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Subsumption between Queries toObject-Oriented DatabasesMartin Buchheity Manfred A. Jeusfeldz Werner NuttyMartin StaudtzyGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, Germanyfbuchheit,nuttg@dfki.uni-sb.de,zRWTH Aachen, Informatik V, Ahornstr. 55, D-52056 Aachen, Germany,fjeusfeld,staudtg@informatik.rwth-aachen.deAbstractMost work on query optimization in relational and object-oriented databaseshas concentrated on tuning algebraic expressions and the physical access tothe database contents. The attention to semantic query optimization, howev-er, has been restricted due to its inherent complexity. We take a second lookat semantic query optimization in object-oriented databases and �nd thatreasoning techniques for concept languages developed in Arti�cial Intelligenceapply to this problem because concept languages have been tailored for e�-ciency and their semantics is compatible with class and query de�nitions inobject-oriented databases. We propose a query optimizer that recognizes sub-set relationships between a query and a view (a simpler query whose answeris stored) in polynomial time.
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1 IntroductionFrom an abstract viewpoint, databases organize information into sets of objects. Inobject-oriented databases (OODB's), these sets are called classes and the elementsare constrained by some|not too complicated|type expression.Similar expressions for describing classes of objects|so-called concept descrip-tions or simply concepts|have been investigated in Arti�cial Intelligence (AI),where they occur in knowledge representation languages of the kl-one family[WS92]. This research has come up with techniques to determine satis�ability andsubsumption of concepts and has assessed the complexity of these inferences for avariety of languages (see e.g., [DLNN91a]).We believe that this similarity between work on databases and AI o�ers a po-tential of cross-fertilization: database research can pro�t from reasoning techniquesfor concepts, and knowledge representation research can learn about properties ofpractically applied set descriptions like class schemas and queries in OODB's.The Problem. Query optimization is largely reasoning on intensional representa-tions, especially queries and schema information. Therefore, this area appears asa natural choice for proving the hypothesis of cross-fertilization. We assume thatobject-oriented queries return sets of objects. The problem we want to solve in thispaper is the subsumption problem for queries:Given the schema of an OODB and two queries, decide whether in everypossible state of the database the answer set of the �rst query is containedin the answer set of the second.If the answers to the second query are stored subsumption can be exploited to speedup evaluation of the �rst query by �ltering the stored objects, instead of computingthe answers from scratch. Such a situation is likely to occur in an environmentwhere views are materialized and maintained to be up-to-date. For this reason wewill assume that the second query in a subsumption problem de�nes a view. Byabuse of terminology, we will simply refer to it as a view .OODB's o�er increased opportunities to reuse queries: their schema is usuallyricher, i.e., more detailed, than the schema of relational databases. In particular,attribute values are constrained by types or classes. Classes may have subclasseswith additional properties and constraints. We argue that this information shouldbe utilized for query optimization.In order to exploit subsumption of queries by views in a real system, many viewsmight have to be checked for a given query, and checks will be performed for everyincoming query. Hence, e�ciency is an issue and subsumption checks should run inpolynomial time. 3



The Schema and Query Language. Regrettably, there exists neither a standard-ized object-oriented data model nor a standardized object-oriented query language.We therefore present a language that features just the properties which are commonto most object-oriented data models and are relevant to our purpose.� Membership of objects in classes: Classes group a �nite set of objects (theirinstances). In most systems, membership of an object in a class is constrainedby the type of the class. Here, we assume that the condition for membershipcan be expressed in �rst order logic.� Subclass relationships: Classes are organized in a subclass hierarchy. Anyinstance of a class is also an instance of the superclasses.� Attribute declarations: Objects may have attributes. Attributes are set-valued.The domain and range of an attribute are restricted by classes. For a subclassof its domain, an attribute may be restricted to take values in a subclass of itsrange.� Number restrictions: Attributes can be speci�ed as functional, i.e., as havingat most one value, or as necessary, i.e., as having at least one value. The lastpossibility is very important for OODB's because it prevents method executionfrom errors when accessing such attributes.Our Approach to Solving the Problem. The expressiveness of query andschema languages in OODB's makes a general solution of our problem impossible.Thus, it has to be relaxed to a simpler problem. We identify portions of the schemaand of queries which can be mapped to a concept language where subsumption canbe decided e�ciently.Concept languages1 bear strong similarities to languages for de�ning schemas andqueries of OODB's. Concepts are intensional descriptions of sets of objects built fromprimitive concepts and attributes. Complex concepts can be constructed from exist-ing ones by set-theoretic operations like intersection, union, and complement, andby imposing restrictions on the �llers of attributes. Attributes can be formed, e.g.,as inverses, chains, or intersections of other attributes. Concept languages expressfragments of �rst-order logic: concepts can be viewed as certain logical formulasthat are built using unary and binary predicates and contain one free variable (tobe bound by the instances of the concept). Subsumption of concepts has been stud-ied for a variety of languages and the borderline between variants where reasoningis tractable and where not is by now well understood (see e.g., [DLNN91b]).Three points make the ideas of our approach more precise:1Concept languages are also known as Terminological Logics or Description Logics.4



� Incorporation of structural schema information: Object-oriented schemas arecomparatively large. We identify a so-called structural part where inheritancehierarchies, attribute typing and restrictions on attributes are speci�ed. Thisinformation can be mapped to a concept language and is explicitly employedfor checking subsumption between queries.� Structural and non-structural parts of queries: A query, too, is separated intoa structural part that can be represented within the concept language, and anon-structural part that goes beyond concept language expressiveness. Fea-tures like subclassing, path expressions, and coreferences between paths fallinto the structural part.� Views have only structural parts: In this paper, views are queries whose an-swers are materialized. The answers to a view can be used for optimizingqueries subsumed by the view. In order to keep our approach sound, viewsmust be captured completely by a concept. Therefore, we forbid non-structuralparts for views.We have designed our concept language so that it covers the core of a generalschema and query language and at the same time allows for a polynomial timesubsumption checker. Since we ignore information that cannot be expressed in theconcept language, not all valid subsumptions are detected: we sacri�ce completenessfor e�ciency. However, we expect the \hit rate" to be high enough for justifying thee�ort because we take the main schema information into account and the structuralfragment of the query language is strong enough to express interesting queries andviews.The following section de�nes a generic syntax and semantics for object-orientedschemas and queries. Section 3 introduces a concept language for the structuralparts of schemas and queries. A subsumption calculus together with a proof for itcompleteness and soundness is elaborated in Section 4. Section 5 discusses relatedwork and Section 6 concludes.2 Object-Oriented Databases and QueriesIn this section, we introduce a simple frame-like database language DL which on theone hand provides a generic data model for OODB's and on the other hand has asimple �rst-order semantics. The language incorporates the three basic abstractionprinciples: classi�cation, generalization, and aggregation. Subsection 2.1 describesthe language used for de�ning the database schema. In Subsection 2.2 we show howqueries can naturally be represented in this framework as special classes.5



Class Patient isA Person withattributetakes: Drugconsults: Doctorattribute, necessarysu�ers: Diseaseconstraint:not (this in Doctor)end Patient Class Person withattribute, necessary, singlename: Stringend PersonClass Doctor withattributeskilled in: Diseaseend Doctor Attribute skilled in withdomain: Personrange: Topicinverse: specialistend skilled inFigure 1: A part of the schema of a medical database2.1 De�ning an OODB SchemaA DL schema consists of a set of attribute and class declarations. For example,Figure 1 demonstrates part of the schema of a medical database containing patientswho are persons su�ering from diseases, taking drugs, and consulting doctors.2Attributes are typed binary relations with speci�c classes as domains and ranges.It is allowed to de�ne synonyms for the inverse of an attribute. Thus skilled inis a relation between persons and general topics whose inverse is called specialist.Synonyms for attributes are not allowed to occur in other declarations of a schema,but are useful for formulating queries. Classes group objects, which are restrictedby speci�c conditions. These conditions are necessary, but not su�cient for classmembership, i.e., an object is not automatically recognized as a member if it satis�esthe restrictions of a class. There are three kinds of restrictions.Classes may be specializations, respectively generalizations, of other classes. Thisis indicated by isA-statements in class declarations. In our example, Patient is asubclass of Person. As a consequence, in any legal state of the database, everypatient must be a person. There is a most general class Object containing anyobject of the database.Class declarations state typical properties of their members (aggregation), whichare expressed through attributes. For members of the class declared, the values of anattribute may be restricted to a subclass of the attribute's range. Thus, in any legalstate of our example database, only members of class Disease are admissible as valuesfor the skilled in attribute of a Doctor. Besides this typing condition, attributes ofa class may be declared as mandatory (necessary) or functional (single). In ourexample, a patient always must su�er from at least one disease, while a person musthave exactly one name.General integrity constraints that class members have to obey can be stated in a2A complete schema must contain a declaration for every class and attribute. A completion ofour example would therefore contain additional declarations for the classes Drug, Disease, String,and Topic, as well as for the attributes consults, name, su�ers, and takes.6



