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.\bstract-\Ve consider the problem of determinmg the optim,A timing and king ui ns\+ i’aciilt! con- 
ctruction under a continuous technology model of possible sizes. The rate of conLergen<r of ihurt tu lung 
run optimal policies is established 2nd plannin g horizon implication\ are explored. KC aI\u pr<,cn: Jn 
rtficient algorithm for solving such problems fur all horizon times by solbing a jingle horizon time problem 

I. INTRODUCTiON 

The deterministic capacity problem[4. 5, 7, 14, 15, 19. 201 had its genetsis in the no\+ cla>‘;ic 

work of Manne[S]. He proposed a model for the augmentation of productive capacity in the 

face of a linearly increasing demand for service over an unlimited horizon. His solution struck 

an optimal tradeoff between the competing interests of deploying large capacity increment5 [o 

exploit economy of scale effects as opposed to small increments to defer fixed co(t eupen- 

ditures. The model and its generalizations have been extensicelg, applied in the an>lysi\ of 

capital investment problems in the process[3, 91, communications [1. I-!. 151 and electric 

power [ I] industries. 

In practice, actual capacity expansion decisions are made under conditions that share feL\ of 

the assumptions of the deterministic capacity problem[71]. The projected demand is rareI> 

linear, or even smooth, since it is usually driven by solutions to a wider multilocation problem: 

the facility costs only roughly follow a power cost law; and so on. These practical con- 

siderations force the planner into use of a numerical algorithm and hence into at bejt ;I finite 

horizon solution to his problem+. One of the planner’s greatest dilemmas is how long a horizon 

time to select so that end of horizon effects do not distort thz first capacity deplo\,ment 

decision. It is of course this first decision Lvhich is the only one implemented and therefore the 

critical one. A finite horizon solution to the deterministic capacity problem can lend consider- 

able insight into this kind of sensitivity. A finite horizon focus also comes into play in 

Jaskold-Gabszewicz and Vial[6] \rhere a version of the deterministic capacity problem is 

considered wherein technological innovation can be introduced at some future tims. leading to a 

direct consideration of finite horizon solutions as a step toward generating an infinite horizon 

solution. 

In this paper, we present an eficient algorithm that solves the deterministic capacity 

problem for all horizons by solving a single finite horizon problem. We also provide formulas 

for upper and lower bounds for the first capacity expansion size as explicit functions of horizon 

time. These bounds establish planning horizon: sensitivity to forecast horizons for a range of 
possible demand profiles and facility costs. 

Section 1 gives a formulation for the general horizon deterministic capacity problem and 

discusses its relationship to models considered in the literature. Section 3 presents structural 

results for the optimal policy including planning horizons. Section 1 details an efficient finite 

algorithm that solves any problem of the deterministic capacity type to within a prespeciiied 

maximal error for all horizon times T. 

*Robert L. Smith is an Associate Professor in the Department of Industrial and Operatlonb Engineering xt the 
tiniversity of .Michigan. Ann .Arbor. He received a Ph.D. in Operations Research from the Department ui Industrial 
Engineering and Operations Research at the University of California at Berkeley. His research interests include probability 
modeling, statistics in optimization. and capacity expansion. His publications have appeared in Uprmtions Resrc;rch. 
Journol of the American Stalklical Association. Management Science, and a number of other journals. 

:In a case where projected demand is best fitted by a linear or exponential growth cur\e. Jn infinite horizon soiutlon 
can be found under arbitrary facility fixed co>ts[ 13, Ii]. 

;.A planning horizon[l I j in our context refers to the time period over uhich the tirrt timplsmentahler cap~!cit) 
expansion increment is exhausted. Since the planning horizon never trul) \tabilizcs for any finite horizun time‘. and 
moreover its long run value depends on the entire demand profile, ue are strictly speaking considering n:nr iuexki 
planning horizons [ I I]. 
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7. THE GENERAL HORIZON ~ETER~i~~ISTlC C.4PICIT’r’PROBLESf 

The infinite horizon version of the deterministic capacity problem is extensively discussed in 
Smith[lS], including its formulation. applications. and solution. W’e u-ill recast that formulation 
into 3 more general form which allows horizon time to be finite. 

