Technical Report £s83022-R

REQUIREMENTS
FOR

*
MODEL DEVELOPMENT ENVIRONMENTS

L kE
Osman Balci

Department of Computer Science
Virginia Polytechnic Tnstitute and State University
Blacksburdg, Virginia - 24061

25 October 1884

Revised: 6 February 1985

—..-—--_...;—-...—-_..—_.._-—

*

Research partially supported DbY rhe Office of Naval Research
and the Naval Sez Systems Command under Contract No. N60921-83-G-Al65
through the Systems Research Center at VPI&SU.

*xOsman Balci is curraently an Assistant Professor of Computer
Science at YPIi&sU. He received a Pn.D. in Industrial Engineering and
QOperations Research from gyracuse University in 1981. He serves 2as
Co—Principal‘Investlgator for the Navy-funded project in Model Devel-
cpment Environments. He is currently an Associate Editer of Simufetter.
His main research interests include model develcopment environments,
simulation, performance evaluation of computer systems, and software
engineering.

SO

Scope and purpose = This paper presents fundamental reguirements for
Model Development Environments {(MDES) and offers guidance for MDE
designers and implementars. A MDE provides an integrated and compre~
hensive collection of computer-based rools to (1) offer cost-effec-
tive, integrated, and automated'suppcrt of model development £hrough-
out its entire life cycle, (2) improva the model quality by
effectively assisting in the quality sssurance of the model, (3) sig-
nificantly increase the efficiency and productivity of the projesct
ream, and (%) substantially decrease the model development time. Alt-
hough the requirements ars perceived TO pe generically applicable To
a1l mathematical {or abstract) - specifically, simulation and mathe-
matical proqramming - modeling tasks, the focus of this paper 1s on
discrete event simuliation model development.

Abstract - This paper deals with the initial phass of our ongoing
research prcject on the Definition of 2 Discrete Event Simulation MDE
wnich started on 1 June 1983. The first phase of the rapid protetyping
approach we ars using in designing the VDE involves the requirements
specification. A literature raview revealed eleven currsnt problems
in modeling. Te¢ address these problems, a MDE was identified as com-
posed of four lavers: (1) hardware and operating systam, (2} kernel
MDE, (3) minimal VDE, and (4) MDEs. Requirements wers shen perceived
for esach layer and are reported in rhis paper. The feasibility of the
requirementcs have been assassed throughout our prototyping afforts.
This paper has provided significant guidance to oux research group in
designing the MDE and its associated tools. We believe £hat the desig-
ners and implementers af other types of MDEs can penafit from the
research described herein.

e

1. INTRODUCTION.

The use of ccmputer—based. models is becoming an increasingly

important activity to solve problems ancountered in all areas of busi-

ness, government, industry, and military. As these problems grow lar- E
gar, become more-complex, and reguire accurate soluticns more rapidly
+han evaer before, she associated modeling activity hacomes ©one which
requirss more computer assistance in the nodel develepment process
itself. |

There is a great nead for automaticn £o support model devalopment
throughout its entire life cycle. This automated support is neaded not S0
much To fundamentally change the end product, but to raduce the cost
of development and increase the quality. This automated support can
best be characterized in the form of a Model Development Environment
(MDE) .

current modeling problems are reviaewad in gaction 2. The centext
" apnd architecture of the MDEs ars presented in Sectien 3. Section &
contains the fﬁndamental MDE requiremepts. A comparison of the medel-
ing problems with the MDE tocols 1s given in Section S. Tinally, con-

clusions are stated in Sacticn 6.

2. CURRENT PROBLEMS IN MODELING

A reaview of substantial current problems in modeling is presented
in this secticn. The problems recognized are pelieved €O axist in
simulation (discrete avent, continuous, compined}, mathematical pro-

gramming, econcmetric, and other types cf modeling.

High Cost of Mode! Development

As reportad Dby Roth, Gass, and remoine, "The U.S. Government is
+he largest sponser and consumer of modals in the world. Estimates
have indicatsd that over one-half wbillion dollars are being spent
annuaily on developing, using, and maintaining mathematical, simula-
tion, and econometric modals in the decision—and—policy-makinq func-
tions of the Federal Government” [31, p.214].

A repert to the 7.8. Congress preparad by the General Accounting
office (GAC) [36] said in part:

"opo identified 318 federally funded models developed or

used in the Pacific Northwest area of the United States.

Development of these models cost about $39 million. Fifty-

saven of fthese models were selacted for detailad review,

sach costing over $100,000 ©o develop. They represent 35

percent of the $39 million of development costs in the

medels. '

Although successfully developed'modals can be cof assistance

in the management af Federal progranms, GAO found that many
model development efforts experienced large cost overruns,

prolonged delays in completion, and tetal user dissatisfac~
tion with the information obtained from the moedel."

An obviously important component of software development is compu-
tar programming. The cost of programming is becoming'more deminant and
apparent as hardware coOSts continue to decline. As indicatad by Was-
serman and Gutz 138], "There is already a serious shortage of skilled
programmners and the cost of such & persoen is expected Te surpass
SlO0,000 a year (salary, wenefits, éverhead} by the mid-1980"'s." This
shortage is even more serious in the area of model development becauss

programming is only one of several costly component activities.

Model Quality Assurance

The importance of the following dictum is not fully racognized:

-2~

T T

e

"Nobody solves the problenm. Rather, averybody solves the
model that he has constructed of the D*oblem. rel

This dictum places rhe medeling in its correct perspectiveﬂ 1% clearly
indicates that 1t is crucial to as5seSS the quality of the model to
claim that it provides & crediple solution to the problem.

However, fthers 1s no fermal, precise definition and means of det-
ermining model confidence at the prasent time a3 indicated by Gass
(9], The guality hecomes much mMOrs difficult to assass for models of
systens which are monexistent or future- -oriented in which the past is

o isting, operational

L

e

“

rh

not a geod predictor of the future. Even
systems which are not completely obsarvable (or from which it is not
possible to collect the required data completely). quality assurance
still poses & significant technical challenge.

The inzbility to assess rhe model quality adequately for nonexis-

tent, future-oriented, ard partfa%ky—o* completely unobservable SY¥s-—

tems, as well as £or others, raises the nrobabLTLtv of committing the
type 11 erTor; the error of accepting the results of an invalid medel
(model user's risk) [4l. The conssguencss of the type II errol ara
rucial especially when vital decisions are made on +he basis of model
results. The extrseme saricusness of the consegquenceas of the type Il
error for military applications, such as Navy combat system models, is
one of the important factors which has motivatad the ressarch

described herein.