8x. Patient(x)) Person(x)8x; y. Patient(x) ^ takes(x; y)) Drug(y)8x; y. Patient(x) ^ consults(x; y)) Doctor(y)8x; y. Patient(x) ^ su�ers(x; y)) Disease(y)8x. Patient(x)) 9 y su�ers(x; y)8x. Patient(x)) :Doctor(x) 8x; y. skilled in(x; y))Person(x) ^ Topic(y)8x; y. skilled in(x; y), specialist(y; x)Figure 2: Translating declarations into logicconstraint clause. Constraints are formulated in a �rst-order many sorted languagewhere quanti�ers are restricted to range over classes. The only atoms allowed in thislanguage are (x in C), denoting membership of x in class C, and (x a y), assigningy as value for attribute a to object x. The variable this is implicitly universallyquanti�ed and ranges over the class that is currently declared. Thus, the exampleconstraint on the class Patient forbids a person to be both a patient and a doctor.A database designer is free to associate a constraint to any class he �nds suitable.In our example, he could have attached equally well a constraint not (this in Patient)to the class Doctor.In the following, we will refer to the subclass and attribute part of a class decla-ration as the structural and to the constraint part as the non-structural part. Thelatter is not taken into account by the abstraction in the Section 3.We will not go into the details of how to specify a state of a DL database. Thiscan be done e.g., by using similar frame-like constructs relating objects to classesby instance-relationships (classi�cation) and to each other by assigning values toattributes de�ned for these classes.The semantics of the language is given by a mapping from attribute and classdeclarations to �rst-order formulas, where class names appear as unary and attributenames as binary predicates. Facts about database objects are mapped to sets ofground atoms built from these predicates. We do not specify the mapping formally,but as an example translate in Figure 2 the declarations of the class Patient and theattribute skilled in.We assume that every state of the database gives rise to exactly one model ofthese formulas. This might be achieved in several ways: either all facts are explicitlystated, or some schema formulas are employed as deductive rules, by which addi-tional facts are derived (see e.g., [SNJ93]). The important point is that every statede�nes a unique structure that satis�es the schema.7



2.2 Query ClassesQuerying a database means retrieving stored objects that satisfy certain restrictionsor quali�cations and hence are interesting for a user. In relational databases, queriesare constructed by algebra expressions involving relations from the database, andanswers again are relations, i.e., sets of tuples. The correspondence between data-base and answer format has obvious advantages. In OODB's classes are used torepresent sets of objects and thus it is natural to use them also for describing queryresults.Object-oriented data models disagree as to whether new objects can be createdas answers to queries or not (see e.g., [AK89]). In the object model presented herewe restrict answer objects to existing objects3 that are deduced as instances of so-called query classes. In contrast to the classes constituting the database schemathe membership conditions in the declarations of query classes are necessary andsu�cient. Thus, they are completely de�ned by the declaration, and objects can berecognized as instances although they have not explicitly been entered as such.An example of a query class is given in Figure 3. Just as schema classes, queryclasses may be specializations of other classes, especially query classes, and answerobjects must be common instances of all superclasses. Hence, every schema classcan be turned into a query class.In order to express more speci�c conditions on answer objects, so-called derivedobjects can be speci�ed in the derived clause through labeled paths. A labeled pathis a labeled chain of attributes4 with value restrictions and has the formlj : (a1: C1).(a2: C2).: : :.(an: Cn),where lj is the label, the ai's are attributes, and each Ci is a class D or a singleton setfig. An example of a labeled path would be l 2: (su�ers: Object).(specialist: Doctor).Labels stand for derived objects. A restricted attribute (a: D) ( (a: fig) ) relates allobjects x, y in the database such that y is an instance of D (y = i) and an a-valueof x. If an attribute a is only restricted by the universal class Object we write aas a shorthand for (a: Object). The chain of restricted attributes in a labeled pathcan be conceived as a new attribute obtained by composing the components of thechain. Intuitively, for a given object, a chain denotes the set of objects that can bereached following it. The label of a path can be viewed as a variable ranging overthis set, and for an object to be an instance of the query class this variable has tobe bound to some element of the set. Summarizing, our labeled paths generalizethe common notion of paths (see e.g., [KKS92]) in that they allow one to �lter thevalues of an attribute after each step. Moreover, one can access the values at theend of the path through a label.3For simplicity we ignore additional output attributes of answer objects in this paper.4Attribute synonyms de�ned in the schema are allowed in paths, too.8



QueryClass QueryPatient isA Male, Patient with (1)derivedl 1: (consults: Female) (2)l 2: su�ers.(specialist: Doctor) (3)wherel 1 = l 2 (4)constraint:forall d/Drug not (this takes d) or (d = Aspirin) (5)end QueryPatient Figure 3: A queryThe where clause contains equalities lj = lk between labels,5 which the derivedobjects have to satisfy.Finally, query classes contain a constraint clause (again called non-structural part)where additional conditions for class membership are speci�ed by a logical formulasimilar to the one in schema class constraints. In the formula the labels lj mayappear again. The variable this refers to the answer object itself. Labels that occurneither in the where nor the constraint clause may be omitted in the derived part.The syntax of query classes has been designed in such a way that the structuralpart is strong enough to formulate interesting queries while o�ering only constructsthat can be mapped immediately to our concept language (see Section 3). An alter-native approach to separating queries into two parts would be to o�er a homogeneouslanguage and to automatically extract from a query the portions to be handled bya subsumption checker. However, this seems to be so di�cult a task that we prefera hybrid syntax for queries.In the example, QueryPatient retrieves all patients from the database who consulta female who is a doctor and a specialist in the disease from which the patient issu�ering. In addition, the patients do not take any drug except Aspirin.Again, the semantics of query classes is given by a translation into a predicatelogic formula. The formula conjoins the membership predicates for the superclass-es, subformulas gained from the labeled paths, equalities, and a straightforwardrewriting of the constraint. The query QueryPatient yields the formula given in Fig-ure 4. Each conjunct corresponds to the clause with the same number within thede�nition of QueryPatient. In a framework that combines deductive databases andobject-orientedness, the translated query class can be readily executed (see [SNJ93]).As can be seen from the example, a query class whose constraint part is empty islogically equivalent to a conjunction of atoms where certain variables are existentially5In order to keep the presentation of our algorithm in Section 4 as simple as possible we willconsider only the case that a label occurs no more than once in the where clause. Dropping thisrestriction would still allow for a polynomial algorithm.9