W’e assume a continuous technology of facility sizes allowing us to stl<ct a capacity 
increment of any size we choose. Defining the f;li time of a facility as the time between 
installation and capacity exhaust of that facility as it satisfies demand for capacity, we may 
accordingly select a facility corresponding to any fill time 7 > 0. The fixed cost of providing 
capacity at time f that exhausts at time t + 7 will be denoted by- J(r) and is incurred at 
installation time. Note that the model assumes that this undiscounted cost is independent of 
instaliatjon time t. Such an assumption is clearly satisfied under linear demand. and in fact as 
we will see below, is also satisfied under a range of non-linear demand profiles. Finally, all 
costs are discounted with a continuous factor e-“‘. The Determinisfic Cnpncit_v Problem is: 

To find a (finite or infinite) sequence of facilities with fill times (;i) spanning 

(P) the horizon time T so as to minimize present worth of to&al costs (f(r;)) 
discounted at rate v. 

It should be noted that an optimal solution (7:) may not exist. either for example, because the 
infimum of present worth total cost over an infinite horizon is infinite or alternatively the 
intimum is zero over a finite horizon. The problem for 7’ = x has been considered in various 
special cases by Manne[S]. Srinivasan[l9], Giglio(S] and others, and in the general case by 
Smith[lj]. The finite horizon case T < r has received considerably less attention although 
Freidenfelds[4]. Skoog[ 141 and Jaskold-Gabszewicz and Vial[6] have analyzed some special 
cas2s of (P). 

We will impose somz general assumptions on the cost structure j(r) in the next section that 
will allow for a general analysis of (P) for the finite horizon cas2. We will under these 
conditions establish existence of an optimal solution, present an algorithm for finding the 
optimal solution, and develop structural resuits yielding rates of convergence of finite horizon 
solutions to the infinite horizon solution as the horizon time is extended. Before doing this, we 
will first formulate three special cases of fP) that cover all versions of (P) analyzed in the 
literature, and furthermore satisfy the general assumptions we will impose on (P) in this paper. 

In each case, we shall use the following concepts and terminology. The problem is to choose 
a sequency of facility sizes (X,) so as to satisfy demand for capacity over a horizon T at 
minimum discounted cost. The growth in demand for capacity through time I is given by D(t). 
The discounted cost of deploying a facility of capacity X at time I is given by s-“F(X) where 
r > 0 is the force of interest and F(X) is the undiscounted fixed cost of deploying a facility of 
capacity X. Table 1 gives specific forms for D(f) and F(X) for each of the three models 
together with the corresponding elements of (P). Proofs that these transformations are valid 
will not be given here. but may be found in Smith[lj]. 

Model 1 has been considered among others by Srini~~asan[l9] and Valcoff [20]. Model 2 by 
Manne[S] and McDowell [ IO] and Model 3 by Giglio[S]. The interested reader should see 
Smith[l~] for telephone industry applications of these models. 

3. STRUCTUR;\L RESULTS FORTHE FINITE HORIZON PROBLEM 

We will now focus attention in the rest of this paper on the finite horizon version of(P) with 
T < x. As mentioned, the infinite horizon version is extensively analyzed in [lj]. It is noted 
there that in Model I, for sufficiently high growth rates, we may have the case that u < 0. In 
order to avoid notational confusion and in some cases for more substantive reasons which will 
be noted as we proceed. we will henceforth assume that v is a true interest rate. i.e. v 2 0. 

X central too1 of the analysis that will be used th~ughout this paper for stating and proving 
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results is the notion of the equivalent cost rate y(7) of a facility filling in time 7. 

Definition 3.1: vf(T) y(7) = - t for * > () 
l-e-” ’ 

The analog of y for a discrete problem was used in Shapiro and Wagner[ 131 where it is called a 
growth rate. Erlenkotter[Z] introduced a somewhat more general form of y in a different 

context. Smith [ lj] notes that y is essentially a linearized version of the fixed cost f(7), or more 
specifically f(r) = Ji ~(7) e-“’ dt. y(r) may thus be regarded as a common yardstick for mensur- 

ing the relative costliness of facilities. Moreover, it is shown in [I], [lj] that for (7:) optimal. 
y(r;) 5 y(T.;+, ) for all i for v 2 0 (the ordering reverses for Y <O). We shall impose the 

following assumption on y(r) throughout. 