Lack of Full Life Cycle Support
in spite of the available Simulation Programming Languages (SPLs)
and Mathematical Programming Systems {MPSs), model development 1S

still labor intensive and error prone. The current SPLs and MPSs ars

-3-

supportive of only the programming process. Rarely do they even claim

to provide effeactive tools for programmed medel verification. At this

Time, automated support of model development throughout its entire life

cycle (see Fig. 1) is nonexistent. |

Conceptual and Communicative Models are Built Under the Influence of a SPL or a
MPS '

Model formulation and repraesentation arse usually done under the
constraints imposed by the SPL or MPS to be used in the programming
process. This may induce substantial errors within the model reprasen-
ration right at the peginning of the model development life cycle,
These arrors are either caught in much later phasés resulting a higher
cost of correctibn or never detected resulting The type II error.

A linear programming MPS, for example, reguires all constraints

to be Llinesar. 1f theconce +ual and communicative models are bullt

'

under this assumpticn, all crucial nonlinear constraints will Dbe
- approximated to be linear. This may be an unacceptable approximation
and may result in an invalid model reprasentatlion. Similarly, i1£ the
modeler is constrained by che world view of a SPt, +he conceptuzal and
communicative models may be invalidated due to the incompatibility of
the world view for the system under study. This invalidity may aasily

ma carried out until later phases in the develcopment and may even

czuse the type II error.

Redefinition Does Not Usually Follow the Entire Life Cycle

The experimental model is commonly redefined for an update,
obtaining another set of results, maintenance, ©OF ather use(s). Thes
changes redquired are generally made on the programmed Or sxperimental
model skipping the formulation and repressentation processes. This

-4-

O

practice may induce substantial errors especially for large sczle com-

plex models.

lnadequate Management
The sariousness of this problem has motivated the U.S. GAQ to
submit a report to the Congress [36]. Three broad catagories of prob-

33

by

lems were identifiesd in this report as a rasult of an analysis o

federally funded models that had experienced problems during their.

development: (1) inadeguate management planning (70%), {2y inadequate
management coordination (15%), and (3) inadeguate management commit-

ment (13%}.

|nadequate Documentation
In his feature article, Gass [9] indicates that "we do not know

of any model assessment oOr modeling preject review that indicated

satisfaction with the available documentation." He notes that serious
problems axist regarding the production and ‘availability of model
documentaticn.

Most models evolve over an extended period of time. The model is
redefined repeatedly to reflect the new and increased understanding of
“he system, changing opjectives, and the availability of new data.
This evelutionary change, however, causes rhe documentation often To
become obsolete, incomplete, or inadeguatle shortly after they are
written [2]. The longer the medel development the more the documenta-

tion deteriorates under the current practice.

Poor Communication
A modeling project inveolves people with different backgrounds and
areas of expertise. Communicaticn problems arise among these people

-5-

mostly due to the lack of (1) a conceptual framework, a uniform fermi-
nology, and a language for communicaticn, (2) effective communication
tools, and (3).stratified documentation.

At this time, the literature on modeling does not display a con-
sistent téfminoloqy. Many tarms (i.e. assessment, evaluation, verifi-
cation, walidation, quality assurance, cradibility, documentation,
portability, certificaticn) ars interpreted differently depending upen

the background of the modeler or the specific area of applicatiocn.

Modeiing Projects Experience Prolonged Deigys in Completion
one of the problams identified in the GAOC report to the U.S. Con-
gress [36] is the prolongead model development cycles. Large scale and

complex model development is still lazbor intensive and error prone.

Tnodequate User Participation

"all toe often, model developers simply go off by themselves Zfor
a vear and then proudly drop the 'completed,' never to be usad model
on the sponscr's desk." [2] Insufficientruser invelvement causes the
model to be unresponsive to user needs resulting user dissatisfaction

Wwith the information obtained from the model [386].

Prefabricated Models and Past Experience are not Effectively Utilized

Farlier modeling projects are not studied in detail and are not
fully utilized. An already existing usable model (part) is sometimes
repuilt from scratch duplicating the development effort and unnecss-
sarily inereasing the cost and time of develcpment. Even 1if existing
models or model parts are not usable in the new project, a modeler
(especially an inexperienced one) can study them to learn from past
experience. Such a study may be extrsamely beneficial especially for

-5-

the management, planning, and rescurce allocation £for the new project.

There exists other problems which a2ffect the success of a model-
ing project. Mest important of all are: (1) failure te define a set of
achievable cbjectives [2], (2) insufficient problem formulation [3€],
(3) inadequate user participation in defining the problem [386], (4)
failure to identify the best sclution technigque [386], and (S) ineffac-
tive presentation of model results [30]. These problems, however,
should be addressed within a Mcdel Management System (MMS) [22] rather
than within a2 model develcpment system which is a subset of the MMS.
Balci and Nance [3] introduced the formulated problem verification as
an explicit requirement of model credibility. Nance and Balci [21]
emphasized that a MMS should be concerned with the problem definition
phasas as well as the model development and decision suppert phases by

stating the okjectives and reguirements to addrsss these problems.

3. MODEL DEVELOPMENT ENVIRONMENTS

In order to provide a proper framework to determine the contsxt
of MDEs, it is convenient teo divide the life cycle of model develop-
ment inte six phases {20] as depicted in Fig. 1. The six phasas ares

shown by oval symbols. A dashed arrow describes a process by which an

input phase is translated inte an output phase. A solid arrow refers

7]
[WS

o a credibility assessment stage. The life cycls presanted in g. 1
generically applies to all types of abstract model develcopment scme oI
which are stated as follows with example programming languages used

for developmenz: (1) discrete event simulation model development (GPSS

[12], SIMSCRIPT [17]), (2) continucus simulation model development

-7-

*-.yodel Farmulation

SYSTEM AND

0BJECTIVES S
) DEFINITION Madel CONCEPTUAL
S A Qualificatien MODEL
’
Redefinition eative \\Y
/ Communicative \ \\ Mode]
/ qug]) \Reprasentation
P Verification \
' y
1
Model Data
Rgggi%s Yalidation Validation Ccﬂﬁggéfﬁg§VE
A~ [
k Programmed !
Model !p i
\ Verification /i ' Co'omning
\
\
Experimentation®y .
\ Experimental PROGRAMMED
\\ < I}esign MODEL
Verification
P
EXPERIMENTAL Pad
MODEL _ =" Experimental’
- Design

Fig. 1. The life cycle of model develcpment,

(DYNAMO [29], CSMP [13]), (3) combined (discrete and continucus)
simulation model development (C-SIMSCRIPT [S5], SLAM (28]), and (&)
mathematical programming (Linear Programming - LP, Integer LP - ILP,
Mirxed ILP, =tc.) model development (IMPS [33], MPSX [1¢]).