QueryPatient(t) () Male(t) ^ Patient(t) ^ (1)9 l1; l2.consults(t; l1) ^ Female(l1) ^ (2)9x. (su�ers(t; x)^ specialist(x; l2) ^Doctor(l2)) ^ (3)l1 := l2 ^ (4)8 d. (Drug(d)) :takes(t; d) _ d := Aspirin) (5)Figure 4: Translating the query into logicquanti�ed. In the context of relational and deductive databases such queries areknown as conjunctive queries (see [Ull89]).Based on the entire conceptual schema of a database, users and application pro-grams usually work on subschemas that constitute their external view on the data-base. A common approach (e.g., in SQL) is to use for the de�nition of such viewsa sublanguage of the query language. In the same vein, we will assume that viewson DL databases are only de�ned through structural queries, i.e., queries whoseconstraint part is empty.If views are used frequently and the computation of their extension is expensivethey can be materialized. Materialization means that membership of objects in aview, although derivable from the database by means of the view de�nition (andhence redundant), is explicitly stored. On the one hand, direct access to materializedviews is as fast as to any other class de�ned in the schema. On the other hand,since views are just special queries with stored answers, the detection that a viewsubsumes a query, allows one to pro�t from this fast access by restricting the searchspace for query evaluation just to the stored instances of the view.Let us extend our example by a second query class, de�ned in Figure 5. The classViewPatient is a view de�ning another subset of patients in the database, namelythose whose name is stored and that consult a doctor who is a specialist for one oftheir diseases. At �rst glance it is not obvious whether the ViewPatient subsumesQueryPatient. However, if one takes into account the schema information that (1)every person and hence every patient has a name, that (2) patients su�er fromdiseases, and (3) the attributes skilled in and specialist are inverses of each other,moreover, if one joins the paths as required by the labels, one realizes that everyinstance of QueryPatient is also an instance of ViewPatient.3 From Queries to ConceptsIn this section we introduce two languages for describing schemas and queries, SLand QL, respectively, that are abstractions of DL. While the frame-based syntaxof DL is user-oriented and similar to that of languages in existing OODB systemsthe syntax of the abstract languages is well suited for the design, veri�cation and10



QueryClass ViewPatient isA Patient withderived(name: String)l 1: (consults: Doctor).(skilled in: Disease)l 2: (su�ers: Disease)wherel 1 = l 2end ViewPatient Figure 5: A viewcomplexity analysis of algorithms. It is inspired by kl-one-like concept languagesand employs a variable-free notation which is semantically equivalent to certain log-ical formulas. The lack of variables keeps these languages close to the structuralpart of the concrete language while the explicit use of quanti�ers resolves ambigu-ities present in DL. We will show how to represent in the abstract languages thestructural parts of class and attribute declarations by a set of schema axioms andquery classes as concepts. Then we reformulate the key problem of the paper forthe new languages.3.1 PreliminariesThe elementary building blocks SL and QL are primitive concepts (ranged overby the letter A) and primitive attributes (ranged over by P ). Intuitively, conceptsdescribe sets and thus correspond to unary predicates while attributes describe rela-tions and thus correspond to binary predicates. We assume also that an alphabet ofconstants (ranged over by a, b, c) is given. Di�erent constant symbols are interpretedas distinct objects (Unique Name Assumption).In the schema language SL attributes must be primitive. Concepts (ranged overby C, D, E) in SL are formed according to the following syntax rule:C;D;E �! A j (primitive concept)8P .A j (typing of attribute)9P j (necessary attribute)(� 1 P ) (single-valued attribute).Schema axioms come in the two formsA v D; P v A1 �A2;where A, A1, A2 are primitive concepts, D is an arbitrary SL concept, and P aprimitive attribute. The �rst axiom states that all instances of A are instances ofD. So D gives necessary conditions for membership in A. The second axiom states11



that the attribute P has domain A1 and range A2. An SL schema � consists of aset of schema axioms. As we will see below, by means of a schema we can representattribute declarations and the structural part of class declarations.In the query language QL, attributes (ranged over by R) can be primitive at-tributes P or inverses P�1 of primitive attributes. Furthermore, there are attributerestrictions, written (R:C), where R is an attribute and C is a QL concept. In-tuitively, (R:C) restricts the pairs related by R to those whose second componentsatis�es C. Paths (ranged over by p, q) are chains (R1:C1) � � � (Rn:Cn) of attributerestrictions and stand for the composition of the restricted attributes. The emptypath is denoted as �. In QL, concepts are formed according to the rule:C;D;E �! A j (primitive concept)> j (universal concept)fag j (singleton set)C uD j (intersection)9p j (existential quanti�cation over path)9p := q (existential agreement of paths).The intersection of concepts denotes the intersection of sets, the existential quan-ti�cation over a path denotes those objects from which some object can be reachedalong the path, and the existential agreement of paths denotes those objects thathave a common �ller for the two paths. Observe that concepts and paths can bearbitrarily nested through attribute restrictions.In Table 1 we present the semantics of attributes and concepts in two steps.As in the previous section, we translate concepts, attributes, and paths into �rstorder formulas (column 2). Then we give a semantics that treats concepts as setdescriptions (column 3).For the transformational semantics we map primitive concepts A and primitiveattributes P to atoms A(
) and P (�; �). Then column 2 contains for each complexconcept C, attribute restrictionQ and path p appearing in column 1 a correspondingformula FC(
), FQ(�; �) and Fp(�; �) that has one or two free variables, respectively.Given a �xed interpretation, each such formula denotes a binary or unary relationover the domain. Thus we can immediately formulate the semantics of attributesand concepts in terms of relations and sets without the detour through predicatelogic notation. An interpretation I = (�I; �I) consists of a set �I (the domain ofI) and a function �I (the extension function of I) that maps every concept to asubset of �I, every constant to an element of �I, and every attribute to a subset of�I��I. In accordance with the Unique Name Assumption we assume that distinctconstants have distinct images. Given the denotation of primitive attributes andconcepts, complex ones are interpreted according to the third column of Table 1(\] � " denotes the cardinality of a set). It is easy to verify that column 3 gives thesets of pairs and objects for which the formulas in column 2 hold.12



Construct FOL Semantics Set Semantics8P .A 8x. P (
; x)) A(x) fd1 2 �I j 8d2. (d1; d2) 2 P I ) d2 2 AIg9P 9x. P (
; x) fd1 2 �I j 9d2. (d1; d2) 2 P Ig(� 1 P ) 8x; y.P (
; x)^ P (
; y) nd1 2 �I ��� ]fd2 j (d1; d2) 2 P Ig � 1 o) x := yP�1 P (�; �) f(d2; d1) j (d1; d2) 2 P Ig(R:C) FR(�; �)^ FC(�) f(d1; d2) j (d1; d2) 2 RI ^ d2 2 CIg� � := � f(d1; d1) j d1 2 �IgQp 9z. FQ(�; z)^ Fp(z; �) f(d1; d3) j 9d2. (d1; d2) 2 QI ^ (d2; d3) 2 pIg> true �Ifag 
 := a faIgC uD FC(
)^ FD(
) CI \DI9p 9x. Fp(
; x) fd1 2 �I j 9d2. (d1; d2) 2 pIg9p := q 9x. Fp(
; x)^ Fq(
; x) fd1 2 �I j 9d2. (d1; d2) 2 pI ^ (d1; d2) 2 qIgTable 1: Transformational and set semantics of SL and QL.We say that two concepts C, D are equivalent if CI = DI for every interpreta-tion I, i.e., equivalent concepts always describe the same sets.We say that an interpretation I satis�es the axiom A v D if AI � DI and theaxiom P v A1�A2 if P I � AI1�AI2 . If � is an SL schema, an interpretation I thatsatis�es all axioms in � is called a �-interpretation. A concept C is �-satis�able ifthere is a �-interpretation I such that CI 6= ;. We say that C is �-subsumed by D(written C v� D) if CI � DI for every �-interpretation I.3.2 The Concrete versus the AbstractNext, we show by an example how to represent the structural part of a DL schemaby a set of schema axioms and the structural part of a query class by a QL concept.Figure 6 gives the translation of our medical database schema from Figure 1 intoschema axioms.We demonstrate the transformation of query classes intoQL concepts by translat-ing as an example the query classes QueryPatient and ViewPatient from Subsection 2.2into concepts CQ and DV . The inverses of attributes have to be made explicit. Forinstance, instead of using the attribute specialist one has to take skilled in�1.13