.-\ssutuptioti 3.2: (a) ~(7) is a continuous function over r >O. (b) y(r) is monotone 
decreasing for sufficiently small values of 7 and monotone increasing for sufficiently large 
values of T. (c) y( 7) is a strictly unimodal function over 7 > 0. 

It is shown in [ 151 that under Assumptions 3.2(a, b) a minimum T* exists for y(7) and further 
that an equal cycle infinite horizon policy of period T* is optimal. 

Letntnrr 3.3: Models I and 7 satisfy Assumption 3 2. Model 3 satisfies Assumption 3.2 if 
and only if u > d. 

Proof: Assumptions 32(a,b) have been established for Models l-3 in [lj], Assumption 3.7(c) is 
established in the appendix. I 

See Fig. 1 for graphs of y(7) for Xlodels I and 3. 
Letrlrrln 3.4:: For all n L 1, there exists a unique TV,) such that 

Y(Td = YppT(,,) 

Proof: See appendix. n 

See Fig. 1 for a graphic discovery of T,~). The implication of Lemma 3.4 may for now be 
viewed in the following way. Consider (P) for horizon T = (n f I)r,,,. Then the cost of 
installing n + I facilities each filling in time 7(n) is the same as the cost of installing n facilities 

each filling in time ((n + l)/n)~,,,. Hence T,,, represents a breakpoint where we are indifferent 
between installing n vs n + I equal period facilities. 

‘Note that for v = 0. by L’Hospital’s Rule. v(r) = ‘$ 

C.AOR Lli, 1. !.u T-F 
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Fig. I. Equivalent cost rate y(s) vs fill period : for Models I and 3. 
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Fig. 2. Graphic discovery of i,,, 

We are now in a position to state our first important structural result which not only 

establishes existence of an optimal solution, but gives us a priori bounds on the optimal facility 

sizes. 
Theorem 3.5: An optimal finite sequence solution (T;, TT, , 7:) exists. and for all horizons 

r T,r, 5 T: 5 2T(l, for ali i+ II. 

Proof: We will first establish that we may restrict our search for (7:) (if it exists) to those fill 

periods T,,) 5 T 5 :!T,,,. 

Consrder any policy (T,) wrth 7A >27,,, for some k. Then rJ2 > r,,, so that y(rJ7) < y(Tk) 

since y is strictly increasing for r > 2~~~). But then we can replace rL by a sequence of two 

facilities filling in time r,/2 and ac I h’ev e a strictly lower cost sequence. Hence we may restrict 

consideration to r 5 ZT,,,. Now suppose 7k < 7,,) for some k < II 5 r. We may without loss of 

generality assume that y(~~j-5 y(Tk+,) since otherwise we may permute the sequence (7,) to 

establish such an ordering of ~(7,) and obtain a lower cost sequence. Hence rk_, < ;,,,. But then 

ri t rL_, < I;(,, and hence ~(7~ t TV_,) < min (~(7~1, ~(r~,,)}. H ence we can get a strict decrease 

in cost by replacing the tandem sequence (TV, TV_, ) by a single facility filling in time 7; T TV_,. 

Hence we may restrict consideration to T,,) 5 ; 5 ZT,,) for all but the last facility (if there is a 
last). Let ~(7,) be the discounted cost of the policy (7,). Then we have concluded that 

inf ~(7,) = inf ~(7,. . T,,) where n 5 N = [T/T,,)] < x since 7’ < 1. Hence we may’ restrict 
i;, B (7,. .:,) 

ollr search for a minimum to those policies lying in the compact set S = {(;,, 7?, _. , ;,\ ): 

$ :,=T , 7, 2 0) C R.“. Finally, ~(7,) is a continuous function and hence attains its minimum 
1=I 
(7:) over the compact set S. I 

We will only remark that if v < 0 then the lower bound of Theorem 3.5 holds for all facilities 

i except possibly the first. The reason is that the exceptional facility, being smaller than Y,,,. has 

the largest y value and therefore must come first by the optimal ordering properties of y for 

v < 0. Skoog[ 141 has shown existence of an optimal finite horizon policy for a more general 

problem under an assumption that a minimum fill size exists. 
It is clear, that since ~(7) is minimized at T*, the optimal policy is equal period with period 