The processes of model development should in no way be inter-
preted as sequential. Model development is iterative in nature and we
bounce back and £forth between the phases during the dsvelopment.
Modeling starts with the given definition of the system under study
and explicitly stated study objectives. System defini<ion contains the

-8-

formulated problem, system characteristics, and systam boundary.
Model Formulation is the process by which the cenceptual model is

envisioned to represant the system under study. The Conceptual Model

(o}

[20] is "that model which exists in the mind of the modeler. The form
of the cenceptual modsl is influenced by the system, the perceptions
of the system held by the mocdeler {which are affsctad by the modeler's
background and experience and those external factors ffacting the
particular modeling task), and the objectives 5f‘the study." Mode/
Qualification [32] is "detsrmination of adequacy of the conceptual modél_
to provide an acceptable level of agresment for the domain of intended
application.” Domain of Intended Applicaticn [32] is the prescribed con-
ditions for which the model is intended +o match <the system under.
study. Leve/ of Agreement [32] is the required correspondance between
the model and the system under study, consistent kith the domain of
intended application and the study objectives.

Mode! Representation is the process of translating the concepitual
model into a communicative medel. Communicative Modei [20] is "2 model
represantation which <an be communicated to other humans, can be
judged or comparad against the system and the study objectives by mora

than one human. Several communicative models could be constructed dur-

ing & study, each derived from a preceding communicative model {fol-
lowing the first) or different conceptual models.™ Zntity cycle dia-

grams, flow charts, pseudocodes, flow diagrams, block and logic
diagrams, or activity charts are examples of communicative models.

Communicative Model Verification is confirming the adequacy of the communi-

cative medel to provide an acceptable level of agreement for the

domain of intended application.

Programming is the procass of translating the communicative model
inte a programmed model:. A Programmed Model [20] is a model representa-
tion that admits execution by a computer to produce results. GPSS,
DYNAMO, C-SIMSCRIPT, and FMPS programs are examples of programmad
models. Programmed Model Verification is substantiating that the program-
med model represents the communicative model (and the system under
study) within specified limits of accuracy.

*

Experimental Design is the process of defining a set of conditions
under which the system (or ths model} is to be cbserved or expari-
mented with and determining how this observation or exXperimentation is
to be carrisd out. An Experimental Model is the programmed model incor-
porating an executablas description of the experimenzal design. Exper-
Imental Design Verification is substantiating that the experiments are cor-
re;tly designed and their translation into an exacutakle code is
correctly done.

Data Validation is ccnfirmihg that the data used is accurate, com-

lets, unbiased, and =zppropriate in its original and transformed

ks

forms. Mode! Validation is substéntiating that the experimental model,
within its deomain of applicability, behaves with satisfactory accurzcy
consistent with the study objectives. Domain of Applicability [32} ig the
prescribed conditions for which the experimental model has been
tested, compared against the syétem To the extent possible, and judged
suitable for use,

Expeﬁnmnf&ﬂon is the process of experimenting with the model on a
computer for a specific purpose. Some purpcses of experimentation are:
(1) comparison of different operating policies or procedures, (2)

evaluation of system behavior, (3) sensitivity analysis, (4) pradic-

-10~

tion, (5) optimization, and (§) determination of functicnal reslations.

Model Results [20] are "the outcome from = single execution of the

experimental model or those results produced to satisfy a single tast

scenario, which might reguire several model executions with different
input value specifications, structural changes, ate."

Redefinition is the process of (a) updating the experimental medsl
$0 that it represents the current form of the system, (b) altering it
for cbtaining another set of results, (¢) changing it for the purpose
of maintenance, (d) modifying it for othar use(s), or (e) redefining a
new system to model for studying an zlternative solution te the prob-
lem. The process of redefinition should follow the entire lifs cycle
starting with the definition of the system and study obkjectives and
culminating with the model results.

Quality Ass&rance (0f the Experimental Model) is substantiating
that the experimental medel, within its domain of applicakility, poss-
esses satisfactory. quality consistent with the study objectives,
(Experimental) Mode/ Quaiity is determined through the integration of
the c¢redibility assessment stages shown by solid arrows in Fig. 1.

A MDE should provide an integrated and complete ceollaction of

t

computer-based tools which offer continucus and cost-affaective suppor

to all phases, processes, and stages of the model development Life

(k1]

cycle in Fig. 1. & MDE should implement a model development mathodol~
oqy._Automatad tools should be provided to support the development
methodeleogy since these tools do not normally exist as ends in them-
selves, butl rather as means to an end. The Conical Methodology [20]

which comprises a top down model definition and a bottom up model spe-

cification approach is an extremely useful methodology for develcping

-11-

discrete event simulation models and can ba implemented by a2 discreste
avent MDE.
The overall objectives of a MDE are stated as follows:
(1) offer cost~effective integrated support continuously throucgh-
out the entire life cycle of model development,

(2) improve the model quality by effectively assisting in the
quality assurance of the model,

{3) significantly increase the efficiency and productivity of the
project tsam, and

(%) substantizlly decreass the model development time.

The layered approach to the development of environments for the
language ADA [1] 1is followed in structuring the MDEs. In this

approach, the development environments are composed cf four lavers as

depicted in Fig. 2 and described below:

Layer 0: Hardware and Opercting System

Computer hardware and a host operating system constitute the
basis upon which the anvironmént is built. An operating system {(i.es.,
UNIX [18], INTEZRLISP [35], VMS [6]) crsates its own pProgramming snvi-
ronment the tocls of which are utilized in the construction of a MDE,
Therefors, a MDE is dependent on the particular operating system cho-

san.

Layer 1: Kernel Model Development Environment (KMDE)

Primarily, this layer integrates all MDE tocols inte the program-
ming environment. It provides databases, c¢ommunication and run-time
support functions, and a kernel interface, zll of which need +to be
machine-independent so as tc make- the MDE portzble to any c<omputer
‘system which runs the operating system of layer 0. In this case, the

-12-

Model
Analyzer

Model
Generator

Modal
Translator

Mode]

Command Nt d

Language KMDE Yerifier
Functions

Interpreter

Assistance
Manager

Hardware and

Operating System

Electronic
Mail
System

Premodels
Manager

Kernel Interface

Text
Editor

Project
Manager

MMDE ' _ MDE

Fig. 2. The structure of model develcpment environments.

-13-

s T T

MDE is as portable as the operating system (programming environment).

Layer 2: Minimal Model Development Environment (MMDE)

This layer provides a "compreshensive" set of tools which are
"minimal" for the development and execution of 2 model. "Comprehen-
sive" implies that the toolset is supportive of all phases, processes,
and stages of the life-cycle in Fig. 1. "Minimal" implies that the
toolset is basic and general. It should ke basic in the sensa that
the set of tools should enable modelers to work within the bounds of
the MMDE without any significant inconveniences. It should be general

in the sense that the tcolset should be generically applicable to all

types of absiract modeling tasks.