Patient v PersonPatient v 8takes. DrugPatient v 8consults. DoctorPatient v 8su�ers. DiseasePatient v 9su�ers Person v 8name. StringPerson v 9namePerson v (� 1 name)Doctor v 8skilled in. Disease skilled in v Person� TopicFigure 6: Schema axioms of the medical databaseCQ = Male u Patient u9(consults:Female) := (su�ers:>)(skilled in�1:Doctor)DV = Patient u 9(name:String) u9(consults:Doctor)(skilled in:Disease) := (su�ers:Disease):Now we are able to reformulate our key problem in the new framework. Recallthe question:Given a DL schema S, a query Q and a view V , are the instances of Qcontained in the view V for every database state obeying the schema S?Let � denote the translation of S, C that of Q and D that of V . Since we forgetabout the non-structural parts of S, the restrictions for �-interpretations are weakerthan those for database states. Therefore a database state always corresponds to a�-interpretation in a natural way. Since we forget about the non-structural partsof Q, the answer set of Q is a subset of the denotation of C. So the instances of Qare surely contained in V if C is �-subsumed by D (recall that a view has only astructural part and thus is entirely captured by the concept).Proposition 3.1 Let S, Q, V be a schema, a query class, and a view in DL, andlet �, C, D be their translations into an SL schema and QL concepts. IfC v� Dthen in every state of S, the answer set of Q is a subset of the answer set of V .The \only if" direction does not hold, since we forget about non-structural parts.So �-subsumption gives us a su�cient but not a necessary condition for subsumptionof queries. In the next section we will present a calculus for detecting �-subsumption,which provides a procedure that runs in time polynomial in the size of schema, queryand view. 14



A subsumption checking component based on this procedure can be embeddedinto a query optimizer for DL database systems: instead of just employing con-ventional compilation techniques for generating query evaluation plans from queryclasses, a subsumption checker tests whether an incoming query is subsumed by oneof the views currently materialized in the database. For this purpose the structuralparts of query classes and the view de�nitions are translated into QL expressions,the schema declarations into SL expressions, and the procedure is run on this input.The system modi�es the query evaluation plans by adding access operations to thestored extensions of subsuming views, thus restricting the search space. We plan toimplement such a subsumption checker within the deductive object base managerConceptBase [JS93, SNJ93] which o�ers a schema and query language very similarto DL.4 A Calculus for Deciding SubsumptionThe basic idea for deciding subsumption between a query concept C and a viewconcept D is as follows. We take an object o and transform C into a prototypicalinterpretation where o is an instance of C. We do so by generating objects, enteringthem into concepts, and relating them through attributes. Then we evaluate D overthis interpretation. If o belongs to the answers of D then C is subsumed by D. Ifnot, we have an interpretation where an object is in C but not in D and thereforeC is not subsumed by D.This approach is similar to the technique used for deciding containment of con-junctive queries (see [Ull89]). But the problem is more complicated in our casebecause we have to take into account the schema axioms. In particular, axioms ofthe form A v 9P lead to complications, since they can enforce the generation ofnew objects. To see this suppose that our schema contains the axioms A v 9Pand A v 8P . A, and that we have on object o in A. Then o must have a �llerfor the attribute P , say o0, which is again in A. Thus, building up a prototypicalinterpretation one might generate an in�nite number of objects if no special care istaken. To guarantee that the interpretation is of polynomial size and that D can beevaluated in polynomial time, D is used to provide guidance for the construction ofthe interpretation.Any concept of the form 9p := q is equivalent to a concept of the form 9p0 := �,since paths can be inverted using inverses of attributes. In the sequel we assumethat no concept has subconcepts of the form 9p := q where q 6= �, since this simpli�esthe calculus. 15



D1: F:G ! fs:C; s:Dg [ F:Gif s:C uD is in FD2: F:G ! fsRtg [ F:Gif tR�1s is in FD3: F:G ! (F:G)[y=a]if y: fag is in FD4: F:G ! fspyg [ F:Gif s: 9p is in F , and there is no t with spt in F , and y is a fresh variableD5: F:G ! fspsg [ F:Gif s: 9p := � is in FD6: F:G ! fsRy; y:C; yptg [F:Gif s(R:C)pt is in F , and there is no t0 such that sRt0, t:0C, t0pt are all in F ,and p 6= �, and y is fresh variableD7: F:G ! fsRt; t:Cg [ F:Gif s(R:C)t is in FFigure 7: The decomposition rules4.1 The Rules of the CalculusTo formulate the calculus we augment our syntax by variables (ranged over by x, y).We will refer to constants and variables alike as individuals (denoted by the letterss, t). Our calculus works on syntactic entities called constraints6 that have one ofthe forms s:C; sRt; spt;where C is a QL concept, R is an attribute, p is a path, and s, t are individuals.The �rst constraint says that s is an instance of C, the second that t is an R-�llerof s, and the third that s and t are related through p. A constraint system is a setS of constraints.We also extend the semantics. An interpretation I maps a variable x to anelement xI of its domain. It satis�es a constraint s:C if sI 2 CI, a constraint sRtif (sI ; tI) 2 RI , and a constraint spt if (sI; tI) 2 pI . We say that a �-interpretationI is a �-model of a constraint c if it satis�es c. A constraint is �-satis�able if ithas a �-model. The notions of satisfaction, model, and satis�ability are extendedto constraint systems as one would expect.Let c, c0 be constraints and � be an SL schema. We writec j=� c06Not to be confused with the constraints in class declarations!16



S1: F:G ! fs:A2g [ F:Gif s:A1 is in F , and A1 v A2 is in �S2: F:G ! ft:A2g [ F:Gif s:A1 and sP t are in F , and A1 v 8P . A2 is in �S3: F:G ! fs:A1; t:A2g [ F:Gif sP t is in F , and P v A1 � A2 is in �S4: F:G ! (F:G)[y=t]if s:A; sPy; sP t are in F , and A v (� 1 P ) is in �S5: F:G ! fsPyg [ F:Gif s: 9(P :C)p is in G or s: 9(P :C)p := � is in G, and there is no t with sP tin F , and there is an A with s:A in F and A v 9P in �, and y is afresh variable Figure 8: The schema rulesif every �-model of c is also a �-model of c0. This notion of �-entailment is nat-urally extended to constraint systems. The following proposition describes how�-entailment is linked to �-subsumption.Proposition 4.1 Let � be an SL schema, C, D be QL concepts, and x be a vari-able. Then C v� D i� x:C j=� x:D:General Assumption. Throughout this section, � denotes a �xed SL schema.Our calculus features four kinds of rules: decomposition, schema, goal, and com-position rules. The rules work on pairs of constraint systems F:G (called pairs forshort). We call F the facts and G the goals. In order to decide whether C v� D, wetake a variable x and start with the fact fx:Cg and the goal fx:Dg. Applying therules, we add more facts and goals until no more rule is applicable. Intuitively, thequery C is subsumed by the view D i� the �nal set of facts contains the constraintx:D.7 All rules exploit the hierarchical structure of concepts, which is the basicreason for the polynomiality of the procedure.To formulate the rules we use the following notation. By R�1 we denote P�1 ifR = P and P if R = P�1. The pair (F:G)[y=s] is obtained from F:G by replacingevery occurrence of y with s.The rules are presented in Figures 7 to 10. A rule is applicable to a pair if itsatis�es the conditions associated with the rule and if it is altered when transformed7We will see later on that this condition has to be re�ned a bit.17



G1: F:G ! F:G [ fs:C; s:Dgif s:C uD is in GG2: F:G ! F:G [ ft:Cgif s: 9(R:C) is in G or s: 9(R:C) := � is in G, and sRt is in FG3: F:G ! F:G [ ft:C; t: 9pgif s: 9(R:C)p is in G or s: 9(R:C)p := � is in G, and sRt is in FFigure 9: The goal rulesaccording to the rule. The second requirement is needed to ensure termination ofour calculus. As an example, Rule D1 is applicable to a pair F:G if F contains aconstraint s:C uD and if s:C and s:D are not both in F .The decomposition rules (Figure 7) work on facts. They break up the initial factx:C into constraints involving only primitive concepts, primitive attributes, andsingletons. In breaking up a path, Rules D4 and D6 use fresh variables to representthe objects along the path.The schema rules (Figure 8) also work on facts. They add information derivablefrom the schema and the current facts. The �rst four rules are simple: Rules S1 toS3 add membership constraints for individuals in F , and Rule S4 identi�es valuesof functional attributes. Rule S5, however, which might create a new individual,is subject to a tricky control that limits the number of new individuals: it is onlyapplicable if it contributes to a path that is required by a goal.Also individuals introduced by the decomposition rules can help in building upsuch a path. Since they carry more speci�c information than variables created byschema rules, decomposition rules receive priority:� A schema rule can be applied only if no decomposition rule is applicable.This control structure contributes to keeping the whole procedure polynomial.The goal rules (Figure 9) work on goals. They guide the evaluation of the viewconcept D by deriving subgoals from the original goal x:D. The interesting rulesare G2 and G3, since they relate goals to facts: if the goal is to �nd a path issuingfrom s whose �rst step involves the attribute R, then only individuals t are testedwhich are explicitly mentioned as R-�llers of s in the facts.The composition rules (Figure 10) compose complex facts from simpler ones di-rected by the goals. This can be understood as a bottom up evaluation of conceptD over F .A pair is complete if no rule is applicable. A complete pair obtained from a pair18