;* for horizons T = no* for n Z. I. Also since y is strictly decreasing for T < T* the optimal 

policy for T % ) -* is to deploy exactly one facility of size T. In all other cases, it is not possible 

to explicitly characterize the optimal policy (7:). However, we will in the next few results 

characterize some of the special properties of (7:) and moreover give insight into how rapidly 

the finite horizon solution converges to the equal period infinite horizon solution. 
Theorem 3.6: (7:) is monotone in i, i.e. either r: L 7; 2.. .Z 7:: or r’; 5 7: 5. I- r’,. 
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Proof: Consider first the case ~7 < ;*. Suppose TT > 7:. Then 7: > ;* since otherwise we 

would have y(rf) < ~(7:) contradicting the optimal ordering properties of y. It follows that 

y(;t + 6) < y(rr) and ~(7; - 6) < ~(75) for ci I min {TT - ;*. i-* - r;}. But then we can achieve 
a strictly lower cost sequence by replacing r;. rr by T; i 6. ;T - 6. Contradiction. Hence 
TT 5 77. We can repeat this argument recursively for facility 2 since we now have rf < T+ to 
conclude that T; 5 TT and so on. Hence 7”; 2 T: 2.. .Z 7:. The argument proceeds similarly for 
the cases T: = P and ~g > T* respectively. I 

The following is our first planning horizon result. It establishes upper and lower bounds for 
the first facility’s fill period that converge to a common value as horizon time lengthens. 

Theorem 3.7: TV,,, 5 77 5 ((n f l)/n)~~,, for all horizon times T 2 (n f 1)~~~) where n 2 I. 
Proof: We shall first establish that TV,) 5 II; 5 ((n + 1)/n);,,, for (n + I)r(,, 5 T 5 (n + 2);(,+,,. 

Thensince the bounds are telescoping,i.e. T(,,, 5 r(.+,)and ((n t 1)/n);,,, 2 ((n t 2)/(n t I))T~,,,,. the 
result will follow. So suppose that it is not the case that r,,,~ rf ~((n f I)in)~,,,. Then 
y(rf) > ~(7~“)) = y(((n t I)/n)r,,,). Further by the optimal ordering properties of y, y(rT) > y(r,“,) 
for all i. But consider the equal period policy of deploying II + I facilities each of period 

T/(n t l).Wehave~~,)~ T/(n f l)<((n +2)/(n + l))r,.+,,5((n t l)/n)r,,,.andhence y(T/(n f 1))~ 
y(~(~,). But then this policy yields a strictly lower cost than (7:). Contradiction. I 

The horizon times T = (n f I)T(,, are the times at which the a priori difference between the 

upper and lower bounds on T; is greatest. This can be seen by noting the following. Let r,-‘(y) 
and r2-‘(y) represent the left and right inverses of the y function. Then it is clear that for 
horizons that are integer multiples of r,-‘(y) or T?-‘(Y), we have r,-‘(y) I T’F 5 r?-‘(y). One can 
see from Fig. 3 that the bounds converge to T* as T increases from (n + I)rc,, to (n +- l)r* 
after which the bounds again diverge until we reach (n +2)f,,,,,. These observations are 
generalizations of those made by Skoog[l4] for Model 1 under an assumption that the infinite 
horizon cost function for (T) is unimodal. 

Numerically solving for the bounds given by Theorem 3.7 requires knowledge of TV,,). T(,, 
may be approximately found graphically as in Fig. 2, or must be solved numerically for each 
special case.T(,, may not be expressed in closed form for most of the problems of the class (P). 
The following corollary gives bounds for the planning horizon 77 that are easily computed and 
explicitly give the rate of convergence of 7:: to T* as the horizon T increases. Although the 
bounds are not as tight as those given in Theorem 3.7, they agree for large horizons T. 

Corollary 3.8: Let 0 < p < 1. Then I((7 7 - .r*)/~*)/ 5 p for all T 2 (I + [ l/p])~*. 

y CT (n) ) +j_.-- --------___----___ 
y(; (n+l) ) 1 LT4 .qr--!_ ____________, 

y 4+-;-f- -------- 
I 

1 1 I I 

I I I I I 

L 1 I 1 I I I I 
I I I I I I I 

T(n) i (x+1) +f) i* +Y) n+2 n+1 -- X7(n+l) n (nl 

Fig. 3. Graphic discovery of bounds on :: for (n - I)T,.,~ T s(n -~)~c,-II 
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Prool: Let T 2 (1 + [ I/p])r*. Then T 2 (q -e I)Y(,~, where R, is the smallest n 2 I/p since 
rcn, 5 r* for all n. By Theorem 3.7. 