(&7

The MMDE tools are classifisd inte two cataegories. The irst
category contains the tools which need to be constructed with respect
to the type of modeling the envirénment will be built for. Project
Manager, Premodels Manager, Assistan&e Manager, Command Language
Interpreter, Model Generator, Model Analyzer, Modal Translator, and
Model Verifier fall in this category. If a MDE is to be Euilt for dis-
crete event simulation, these tools should be constructad accordingly.
However, scme of these tools such as the Command Language [nterpreter,
Assistance Managér, or Premodels Managar constructed for ons type of
modeling may well be used for another with some modificatiocons.

The second category tools (also called assumed tools or library
tools) are the ones which are expected to be provided by the program-
ming environment. Scurce Code Manager, Electronic Mail System, and
Text Editor fall in this category. Electronic Mail System and Text
Editor can be used for each type of modal development. Source Ceode
Manager, however, may, for example, be the SIMSCRIPT, DVYNAMO, or EFMPS

-]14-

Ssource code manager depending upon the type of medeling.

Layer 3: Model Development Envirenments (MDEs)

This is the highest laver of the environment which is based upon
a2 particular MMDE. In addition to the toolset of the MMDE, iz incorpo-
rates tocls that support specific applications and are of special
intarest only within a particular project or of intarest enly to an
individual modeler. If ne other tools were added to a MMDE toolset in

the degenerate case, a MMDE would itself be a MDE.

Iy

The MDE tools are alsc classified into two catasgories. The first
category tools are the ones which need to be constructed with respect
to the specific aresa of application. Thess tocls may need to he tai-
lored for a specific project or cther.tools may need to be added to
meet special requirements. The second category tools (alse called
assumed tools or.library tools) are those expected to be available due

to their availability and use in several other areas of application.

A MDE tool is integrated with other tools and ths programming

i

gration is indicated in Fig. 2 by the opening between Project Manager

and Text Bditor.
4. DEFTINITION OF MDE REQUIREMENTS

Fundamental MDE requirements are defined in this section sepa-
rately for each layer of the environment by taking the currsnt model-

ing problems of Sec¢ticn 2 into consideration.

4.0 REQUIREMENTS FOR LAYER ZERC

£.0.1 Interactive (on-line} mode of processing is recuired <o
previde the necessary relationship betwsen a modeler and the
toolset supporting the medeling task. A computer system with
such a processing mode can be used to build a MDE.

4.0.2 Alphanumeric video display terminals are required for on-
line processing.

£.0.3 A high-speed line printer or a laser printer is reguired o
produce hard copies and good guality decuments.

£.0.4 An cperating system is required with the following capabili-
Ties:

a) It should have a Programming environment which provides
the source code manager required, a mail system, and a
peweriul text sditor.
2} It should be as portable as the MDE is required to be.
¢) It should be as powerful as possible since the more pow-
erful the operating system and its asscciated programming
environment, the zasiar the construction of z2 MDE.
We hawve chosen the UNIX operating system in our research project.
Evaluation of the UNIX host for a gimulation MDE is presented in [23].
In addition tc its being very powerful, UNIX (and thus the MDE) can be

transported to a widsa variety of processors, from main-frames to prer-

sonal computsrs [15].
£.1 REQUIREMENTS FCR XMDEs

The KMDE provides databases, communication and run-time support
functions, and a kernel interface. There are three databases at this
level, namely, project, premodels, and assistance datazbases. The
access rfunctions of these databases arse considered to be part of the

KMDE because of their central importance to the MDE.

4.1.1 KMDE Project Databagse Requirements

repo-

4.1.1.1 The datzbase should be censtructed as the central
etrieval

sitory of the MDE to provide the storage and r

of:

~16-

S

(=]

1.5

-
[43]

ey
[te)

a) model (parts), being develeped, in different rapre-
sentation forms (SMSDL - Simulaticn Model Specifica-
tion' and Documentation Language [(20], primitive
(28], graphical, sPL, MPS, etc.) and versions,

) information regarding project management including
Project and work schedules, progress reports, due
dates, telephone directories, "to do" lists for
individuals, mailing lists, etc.

c) the system definition and study okjectivas,

d) information regarding cenfiguration managemant,

e) project documentation,

£) perscnal documents of users,

g) model input and output data, and

h) any other data relevant to the modeling projsct.
Each object (a separately identifiable collection of
information) in the datzbase should be identified by a
unigque name [1].

An-ocbject in the database should consist of its content
(the raw information it contains) and it atitributes

(1].

The number of atiributss that an objeact has should not
be restricted {1].

The database should not impose restrictions on the for-
mat of storage in an object [1].

Every object in the database should have a histo _
derivation) attribute, a categorization attributs, and
an attribute which indicatss access rights tc it

tent and to sach of its attributas [1].

The database should allow the complete and accurate
recording of relationships among its cbjects, aven when
these objects are created by modeler-supplied +%ools
(1}
{ - -

The database should allow *He MDE tools to creazate and
to access its objects [1].

The database should ke capable of supporting many pro-
jects simultansously.

.1.10 The database should be machine-independent.

-17-

4.1.2 KMDE Premodels Datobase Requirements

The premodels database contains prefabricated models { submecdels
or model components) the quality of which is assured and which can be
used in tﬁe consiruction of another model. Two types of prefabrica-
tion may occur. The first is due to an earliar rproject and the second:
is the prefabrication of a generic model purely for the purposs of
general use. For example, a generic model of a G/G/s queueiﬁg system
can be prefabricated for the purpose of using it in the constructicn
of other models.

A modeler may retrieve prefabricated models from the database +o
learn or obtain more experisnce in modeling or the use of a particular
programming language {i.e., GPSS, CsMP, MPSX). In this context, the
premodels database can be viewed as a Learning Support System.

Requirements are stated as follows:

4.1.2.1 The database should be constructad in such a way that
it can be searched using the Premodels Manager.

>
ot
to
.

The database should allow tha storage of a prefabri-
cated model through the Premodels Manager.

W
[ad
o
w

The database should implement a standard terminology in
describing a model (part) so that the search does not
fail due to terminclogy mismatch.

>
'V.J
ro
15

The database should allow zccass to each meaningful and
useful part of a prefabricated model and record the
relationships among these parts for usa by the search-
ing mechanisn.

S
=
[y%]
wn

Every accessible model (part) in the database should
nhave a history (or deriwvation) attribute, a catagoriza-
Tion attribute, and an attributs which indicates access
rights to its content and to each of its attributes.

4.1.2.86 The database should allow the storage and retrieval of
a model (part) in more than one form of representation
(i.e., primitive, SMSDL, graphical, SPL, MPES, etc.).

£.1.2.7 The databass should be machine-independant.