C1: F:G ! fs:C uDg [ F:Gif s:C and s:D are in F , and s:C uD is in GC2: F:G ! fs:>g[ F:Gif s:> is in GC3: F:G ! fs: 9pg [ F:Gif p = � or there is a t with spt in F , and s: 9p is in GC4: F:G ! fs: 9p := �g [ F:Gif p = � or sps is in F , and s: 9p := � is in GC5: F:G ! fs(R:C)ptg [ F:Gif there is a t0 with sRt0, t0:C and t0pt in F , such that s: 9(R:C)p ors: 9(R:C)p := � is in GC6: F:G ! fs(R:C)tg [ F:Gif sRt and t:C are in F , and s: 9(R:C) or s: 9(R:C) := � is in GFigure 10: The composition rulesF:G by applying the above rules is called a completion of F:G. Since all rules aredeterministic, there exists|up to variable renaming|exactly one completion for apair of constraint systems.In Figure 11, we use the calculus to check the concepts CQ and DV of Section 3.2for subsumption. We start with the pair F1: G1 where:F1 = fx:Male u Patient u9(consults:Female u Doctor)(skilled in:>)(su�ers�1:>) := �gG1 = fx:Patient u 9(name:String) u9(consults:Doctor)(skilled in:Disease)(su�ers�1:>) := �g:Note that CQ and DV have been rewritten such that all agreements of paths havethe form 9p := �. Figure 11 shows a sequence of rule applications. In each step wegive only the component of the pair that changes. As completion we obtain F21: G5and see that x:DV is in F21. Hence CQ is �-subsumed DV .4.2 Soundness and Completeness of the CalculusWe now show that our calculus indeed gives rise to a polynomial time decisionprocedure for �-subsumption of QL concepts.First, notice that in any pair F:G derivable from an initial pair fx:Cg: fx:Dg,the set of goals G contains exactly one constraint of the form s:D. The individual19



F2 = F1 [ fx:Male u Patient;x: 9(consults:FemaleuDoctor)(skilled in:>)(su�ers�1:>) := �g D1F3 = F2 [ fx:Male; x:Patientg D1F4 = F3 [ fx (consults:FemaleuDoctor)(skilled in:>)(su�ers�1:>)xg D5F5 = F4 [ fx consults s1; y1:FemaleuDoctor; y1 (skilled in:>)(su�ers�1:>)xg D6F6 = F5 [ fy1:Female; y1:Doctorg D1F7 = F6 [ fy1 skilled in y2; y2:>; y2 (su�ers�1:>)xg D6F8 = F7 [ fy2 su�ers�1 x; x:>g D7F9 = F8 [ fx su�ers y2; y1 consults�1 x; y2 skilled in�1 y1g 3�D2F10 = F9 [ fx:Persong S1F11 = F10 [ fy2:Diseaseg S2F12 = F11 [ fy1:Person; y2:Topicg S3G2 = G1 [ fx:Patient u 9(name: String);x: 9(consults:Doctor)(skilled in:Disease)(su�ers�1:>) := �g G1G3 = G2 [ fx:Patient; x: 9(name: String)g G1G4 = G3 [ fy1:Doctor; y1: 9(skilled in:Disease)(su�ers�1:>)g G3G5 = G4 [ fy2: 9(su�ers�1:>)g G3F13 = F12 [ fx namey3g S5F14 = F13 [ fy3: Stringg S2F15 = F14 [ fy3 name�1 xg D2F16 = F15 [ fy1 (skilled in:Disease)(su�ers�1:>)xg C5F17 = F61 [ fx (consults:Doctor)(skilled in:Disease)(su�ers�1:>)xg C5F18 = F17 [ fx: 9(consults:Doctor)(skilled in:Disease)(su�ers�1:>) := �g C4F19 = F18 [ fx: 9(name: String)g C6F20 = F19 [ fx:Patient u 9(name: String)g C1F21 = F20 [ fx:Patient u 9(name: String) u9(consults:Doctor)(skilled in:Disease)(su�ers�1:>) := �g C1Figure 11: A sequence of rule applicationss occurring in s:D may be distinct from x due to applications of the rules D3 andS4, which replace a variables by another individual. Moreover, if s:D 2 G, thens:C 2 F . This can be veri�ed by inspecting the rules that alter goals.General Assumption. In the sequel of this section, C, D are QL concepts, x isa variable, FC: GD is the completion of fx:Cg: fx:Dg, and o is the individual suchthat o:D is in GD.We �rst observe that the calculus adds only consequences to the set of facts, i.e.,it keeps the models of the facts invariant.Proposition 4.2 (Invariance) Suppose F:G has been derived from fx:Cg: fx:Dg,and F 0: G0 is obtained from F:G by applying a rule. Then every �-model I of F canbe turned into a �-model I 0 of F 0 by modifying the interpretation of fresh variables.Moreover, if s, s0 are such that fs:Dg 2 G and fs0:Dg 2 G0, then I 0 can be chosensuch that s0I0 = sI . 20



Proof. The claim can be shown by a case analysis considering all rules.Corollary 4.3 Every �-model I of x:C can be turned into a �-model I 0 of FCby modifying the interpretation of variables. Moreover, I 0 can be chosen such thatoI0 = xI .Proof. This follows by induction from the preceding proposition.Corollary 4.4 x:C j=� x:D () FC j=� o:DProof. \)" Let I be a �-model of FC. Then I is a �-model of o:C, since o:C 2 FC.Let I 0 be such that xI0 = oI and I 0 coincides with I otherwise. Then I 0 is a �-modelof x:C and hence of x:D. By de�nition, I 0 is a �-model of o:D as well. Since Iand I 0 coincide on all symbols, except possibly x, it follows that I is a �-model ofo:D.\(" Let I be a �-model of x:C. By the preceding corollary, I can be turnedinto a �-model I 0 of FC with oI0 = xI by modifying the interpretation of variables.The interpretation I 0 is also a �-model of o:D. Since DI = DI0 and xI = oI0 itfollows that I is a �-model of x:D.Not every constraint system is �-satis�able. Since di�erent constants are inter-preted as distinct objects, a constraint of the form a: fbg is unsatis�able. For thesame reason, di�erent constants cannot be values of a functional attribute at thesame time. These observations are captured by the notion of clash.A clash is a constraint system of one of the following forms:� fa: fbgg, where a 6= b� fsPa; sPb; s:Ag, where A v (� 1 P ) is in � and a 6= b.A constraint system is clash-free if it does not contain a clash. Obviously, a con-straint system containing a clash is not �-satis�able. We will show that a clash-freeset of facts in a complete pair is �-satis�able.From constraint systems one can derive interpretations in a natural way. Let ube a new symbol and S be a constraint system. The canonical interpretation IS ofS is de�ned as follows:�IS := fs j s is an individual in Sg [ fa j a is a constantg [ fugsIS := s 21