But we also have 

Hence 

Corollary 3.8 indicates that the length of horizon necessary to yield a first decision within a 
certain per cent of the optimal long run policy is linear in the optimal infinite horizon planning 
period. Figure 4 gives per cent agreement between short and long run optimal first decisions for 
a series of horizon times. Note that the percentage figures are applicable to all problems of the 
form (P) regardless of parameter values. From Fig. 4 we note for example that a horizon time 
of at least 21 optimal infinite horizon planning periods is sufficient for atry problem of the type 
(P) to yield a first decision within 5% of the long run optimal decision. Naturally, Theorem 3.7 can be 
used to provide better bounds for specific parameter values. 

Although our focus in the last two results has been on the first decision 77, we may use 
these results to recursively derive bounds for all other fill periods TT. For example bounds on 
7: may be obtained for a given T by subtracting the upper bounds for T; from T yielding T’. 71 
now becomes the optimal first fill period for a new horizon time bounded from below by T’. 
Also it follows from Corollary 3.8 that lim 7: = r* for all i as we should expect. 

j--.-c 

4. A FINITE RENEWAL ALGORITHM FORTHE FINITE HORIZON PROBLEM 

In the last section we presented results leading to bounds on the optimal fill periods rf. In 
this section, we consider an efficient algorithm for approximately solving (P) for all horizon 
times T within a specified maximal error by solving (P) for a single horizon time T*. 

We know from Theorem 3.5 that regardless of horizon time T, r,,) % 7: 5 2~~~) for all facilities 
i except possibly the last where however the upper bound still applies. Accordingly, we will 

. 
partrtron the mterval (TV,). 2r,,,] into N fill periods and use the resulting discrete model to 
approximate a solution to the continuous problem (P). Later results will give bounds on the 
resulting error in optimal cost which will in turn allow determination of N. 

Definition 4. I : Let 

1.00. - 

.75 .. 

.50 -’ - 

- 
.25 _ - 

- - 
--__ 

0 5 10 15 20 ‘;/-* 

Fig. 4. Upper bounds on fractional agreement p between short and long run initial 1311 periods vs horizon 
time 7. 
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0, = T( ,) + 1s l=O. l.....iV 

so that 

and 

Let 

T, = f 6. 
[ 1 

The following discrete time problem will be referred to as P6: find C(T,) where 

mm {~(~~)~e-“‘~C(r-~~)for t=S,2S, . . . . T6 
(P8) C(t)= (i=O.l.....X o 

for t CO. 

The discrete time problem (P,,) is of the same form as that solved by Shapiro and Wagner[ 131, 
and we will use a version of their renewal algorithm for its solution. We will later note that this 
algorithm allows us to solve all horizon times to a given accuracy by solving a single finite 
horizon problem. 

A finite renewal aigorithm 
The problem of solving the dynamic programmjng recursion for (P5), as in all deterministic 

dynamic programs, is equivalent to finding the shortest path in a network whose nodes 
correspond to points in time and whose arcs correspond to decisions (facility choices in our 
case). We solve for the minimum path using a backward algorithm so that node 0 corresponds 
to time T, and node TJS corresponds to time 0. There are TjlS + 1 nodes in all numbered 0 
through TJS corresponding to the discrete time points of (PA). We find the minimum path to 
successive nodes following node 0 using a standard dynamic programming recursion with the 
following exception. Using the optimal ordering properties of the y functions which also hold 
for (Ps), we dynamically delete arcs from the network as necessarily non-optimal as the 
minimum path algorithm proceeds from node to node. More precisely, there is an arc in the 
dynamic network from node ki 0 to node k’ > k only if 0, = (k’ - k)n’ for some I (i.e. there is a 
facility whose fill period spans the nodes k and k’) and y(0)) 5 y(B& where I(k) is the index of 
the last fill period of the optimal path to node k (i.e. &$ does not violate the optimal ordering 
dictated by yf. At the start of the algorithm at node k = 0, there are arcs from node 0 to node k’ 
for all k’= &I’S for some facility I. The length of the arc from node k to node X-’ is 

e-v(Ts-L’G)~((k,~ _ k)&), 

i.e. the discounted cost of installing a facility of fill period 0, = (k’- k)S at time T6 - k’6. 
The following theorem gives an upper bound on the error in cost associated with the 

approximation (PSI to (PI. We will restrict our attention to the case T(,) 5 7: I 2~(,, for all i 