-18-

4.1.3 KMDE Assistance Database Requirsments

Assistance database contains "help" and "tutorial' information

for CLI commands, communication language Tarminology, MDE tools, and

all techniques and procedurss used in the MDE. Requirements follow:

&

18]

.1.3.1

1.3.4

The database should contain "help" and "tutorial"
information about the syntax, semantics, and use of CLI
commands and MDE tocls.

The database should contain +the definitions of <the
techniczl terms used in documentation and communication
language.

The database should contain "tutorial' information to
educate a medeler for applying <the technigques and
procedures available in the MDE effectively and cor-
rectly. -

The database should be machine-indepandent.

KMDE Function Requirements

-4.1.4.1

Basic run-time support facilities should be provided by
the XMDE for all programs that execute Wwithin the MDE
{1].

The XMDE should provide the necessary functicns for
accessing the project (1], premodels, and assistance
databases through the managars,

The KMDE should provide the communication capability
between the MDE tools [1].

The XKMDE should provide a fixed set of terminal inter-
face control functions [1] such as +o

a) issue a raguest to terminate the currsnt funchtion or
nrogram,

b) suspend the currant program and invoke the coemmand
language interpreter,

¢) terminate the current command language interpreter
invocation and resume the program suspended,

d) abort the currenr brogram and return to its invoker
°or To the nearest command language interpreter
leval,

The XMDE terminal interface control functions should be

-19-

human enginesred.

4.1.4.6 All of the functienal requirements stated above should
be satisfied by machine-independent implementations.

13

+1.35 KMDE Interface Requirements

2.1.5.1 The XMDE should implement interface definitions which
should be available to the VDE tools [17.

f1=3

.1.5.2 The XMDE interfacs should be constructed in such a way
that the MDE tools which communicate with or invokas
each other should do seo only through this intesrfaca.

£.1.5.3 The KMDE interface should be machine-independent [1].

4.1.5.4 Ths KMDE interface should be straightforward to under-
stand and easy to use and modify [1].

4.1.5.5 The modeler should be able to accass the interface from
a variety of physical terminal devices [17.

4.1.5.56 The KMDE interface should zallow the modeler +to interac=s
with the invoked tool and to exercise control ovar the
tool [17].

2.1.5.7 Security protection should be impeosed on +he XMDE

interface to prevent any unauthorized use of a tool or
data.

4.2 REQUIREMENTS TOR MMDEs

The MMDE provides =z comprehensive set of tools in two catagories
that are minimal for the development and execution of a model.
Requirements for thé first category tools +thas need to be constructad
ara stated.as MMDE toolset requirements in Section 4.2.1. Regquirements
for the sacend category (assumed) tools +that are expected to be pro-
vided by the Programming environment ars stéted as MMDE Llibrary

reguirements in Sectien 4.2.2.

-20-

£.2.1 MMDE Tooiser Requiremesnts
£.2.1.1 Project Manager: This ool is required to

a) administer <=he storage and reatriaval of items (a)
through (h) in Section £.1.1.1,

b) keep a recorded history of the progress of the pro-
jeect,

€) trigger messages and remindsrs (especially about due
dates), and

d) respond to queries in a prescribed form concerning
project status.

4£.2.1.2 Premocdels Manager: This should be an interactive tool
implementinq a language and is reguired teo

a} administer the Premodels database,

) provide information on previcus meodeling Projects,
and

€) provide a stratified description and several repre-
Sentation forms of models or medel components devel-
oped in the past. '
£4.2.1.3 Asshﬂance:ﬁanager: This tool is required +o

a) administzr the assistance database,

D) provide information on how to use a MDE taocl or a
CLI cemmand,

€} provide the definition of a technical term =ncoun-
tered in documentation or communicaticn, and

d) provide tutorial assistance as appreopriate.

'
[\
-1
153

Cemmand Lenguage Interpreter. This sheuld

2) be capabkle of invoking‘all MDE tools,

b} ke extansible,

¢} be capable of executing a file of L1 commands,
d} provide escape to the operating systam,

¢) be human engineered, and

f) be menu driven whare Poszidle,

-2]1=

A CLI, satisfiying the above requiremants, has been
developed based upon [18] in our research project,

4.2.1.5 Mods/ Cenerator: This should be an interactive tool and
is required to

a) create a specification of 2 medel in a pPredetermined
analyzable form which is independent of any SPL or
MPs,
Create multi-level {stratified) model doecumentation,
and

o

€} effectively assist in model qualification.

We have developed two Prototypes of the Model Generator
implementing the Conical Methedelogy [20]. The firge cne {10]
produces a primitive.model specification [25, 27] that is gen-
eral but very difficul+ to fully translate into an exacutable
code. The sacond one produces a specification which is less gen-
eral but which lends itself for 100¥% <translation. Hence, our
experience.shows that the more general the model specification
is, the more difficult ths complete translation becomes.
4.2.1.86 Model Apciyzer: This tool is required o

a) diagnose the model specification crsated oy the
model generator, and

b) ffectively assist in communicative model wverifica-
io

e
tion.
Based upon the work described in [28, 27], the Model Ana—.
lyzer is under development.
2.2.1.7 Model Transiator: This tool is required to transizate the
model specification into an executable code after the
quality of the specification is assured by the model
analyzer. We agree with Henriksen [li} that the genera-

tion of complate axescutabls code from general specifica-

-22a

tions will not be realized in the near future (may be
in the late 1980's). However, full automation of the
translation process can be realized for =z model speci-
fication created under 3 less general conceptual frame-
work. The objective should ke to congtruct the model
transiator to produce an sxecutazble code as complete ag
possible from a sufficiently general model specifica~
tion. The exscutable source code can be.completed by
using the text editor until +ha need for it is elimi-
nated entirely.

4.2.1.8 Model Verifier: This toel is required for pProgrammed
model verification and should have at least the follow-

ing capabilities:

a) It should assist in incorporating diagnostic mea-
sures within the source program.

b) It should provide a cross~reference map to identify
where a particular variable is referanced and where
its value is changed [1].

¢) It should provide a chart of the programmed modal
control topelogy to indicate which routines are
called from where in the program an identify
inter-submodel communication calls [17.

d) It should provide dynamic analysis tools Ffor sSnap
shots, traces, breaks, statement execution moniteor-
ing, and timing analysis [1].

£.2.2 MMDE Library Requirements
€.2.2.1 Source Code Manager: This tool is required to translate

& source code into a machine language and perform its

execution. SIMSCRIPT, DYNAMO, and FMPS compilers and

their corresponding linkers and loaders are examples of

this tool. Executiocn of 2 particular language may

require additiocnal compilers. A GPSS program, for exam-

-23-

ple, may require a FORTRAN compiler in addition to its
own when it calls FORTRAN subroutines. The source code
manéger; in this case, is required to ccmpile both GPSS
and FCRTRAN source codes and perform their execution.
The source codes manager should interface to the KMDE by
meeting interface requirements ard thereby be coopera-
tive with other tools.