AIS := fs j s:A is in Sg [ fugP IS := f(s; t) j sP t is in Sg [ f(u; u)g[ f(s; u) j there is no sP t in S, but for some A,s:A is in S and A v 9P is in �g.We will be particularly interested in canonical interpretations that are obtained fromthe facts of a complete pair. As pointed out before, the schema rules are designedin such a way that not every necessary attribute will get a variable as a �ller. Therole of the new object u is to compensate for this lack.The idea that our calculus constructs a �-model of C is made more precise bythe following proposition.Proposition 4.5 Let F:G be a complete pair. If F is clash-free, then the canonicalinterpretation IF is a �-model of F .Proof. We have to verify that IF satis�es the Unique Name Assumption as well asevery axiom in � and every constraint in F .The Unique Name Assumption is trivially satis�ed because every constant symbolis interpreted by itself.Let us consider the schema axioms. Suppose that � contains an axiom A v 9P .Let s 2 AIF . If s = u, then the axiom is satis�ed, since (u; u) 2 P IF . If s 6= u, thens:A 2 F . We distinguish two cases: (1) there is a constraint sP t in F , or (2) thereis no such constraint. In the �rst case, (s; t) 2 P IF and in the second, (s; u) 2 P IF .Thus the axiom A v 9P is satis�ed.Suppose that � contains an axiom of the form A v (� 1 P ). Let s 2 AIF . Ifs = u, then the axiom is satis�ed, since by construction of IF the symbol u is theonly object that is in the relation P IF with u. If s 6= u, then s:A 2 F . Assumethat t and t0 are two distinct symbols such that both (s; t) and (s; t0) are in P IF .Then both t and t0 are distinct from u, because (s; u) 2 P IF implies t00 = u for anyt00 with (s; t00) 2 P IF . By de�nition of IF it follows that F contains the constraintssP t and sP t0. If t or t0 were a variable, then Rule S4 would be applicable to F:G,in contradiction to the completeness of F:G. Hence, both t and t0 are constants,which contradicts the fact that F is clash-free. Consequently, the above assumptionis false and the axiom A v (� 1 P ) is satis�ed. The other cases require similarreasoning and are therefore dismissed.Next we consider the di�erent constraints. By de�nition of IF , every constraintsP t is satis�ed. If F contains a constraint sP�1t, then it contains also the constrainttPs, since otherwise Rule D2 would be applicable. Obviously, every constraint s:Aand s:> is satis�ed. Moreover, for every constraint s: fag 2 F we have that s isa constant, since otherwise Rule D3 would be applicable to F:G, and that s = abecause F is clash-free. 22



To prove that more complex constraints are satis�ed, we proceed by induction.If F contains s:E uE 0, then, because of Rule D1, it contains as well s:E and s:E 0,which are satis�ed by the inductive hypothesis. Hence, IF satis�es also s:E u E 0.If F contains s(R:C)t, then, because of Rule D7, it contains as well sRt and t:C,which are satis�ed by the inductive hypothesis. Hence, IF satis�es also s(R:C)t.We drop the remaining cases, since the arguments will be similar.Proposition 4.6 Let IFC be the canonical interpretation of FC and s:E be a con-straint in GD. If FC is clash-free, thenIFC satis�es s:E =) s:E 2 FC:Proof. Suppose that FC is clash-free and that IFC satis�es s:E. The proof is byinduction on the structure of E.We �rst consider the base cases. Suppose that E = A. Then s:A 2 FC byde�nition of IFC , since IFC satis�es s:A. Suppose that E = >. Then s:> 2 FCbecause of Rule C2. Suppose that E = fag. In order to deal with this case, we haveto make use of two observations. First, noticing the fact that our calculus startso� with a pair fx:Cg: fx:Dg, and inspecting the rules of the calculus we see thatany individual t occurring in a constraint t:E 0 in GD occurs also in FC. Second,analyzing the rules again we see that if a constant a occurs in FC, then FC containsa constraint t: fag. Now, if IFC satis�es s: fag, then by de�nition of IFC we haves: = a. By our �rst observation, a occurs also in FC, and by our second observation,FC contains a constraint t: fag. Since FC is the �rst component of a complete pair,it follows that t = a and hence that a: fag 2 FC.Next we analyze in turn each possible complex concept E. If E is of the formE0uE 00 then IFC satis�es s:E 0uE 00 i� IFQ satis�es s:E 0 and s:E 00. By the inductivehypothesis, this is the case i� s:E 0 2 FC and s:E 00 2 FC. Since s:E 0 uE 00 2 GD, wehave that s:E 0 u E 00 2 FC, since otherwise Rule C1 would be applicable.If E is of the form 9p then we have to consider two cases. The case p = � iscaptured by Rule C3. If p 6= �, then IFC satis�es s:9p i� IFC satis�es spt for anindividual t. By an induction on the length of p, which is nested in the currentinduction, we show that spt 2 FC if IFC satis�es spt. Then, because of Rule C3,s:9p 2 FC.As the base case of the nested induction we consider p = (R:E 0). Then, sinces:9(R:E 0) 2 GD and since FC : GD is complete, by the de�nition of IFC it follows thatIFC satis�es s(R:E 0)t i� sRt 2 FC and IFC satis�es t:E 0. By the outer inductivehypothesis this is the case if t:E 0 2 FC (since t:E 0 2 GD). Then, because of RuleC6, we have spt 2 FC.For the induction step suppose that p = (R:E 0)p0. Since s:9(R:E 0)p0 2 GDand since FC: GD is complete, by the de�nition of IFC it follows that IFC satis�es23



s(R:E 0)p0t i� there is a t0 such that sRt0 2 FC and IFC satis�es both t0:E 0 and t0p0t.By the inner and the outer inductive hypothesis this is the case if t0:E 0 2 FC andt0p0t 2 FC (since t0:E 0 2 GD and t0:9p0 2 GD). Then, because of Rule C5, we havespt 2 FD, which ends the inner induction proof.If E is of the form 9p := � then we again have to consider two cases. The casep = � is captured by Rule C4. If p 6= �, then IFC satis�es s:9p := � i� IFC satis�essps. If IFC satis�es sps, then sps is in FC. This can be shown by an inductionanalogous to the one above. Then because of Rule C4, we have s:9p := � 2 FC.Now, we only have to put together the previous statements to show the soundnessand completeness of the calculus.Theorem 4.7 (Soundness and Completeness)C v� D () o:D 2 FC or FC contains a clash.Proof. By Proposition 4.1, we have C v� D if and only if x:C j=� x:D.\)" Suppose x:C j=� x:D and FC does not contain a clash. By Corollary 4.4,we know that FC j=� o:D. Since FC is clash-free, Proposition 4.5 implies that IFC isa model of FC and hence, IFC satis�es o:D. Since clearly o:D is in GD, we concludeby Proposition 4.6 that o:D 2 FC.\(" If o:D 2 FC, then FC j=� o:D, and Corollary 4.4 yields the claim. If FCcontains a clash, then FC is unsatis�able and hence, x:C is unsatis�able too, byCorollary 4.3. Thus, C is unsatis�able and therefore �-subsumed by any concept.4.3 Complexity Analysis of the CalculusNow we turn to the complexity of deciding �-subsumption. To this end we estimatethe number of individuals in FC: GD. First, observe that any constant in this pairmust appear in C. Second, for every variable introduced by a decomposition rule,there is an existentially quanti�ed subconcept of C. Hence, the number of constantsplus the number of variables generated by decomposition rules is less or equal to thesize of C. We call these individuals primary individuals. Moreover, we say that t0 isa successor of t if FC contains constraints tP1s1; s1P2s2; : : : ; sj�1Pjt0. Third, sincethe introduction of variables by the schema rule S5 is controlled by the structureof D, one can show that for every primary individual the number of nonprimarysuccessors is bounded by the size of D. Summarizing, we obtain an upper boundfor the number of individuals occurring in FC: GD.24