Fig. 5, Dynamic network for the discretr pro&m ip,). 
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because in our extensive numerical work we never encountered a 0: 5 7o) for T greater than 
;*. We also consider only horizon times T that are exact multiples of the (small) number 6. 

Theorem 4.2: The fractional error in optimal cost for (Ps) as compared with (P) is bounded 

by 

e(6)= max Y(7 + 6) - y(r) 

r(l,S”+I, Y(T*) 

for all horizons T. 
Proof: Let (r:, T!, . . . . 7:) be optimal for problem (P) and let Yf be the corresponding 

installation times. 
Consider the following feasible policy for problem (Ps) derived from (~7): 

Bi = ([Yf+r/S]- [Yt/s])s for i = 1, 2, . . , ll 

where ‘r’:+, = T (see Fig. 6). 
Let 0, be the corresponding installation times of the sequence (t9,). Then 

I 

C(T:) = 2 /\;i+’ y(Tf) e-” dt 

and 

Hence 

c(6) = 2 10”” y(&) e-” dr. 

c(ei)-Cb:)=~ ~e’+‘y(e,)e-“‘d+ jb:+‘y(,:,e-“‘& 
#=I 0 

-2 fi:, y(TT+I) e-“’ dr. 

But Y(T:+,) 2 ~(7:) by the optimal ordering property of y, and thus 

c(4) - CM) s,% I*“‘+’ (y(e,) 

“J 

Tf8)_ y(T)/!+, 

Further 

"J 

C(T?) 5 6’ y(T*)e-“‘dt = y(r’)!$--. 

Hence 

c(e:)- Cbf) ~ c(e;)- c(Tf) < ~(6), 
c(6) c(T:) - 

_* 
‘i-1 

A, : 
0 ’ . / 

--- / 
-‘\ 

/ 
/ ’ - ’ T=T 

6 \ / e 6 

91 
/ n 

N-__- 
El 

n-l 

Fig. 6. Deriving a discrete policy close to the optimal continuous policy. 
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Theorem 4.2 allows us to find a spacing d’ so that all horizon solutions to (P,) will be within 
an error of ~(6) of (Pl. An application of the turnpike theorem of Shapiro and Wagner[l3] 

states that for large enough horizon times, the first optimal facitity 0:, is always the so-called 

turnpike policy. 

Definition 4.3: Let 8* be a 0, such that y(e*l = min y( H,). If there is more than one, let 0” be 
i=I.?. .n 

the smallest. 0” is called the turnpike polic_v. 

Theorem 4.4: (Shapiro and Wagner [ 131): There exists a threshold horizon time TZ such that 
0;, = 8* for all T, 2 T:. 

The finite renewal algorithm can be used to find Ts. We construct the dynamic network 

successively finding optimal policies to larger horizon problems until the following condition is 
met. The condition is that the optimal last facility type taking us to node k is the turnpike policy 
for all k spanning a time interval exceeding the fill time of the largest facility. Then by the 

optimal ordering properties of y, all facilities (and in particular the “first” facility) installed 

beyond the largest of these nodes k* must be turnpike facilities. Hence we may set Ti = k*. 
We know that such a k* will always exist by Theorem 4.4. Hence in solving the T = Tff 
problem, we have solved (Ps) for all T. Furthermore the solution error is bounded by ~(6) for 

all horizons T. 
We coded the finite renewal algorithm into a computer program that solved Model I for any 

choice of parameters K, DO, a, g and r. The program solved the problem for successively longer 
horizon times until T$ was discovered. We solved I25 different cases where S was chosen to 

produce a maximal error of I%. The resulting computation times averaged 3.8 set to solve each 

problem for all horizon times T. Figure 7 gives y(r) for one of the cases considered where we 
set K= I, DO= I, a=0.7, r=9%, g= 16%. As can be seen from the figure, ~*=13.7 and ~,,,=9.5. A 
1% upper bound on cost error required a spacing 6 = 1.35. It took 4.8 set to discover TX = 43 
and thus solve for all horizon times within a maximal error of 1%. 