Electronic Mail System: This teol is regquired to facili-
tate the necessary communication among pecpls intsr-
ested in the project. Primarily, it performs the task
Oof sending =zand receiving of mail through (local or
large) computer networks. The UNIX and VAX mail sys-
tems ars examples of this tool.

Text Editor: This toecl is regquired for general taxt
preocessing, including the preparation of technical
reports, user manuals, system documentation, correspon-
dence, and perscnal documents. The editor should

a) be capable of editing general text and scurce pro-
grams,

b) be capable of Ffull screen editing, and

- 1

€) provide a comprehensive set of auman snginearsd
functions.

2.3 REQUIREMENTS FOR MDEs

Since the highest layer (Layer 3) of the environment provides

tools which

are specific o a certain area of application, we need to
choose such an aresz so that we can state the requirements accordingly.

This area of interest is Discrete Event Digital Computer Simulation.

Tools are provided in two categories at the MDE layer. Glebal

requirements

are first stated for the MDE Tocls in Section 4.3.1.

-Z2&-

Then, requirements for the first category tools that need to be con-
structed for discreté event simulation are stated as MDE toolset
requirements in Ssction 4.3.2. Finally, requirements for the second
category (assumed) tools that zare éxXpected to be available are stated

as MDE library requirements in Section 4.3.3.

4.3.1 MDE Clobal Requiremsnts

4£.3.1.1 A MDE should provide a cocrdinatsed and complets set of
Tools which offer continuous and cost-effective support
Lo the development of an experimental model.

€.3.1.2 The set of tools in a MDE should remain open-ended [1].
New tools should easily be added zand old tools should
easily be removed so as to protact a MDE against prama-
ture obsclescence, ‘

12.3.1.3 The tool-tool, Tool-user communicatisns should ha

: implemented on/y via the KVDE interfaca.

4.3.1.4 The protocols for communication between tools and the
medeler should be straightforward and uniform through-
outT a MDE toolset [1].

4.3.1.5 A MDE toel should be capable of storing information in
the KMDE project database for later use by other *tools.

h

4.3.1.8 The MDE tools should be able to use <he same £ile or
data format.

+

4.3.1.7 The medeler should not need alaborate knowledge to be
© able to use a MDE tcol. The MDE tools sheuld ke =asy to
use.

4.3.1.8 An inexperienced medelar should be able to galn z sub-
stantial portion of the benefits of a MDE tool with
only a small subset of its available facilities, while
an experienced modeler who uses +the same tooel should be
able to gain additional benefits through its complets
set of features [38].

4.3.1.5 A MDE tool should be assured to be a high quality tool.
That is, it should be verified, wvalidazed, and relia-
ble.

4.3.1.10 All MDE tools should be human engineered by taking the
ergonomic aspects into considerz+tion.

-25-

4.3.2 MDE Toolset Requirements

4.3.2.1 A tool is required for experimental design verifica-
tion.

4.3.2.2 A teool is required for data validation.
€.3.2.3 A tool is required for model validation.

4.2.2.4 2n experimental design system is regquired.

4.3.3 MDE Library Requirements

4.3.3.1 A powerful text formatting or <typesstting tocl

is
required to prepare reports, manuals, system documenta-
tion, correspendence, and rersonal documents. SCRIET
{37], Runoff [7], and Nroff/Troff [24] are examples of

this %ool.
4.3.3.2 A statistical analysis systam is rsaquired for
a) data zanalysis,
b) distribution fitting and estimation of parametsrs,

€) testing randomness, univariate and multivariate nor-
malities, equality of wvariances and covariances, and

d) random variate and random number generation.

IMSL (15], SAS ([34], and UNIFIT (18] ars example %ools
for this svstem.

2.3.3.3 A library of graphics routines, a graphics production
system, and its associated hardware are reguired.

There may be other tools required for mesting special Droject

requirements. COpen-endedness feature of <the MDE provides <£for easy

intsgration of added toocls into the environment.

5. THE MODELING PROBLEMS VERSUS TEE MDE TOOLS

In this section, a brief explanation is given on how the MDE
tools will be addressing the current problems in modeling. A summary
of which MDE tool contributes to the solution of which problem is

-25-

Lt

given in Table 1.

The high cost of model development will be reduced significantly
due to the integratsd, automated support provided by each one of the
MDE tcols. The model generator, model analyzer, model verifier
together with other verification aﬁd validation tools will contribute
to the assurance of model quality. The automated suppert ﬁs axpected
Lo increase the model guality.

The ﬁDE provides a well integrated, comprehensive, automated sup-
port of medel development throughout its entire life cycle with most
of its tools marked "X" in Table 1. The influence of a SPL or a MPS
will be avoided with +the use of a "ﬁeta-lanquage" {i.=. SMSDL) in
developing the conceptual and communicative models. This will be
achieved by the use of the model generator and model znalyzar.

The automated support provided by the MDE throughout <%he entire
life cycle will Ffacilitate the radefinition process to follow the
entire life cycle. The project manager will be the key *tool for
improving model management during development phases. Management plan-
ning will be improved by the premode;s manager providing prafabricatad
models and past experienca. Using the CLI, 2 manager will be able to
use tThe MDE tools. The stratified documentarion created by the model
generator will help the manager(s) understand the development ~and
ccordinate the project much better. The electronic mail system will
help the manager(s) monitor and control the project. The text editor
will be the basic tool for preparing documents necessary for project
management.

The stratified (multi-level) documentation cfeated by the model

generator will help to resolve inadeguate documentation problems. The

-27-

Takle 1. The modeling problems versus the MDE tools,

ST00L AW =90 " > s _ »
JOYTRI 4%, L b > " L > " b
UR18AS TTRW *o9Tq £ >4 5 > > Y >
*JEW |po) 9oanog 5 >4 B >
JOTITJIBA ToDon >4 M b . L] >
J0BTsUR.T], TIPUN bied > ¢ B
JozATeuy TopON > > L4 Y et ™
Jdojedsusn Tepop > > > M » 4 LI B L »
10 5 L bd bd >4 54 >
JEFeURy 9ouRlSTERY) bd bt »a £
JOTRUB STopOUR.L] > b 4 B 5
Jadeusy q08foa] b >4 U - > > >4 > >
) IlIIIilU!illil!ii!liillill!lm.!%ll
= o S 0 o
b o o>y Q - [T}
-~ |wae {p R LT 2 lan
@ |JCOE |+ ~f |ow o o -
) e |- fa B3] @ L} 0 £ o TR TR I
o (PO | k| o5 o | o o I LI TR
o et j= v e} a W - o T @ V] N4
Qo |Ot wa o ida - mh; m+_ ih) c el 0] D
o ok @ Jo~ [» s '} v jno lop
v |-tV U |3 e louw U [»ea [Ty fpp
< lgn eu K0 fd [UE |[Ug |vea low [ao {00
i o VD |w Qo g @ W@ (068 (10 |go |o3
U] O M] (] O 4y 0o nm 0od ¢~ | ny
Q (e =g I tap oy Jeamg [0 Ny m oo 5y @
s) 0 Yy 1O o g Q E 0 0
Q -0 - - .] ! + Q C 0 0 1ow o
EFlmE oo |lod 9w o |ous =0 o0 jou lab e

-28-

projéct manager will be in charge of pPreserving the projsct and model
documentation throughout the developmenf phases. The taxt editor will
be extensively used for decumentation. The automated support provided
by the MDE will facilitate *he updating of decumentation and help to
keep it up-to-date.