Proposition 4.8 The number of individuals occurring in FC: GD is at most MN ,where M is the size of C and N is the size of D.Every application of a rule either adds new constraints or reduces the numberof variables. Since each new constraint is a combination of variables and conceptor attribute expressions occurring in C, D, or �, the number of rule applicationsadding constraints is polynomially bounded by the size of C, D and �. Similarly, thenumber of rule applications that identify individuals is bounded by the number ofindividuals generated through the computation. Summarizing, we conclude that anyderivation of FC: GD comprises polynomially many steps. Moreover, testing whethera rule is applicable and applying a rule can be accomplished in time polynomial inthe size of � and the current constraint system. Thus, a completion of fx:Cg: fx:Dgcan be computed in time polynomial in the size of C, D and �. This yields thefollowing theorem.Theorem 4.9 �-subsumption between QL concepts can be decided in time polyno-mial in the size of C, D and �.For a practical application we do not suggest to directly implement the rule-basedcalculus described in this paper. The calculus is rather intended as a conceptualframework for studying subsumption problems and proving results about their prop-erties. A description of an optimal implementation technique was beyond the scopeof this paper.4.4 The Complexity of Language ExtensionsBased on previous complexity analyses from the areas of query optimization andconcept languages we will show that the structural parts of our database schemaand query language are designed so as to gain maximal expressiveness without losingtractability. To this end, we will discuss several natural extensions of SL and QLfor which determining �-subsumption is NP-hard or co-NP-hard. We prefer todiscuss this topic in terms of concepts rather than classes and queries because ofthe higher level of abstraction. In most cases, we will not give the proofs for thehardness results, but motivate them intuitively and describe how they are derivedfrom previous work.Variables on Paths. In some object-oriented query languages one can not onlyrestrict intermediate nodes on paths to classes, as in our language, but also requirearbitrary coreferences between them through variables that force intermediate nodeson di�erent paths to be equal (see e.g. [KKS92]). We could easily introduce this25



feature intoQL by allowing for singletons fxg consisting of a variable. Such variablesare implicitly understood to be existentially quanti�ed. For example, the concept9(P : fxg)(P 0: fxg)is equivalent to the formula9x. (9y9z. (P (
; z) ^ z := x) ^ (P 0(z; y) ^ y := x) ):Obviously, singletons with variables in QL concepts allow us to express arbitraryconjunctive queries involving unary and binary predicates and having one free vari-able. The subsumption problem for such queries is known to be NP-hard [CM93].However, for subsumption problems \C v� D?" where variables occur only in Cand D is an ordinary QL concept, we still have a sound and complete method. Tosee this, observe that the problem \C v� D?" is logically equivalent to a problem\C 0 v� D?" where C 0 has been obtained from C by replacing the variables with newconstants. This transformation of C just amounts to skolemizing the existentiallyquanti�ed variables. The resulting concept C 0 is in QL and we can decide with ourcalculus whether C 0 v� D.Universal and Existential Quanti�cation. The key result for our discussionof other NP-hard extensions is due to Donini et al. [DHL+92] who showed thatthe interplay of universal and existential quanti�cation over attributes is a sourceof complexity that makes subsumption checking intractable. More precisely, theyintroduced a concept language L whose elements are built up from primitive conceptsA and primitive attributes P according to the syntax ruleC;D �! A j C uD j 8P .C j 9P .C;where a concept 9P . C is interpreted in the same way as 9(P :C). Donini et al.proved that deciding subsumption in L is NP-hard and that adding to L a construct? to denote the empty concept yields a language L? where already unsatis�abilityis NP-hard. Note that neither SL nor QL contain both universal and existentialquanti�cation over attributes as they occur in L. In SL, existential quanti�cation isrestricted to concepts of the form 9P while in QL only existential, but no universalquanti�cation is allowed.The reductions in [DHL+92] can be modi�ed to show that natural extensions ofour schema language are computationally harmful.Proposition 4.10 Extending SL by any of the following constructs makes �-sub-sumption of QL concepts NP-hard:1. quali�ed existential quanti�cation over attributes in the form 9P .A;26



2. inverse attributes in concepts of the form 8P�1.A and 9P�1;3. singletons, i.e., concepts of the form fag, where a is a constant.An intuitive reason why in the �rst case subsumption is hard can be given interms of our calculus. To keep our procedure polynomial it is crucial that for anyindividual s in the set of facts, the schema rule S5 creates at most one P -value.However, if our schema contains axioms A v 9P .A0 and A v 9P .A00 then for everyfact s:A we have to create two P -values, namely a variable y0 with the fact y0:A0and a variable y00 with the fact y00:A00. We have to distinguish between y0 and y00because they have di�erent properties. Since the process of variable generation mayhave to be iterated on y0 and y00, we may end up with exponentially many facts.While the idea underlying Rule S5 is to create only variables if a goal expressionrequires to do so, this policy is no more su�cient in the presence of inverse attributes.To see this consider the set of axioms �1 := fA v 9P; A v 8P .A0; A0 v 8P�1.A00g.Then A is �1-subsumed by A00, since an object o in A has a P -value o0 in A0, andhence o, being an P�1-value of o0, is in A00. Intuitively, such implicit inclusionsbetween primitive concepts can only be detected by generating variables as valuesfor all attributes in the schema that are marked as necessary. Since this process hasto be iterated we may end up with exponentially many variables.The basic reason for the hardness of case 3 is that by using singletons in schemaaxioms one can impose conditions on a primitive concept that make it unsatis�able.Obviously, in all models of �2 := fA v fag; A v fbgg the concept A is empty. Forother schemas it is necessary to reason about values of attributes in order to recognizeunsatis�ability. For instance, in all models of fA v 9P; A v 8P .fag; A v 8P .fbgg,the concept A is empty because any object in A is required to have a P -value thatis simultaneously in fag and in fbg. For more complex schemata this reasoningprocess may involve exponentially many attribute values.As suggested by the informal arguments above, it can be shown that addinginverse attributes or singletons turns even subsumption of atomic concepts into anNP-hard problem. Moreover, the result on singletons can be generalized so that anyextension of our schema de�nition formalism that allows one to specify unsatis�ableprimitive concepts makes subsumption of primitive concepts NP-hard. Examples ofsuch extensions are negation|however limited|, relative complements, or axiomsstating the disjointness of primitive concepts.The result in [DHL+92] applies also to our query language.Proposition 4.11 Extending QL by universal quanti�cation over attributes in theform 8P .C leads to a language where unsatis�ability|and therefore subsumption|is NP-hard even when the schema is empty.27



Proof. The claim holds because adding universal quanti�cation to QL results inan extension of the language L?.Disjunction and Negation. Next we are going to discuss extensions that lead toco-NP-hard subsumption problems. As one would suppose, allowing for disjunctionof concepts in either our schema or our query language has this e�ect because dis-junction together with conjunction and singletons, by which one can express disjointconcepts, gives the power of propositional logic.Proposition 4.12� Extending SL by disjunctions of concepts of the form AtA0, which are inter-preted as AI [A0I, makes �-subsumption of QL concepts co-NP-hard.� Extending QL by disjunctions of concepts of the form C tC 0, which are inter-preted as CI [ C 0I, leads to a language where unsatis�ability|and thereforesubsumption|is co-NP-hard.The �rst part of the preceding proposition can be shown by an immediate reduc-tion of the satis�ability for propositional logic. The second part has been proved byKasper and Rounds for feature structures [KR86].Finally, we observe that even limited forms of negation in the query languagemake subsumption checking intractable. This can be shown shown using results bySchaerf [Sch93] or Lenzerini [Len93].Proposition 4.13 Extending QL by relative complements AnA0 of atomic concepts,which are interpreted as AI nA0I, leads to a language where subsumption is co-NP-hard even when the schema is empty.For the preceding proposition to hold, schema and agreements in queries are notessential. The statement is even still valid if either constants [Len93] or inverseattributes [Sch93] are given up.Proposition 4.13 can be applied as well to an extension ofQL by numerical rangesfor functional attributes. If Person is a primitive concept and age is a necessaryfunctional attribute on Person, then the expressions Personu9age.[0; 18] and Personu9age. [19;1], describing persons with age below 18 and persons with age above 18,respectively, are related to each other like relative complements. Hence, numericalranges give rise to a co-NP-hard subsumption problem too.28