Fig. 7. Discrete till periods necessary to bound approximation error by I%. 

5. CONCLUSIONS 

We have presented planning horizon results that suggest fractional agreement between short 

run and long run initial policies is eventually inversely proportional to horizon time. Moreover 
we presented formulas for obtaining specific numerical bounds on this agreement. These can 
lend considerable insight to the problem of choosing a horizon time long enough to avoid end of 
study effects in a more realistic context. We also detailed a finite algorithm for approximately 
solving the deterministic capacity problem for all horizons by solving a single horizon time 
problem. 

Acknowledgement-Our thanks to I. R. VanGessel for computer implementation of the finite renewal algorithm and related 
numerical results. 
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r\PPENDlX 

Proof o/ Lemmcl 3.3: As noted in the text. we need only establish Assumption 3,2(<~ hsrc. 
Model. I: First. it is clear that y(r) is continuously differentiable over (0, 1). and w’c know from Assumptton 3,2(b) that 

y’(r) <O fur small : and y’(r) >O for large r. Further since y’(y) is continuous it suffices in showing strict unimvdality to 
show that there is at most one (in fact exactly one) zero of y’(7) over (0. 1). Strict unimodality follows from :he fact tha: 
the sign pattern of y’(r) is then -. 0. t . where the 0 occurs at exactly one point. We hare 

y'(7) = 
S(7) - Y(T) 

Z(7) 

where 

x’(r) = @(I - rr)ey’(e*i - ,)“(l -e-y’), Y(r)= “?e-“-/evT- 1,I (I( 

and 

Hence a necessary condition for y’(r) = 0 is that 

Let 1,’ = - ~8. Then we have 

e”I - I , -p’ 
(I -Lr)----=---- 

” g 

A useful lemma is that I$(;) = (I -e-“‘)/( I -emb’) IE strictly increAsing fur LJ < b. Nou P = L.’ impltes r = - u:’ -:I) w hiih 
contradicts r ,O. Hence .g= I”. If g < Y’ then the r.h.s. of (I) is strictly increasing. Otherwise. the r h.s. i\ stricti! 
decreasing. In either case. (I) has at most one solution. Hence y’(r) has at most one zero. I 

Mrxfel 3: y’(r) i 0 for small r and y’(r) < 0 for large r again from ,Assumption 3.?t,br. ,Agdin from continuity of Y’( :I. we 
must only establish that there is at most one zero of y’(r). We have y’(r) = 0 implies 

But the 1.h.s. of (2) is strictly increasing for r > 0 and 0 < 7 < ’ 1. Hence (2) has at most one solution. Hence Y’I 7) has at 
most one zero. 

Model 3: Again. we must only establish that there is at most one zero of y’(r). W’e hake ~‘(7; = 0 implies 
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where 

R. L. SWTH 

I 
A =-. 

r 
If---_ 

(1 -aId 

But the 1.h.s. of 13, is strictly decreasing for v > d. Hence (3) has at most onr solution. Hence y’(:) has at most one zero. 
I 

Proof of Lemma 3.1: Since y is continuous and strictly unimodal by Assumption 3.2. there exists “left” and “right” 
inverse functions ;,-I and r2 _’ with domains (y(?). L,] and [y(~*). Lz] respectively. Let L = min(L,, rl} so that r,-’ and 

T:-’ are both defined over [y(r’), L]. Since y is defined over (0. 2) and y is unimodal. :itn, r,-‘(y) = 0 and ,“y_ ~z-‘(y) = x. 
- . 

Consider 7~’ = r2-’ - (fn t l)/n)~,“ with domain [y(r*), IY.]. Clearly, lim r-‘(y) = - 7*/n < 0 and lim r-‘(y) > 0. Further 
?I(‘.) 7-L 

r-’ is continuous since Y(T) IS continuous, and y(r) can if necessary be restricted to a compact domain. 
Hence there exists a y = ye such that r-‘(ye) = 0 and hence 

Let 

T(., = 7;YyrJ 

Finally, T,,) is unique since r _’ is strictly increasing due to the strict monotonicity of y. 


