t+1<s<t+ 1 and we could diminish ¢ by deleting 4, from the computation @y,..., %41

and get a contradiction with a minimality of £.

Remark that the corollary together with lemma 12 [GKS 92a] entail that for any ¢ the
constructible set of all the possible exponent vectors (ﬁ(H'l),...,ﬁ§t+1),6§i+1),...,650) €

K3

Q?'~%+1 ig contained in a finite union of the hyperplanes of the kind

SO0 Y de) = d

i+1<<t+1 1< <t

where 135”, dﬁ”, d € Z. The similar holds also for the vectors (a(l), .. a(»H'l), 'yi(l), .. .,’yi(t)) €

g Rt

Q%*!. But we will not use this remark.

Note also that in the resulting computation (4) the rational exponents depend on the
choice of the @-basis (see the corollary). The following simple example demonstrates that

the dependency really can happen:
= XX +1),up = X %ud + X% = (X + 1)"+ (X +1)°

where a € @\ @, a,b € Q. Choosing a basis a + 2,1 € Q{1,a}, for arbitrary
z € Q, we get

Uy (on+z)X1—z + (on+z)X—z
Us — (on+z)—aXzau(11 _I_ (on+z)—szbuli

and by the corollary

wX' "+ wX ~F

Uy

Uy = w_aX”u‘f—l—w_bXZbuli

for arbitrary w € Q \ {0}.



4 Constructing a generalized additive-minimal computation

The first two sections (see lemma and corollary) give us a possibility to compute a gener-
alized additive complexity ¢ of a rational function f. Now we complete an algorithm which
finds some generalized additive-minimal circuit computing f. Using the corollary from the
section 2 the algorithm finds rational exponents a(lH'l), .. .,6§i+1) € Q,0 < <1, it remains
to find the coefficients ¢(+D), x(+D) € Q,0 < i < .

Denote by M a bound on the bit-sizes of the rational exponents a(lH'l), .. .,6§i+1) €
Q0 < 1 < t Then by induction on ¢ one can easily show that each

(4D g

Uiy1, V) , 0 < i < tis an algebraic function of the degree (i.e. the degree

o
7 Hence

of a minimal polynomial to which satisfies the function) at most N = (exp(M))
the coefficients U0, x0+D 0 <4 < ¢ fit if and only if for every 1 < a4,...,2, < N?
for which all the intermediate computations of the circuit are definable, the equality
g1 (21, .. y2,) = f(x1,...,2,) holds. So, for every fixed 1 < zy,...,2, < N? we in-

troduce the variables

Ui (@1, .. .,xn),vgi"'l)(m, U .,ﬂ]l(»i'i'l)(xl, cen ), 058 <

and write down a system of polynomial equations and inequalities expressing all the
operations of the circuit (provided that they are all definable) and finally the relation
Up1 (21, 2,) = f(2y,...,2,). Then the algorithm invoking [CG 83] solves this system
in N?* 4+ 2t 4+ 1 variables and finds in particular e+D, x(+1) € @, 0 < ¢ < t. More precisely,
for each subset J C {1,..., N?}" we consider a system as above including in it just the
points (z1,...,2,) € J (so, J plays the role of the set of points in which the computation
is defined). The algorithm solves this system and takes J with the maximal cardinality
for which the system is solvable. In a more sophisticated way we can partition the cube
{1,..., N?}" into N" subcubes with sides equal to N and as J take each of these subcubes,

but this improvement does not change the complexity bounds below.

In the ordinary case (n = 1) we can bound the complexity of the described algo-
rithm. First, observe that in this case M < Mo(l)(degf)220(t2) (see the end of the sec-
tion 1). Therefore, the system of polynomial equations and inequalities constructed above
contains eXp(MO(l)(degf)ZQO(tQ) 227
exp( MO (deg [
in time exp(exp(M V) (deg f)?

as algebraic numbers as at the end of section 1 with the size bounded also by the latter

) polynomials of degrees at most exp(M V) (deg f) )in
) variables. Hence one can solve it using the algorithm from [CG 83]

2007) . . _ , .
)) and find 0+ 0+ € @ 0 < i < t representing them

value.



Summarizing, we formulate
Theorem.
a) There is an algorithm calculating the generalized additive complexity of a rational
function f € Q(zy,...,x,) and constructing a generalized additive-minimal circuit

computing f;

b) In the case of one-variable rational functions f the running time of the algorithm
from a) can be bounded by eXp(eXp(MO(l)(degf)22O(t2))), where M bounds the bit-
size of each (rational) coefficient of f. The absolute values of the numerators and
denominators of the found rational exponents in a generalized additive-minimal circuit
computing f do not exceed eXp(MO(l)(degf)fO(tQ))

At the end we demonstrate that there could be a big gap between the the additive

complexity and generalized additive complexity. Consider a polynomial

fo=(14+ X5 +(1-X3)" € Z[X]

with the generalized additive complexity at most 3. As all its | %] roots are negative reals,
the additive complexity of f, is at least Q((logn)?) because of the result [G 83] (see also

[Ri 85]) based on the method from [Kh 91].

5 Further Research

It remains an interesting open problem on improving the complexity bounds of our algo-
rithm. It will be also very interesting to shed some more light on the status of the problem
of computing standard additive complexity of rational functions. At this point we do not

know much about this problem.
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