5 Related WorkOur work relates to several �elds of research in databases and Arti�cial Intelligence.We shortly discuss the relationship to common subexpression analysis, optimizationof conjunctive queries, semantic query optimization, queries and views in OODB's,and query optimization in existing OODB systems.Common Subexpressions. The problem of recognizing that one query is moregeneral than another one has already been addressed in the context of relationaldatabases. Finkelstein [Fin92] presented an algorithm that detects common subex-pressions of relational algebra queries. He proposed to compute answers to suchsubqueries only once and then to reuse them. His approach is too general to permita polynomial algorithm. In contrast to our work, he did not make use of schemainformation.Conjunctive Queries. As pointed out before, QL concepts are equivalent to asubclass of conjunctive queries. General conjunctive queries are de�ned by formulaswhose pre�x has only existential quanti�ers and whose matrix is a conjunction ofpositive function free atoms [CM93, Ull89]. Much e�ort has been devoted to thecontainment problem for such queries, i.e., to determine whether the answers forone query are also answers for a second. Thus, in our framework, containment issubsumption with respect to the empty schema.The objective of this work, however, was not reusing queries, but computing fora given query an equivalent one by removing unnecessary conjuncts. It has beenshown that deciding containment of conjunctive queries is NP-hard, even if all predi-cates involved are binary [CM93]. Aho et al. [ASU79] and Johnson and Klug [JK83]identi�ed classes of conjunctive queries for which subsumption can be decided inpolynomial time. The class described by Aho et al. is so restricted that even queriesthat chain one attribute (like chaining \child" so as to yield \grandchild") are notcaptured, while the queries studied by Johnson and Klug are de�ned by meansof complicated graph theoretic properties. Neither of these classes comprises thelanguage QL, so that QL concepts can be seen as a naturally occurring class of con-junctive queries with polynomial containment problem. In the work on conjunctivequeries no schema information like in our case has been taken into account.Recently, Chan [Cha92] has adapted optimization techniques for conjunctivequeries to an object-oriented setting. He considered some minimal schema informa-tion like subclass relationship and disjointness of classes. Although the containmentproblem for his language is obviously NP-hard, he did not address the question ofcomplexity.Semantic Query Optimization. Semantic query optimization exploits seman-tic knowledge expressed by integrity constraints for constructing query evaluationplans. Semantic optimization techniques were �rst proposed in the context of re-29



lational databases [Kin81, HZ80, Jar84] and dealt with rather simple types of con-straints stating e.g., referential integrity and functional dependencies. For deductivedatabases and general integrity constraints in clausal form, [CGM88, CGM90, GL92,Kow92] describe a rewriting of queries and rules. This technique has also been usedfor generating cooperative answers [Gaa92]. Several papers [SO89, HLO91] dealwith the implementation of semantic query optimizers, especially schemes for de-ciding which rules and integrity constraints are actually promising pro�t for a givenquery.Within this framework, our method belongs to the category of approaches thatexploit constraints of speci�c kinds, namely those expressible in the abstract schemalanguage SL. It is tailored to the typical needs of an object-oriented data modellike value restrictions, existential and functional requirements for attribute �llersand subset relationships.Queries and Views in OODB's. In [KKS92] an object-oriented query languagecalled XSQL has been de�ned. Similar to QL, in XSQL intermediate nodes inpath expressions can be constrained by classes. XSQL exceeds our language inexpressivity. For instance, it provides generation of object identi�ers, which wehave not considered.Abiteboul and Bonner [AB91] presented a view mechanism for OODB's whereviews can be de�ned as virtual classes that are populated by existing objects. Virtualclasses are integrated into the existing class hierarchy by a simple subsumptioncheck. In the COCOON system views are seen as special classes de�ned by queries.When integrating them into the schema they are checked for subsumption by ad-hoctechniques [SLT91].Speci�c OODB views called materialized functions have been investigated in[KMWZ91]. The functions are used for deriving attribute values which are storedin a separate data structure. A similar strategy is pursued in the extended rela-tional database system Postgres [SK91]. Cost models and benchmark results are in[KKM91] and [Han87] (for relational databases).Object-oriented Query Optimization. Object-oriented database systems likeO2 [OT92, BCD92] and ObjectStore [OHMS92] focus query optimization on the useof physical clustering strategies and indexes. In O2, indexes are quite 
exible byallowing a membership condition and computed attributes speci�ed as path expres-sions, similar to the role of views presented in this paper. However, the schema ofthe O2 database is not taken into account for query optimization. ObjectStore con-centrates on indexes for path expressions which allows an easier selection of indexesfor a given query. Both OODB systems do not provide automatic maintenance oftheir indexes. In O2, the application program must take care of it, and in Object-Store the database designer has to annotate the schema. Our approach makes thisoverhead unnecessary since the triggers for view maintenance can be automaticallygenerated from the logical representation of views.30



6 ConclusionsWe have proposed a query optimization technique for OODB's that takes advan-tage of the subsumption of queries. We have presented a polynomial algorithm thatrecognizes subsuming queries by analyzing complex path expressions and subclassrelationships in the query de�nition and exploits the structural knowledge encodedin the database schema. Technically, we applied results fromArti�cial Intelligence toidentify portions of queries and schemas that permit tractable inferences. Subsump-tion can be particularly useful in an environment where many view are materialized.Summarizing we used the following ideas:1. We introduced a generic object-oriented data model with a simple �rst-ordersemantics.2. Queries and class declarations are separated into a structural part containingstructural membership conditions and a non-structural part containing theremaining membership conditions.3. To guarantee polynomial time performance, the subsumption checker consid-ers only structural information and ignores the non-structural parts. Theapproach is sound if the more general query can be described entirely in struc-tural terms.4. Our algorithm incorporates knowledge from the schema level for �nding addi-tional subsumptions which are not derivable from query de�nitions only.5. The correspondence between concept languages and the �rst-order semantics ofOODB's makes view maintenance methods from deductive databases ([UO92,CW91] applicable.One way to increase the success of the method is focusing on speci�c domainsof applications, e.g., distributed information systems. There, a couple of users co-operatively work on a set of tasks. Since objects are shared and passed betweenthe subsystems it can be expected that di�erent people work on the same set ofobjects|speci�ed by a query. For example, each user may want to see the patientsleaving the hospital next week. The �rst user asking this query triggers the normalevaluation. A control component (\trader") memorizes the query and the locationof the answer (the view). A new query is then checked for subsumption against suchviews. Such an environment is currently set up in a quality management project[JJS93] where autonomous data-intensive tools cover certain aspects of quality man-agement in the industrial product life cycle. Since the trader manipulates schemaand query descriptions it provides an excellent test bed for the application of thetechniques presented in this paper. 31



There are a couple of open questions with our approach. First, the issue ofcomplex answers has not been addressed. In our model, answers are just sets ofobject identi�ers without any derived answer attributes. These attributes are neededby application programs, and by permutation of parameters they entail additionalsubsumptions between queries. Second, it is an open problem what is the best wayto evaluate the query against the subsuming view. We are interested in a minimal�lter query which intersected with the view results exactly in the subsumed query.Then, it would be su�cient to test the answer candidates for satisfaction of the �lterconditions.The actual performance gain by exploiting subsumptions to views has to be val-idated in practical experiments. We expect good results since the structural parthas been designed to capture frequently used constructs like path expressions. Oneshould also note that the syntax of queries in Section 2 gives a view de�nition forfree: its structural part! The �rst evaluation of the view creates no signi�cant over-head since it is part of the evaluation of the original query. Afterwards, such viewscan be used to optimize subsequent queries.A prototypical implementation of the proposed optimization technique is plannedwithin the ConceptBase system. The calculus of Section 4 can serve as a startingpoint for developing an e�cient subsumption tester for query and view concepts.This module has then to be embedded into the larger context of query modulesof ConceptBase. The maintenance of the views will not create much additionalwork since it can re-use modules for deductive integrity checking already present inConceptBase.Acknowledgements. We would like to thank Maurizio Lenzerini and MatthiasJarke for fruitful discussions that contributed much to the contents of this paper.We also thank Alex Borgida and Peter Patel-Schneider for commenting on earlierdrafts.This work was supported in part by the Commission of the European Commu-nities under ESPRIT Basic Research Action 6810 (Compulog 2), by the GermanMinistry of Research and Technology under grant ITW 92-01 (TACOS), and by theMinistry of Science and Research of Nordrhein-Westfalen.
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