Communication among the interested rarties will be enhanced by
the assistancas manager providing a glossary of terms and Ttuteorial
information on the conceptual framework of communication. A person
involved in the project will be able to invoke the project manager
through the CLI to retrieve the stratified model and project documen-
tation. This documentation will help the person communicate with oth-
2rs much better. The electronic mail system wﬁll provide the means Dy
which the communication will tzke place very effectively. The text
editor will be used for message preparation.

The productivity will be significantly increased in developing
large scale and complex models due to the integrated, automatad sup-
port c¢f model devalopment throughout its entirs life cycle. The
user{s) or sponsor(s) will be able to invoke the rProjact manager
threugh the CLI to retrieve documentation and information. Usinq_the
text editor, thevy will be able to prepare messages and communicats
with others by way of the electroniec mail system. The MDE will facili-
tate the user participation quite effectively,

‘The bremcdels manager will provide information on prefzbricatad
models and reveal Past experience to avoeid duplication of effort. An
inexperienced modeler will learn from past experiencs without actually
living i%. The premodels manager provides an effective learning sup-

Port system.

~2G~

6. CONCLUSIONS

The fundamental requirements perceived in this baper characterize
& comprehensive and integrated plan for the automatad support of medel
development. This plan offers guidance for the designers and implemen-
ters of simulation (discretes event, continuous, combined), mathemati-
cal programming, econemetric, and other types of MDEs.

We belisve that. the individual requirements do not possess a
high-risk characteristic due te the fact that they are perceived
within the state of the art at the present time. However, we recognize
that the complete set of requirements poses a significanﬁ techniczl
challenge to MDE designers and implementers especially for the model
generator, model analyzer, model translator, and model verifier.
Nevertheless, we are confident that the challenge can be met Dy way of

an evolutionary development of MDE prototypes.

ACKNOWLEDGMENTS

]
I am indebted to Richard E. Nance for his constructive comments
and suggestions which contributed to idess developed in this paper. I
am grateful for many useful discussions with John A.N. Laes, C. Michael

Qverstreet, Reobert I, Hansen, and Robert I.. Mcoosa.

REFERENCES

1. Advanced Research Projects Agency, Recuirements for ADA Program-
ming support environments - "STONEMAN". U.s. DoD, Arlington, Vir-
ginia (1980).

2. J. S. Annino and E. C. Russell, The ten most frequent causes of
simulation analysis failure - and how o aveid them!. Simulation
32(6), 137-140, (1979).

-30~-

sy

~1

10.

4
[]

13.

15.
ie.

17.

0. Balci and R. E. Nance, Introducing fTormulated problem verifica-
tion as zn explicit requirement of model credibility, Simulation,
to appear (1985).

Q. Balci and R. G. Sargent, A methodoleogy for cest-risk analysis
in the statistical validation of simulation models. Commun. ACM
24(4), 190—197,,(1981).

c. M. Delfosse, Continuous Simulation and Combined Simulation in
SIMSCRIPT 1.5, CACI, Inc., Arlington, Virginia {1976},

DEC, VAX/VMS User's Cuide. Order Neo. AA-DE43A-TE, Maynard, Mass.
(1978).

DEC, VAX-11 DICITAL Standard Runoff User's Cuide. Version 2, May-
nard, Mass, (1982)y.

S. E. Elmaghraby, The role of modeling in IE design. /ndustrial
Engineering 19(5), 292-305, (19868).

S. I. Gass, Decision-aiding models: validation, assessment, and
related issues for policy analysis, Op. Res. 37(4), 603-531,
(1983).

R. H. Hansen, The model generator: a crucial alement of the model
develepment environment. Technical Report C584008~R, Department of
Computer Science, Virginia Tech, Blacksburg, Virginia (1984).

J. O. Henriksen, The integrated simulatien anvironment (simulation
software ¢f the 1990s). Op. Res. 37{8), 1053-1073, {1983},

J. O. Henriksen and R. C. Crain, General Purpose Simulation System/H
(GPSS/H) User's Manuaf. Second Edition, Wolverine Softwars Corpo-
ration, Annandale, Virginia (1583).

IBM, Continuous System Modeling Program 1/ {CSMP-111) and Graphic Fea-
ture. FProgran product number 5734-X59, Manuzl number GH 19-7000,
White Plains, New York (1871).

IBM, Mothematicai Programming System Extended /370 (MPSX/370). Refer-
ence manual, New York, New York (1978).

IMSL Inc., /International Mathematical and Statistical Libraries (IMsSL).
Reference manuals, Volumes 1-4, Houston, Texas (1s82).

B. W. Kernighan and R, Pike, The UNIX Pfogrcmnﬁng Environment.
Prentice-Hall, Englewood Cliffs, New Jersey (1984).

P. J. Kiviat, R. Villanueva and H. M. Markewitz, S/IMSCR/PT .5

Programming Language. (edited by 2. C, Russell), CacCI, Inc., Los
Angeles, Calif. (197%).

-31-

i8.

20.

21.

22.

23.

27,

29.

30.

31.

A. M. Law and 5. G. Vincent, UN/FIT: An Interactive Computer Package
for Fitting Probabifity Distributions to Observed Datg. User's Guide,
Simulation Medeling and analysis Company, Tucson, Arizona (1283).

‘R. L. Moose, Jr., Propesal for a model development environment

command language interpreter. Technical Report CS83032-R, Depart-
ment of Computer Science, Virginia Tach, Blacksburg, Virginis
{13983).

R. E. Nance, Mocdel representation in discreta event simulation:
the conical methodology. Technical Report CS81003-R, Department of
Computer Science, Virginia Tech, Blacksburg, Virginia (1981).

R. E. Nance and 0. Balci, The objectives and requirements of model
management. In: M. Singh {editor-in-chief), Encyclopedia of Systems
and Controf. Pergamon Press, Oxford, to appear (1885).

R. E. Nancs, aA. L. Mezaache and C. M. Overstrest, Simulation model
management: resolving the technoicgical gaps. Proc. Winter Simuig-
tion Conf, Atlanta, Ga, pp. 173-179, (1981),

R. E. Nance, 0. Baleci and R. L. Moose, Jr., Evaluation of rthe UNIX
host for a model develcopment environment. Proc. Winter Simuiation
Conf. Dallas, TX, pp. 577-584, (1984) .

J. F Ossanna, NROFF/TROFF user's manual. Techprical Report 54,
Bell Laborateories, Murray Hill, New Jersey (197§).

C. M. Oﬁerstreet, Model specification and analysis Zor discrete
event simulation. Phr.D. Dissertation, Virginia Tech, Blacksburg,
Virginia (1882).

C. M. Overstrest znd 2. Z. Nance, Graph-based diagnosis of disg-
crete event model specifications. Technical Report C383028-R,

Department of Computer Science, Virginia Tech, Blacksburg, Virgi-
nia (1984).

C. M. Overstreet and R. E. Nance, 2 specification language to
a3sist in analysis of discrete event simulation models, Commun .
ACM 28(2), 150-2C1, (1985).

A. A. B. Pritsker and C. D. Pegden, Introduction to Simulation and
SLAM. John Wiley and Sons, New Vork (1879).

A, L. Pugh, III, DYNAMO }} User's Manual. MIT Prassg, Cambridge,
{1370).

R. Richels, Building goed models is not enough. Interfacas 7(4),
48-5¢, (1981). - :

R. F. Roth, S. I. Gass and A. J. Lemoine, Some considerations for

improving fedsrsl modeling. Proc. Winter Simulation Conf. Miani
Beach, FL, pp. 213-217, {1978).

-32-

32.

33.

34.

35.

6.

37.

38.

5. I. Schiesinger, et al., Terminclogy for model credibility.
Simulation 32{3), 103-104, (1379).

Sperry Rand Corporaticon, Sperry UNIVAC 1100 Series Functional Mcathe-
matical Programming System (FMPS) Progremmer Reference. St. Paul,
Minnesota (1975).

SAS Institute Inc., Statistical Analysis System (SAS) User's Cuide.
Cary, North Caroline (1982).

W. Teitelman and L. Masinter, The INTERLISP Programming environ-

‘ment. Computer 14(4), 25-33, (1s81).

U.S. General Accounting Cffice, Report to %he congress: ways to
improve management of federally Funded computerized models.
LCD-75-111, U.s. General Accounting Qffice, Washington, D.C.
{1978).

University of Waterloo, SCRIPT Reference Manual. Version 3.7,

Department of Computing Services, University of Waterloo, Ontaric,

Canada (1982).

A. I. Wasserman and S. Gutz, The future of Programming. Commun.
ACM 25(3), 196-206, (1982).

SECURITY CLASHIAICATION QF THIS PAGE (#hen Date Entered)

REQUIREMENTS FOR MIDEL, DEVELQEVENT

READ INSTRUCTIONS
T REPOAT NUMBER 2. GOWT AGCESSION NG, 3. AECIPIENT'S CATALGG NUMSER
CS83022-R
4. TITUE (and Suaritis) 5. TYPE OF ASPORT & PEMIOC COVERED

Final Jume 6§ - Qct, 15, 1983

m 5. PERFQAMING O3G. REFQRT NUMBER

D?? s t Of C\,. r a_ SCiEn{:E, AREA & #QAK YMIT HUMEERS
Virginia Polytecimic Institute and State

University, Blacksburg, Virginia 24061

, CS83022-R
7. AQTROARlE) — 3. COMTRALT OR GRAART NUMBER(
0N BRAICT N60921-83-G-A165
4. PERFORMING OAGAMIZATION NAME AND ADGRESS ' 9. PROGAAM ELEMENT. PROJECT, TASK

1. CONTROLLING QFFICE HAME AND ADORESS 12, as;o;‘rbnns 1585
Naval Sea Systems Coomand ¢ Fédruary
o) 1. NUMBER QF PAGZS
Office of Naval Resesrch . 13)

Naval Surface Wearons Cemtrer Unclassgified

td, MONITORING AGENGY NAME & AQORESS(It ditlerent (rom Coniralling Qitice) 15. SECURITY QLASS. (of Ala repore}

Dahlgrem, Virginiz 22448

SCHEDULE

iS4, DECLASSIFICATION: QOWNGRADIMNG

6 QISTRIBUTION STATEMENT (of thiz Rapaer)

A limited discribution of this report is being made for
early dissemination of its contents for pesr review and corments.

7. QISTABUTION STATEMENT rof the sbairact entared in Block 20, If dittarent irom Raport)

18, SUPPLEMENTARYT NOTES

Discussicns with Richard Z, Mance, Jotm A.N. Lee, C, Michzel Oversivast
Robert H. Hansen, and Rebert L. Moose are acknowledged as contwibucing
to ideas developed in this report,

3

19. MEY WGROS fContinue on revdrse side if necersary and identity by aslack numbwe)

autcmated support, matheratical programming, modeling,
mdel development, model managerent, model quality assurancs,
similation,

28. ABSTRACT (Continue on reveraw side If necezsary and [dentity by black numoer)

- b -— - - - YT . 3 - - < - - 3
~2VE2_onment iaViIInmants (MDZs) AnS o©oZIZers JuLldancs I oD
Sagsimmaws e 3 w— B g 3 VT mesmsad i o Gowm e e o o P !
=2sS1gnars ana LopLsmenTers S S provides o zn in -270aTs0 AT
f
;
™ FIRM - - .
. = t 2F 55 :8 1 Elal 4 [] .
S0 LAy 1473 BITION 9% I NQv 43¢5 dasaLzE dnclassisias
SEIUAITY TLASSIFICATION 3F THiS BaGE hen Jare fntered

—

SEZURITY CLASSIFICATION OF THIS PAGEMNan Daca Entered}

|

n of computer-based <oois o (1) cifer cest-

2= - R - 3 nyvam - . - = N Satrs -

eleCTive, ir =2Iratad, znd auTomated SUDDCrT ¢ madsl davelonment
- - - - - - - - . iy 3 1 - M -

TLroUughouT its 2ntilrse LiZs TvcLie, (2) ilmsrove the model SERLLITY Dv

significantly increase

the eafficiency and productivity of the

project team, and (&) substantially decrease the model development

time. The structure of +ha VDEs is composed of four

ayers, namely,

Although tha requirsments perceivaed for gach layer of <hs

environment ars denerically applicable for simulation (discrets

event, continuous, combined) and mathematical Pregramming modeling

tasks, the Zfocus of this report is on discrete avent simulation

model development. a SCenario is included to illustrats the uses of

minimal MDE +tools and to

e

provide a viaw of the cperaticn of a MDE.

Unclassified
SECURITY CLASSIFICATION GF Tuie PASE!When Daca Entered)

